
An Energy-Efficient and Reliable Mechanism for
Data Transport in Wireless Sensor Networks

Erik-Oliver Blaß
Institute of Telematics

University of Karlsruhe, Germany
Email: blass@tm.uka.de

Lars Tiede
Institute of Telematics

University of Karlsruhe, Germany
Email: tiede@tm.uka.de

Martina Zitterbart
Institute of Telematics

University of Karlsruhe, Germany
Email: zit@tm.uka.de

Abstract— Transportation of data between nodes in a sensor
network is expensive, as wireless radio transmission depletes finite
battery capacity. In addition, wireless data transmission is prone
to errors, like static, making reliable data exchange between
sensor nodes even more expensive. This paper describes a novel
transport scheme that allows sensors to predict data from other
sensors. Thereby, communication can partially be omitted, which
in return results in reduced radio traffic, less energy consumption,
and thus improved network lifetime. In addition to that, simple
techniques to ensure reliable communication become much more
affordable. The proposed scheme seamlessly integrates into in-
network data aggregation. The prediction mechanism is based
on the evaluation of polynomials derived from simplified Kalman
filters.

I. INTRODUCTION

Extracting information from a sensor network requires com-
munication among sensor nodes, often along a path starting
from a measuring sensor node to a data sink or base station,
respectively. In most scenarios, the collection of data towards
a base station is done on a regular, i.e., periodic base, as
continuous measurements are required from sensors. Popular
examples are the measurements of temperatures in a room or
the heartbeat rate of a patient’s heartbeat sensor. Typically,
timed communication is used to provide constant data rates
towards the base station. This type of communication is,
however, expensive, as sensor hardware is powered by tiny
batteries with finite capacity. Frequent communication using
a radio interface consumes energy and degrades a node’s life-
time. Besides, packet loss is an inherent problem of wireless
sensor networks. Sensors utilize cheap and primitive radio
interfaces, prone to errors and collisions. Experiments show
that packet loss in sensor networks can be quite high, for
example, [1] encounter 50%. High packet loss makes reliable
communication in a sensor network, e.g., by sending additional
overhead like acknowledgments (ACKs), even more expensive.

To reduce traffic towards the sink, sophisticated techniques
for the minimization of communication are required in order to
maximize the overall network lifetime. One typical technique
to achieve this is in-network data aggregation. Bunches of
sensor nodes are logically grouped, one among them being
an aggregation node. This node collects all the data from
group members and produces an aggregate which is then
used as the collective data from that group and further for-
warded towards the sink. But even in a network performing

data aggregation, there is still a considerable communica-
tion overhead, sometimes highly redundant. In a real-world
environment, where measurements from nodes are reported
to a sink, which collects and evaluates all data, there is
often communication transporting data of little value or low
entropy through the network. For example, imagine a network
observing temperatures in a building on a regular basis: as
temperatures at single sensor nodes in different rooms often
behave fairly well-predictable or do not change at all during
short periods of time, there is mostly redundant data trans-
fer, reporting insignificant information to their aggregation
node. If the nodes in the network had some application-
independent intelligence, enabling them to distinguish between
important and unimportant or insignificant samples, periodic
transmissions of the actual temperature values would become
unnecessary, thus saving a huge number of expensive radio
transmissions. Instead, a measuring node would only send
new data to its aggregation node, if the new data appears
to be significant. A node decides about the significance of
a new measurement by comparing the actual measurement
with the data the aggregation node might expect or predict.
Only if there is a significant difference between the actual
measurement and the predicted value, the node sends data to
the aggregation node. For example, an increase in temperature
is periodically measured, like 30, 32, 34 degrees Celsius, and
this is transmitted to the aggregation node. As the aggregation
node can now, with a certain error probability, predict the
next measured temperature to be 36 degrees, there is no
need to actually send this information from the sensor to the
aggregation node.

This paper introduces a fairly general approach to utilize a
simple, yet powerful prediction ability in sensor networks. The
approach is suited for typical sensor network scenarios and
supports in-network data aggregation. Prediction will allow the
whole network to save a lot of energy and battery-consuming
transmission costs, thus making communication and additional
reliability overhead much more affordable. Basically, this
prediction is made up by a Kalman Filter [2] on a measuring
node and a predictor polynomial which is employed on both,
the measuring and the aggregation node (cf. Fig. 1).

The rest of this paper is structured as follows: After giving
an overview of related work in Section II, Section III describes
the basic idea of the new approach. As it relies on Kalman

filtering, the math behind such filters is roughly sketched in
Section IV. An example application with real-world data has
been evaluated and results are presented in Section V. This
section also evaluates the feasibility and performance of the
prediction algorithm on a typical constrained sensor hardware.
Although a general prediction mechanism is suitable for most
sensor network scenarios, there are certain types of situations
that will not benefit from this approach at all. This is briefly
discussed in Section VI. Finally, Section VII concludes this
paper.

II. RELATED WORK

Saving energy by prediction of to-be-transmitted values is a
relatively new area of research in sensor networks. In WSDP
[2], the authors apply the technique of Kalman filtering in
wireless sensor networks: WSDP’s main purpose is to lessen
the impact of packet loss at the information sink by estimating
missing measurements lost due to faulty communications.
Similarly, [3] theoretically analyzes the behavior of Kalman
filter’s estimation errors with intermittent transmissions. The
authors of [4] or [5] propose to lessen the impact of lost
transmissions on estimation by using distributed filtering.

All of the before mentioned work focuses on the estimation
of lost measurement values using Kalman filters at an infor-
mation sink. In contrast, this paper concentrates on the energy
savings possible due to predicting and therefore omitting data
transmissions on a hop-by-hop basis in sensor networks.

The theory of Kalman filters was published first in [6]. To-
day they are found in virtually any application, reaching from
communication processors to PLL radio tuners, autonomous
or assisted navigation and tracking applications.

Some research has been done to save energy by minimizing
the size or encoding of transmitted data values, for example by
sending only differences of preceding values to an aggregation
node [7]. Yet, the total number of packets to be transmitted will
not be reduced, and, as packets have a certain minimum length,
which is larger than the size of typically measured values, cf.
TinyOS [8], the expected energy gains are negligible in most
sensor network scenarios.

ADPCM [9] allows an efficient encoding of new pulse code
modulated speech data based on old received data, however,
application to arbitrary sensor network data is unlikely.

Also, effort has been made to investigate general reliability
problems in sensor networks, cf. [10] for an overview. This
work, however, aims at saving energy by the prediction
of to-be-transmitted values, therefore making the impact of
necessary reliability mechanisms much more affordable.

III. BASIC IDEA OF OUR APPROACH

Using a Kalman filter, sensor nodes measuring data are able
to produce a special mathematical function: a prediction poly-
nomial or simply a predictor. A Kalman filter uses actually
sensed measurements as input, processes them, and outputs
the predictor polynomial. This polynomial allows to predict
future to-be-measured values based on all measurements taken
so far. Sensor nodes send their computed predictors to their

If difference is above
threshold, node S1 sends
new Polynomial 1

M
easurem

ents

Predictor
Polynomial 2

Creates and
evaluates

Input

If difference is above
threshold, node S2 sends
new Polynomial 2

M
easurem

ents

Kalman Filter

Predictor
Polynomial 1

Creates and
evaluates

Input

Sensor Node S1

Sensor Node S2

Predictor
Polynomial 1

Predictor
Polynomial 2

Evaluates
and computes

Aggregate

Aggregation
Node A

Compared to
output of

Kalman Filter

Compared to
output of

Fig. 1. Setup of two measuring nodes and one aggregation node

associated aggregation nodes, giving them the ability to predict
measurement data from sensor nodes without further commu-
nication. This basic setup is shown in Fig. 1.

A sensor node will not discard the predictor, which has
been sent to its aggregation node, but use it to compare actual
measurements with the evaluations of the predictor. After a
certain time, prediction using the predictor loses accuracy:
the difference between actual measurements on a node and
predicted values on the aggregation node exceeds a user or
application defined threshold. As soon as a measuring node
detects that its predictor used by the aggregation node becomes
too imprecise, it has to provide an updated polynomial to its
aggregation node. A sensor has to know when the predictor
in the aggregating node needs to be updated and therefore the
measuring node needs to track and evaluate the polynomial
used by the aggregation node. Thus, a node knows which data
the aggregation node currently estimates for its measurement.

In conclusion, a measuring sensor node Si conducts the
following:

1) Each node Si utilizes a Kalman filter, which enables
Si to generate a predictor polynomial Pi at any time.
Generally, Pi is based on all measurements Si has taken
so far. It is further assumed that Si has sent Pi to Si’s
aggregation node A in the past, so A also possesses Pi.

2) Now, at time t, Si takes a new measurement mi. This
measurement is compared to the actual prediction value
vi, that is, the evaluation of predictor Pi: vi = Pi(t).
(Details on polynomial evaluation are described in Sec-
tion IV-C.) Node Si compares the difference between the
predicted value and the actual measurement to ε > 0,
a user defined or application specific error threshold:
|mi − vi| ≤ ε.

3) If |mi−vi| ≤ ε, then Si does not transmit this value. The
prediction is precise enough for the user. If, however,
|mi − vi| > ε, then Si generates a new predictor
polynomial P ′

i based on all previous measurements and
mi, utilizing its Kalman filter. The new predictor P ′

i

replaces Pi and is transmitted reliably to A.
4) At time t′ > t, whenever a new measurement has to be

taken, the whole procedure is repeated at step 2.
Meanwhile, all aggregation node A has to do is to evaluate

all received predictor polynomials Pi and to compute their
aggregate, cf. Figure 1. Node A will continue to do so until it
receives an update, that is, a new predictor P ′

i , which replaces
Pi. The estimation error, which can occur at an aggregation
node A, is equal to the maximum error threshold ε of the
associated predictor.

 1000

 1001

 1002

 1003

 1004

 1005

 1006

 1007

 1008

500040003000200010000

A
ir

pr
es

su
re

 (
hP

a)

Time in minutes, 13.3.2005 to 17.3.2005

Measured Values
Predicted Values

ε-Threshold

Fig. 2. Application of simple predictor to air pressure measurements

For a better understanding, Fig. 2 illustrates a zoomed view
on real-world measurements, cf. [11] for details. The solid
line represents actual measured air pressure values, enclosed
by an ε-tube, dotted in grey, with ε = 1hPa. The darkly dotted
line represents the output of a simple first-order predictor
polynomial, that is, a straight line. Instead of sending measured
values, e.g., once a minute, you can clearly see the points in
time where predictor updates need to be transmitted: every
time the line appears to be discontinuous, for example just
before t = 1000min. As this appears to be very rare, energy
savings because of fewer transmissions are to be expected.

Having the latest predictor, the aggregation node can now
serve as an information proxy for all the measuring nodes in
its group. Particularly, it can perform an aggregation function
on its group’s data at any time, using predicted values. If an
aggregate is queried explicitly from a group, the only node
that has to work and communicate is the aggregation node.

Finally, the prediction mechanism integrates seamlessly into
”multi-leveled” or cascading aggregation scenarios as well: an
aggregation node on a higher level of aggregation can use
predictors for its aggregation nodes on lower levels, thereby
again omitting transmissions and saving energy.

Remarks

It is quite obvious that the proposed scheme will imply
additional costs in terms of CPU time and therefore energy,
as the predictor polynomial has to be created and evaluated.
However, as shown in Section V-A, these energy costs are far
smaller compared to the gains by reducing the more expensive
radio traffic.

The prediction mechanism requires completely reliable
communication, e.g., by sending ACKs, for the polynomial

updates. A polynomial update must not be lost, because
otherwise the prediction-error may grow beyond ε. However,
reliable communication implies additional energy costs, cf.
Section V-A, so applying the proposed scheme is especially
suitable for scenarios which demand reliable communication
anyway. Reliability is mandatory for polynomial updates – in
return you get reliable predictions within an ε-tube.

As a sensor’s duty cycle is typically very low, i.e., a few per-
cent: sensors are sleeping most of the time and wake up, e.g.,
periodically. Awakened, they do their duty, like measuring,
sending, or receiving data and fall to sleep afterwards. This
duty cycle is supported by the proposed scheme: on the one
hand, the measuring node wakes up, takes its measurement and
decides whether to send an update, sends it if necessary, and
falls asleep. On the other hand, the aggregation node wakes
up and listens for a predictor update, if there is no update, it
simply evaluates its current polynomial and sleeps again.

Although periodic transmissions are supported, the proposed
prediction scheme is not limited to it. If it is expected that
a measuring sensor can measure and send new data sponta-
neously, the receiving aggregation node has to be awake all
the time – just as it would have been without using prediction.
Still, transmissions can be omitted saving a lot of energy.

IV. MATHEMATICS BEHIND PREDICTION

The prediction in this scheme is mathematically formed by
two different parts, one being the steady-state Kalman Filter
and the other one being the prediction mechanism itself. On
a measuring node, a Kalman Filter processes sensor data and
thus continuously generates new prediction polynomials, i.e.,
predictors, that can be transferred to aggregation nodes if
necessary.

The next two sections will only give a very rough, informal,
and incomplete overview of the filter and predictor math as
this is necessary to understand its use. However, their complex
theory is not the scope of this paper, and a more comprehensive
description can be found in [12].

A. Steady-State Kalman Filter

A Kalman filter takes an input signal and transforms it
into an output. It is executed for every incoming input signal,
i.e., in our case, a measurement, so it can be understood as
working iteratively, one iteration per measurement. In general,
its primary use is to filter out the stochastic component of a
time-discrete periodical signal, usually referred to as noise,
leaving the pure signal as filter output. Thereby, it improves
the quality of the signal for the application incorporating the
Kalman filter. The signal filtering is done using a dynamic
weighing mechanism which weights the filter input against
a prediction function, the latter being a part of the filter
itself. Noise variables, one for each of these two components,
determine the impact of the associated component on the
filter behavior: the greater the noise for a component, the
less the components impact on the filter. For example, a high
noise associated to the systems input signal normally results
in greater smoothing the filter applies to the output curve.

If the noise variables are taken as constants, the wheighing
mechanism of the Kalman filter will eventually converge,
resulting in a constant smoothing intensity being applied to
the output curve. This special case is referred to as the
Steady-State Kalman Filter and offers some opportunity to
simplify the underlying math to a noticeable extent. While
the most expensive computation in a full-featured Kalman
filter is a matrix-matrix multiplication, it is only a matrix-
vector multiplication for the simplified steady-state filter. It
is fair to assume constant noise for the input signal, i.e.,
the actual measurement, because filtering noise is out of
scope for this prediction mechanism. An application, however,
could decide to incorporate a full-featured filter, if it can take
advantage of the signal filtering flexibility compared to the
downside implied by the additional computing overhead. Since
our primary concern here is energy-efficiency and not signal
filtering, the simplified and cheaper (in terms of computing
overhead) steady-state Kalman filter is used.

B. Prediction Mechanism

It is expected that, at least on short term, multiple subse-
quent measurements of typical sensor data, e.g., temperatures
or pressures, can be approximated by a polynomial. Therefore,
the filter-internal prediction function is made up by a Taylor
series [13]. The Taylor series is merged into the filter in a way
that the filter’s internal state, represented by a vector, holds the
filter’s output and its first N − 1 derivatives with N being the
size of the vector. Such a setup makes it possible to extract an
(N−1)th-order polynomial out of the current filter state. This
can easily be done at any time and results in a polynomial
function which can be used to predict future measurements.
The filter’s internal state does always represent information
from the present as well as the past: At time t, a newly
arrived sensor measurement does not solely impact the filter’s
internal state at time t, but is offset by a prediction mechanism
working with the filter’s state evaluated during iterations
before time t. Thus, information from the past is preserved
in the filter’s internal state which makes it well suited to serve
as the building block for a predictor. Descriptive: the filter’s
prediction mechanism can be extracted from the filter at any
point in time and then be used independently. Our scheme
extracts polynomials out of the filter’s state and uses them as
predictors.

C. Computational Cost

The evaluation of an N th-order polynomial can efficiently
be computed with Horner’s scheme [13] using N additions
and N multiplications. Furthermore, the extracted polynomial
P (t) is adjusted to the time t0 of the last measurement,
i.e., P (0) gives a prediction for the measurement at time t0.
So, to predict a measurement at time t′ > t0, you have to
evaluate P (t′−t0). Therefore, N additions, N multiplications,
and 1 subtraction are necessary for one N th-order predictor
evaluation. During an N th-order predictor update, its N + 1
new coefficients have to be transmitted to the aggregation node

as well as t0; together, a total of N + 2 values has to be
transmitted.

While applying the proposed prediction scheme to real-
world data, cf. Section V, the authors selected simple first-
order polynomials for prediction: Although polynomials of
higher order were tested, the first-oder polynomials surpris-
ingly achieved the best results in terms of prediction precision
and thus omitted transmissions. Therefore, in the rest of this
paper, only first-order predictors are used.

An efficient implementation of a steady-state Kalman Filter,
which can produce first-order predictors, requires 4 additions
and 3 multiplications. To evaluate a first-order predictor, 1
multiplication, 1 addition, and 1 subtraction are required. The
extraction of a new predictor from the first-order setup filter
state requires 2 additions and 1 multiplication. This, however,
is only necessary, in the case of |mi− vi| > ε, cf. Section III.

V. REAL-WORLD EXAMPLE

For a realistic or tangible evaluation of our scheme’s effi-
ciency and energy savings, the proposed prediction mechanism
was applied to real world data. The meteorological office of
Norwegian University of Tromsø measures weather data on a
per minute basis [11]. This data, like air temperature, humidity
or pressure, is archived and can be downloaded for free.

To verify the practicability and performance of the predic-
tion scheme in general, air temperature and air pressure mea-
surements of March 2005 were used as an example together
with a first-order predictor. Imagine a situation where sensor
nodes measure this weather data and reliably send them to an
aggregation node for further processing once in a minute. The
question is, how much transmissions, transmitted data, and
finally energy can be saved on the nodes if applying a first-
order predictor. This will be discussed, firstly, in an “ideal
world” without packet errors or the necessity of ACKs: only
the number of saved transmissions and total transferred volume
will be compared. Subsequently, in Section V-A, packet errors,
e.g., because of static, as well as overhead arising from ACKs
will be considered. Finally, the gain in energy has to be
offset against the computational overhead, CPU time, and thus
energy consumption which comes with the proposed scheme.

TABLE I
EFFECTIVENESS OF PREDICTION ON MARCH 2005 WEATHER DATA

Type ε
of % of # of % of

Transm. Transm. Values Volume

Temp. 0.10 11252 25.24 33756 75.73
0.25 3425 7.68 10275 23.05
0.50 1086 2.44 3258 7.31

Press. 0.10 8163 18.31 24489 54.94
0.25 1230 2.76 3690 8.28
1.00 130 0.29 390 0.87

In March, a total of 44575 temperature and air pressure
measurements were archived. The first-order Kalman filter
was run with three error ranges ε = 0.10◦C, 0.25◦C, 0.50◦C

for temperature data and ε = 0.10hPa, 0.25hPa, 1.00hPa for
pressure. The results of applying such a first-order predictor in
an “ideal world” are shown in Table I. Ideal means that faulty
transmission, retransmission or mandatory ACKs are not taken
into account yet.

As you can see, the total number of transmissions using
the prediction mechanism is reduced significantly even with
small ε. For example, using ε = 1.00hPa only 130 predictor
updates are necessary, which represents 0.29% of the original
44575 transmissions. As 3 values have to be transferred per
first-order polynomial, a total of 390 values, e.g., each 32Bit
wide, have to be transmitted. Compared to the original periodic
transmissions once in a minute, this represents only 0.87% of
data volume. Because the radio interface has to send only this
small fraction of data, a lot of energy is expected to be saved.

A. Application to MICA2 and TinyOS

To further investigate energy savings, the above-mentioned
scenario is analyzed using typical real-world sensor network
platform parameters. A simulation written in Python evaluates
the impact of first-order predictors on weather data, using the
quite popular MICA2 [14] hardware parameters and running
Tiny Operation System (TinyOS) [8].

This platform is based on the ATMEL ATmega128L micro-
controller CPU and utilizes a ChipCon Single IC Transceiver
at the 433MHz band, which gives a data rate of 38.4KBit/s.
Such a radio interface consumes 16mA for transmit operations
while the CPU drains additional 5mA [15]. Every packet
TinyOS sends has a constant size of 56Bytes, including
29Bytes of payload [16]. Sending one packet of data takes
about 11.67ms, resulting in 245µAs of energy consumption.
Simply sending one month of, e.g., pressure data would cost
10.92As capacity. Not taken into account here are the minimal
energy costs for turning on and shutting down the radio
interface before and after the transmission – such costs are
usually neglected, cf. [16], [17].

Now, assume the demand for a reliable communication.
For simplicity, each packet is acknowledged by a separate
ACK from the aggregation node. ACKs are represented as
ordinary data packets in TinyOS, thus, a simple, naive ACK
based reliable communication scheme, e.g., Stop and Wait,
effectively doubles the total number of packets to 89150
packets. Without sources of error, March 2005 transmission
of packets therefore costs 89150 ∗ 245µAs = 21.84As.

First experiments of deploying a sensor network in the wild
using similar radio hardware show that packet error rates are
as high as 50% [1]. A transmission of one measurement m
between sending sensor node Si and its receiving aggregation
node A is successful, if the sender Si receives an ACK from
the receiver A. To successfully receive one ACK, on average,
sender Si has to transmit m 4 times. As 50% percent of
these transmissions fail, only 2 transmission are received by
A. So, A sends 2 ACKs back to Si, who, on average, receives
only one of them. Together, a total average of 6 packets has
to be exchanged between sensor and aggregation node for

the successfully acknowledged, reliable delivery of one data
value.1

One month of temperature or pressure measurement requires
an average of 6 ∗ 44575 = 267450 packets, costing 267450 ∗
245µAs = 65.53As. Table II compares this radio energy
consumptions to the savings possible using the proposed
prediction scheme – again based on a first-order polynomial.
Note: Although less transmissions mean less packet loss,
e.g. due to less collisions, it has been assumed that the
transmissions taking place during the use of the prediction
scheme are also prone to 50% packet loss. Table II, column
Radio Energy Savings, shows the savings using the proposed
scheme. As each packet’s payload has a constant size of
29Bytes in TinyOS, the number of packets and transmissions
does not increase if sending three 32Bit values, the whole
predictor, instead of sending just one.

TABLE II
MICA2/TINYOS ENERGY SAVINGS OFFSET AGAINST CPU OVERHEAD

Type ε
Radio Energy Total % of

Savings/As Savings/As Savings

Temp. 0.10 48.85 48.70 74.31
0.25 60.32 60.17 91.82
0.50 63.56 63.41 96.76

Press. 0.10 53.38 53.23 81.22
0.25 63.54 63.39 96.73
1.00 65.34 65.19 99.48

However, you have to pay for using the prediction scheme
in terms of energy: every polynomial evaluation and Kalman
filter update results in extra CPU overhead which drains the
battery. As mentioned in Section IV-C, a first-order polynomial
evaluation requires one floating-point addition, one subtrac-
tion, and one multiplication on the sensor and the aggregation
node respectively. This evaluation has to be made 44575 times,
every time the sensor takes a new measurement – and the
aggregation node processes it to output a new aggregate. One
filter state update, necessary only on the measuring sensor,
needs 4 additions and 3 multiplications, as well as the one
subtraction for the threshold comparison. Finally, in case a new
polynomial is required, further 2 additions and 1 multiplication
have to be computed on the measuring node for extraction.
MICA2’s microcontroller ATmega128 is typically clocked at
4MHz and has the following average 32Bit floating-point
operation properties:

1) Addition: takes 117 CPU cycles and therefore 27.89µs
of time, resulting in an average energy consumption of
139.45nAs.

2) Subtraction: in 96 cycles → 22.89µs → 114.45nAs
3) Multiplication: in 362 cycles → 83.31µs → 431.54nAs

So, one polynomial evaluation costs 685.44nAs for the sensor
and aggregation node respectively, one filter update costs

1The total number of 6 transmissions in the average can also be verified by
modeling this system as a Markov Chain and by computing its expectation
value.

1.97µAs, and polynomial extraction costs 710.44nAs. Per
measurement step, a total of 3.34µAs has to be paid for CPU
overhead, plus 710.44nAs for polynomial extraction if re-
quired. One month of operation, 44575 measurements, requires
a total overhead of 0.15As of battery power, plus polynomial
extractions. The number of necessary polynomial extractions
are read off Table I: they are equal to the total number
of transmissions necessary. For example, in the temperature
scenario with ε = 0.5◦C, 1086 extractions costing 0.77mAs
are necessary. The savings due to reduced transmissions must
be offset against these additional costs. Table II shows the
remaining energy savings in column Total Savings. Finally,
the last column in Table II contains the percentage of energy
that can be saved using the first order prediction setup. For
example, using a threshold of ε = 1.00hPa, 99.50% of all
energy necessary for a simple, reliable transport mechanism
can be saved.

VI. DISCUSSION ON APPLICABILITY

This section discusses the general applicability of the pro-
posed prediction scheme. Typical sensor networks scenarios
or applications are perfectly suited to apply the prediction
mechanism, and significant energy savings due to omitted
communications can be made.

In general, this scheme is appropriate for typical sensor
network scenarios, where sensors continuously monitor their
environment, periodically reporting measurements towards a
sink. As soon as the measurements taken follow some kind of
”pattern”, e.g., if they can be approximated by a polynomial,
significant gains can be made. For the class of phenomena
like environmental temperatures, pressure, humidity and so on,
applying a first-order predictor gives the best results. However,
different data may require predictors with higher order for
better results. In addition, data from a completely different
kind, like periodic functions, may need a different prediction
function, cf. Section IV-B, not based on a Taylor series, but,
e.g., on a Fourier series. If the user knows the type of data in
advance, which usually is a realistic assumption, it is relatively
simple to choose an appropriate prediction function.

Yet, in some special cases, prediction of values does not
make sense. Therefore, applying prediction would not give
any benefit in terms of energy consumption, but might worsen
it even more. For example, the proposed prediction scheme
may not be suitable for pure event- or alarm-based sensor
network scenarios: imagine the situation, where a sensor node
is connected to a light switch, reporting only one bit every
time the switch is pressed. The sensor sends, e.g., 1 to its
aggregation node, as soon as the switch changes from off to
on and 0 vice versa. Other examples are temperature sensors
sending data only in case of a fire or motion trackers reporting
alarm only in case of a movement. In these scenarios, not only
the entropy of the transported data is high, but also the fact
that a sensor does send something as soon as an event occurs
is of importance. In such a situation, a sensor network would
not benefit from prediction. An alarm or the event of a user
pressing a switch at a certain time can not be predicted.

VII. CONCLUSION

Data transport is expensive in wireless sensor networks as
radio transmissions and retransmissions drain valuable energy.
This work presents a mechanism to efficiently reduce the total
amount of data transported in wireless sensor networks. It uses
the fact that, in a real-world scenario, most of the time sensors
transmit data of little entropy towards a data sink. Thus,
measurements can be predicted within a range of uncertainty.
A prediction mechanism based on simplified Kalman filters is
described that reduces the total amount of radio transfers to
enhance the lifetime of battery-powered sensor nodes. Sensors
do not send measured data to their aggregation node, but only
polynomials for evaluation. As long as the prediction using
these polynomials is precise enough, there is no need for
further transmissions.

A first application of this mechanism to real-world en-
vironmental data shows enormous energy savings possible.
It is difficult to estimate energy savings in general, as the
chance to predict measurements and to omit transmissions
heavily depends on the nature of the monitored phenomenon.
However, in scenarios with values which can be approximated
by a polynomial, like the environmental data shown above,
remarkable energy savings are made.

REFERENCES

[1] V. Turau, C. Renner, M. Venzke, S. Waschik, C. Weyer, and M. Witt,
“The heathland experiment: Results and experiences,” in REALWSN:
Real World Wireless Sensor Networks, 2005.

[2] A. Honarbacht and A. Kummert, “WSDP: Efficient, yet reliable trans-
mission of real-time sensor data over wireless networks,” European
Workshop on Wireless Sensor Networks, 2004.

[3] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, Vol. 49, No. 9, 2004.

[4] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Approximate dis-
tributed kalman filtering in sensor networks with quantifiable perfor-
mance,” International Conference on Information Processing in Sensor
Networks, 2005.

[5] M. Coates, “Distributed particle filters for sensor networks,” Interna-
tional Symposium on Information Processing in Sensor Networks, 2004.

[6] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, 1960.

[7] H. Cam, S. Ozdemir, H. O. Sanli, and P. Nair, “Secure differential data
aggregation for wireless sensor networks,” 2004, to appear in Sensor
Network Operations, IEEE Press, http://www.eas.asu.edu/∼hasancam/.

[8] University of California, Berkeley, “TinyOS – An open-source OS for
the networked sensor regime,” 2005, http://tinyos.net/.

[9] International Telecommunication Union, “40, 32, 24, 16 kbit/s adaptive
differential pulse code modulation (ADPCM),” Recomm. G.726, 1990.

[10] A. Willig and H. Karl, “Data transport reliability in wireless sensor
networks – a survey of issues and solutions,” Praxis der Informationsver-
arbeitung und Kommunikation, 2005, vol. 28.

[11] Department of Computer Science, University of Tromsø, “Weather
observations,” March 2005, http://wserv0.cs.uit.no/.

[12] G. Welch and G. Bishop, “An Introduction to the Kalman Filter, TR
95-041,” University of North Carolina, Tech. Rep., 2004, http://www.cs.
unc.edu/∼welch/.

[13] T. Cormen, C. Leiserson, and R. Rivest, “Introduction to algorithms,”
The MIT Press, 2001.

[14] X-Bow, “Mica – Wireless Measurement System,” http://xbow.com/
Products/Product pdf files/Wireless pdf/MICA.pdf, 2005.

[15] Atmel Corporation, “Atmel atmega128 datasheet,” 2002, http://www.
atmel.com/dyn/resources/prod documents/doc2467.pdf.

[16] X-Bow, “Radio, RF concepts, and TOS radio stack,” 2005, http://xbow.
com/Support/Support pdf files/Motetraining/Wireless.pdf.

[17] K. Schwieger, H. Nuszkowski, and G. Fettweis, “Analysis of node en-
ergy consumption in sensor networks,” European Workshop on Wireless
Sensor Networks, 2004.

Acknowledgements: The authors wish to thank Bernhard Hurler, Roland
Bless, and Curt Cramer for their support.

