
A formalisation of Adaptable Pervasive Flows?

Antonio Bucchiarone1, Alberto Lluch Lafuente2,
Annapaola Marconi1 and Marco Pistore1

1FBK-IRST, via Sommarive 18, 38050, Trento, Italy
[bucchiarone,marconi,pistore]@fbk.eu

2Department of Computer Science, University of Pisa
lafuente@di.unipi.it

Abstract. Adaptable Pervasive Flows is a novel workflow-based paradigm for
the design and execution of pervasive applications, where dynamic workflows
situated in the real world are able to modify their execution in order to adapt to
changes in their environment. In this paper, we study a formalisation of such flows
by means of a formal flow language. More precisely, we define APFoL (Adaptable
Pervasive Flow Language) and formalise its textual notation by encoding it in
Blite, a formalisation of WS-BPEL. The encoding in Blite equips the language
with a formal semantics and enables the use of automated verification techniques.
We illustrate the approach with an example of a Warehouse Case Study.

1 Introduction

Flows are models defining a set of activities to be done, and their relations with each
other. Flows are deeply seated in many fields, including business processes and service
oriented computing. The flow modeling paradigm is often used either implicitly or
explicitly in many real life situations. In this paper, we concentrate on a novel usage
of flows, which is being investigated by the ALLOW project [1]: the usage of flows
as a new programming paradigm for human-oriented pervasive applications. More
precisely, Adaptable Pervasive Flows (APFs) [10] are proposed as an extension of
traditional workflow concepts [19] in order to make them more flexible with respect to
their pervasive execution environment. APFs are dynamic workflows situated in the real
world that modify their execution in order to adapt to changes in their environment. This
requires on the one hand that a flow must be context-aware: during execution it must be
possible to obtain information on the underlying environment (e.g. relevant information
on world entities, status of other flows, human activities). On the other hand flow models
must be flexible enough to allow an easy and continuous adaptation. APFs are based on
WS-BPEL [5], a well-known language for specifying flows in a Web Service setting,
and extend it in order to implement all the aspects related to pervasive applications.

In [16] the authors define one of these extensions to WS-BPEL. More precisely,
they define a set of constructs that allow a convenient way of embedding the adaptation
logic within the specification of an APF and show how WS-BPEL can be extended to

? Research supported by the EU, STREP project Allow IST-324449 and Sensoria, IST-2005-
016004.

Fig. 1. Warehouse structure

support the proposed constructs. These constructs allow for capturing interesting cases of
adaptation in pervasive applications that are difficult to address with classical workflows
and with the standard WS-BPEL language. In this paper, we extend the work in [16],
by providing a formal model for APFs and for the extensions of WS-BPEL related to
the adaptation logics. This is a significant extension of the previous work since, due to
the high dynamicity of pervasive applications, formal methods become crucial to drive
design disciplines, equip existing languages with well-defined semantics and increase
the reliability by means of automated verification.

Web services are a good example where many efforts are being invested on the
development and application of formal methods. For instance, there have been various
proposals to define formal semantics for WS-BPEL, typically by means of process
calculi (e.g. [12], [15]), or Petri nets (e.g. [14], [18]), or graphs (e.g. [7]).

In this paper we propose APFoL, a formal language for adaptable pervasive flows.
Amongst the various formal approaches to flow languages we have chosen Blite [13]
as a starting point. Blite is a process calculus that captures a significant part of the
WS-BPEL language. We build our language as an almost straightforward extension of
Blite. More precisely, we equip the language with abbreviations to deal with adaptation
mechanisms, flow constructs and activity types typical of adaptable pervasive flows. The
formal language proposed permit us to formally specify the built-in adaptation constructs
informally proposed in [16].

This document is structured as follows. Section 2 introduces a scenario from the
Warehouse Case Study of the Allow project [1] while Section 3 presents the background
that is used in section 4 where our flow language is introduced. Section 5 illustrates our
language with an example drawn from the Warehouse Case Study. Finally, Section 6
draws conclusions and outlines current and future work.

Fig. 2. Good receipt procedure

2 The Running Example: Warehouse Management

We present a scenario from the Warehouse Case Study of the Allow project [1], namely
the management of a warehouse that we will use as a reference for all the examples
within this document. The main aim of warehouse management is to organize and
control the transport and storage of goods within a warehouse. This is achieved through
the definition and processing of complex transactions, including shipping, receiving,
put-away, picking and issuing of goods. The objective of the warehouse management
system is to provide a set of computerised procedures supporting all the aforementioned
activities: from the handling of goods reception, storage and shipping, to the management
of all the physical storage facilities.

Warehouse management often utilizes auto AIDC (Automatic Identification and
Data) technology, such as bar-code scanners, mobile computers, wireless LANs and
potentially RFID (Radio Frequency Identification) to efficiently monitor the flow of
products. Current systems require that, once data has been collected, synchronization
with a centralized system is performed. The centralized system is in charge of controlling
all aspects of warehouse management. Pervasive flows offer the possibility to distribute
the control logics and hence to improve flexibility and context awareness of the executed
processes.

The (logical and physical) structure of a warehouse is described by Figure 1. Doors
are the locations where the goods arrive at or leave the warehouse. Trucks drive up to the
doors of a warehouse in order to unload or load goods there. Staging areas are used for
interim storage of goods in the warehouse. These are located in close proximity to the
doors associated to them. The storage area is organized in several zones corresponding to
different storage types. Storage types are physical or logical subdivisions of a warehouse
complex, characterized by its warehouse technique, the space used, its organizational
form, or its function.

Warehouse management requires the execution of different procedures which refer to
the different objects and human actors, including good receipt, issuing and transfer. Here
we focus on the first procedure, which describes the three steps (see Figure 2) that have
to be performed when the goods arrive at the warehouse: delivery (a truck has reached
the warehouse and is docked at a door); unload (goods are unloaded and temporally
stored in the staging area); and put-away (goods are moved to the storage area).

3 Background

Our work is strongly based on a proposal for the extension of WS-BPEL to deal with
adaptation [16] and the process calculus Blite [13].

3.1 WS-BPEL and APFs

Similar to the well-known workflows, APFs consist of a set of activities and a corre-
sponding execution order, which is specified using control elements such as sequence,
choice or parallel operators. After a deep analysis and comparison of todays workflow
standards using criteria such as industry impact, robustness aspect and extensibility [2],
the ALLOW project has chosen WS-BPEL as a nucleus for an APF language.

A particular feature of APFs is that they are situated in the real world. This realizes
the pervasiveness of the flows and is achieved in two ways. First, the flows are logically
attached to physical entities (which can be either objects or humans) and move with them
through different contexts. Secondly, they run on physical devices (e.g. PDAs, desktops).
Todays workflow languages (e.g. WS-BPEL) provide no possibility to explicitly model
the context model and constraints on the workflow environment. The pervasiveness of
a WS-BPEL workflow can be specified only through ad-hoc interactions with external
context-aware services. Clearly, this solution affects the readability and transparency
of the pervasive aspect within the specified workflow. A first extension [9] that has
been done aims at providing a modeling approach to annotate WS-BPEL processes
with contextual constraints and an execution model to monitor those constraints during
process execution.

Another important aspect of APFs is their adaptiveness. A flow is a dynamic entity
that modifies its execution in order to adapt to changes in the execution environment.
A key enabling factor for automated adaptation mechanisms is a convenient way of
embedding the adaptation logic within the specification of a flow. Adaptation mecha-
nisms cannot be limited to standard recovery constructs (e.g. fault/event/compensation
handlers in WS-BPEL), but should also support the specification of flexible context-
aware reactions to adaptation needs that can be used to handle run-time flow deviations
without requiring a flow recovery/failure. The aim of the work in [16] is to present a
set of primitives and principles that can support the encoding of context-aware run-time
deviations and changes within a flow model in a secure (from an execution perspective)
and convenient (from a modelling perspective) way. The authors propose a set of built-in
adaptation modeling constructs that can be useful to add dynamicity and flexibility to
flow models and for each construct they define the corresponding WS-BPEL extension.
In particular, the proposed constructs are (i) conditional branches within flows with
context conditions as guard conditions, (ii) context handlers that allow to automatically
react to context conditions violation during the execution of the flow, and (iii) constructs
that allow to specify a set of alternative scopes, each handling a specific execution
context, and that allow to jump at run-time from one scope to another, whenever the
context changes or the assumptions on the context turn out to be wrong.

Basic activities b ::= inv ` i o x̄ | rcv ` r o x̄ | x := e invoke, receive, assign
| empty | throw | exit empty, throw, exit

Structured activities a ::= b | if(e){a1}{a2} | while(e) {a} basic, conditional, iteration
| a1 ; a2 |

∑
j∈J rcv ` r

j o j x̄ j ; a j sequence, choice (with | J |> 1)
| a1 | a2 | [a • a f ? ac] parallel, scope

Start activities r ::= rcv ` r o x̄ |
∑

j∈J rcv ` r
j o j x̄ j ; a j receive, choice

| r ; a | r1 | r2 | [r • a f ? ac] sequence, parallel, scope

Services s ::= [r • a f] | µ ` a | µ ` a , s definition, instance, multiset

Deployments d ::= {s}c | d1‖ d2 deployment, composition

Table 1. Syntax of Blite

3.2 WS-BPEL and Blite

Blite [13] is a formal language for describing web service orchestrations. It has been
designed as a formal model to capture the essentials of WS-BPEL, a de-facto standard
for describing web services. Blite is a process calculus and as such it has a well-defined
notion of syntax and operational semantics. The language includes features such as
service definition and instantiation, typical flow constructs, communication primitives
and failure handling and compensation mechanisms. We offer here a brief, intuitive
overview of Blite and refer to [13] for a detailed presentation.

The syntax of the Blite language is summarised in table 1 (borrowed from [13]).
Basic activities include variable assignments, flow success related operations (throw
and exit) and communication primitives to send (inv) or receive (rcv) values from
partner links. Structured activities organise basic activities in flows by using typical flow
constructs such as branches, sequences, loops, fork&join and (input-prefixed) choices1.
In addition, scopes can be defined with appropriate failure and compensation activities.
Start activities are structured activities starting with a choice of receive operations. The
reason for this is that service definitions are inactive until they receive a request. Services
already instanced, instead are represented by their memory µ (an assignment of values
to variables) and their flow (a structured activity). Deployments (i.e. the system) are sets
of correlated services.

4 A formal language for adaptable pervasive flows

This section presents our formalisation of adaptable pervasive flows in terms of a flow
language that we call APFoL. We present here our language for adaptable pervasive
flows, describing each ingredient and giving its encoding in Blite. It is worth mentioning
that the encoding automatically equips our language with a formal semantics.

We start offering an informal presentation of our visual notation, which we plan
to formalise in the future, possibly by means of a graphical encoding of our language.

1 Called pick in [13] but choice here to avoid confusion with the pick flow construct of APFoL.

Fig. 3. Visual syntax for Flow Activities of Table 2.

Fig. 4. Visual syntax for Flow Instances (Part-I) of Table 2.

Here we just present the informal visual notation as Figures 3, 4 and 5, that act as an
illustration of the textual notation that we shall describe in detail.

We now present the textual notation of APFoL (summarised in Table 2), which
basically extends the syntax of Blite (c.f. Table 1) with ad-hoc constructs for built-in
adaptation mechanisms.

The main differences with respect to Blite’s syntax regard basic and structured
activities. We call them called basic and structured flows in APFoL to avoid confusion
and stick to the APF slang. They include some new constructs to model the relevant
primitives of adaptable pervasive flows. Services and deployments remain identical but,
again, we call them differently (flows and flow systems) to avoid confusion. Finally, we
avoid presenting the productions for start flows for simplicity: they are a straightforward
adaptation of those for start activities in the same way as flow instances are an adaptation
of activity instances.

First, APFoL includes the same control flow constructs of Blite. In addition, even if
not part of the primitive syntax summarised in Table 1, APFoL includes typical control
flow constructs such as different forms of branching (e.g. switch) and looping (e.g.
loop-exit) which are straightforwardly encoded in Blite.

Fig. 5. Visual syntax for Flow Instances (Part-II) of Table 2.

An abstract activity A(x) represents either a partial design-time specification of a
flow model or an abbreviation of a complex activity. Abstract activities are modelled just
as function symbols A of type fa (flow activity) or fr (start activity), thus A(x) : fa ∪ fr
in Table 2. For each such symbol we assume a definition to exist (for abbreviations) or
to be given at run-time (for partial designs). Refining an abstract activity then means
replacing the left-hand side of a definition by its right-hand side. Clearly, this is not a
real extension of the language and is standard machinery of all algebraic specifications.

Communication activities allow for sending (resp. receiving) a message to (resp.
from) another flow. Invoke and receive activities are synchronous. Thus we encode them
as suggested in [13] by the authors of Blite, namely by a pair of receive and invoke
actions. In the definition, id stands for the flow instance identity. A sending activity is
thus encoded as the invocation of operation o at partner l, where the identity of the flow
is passed to receive the response. Similarly, the receive activity expects to receive an
invocation of operation o at himself (id) together with the invoker’s identity q which is
used to send the response.

Data manipulation activities are internal activities that change the value of local
variables and do not interact with their environment. Data manipulation activities are
modelled as structured activities whose component basic activities aτ are all assignments.
Note that the grammar for aτ can be given but, for the sake of a clear presentation, prefer
to avoid adding an ad-hoc syntactical category and its (rather redundant) productions.

Human interaction activities are activities that require an interaction with a human,
e.g. displaying or getting information through a device. Human interaction activities are
modelled as communication operations, since devices are represented by flows.

Flow activities fa ::= sinv l o x̄ | srcv l o x̄ | aτ invoke, receive, internal
| 〈ex〉 | A(x) context event, abstract activity

Flows instances f ::= fa | if(e){f1}{f2} | while(e) {f} basic, conditional, iteration
| f1 ; f2 | f1 | f2 sequence, parallel

| ~ f �c
a | picki∈J(ei → fi) constrained scope, pick

| cIFi∈J(ci → fi) contextual IF

| ~f �b
e1
f1cb

en
fncb

e′1
f ′1cb

e′m
f ′mcb

e′′1
f ′′1cb

e′′l
f ′′lc context handler

| one − of~ f1�
c1
r1 . . . ~ fn�

cn
rn contextual one-of

Flows ff ::= [fr • f] | µ ` f | µ ` f , ff definition, instance, multiset

Flow system fs ::= {ff}c | fs1‖ fs2 deployment, composition

Table 2. Syntax of APFoL

Sending activity sinv q o x̄ def
= inv 〈id, q〉 o x̄ ; rcv 〈id〉 o ack

Receving activity srcv q o x̄ def
= rcv 〈id, q〉 o x̄ ; inv 〈q〉 o ack

Context event 〈e x̄〉 def
= rcv ContextManager gete x̄

Internal event 〈e〉 def
= while(e){empty}

Constrained scope ~ f �c
a

def
= 〈c〉 [{ f }¬c | (¬c〉; throw) • a ∗ empty]

Pick picki∈J(ei x̄i → ai)
def
=
∑

i∈J(〈ei x̄i〉 ; ai)
Contextual IF cIFi∈J(ci → fi)

def
= switchi∈Jci → ~ fi�

ci
throw

Table 3. Blite encoding of the main ingredients of APFoL.

Context events are a special type of activities for receiving events broadcasted by a
particular entity called Context Manager. More precisely, during this activity the flow
execution waits until the event is received. We model context events as particular receive
operations. More precisely, we shall model context managers as services that broadcast
their events e via replicated sending operations named gete. Thus, the reception of the
event is modelled as a reception operation with the context manager as partner, operation
gete and the corresponding tuple of values.

We shall also use a sort of internal events, denoted by 〈e〉 whose meaning is to wait
until the expression (i.e. a condition or trigger) e is true.

A constrained scope ~ f �c
a is a flow f enclosed into a scope with unique entry and

exit points, a constraint c and adaptation a (triggered if the constraint is not valid). hey
are represented in our syntax by terms of the form ~ f �c

a, where f is the normal flow, c is
the constraint and a is the adaptation to be performed in case the condition fails inside
the scope. This is modelled in Blite by exploiting the failure mechanism. First, we wait
until the condition is true. Then we open a Blite scope where we put a condition observer

~main�b
fault1
ff 1 c . . . b

faultn
ff n cb

event1
ef 1 c . . . b

eventm
ef m cb

block1
bf 1 c . . . b

blockl
bf l c

def
=

new done;
done := false;
~{main}suspend

| fault1 → throw
| . . .
| faultn → throw
| event1 → ef 1
| . . .
| eventm → ef m
| block1 → bf 1; done := true
| . . .
| blockl → bf l; done := true

�
fault1∨...∨fault1n
switch{fault1→ff1...faultn→ff n}

suspend def
= (¬done ∧ block1) ∨ . . . ∨ (¬done ∧ blockl)

Fig. 6. Context handler in Blite

flow in parallel with the normal flow conditioned to ¬c2. Conditioning is necessary to
avoid the normal flow to progess in case the context condition violated. Note that this
semantics does not really interrupt the flow. The exception is raised and the failure code
performs the adaptation activity, only when the observer is executed.

A pick is a branching point in the process where the alternatives are based on events,
rather than the evaluation of expressions. More precisely, it is the receipt of a message or
of a context event that determines which of the paths will be taken. Event-based decision
is modelled by a non deterministic choice of activities preceded by the corresponding
triggering event.

A contextual IF allows to define several flow fragments as possible branches in the
execution of the flow. Each flow fragment has an associated context condition. We can
define also one flow fragment without a context condition, which will encode the default
behaviour. The operational semantics of this construct is similar to a traditional if: the
first fragment for which the context condition holds will be selected and executed.

A context handler is a particular flow associated to a main flow or flow scope.
It specifies an alternative flow (in the form of a contextual IF) to be applied if aa
corresponding scope condition is violated. There are various forms of conditions within
the context handler flow.

– Fault-triggering suspend all active tasks in the main flow and execute the corre-
sponding error-handler. If the main flow is a flow scope, the fault is propagated to
the enclosing scope.

2 This is done by inserting a condition (in form of an internal event) between each activity and
can be easily defined in a recursive manner.

one − of~ f1�
c1
r1 . . . ~ fn�

cn
rn

def
=

new success;
loop

switch
c1 → ~ f1; success := true�c1

r1

. . .
cn → ~ fn; success := true�cn

rn

if(success) exit;

Fig. 7. Contextual One-of in Blite

– Event-triggering conditions can be non-blocking (execution of the main flow pro-
ceeds normally and the corresponding flow is executed concurrently) or blocking
(execution of the main flow suspends, then the corresponding flow is executed and
finally the main flow is resumed).

The encoding of context handlers in Blite is defined in Figure 6. The construct
consists of a main flow main and three sets of observers: fault-handlers, non-blocking
event handlers, and blocking event handlers, whose triggers are respectively denoted
by fault, event and block, while the corresponding flows are respectively denoted by
ff , ef and bf . The idea is as follows: the main flow (conditioned to suspend) is put
in parallel with various observers one for each fault and event trigger. When a fault
condition triggers, an error is raised and handled by the error handler which selects a
fault and fires the corresponding flow. Non-blocking events trigger the corresponding
flow. Blocking events perform similarly, but note that the suspend condition depends on
the blocking event conditions: if one of them is true and the corresponding flow has not
been performed, the main flow remains suspended until done becomes true3.

A contextual one-of consists of a set of alternative flow fragments, each of them as-
sociated to a contextual condition modeling the contextual assumption for that fragment,
and a rollback flow that can be executed to undo the partial and unsuccessful work of the
fragment. At run-time, the first flow fragment for which the contextual condition holds is
chosen and executed. During the fragment execution, its context condition is monitored
and, as soon as it is violated, the following actions are performed:

1. stop execution: all running activities within the fragment are stopped;
2. undo partial work: the roll-back flow associated to the current fragment is executed;
3. context jump: the first fragment for which the associated context holds is executed

and its context condition is monitored.

Roll-back flows can throw fault/exceptions (e.g. to handle the fact that the work done
within the fragment cannot be undone), and in this case the flow is terminated following

3 Note that in order to guarantee a unique done variable we declare it as new at the beginning of
the encoding. This is not a feature of Blite but can be added straightforwardly by considering
the local store µ as a stack of assignment sets instead of a plain set.

CL~ f1�
c1
r1 . . . ~ fn�

cn
rn

def
=

new success; new next flow; next flow := any;
loop

switch
c1 ∧ proceed(1)→ ~ f1; success := true�|c1 |

r1

. . .
cn ∧ proceed(n)→ ~ fn; success := true�|cn |

rn

if(success) exit;

Fig. 8. Contextual One-of with CLs in Blite

normal flow fault handling. If this is not the case, and the roll-back flow completes
successfully, the main flow is considered successfully running.

The encoding in Blite is rather easy, a loop is used to guarantee that performing a
rollback returns to the selection of one of the choices. The only way to exit a loop is to
successfully finish one of main flows.

When using the contextual one-of, it may be the case that, when jumping from one
execution context to another, we do not want to undo the work done or the complete flow
rollback is not possible. The cross-context link(CL) is designed especially for this case.
CLs connect two activities of different scopes within a contextual one-of. CLs allow
adapting to a context change by jumping from a certain execution state of the current
activity (source activity) to an execution activity (target activity) of another fragment
suitable for the actual context. After the jump the flow instance must be in a consistent
state. Therefore, a CL has an associated flow needed to prepare the flow to the jump. At
runtime, if the contextual condition associated to the running scope turns out to be false,
two possibilities are considered:

1. if there exists some context link leaving the active activity for which the context
condition holds:

(a) the roll-back flow associated to the cross-context link is executed
(b) the monitoring for the new context condition is activated
(c) the flow execution is re-started from the target activity of the CL

2. otherwise the condition violation is handled as described for the standard contextual
one-of.

The encoding in Blite is similar to the encoding of ordinary contextual one-of. The
first difference is that the guard of each flow fi is enriched with proceed(i) which is an
abbreviation for next f low = i ∨ next f low = any. This serves to control which flow
should be executed next. The second difference is that each compensation c must take
the ad-hoc roll-back flows for cross-context jumps into consideration. With |c| we denote
the introduction of a choice that decides whether to apply the ordinary compensation c
or the roll-back flow associated to the jump to the next flow.

Fig. 9. The Box Unloading example

5 The Box Unloading example

In this section we present a complete example that summarizes most elements introduced
before. For exemplification, we consider the box flow. A first problem that can occur here
is that the box can be damaged. The damage may have occurred either before, during
transportation, but it may also occur at any point while the box is being unloaded to the
staging area, or moved to the storage area.

In Figure 9 we use the Contextual OneOf construct to model the handling of damaged
boxes. In case the box is not damaged, the first flow scope is chosen and executed. If
at any point the box gets damaged, the context condition not(b.damaged) is violated
and the onContextChange flow is executed. That is, pending activities for unloading
and/or storing are canceled (e.g. the reserved staging/storage location is made available
for other boxes, the request for unloading/storing sent to workers are revoked). The
specific activities to be performed clearly depend on the state of execution, due to
this abstract activities are specified, namely Cancel Unloading and Cancel Storing

Box Unloading def
= one − of~notDamaged�c1

occ1~Damaged�c2
occ2

c1
def
= not(b.damaged)

occ1
def
= CancelUnloading;

CancelS toring
c2

def
= b.damaged

occ2
def
= BringtoUnloadingArea;

U pdateBoxPosition

notDamaged def
= UnloadMe(b, iLoc, stgLoc);

S toreMe(b, stgLoc, strLoc)

UnloadMe(b, iLoc, stgLoc) def
= ~main�b

blockl
bf l c

S toreMe(b, stgLoc, strLoc) def
= . . .

main def
= 〈PickedU p (∗b,w, cLoc)〉;

sinv w CarryMe (∗w, iLoc, stgLoc);
〈Dropped (∗b,w, cLoc)〉

block1
def
= not(wa. f ree(stgLoc))

b f 1
def
= sinv wa StagingUnavail (∗b, ∗wa, stgLoc) ;
〈NewUnloadingLoc (∗b, ∗wa, stgLoc)〉

Damaged def
= BringtoDamagedArea;
EvaluateDamage;
if(repairable){f1}{f2}

f1
def
= HandleDamagedBox

f2
def
= sinv wa ReportDamage (∗b, ∗wa);

sinv wa ReorderDamagedStock (∗b, ∗wa)

Fig. 10. APFoL encoding of flow Box Unloading.

and at run-time they will be refined with context-specific concrete activities. Once the
onContextChange flow is executed, the control goes back to the OneOf and the scope
handling damaged boxes is executed. If at some point in the execution of the flow scope
for handling damaged boxes the box is repaired, the context condition associated to the
scope (b.damaged) is violated, the execution stops and the onContextChange flow is
executed. This way, the box is brought to a waiting area and its position is updated, and
then the scope for handling undamaged boxes can start.

Another built-in construct exploited within the example in Figure 9 is the contex-
tHandler. In particular, during the execution of the Unload Me refinement, it may be
the case that the assigned staging location is no more available. If this is the case, the
contextual constraint wa.free(stgLoc), monitored during the whole execution of the
refinement flow, is violated and the contextHandler is executed. Since the handler is
defined as a blocking event, the execution of the main scope is suspended, then the
handler flow is executed and then the main scope is resumed.

The APFoL code of this example is flow Box Unloading shown in Figure 5, while
its WS-BPEL code is listed in [3].

6 Conclusion and Future Work

We have described a preliminary version of APFoL, a language for adaptable pervasive
flows with formal support. More precisely, we have presented a language whose textual
notation is based on Blite [13], a process calculus for WS-BPEL.

The formalisation of the language equips the language with a well-defined (and
hence non-ambiguous) semantics. More precisely, the formalisation as a process calculus
(Blite) facilitates the use of automated verification techniques. Some support for the
analysis and verification of Blite specifications exists (an encoding from Blite into
another calculus with tool support [4]), but we are working in a direct implementation of
Blite semantics in the rewrite engine Maude [8], in order to exploit its generic built-in
capabilites in form of analysis tools such as a model checker and a theorem prover. With
suchan implementation at hand, APFoL can be implemented as a derived rewrite theory
in Maude.

Our approach has been illustrated with examples from the Warehouse case study of
the Allow project [1].

We plan to develop a graph-based formalisation of our visual notation, possibly
basing existing techniques for the graphical encoding of process calculi (e.g. [6]). The
main goals of having a formal graph-based representation is formalise the relation
betweeen textual and visual notation and to enable the use of graph transformation
techniques, and their corresponding tools.

In the future we would like to investigate the connection with apparently similar
approaches in the data base community around the notion of business artifacts [17, 11],
which are flows attached to physical objects moving through different contexts.

Acknowledgments

The authors would like to thank Roberto Bruni for sharing with us his knowledge on
WS-BPEL formalisations and the authors of Blite (Rosario Pugliese, Francesco Tiezzi
and Alessandro Lapadula) for providing us with useful material.

References

1. EU-FET project 213339 ALLOW. http://www.allow-project.eu/.
2. D3.1 Basic flow-model and language for Adaptable Pervasive Flows. ALLOW Project

Deliverable, Nov 2008.
3. APFoL homepage. http://www.antoniobucchiarone.it/apfol.html.
4. Blite: A formal account of WS-BPEL. http://rap.dsi.unifi.it/blite/.
5. OASIS WSBPEL Tecnical Committee. Web Services Business Process Execution Language,

version 2.0. Available at http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0, 2007.
6. R. Bruni, F. Gadducci, and A. Lluch Lafuente. A graph syntax for processes and services. In

9th International Workshop on Web Services and Formal Methods (WS-FM’09), 2009.

7. M. Bundgaard, A. J. Glenstrup, T. T. Hildebrandt, E. Højsgaard, and H. Niss. Formalizing
higher-order mobile embedded business processes with binding bigraphs. In D. Lea and
G. Zavattaro, editors, COORDINATION, volume 5052 of Lecture Notes in Computer Science,
pages 83–99. Springer, 2008.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott.
All About Maude — A High-Performance Logical Framework. How to Specify, Program
and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

9. H. Eberle, S. Fll, K. Herrmann, F. Leymann, A. Marconi, T. Unger, and H. Wolf. Enforce-
ment from the inside: Improving quality of bussiness in process management. In IEEE 7th
International Conference on Web Services (ICWS’09), 2009. To appear.

10. K. Herrmann, K. Rothermel, G. Kortuem, and N. Dulay. Adaptable Pervasive Flows - An
Emerging Technology for Pervasive Adaptation. In Workshop on Pervasive Adaptation
(PerAda). IEEE Computer Society, September 2008.

11. R. Hull. Artifact-centric business process models: Brief survey of research results and chal-
lenges. In OTM ’08: Proceedings of the OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the Move to Meaningful Internet
Systems, pages 1152–1163, Berlin, Heidelberg, 2008. Springer-Verlag.

12. C. Laneve and G. Zavattaro. Web-pi at work. In Proceedings of the 1st International
Symposium on Trustworthy Global Computing (TGC’05), volume 3705 of Lecture Notes in
Computer Science, pages 182–194. Springer, 2005.

13. A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In 10th International
Conference on Coordination Models and Languages (COORDINATION’08), volume 5052 of
Lecture Notes in Computer Science, pages 199–215. Springer, 2008.

14. N. Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In 4th International
Workshop on Web Services and Formal Methods (WS-FM’07), volume 4937 of Lecture Notes
in Computer Science, pages 77–91. Springer, 2008.

15. R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL. Journal of Logic
and Algebraic Programming, 70(1):96–118, January 2007.

16. A. Marconi, M. Pistore, A. Sirbu, H. Heberle, F. Leymann, and T. Unger. Enabling Adaptation
of Pervasive Flows: Built-in Contextual Adaptation. Manuscript submitted to an international
conference. http://www.antoniobucchiarone.it/pubblicazioni/SOA-TR09.pdf, June 2009.

17. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.
IBM Systems Journal, 42(3):428–445, 2003.

18. C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas, and A. H. M. ter
Hofstede. Formal semantics and analysis of control flow in WS-BPEL. Science of Computer
Programming, 67(2-3):162–198, 2007.

19. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT Press, 2002.

