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Abstract

In this paper, we propose a hardware performance moni-
tor that provides support not only for measuring cache
misses and the addresses associated with them, but also
for determining what data is being evicted from the cache
when a miss occurs. We describe how to use this hard-
ware support to efficiently determine the cache behavior
of application data structures at the source code level. We
also present the results of a simulation-based study of
this technique, in which we examined the overhead, per-
turbation of results, and usefulness of collecting this infor-
mation.
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1 Introduction

Because of the relatively slow speed of accessing a system’s
main memory, the effective utilization of memory caches
is important for high performance applications. While many
commercial applications efficiently use the cache, HPC
applications frequently only achieve single digit percent-
age of peak performance due to poor cache utilization. As
processor speeds continue to increase faster than memory
speeds, the significance of this problem continues to grow.
This makes information about the cache behavior of an
application extremely valuable to a programmer who is
trying to tune its performance. In order to provide infor-
mation that a programmer can easily understand and act
upon, this information should be presented in terms of
data structures at the source code level.

It is desirable to use hardware performance monitors to
gather such information, since they allow this to be done
with lower overhead than all-software alternatives such as
simulation. However, for this to be possible, the proces-
sor must provide the necessary features. Although such
features have been limited in the past, the trend is toward
including increased support for performance monitoring,
including that for measuring cache behavior. Many proc-
essors have for some time included a way to count cache
misses, and a way to trigger an interrupt when a given
number of events (such as cache misses) occur. Some proc-
essors also provide the ability to determine the address that
was accessed to cause a particular cache miss; by triggering
an interrupt periodically on a cache miss and reading this
information, a tool can sample cache miss addresses. The
Intel Itanium 2 (Intel 2003) supports this feature, and
reportedly so does the IBM POWER4 (Tendler et al. 2002)
although documentation on its use is not publicly available.

This paper describes a next generation of processor
monitor that can also gather information about the addresses
of data that are evicted as a result of cache misses. Such a
feature would allow a tool to determine how data struc-
tures are interacting in the cache. As an example, if two
data structures are causing many evictions of each other,
then the accesses to them may be conflicting in the cache.

2 Data Structure-Specific Miss and 
Eviction Information

In this section, we will discuss the hardware features that
are necessary to measure data structure-specific informa-
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354 COMPUTING APPLICATIONS

tion about cache misses and evictions, and how measure-
ment code can efficiently make use of these features.

2.1 Hardware Features

In order to measure the number of cache misses and evic-
tions that relate to specific data structures, it is neces-
sary for instrumentation code to be able to determine the
addresses that are being accessed to cause the misses, and
of the data that are evicted. Our proposed hardware mon-
itor for doing this is illustrated in Figure 1. In general, the
mapping of addresses to data structures requires using vir-
tual, rather than physical addresses. For cache misses, this
is quite simple, since the virtual address being accessed is
available at the time the cache miss occurs; the processor
can simply save it or pass it to a routine that is triggered by
the cache miss (such as an interrupt handler).

Knowing the address of a block of memory that is evicted
from the cache is somewhat more difficult. A cache must
of course maintain information about the mapping of the
data it contains to main memory. This is done by tagging
each line with a number that represents the correspond-
ing block of memory. When a cache replacement occurs,
the tag of the evicted data could be written into a special
register, and then used to determine the address. In caches
that use a tag based on a physical address, it is necessary
to map this to a virtual address in the program’s address
space. This can be done using information about the

mapping of physical to virtual pages of memory, which
could be supplied by the operating system. One potential
problem with this is that operating system features such
as page replacement and the ability to map the same physi-
cal page into multiple virtual locations can make this map-
ping difficult. For the experiments described in this paper,
we have assumed that perfect information is available
about the addresses of cache misses and evictions. Since
most HPC users size their application data and/or systems
so that the working set fits into memory, paging is usu-
ally infrequent, so this is not a serious limitation.

As we will discuss in the next section, one more feature
that is necessary in order to allow the efficient collection
of this data is a way to cause periodic interrupts when
cache misses occur. For example, a number of existing
processors allow an application to set an initial value in the
cache miss counter, and to cause an interrupt to be trig-
gered when the counter overflows. Instrumentation code
can use these features together to cause an interrupt to
occur at one out of every n cache misses.

2.2 Software Support for Measuring Misses 
and Evictions

Each time the cache miss interrupt is triggered, the moni-
toring software examines: the address of the data that
missed in the cache; the cache tag that was evicted from
the cache; and the program counter. The addresses are then

Fig. 1 Performance monitors for cache misses and evictions.
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mapped to the source code level memory objects (varia-
bles or dynamically allocated data) that contain them. This
is done using debugging symbols and information main-
tained by instrumentation code inserted into the memory
allocation functions. The program counter is used to map
back to source line numbers (using the line number table
provided by the compiler’s debug flag).

Memory objects are grouped into equivalence classes,
which we refer to as stat buckets. Each variable in the appli-
cation makes up a stat bucket. Dynamically allocated mem-
ory is assigned to a stat bucket based on the execution path
leading to the allocation function that created it; this tends
to group heap blocks that are used similarly together.

The information maintained about each stat bucket is
shown in Figure 2. In addition to the number of misses
and evictions that take place within the objects of each
bucket, we also maintain information about what objects
are causing the evictions, and where in the code the misses
and evictions take place. Since misses and evictions gen-
erally occur together, i.e. every miss triggers an eviction,
it is not strictly necessary to maintain information about
both. Cache misses could be derived from eviction infor-
mation by adding the number of times an object was the
cause of an eviction. A possible disadvantage of doing
this is that the miss information would not be available in
real-time as the application executes. Our current imple-
mentation does maintain miss information separately
from eviction information.

3 Experiments

In order to evaluate the overhead, correctness, and useful-
ness of gathering cache miss and eviction information using
the approach described above, we implemented a simula-
tor for the necessary hardware. The simulator is imple-
mented using the ATOM (Srivastava and Eustace 1994)
binary rewriting tool. All load and store instructions in the

application are instrumented with code that tracks memory
references and simulates an L1 cache. Each basic block is
also instrumented with code that maintains a virtual cycle
count for the execution. The cycle counts do not represent
any specific processor, but are meant to model RISC proc-
essors in general. The simulated L1 cache has configura-
ble parameters such as cache size, associativity, and line
size. For our experiments, we used a 64 KB four-way set
associative cache with a line size of 32 bytes. These values
were chosen to represent current RISC processors. Cache
misses are assigned an average penalty of 20 cycles. This
is based on the assumption that L1 cache misses that are
satisfied by the L2 cache incur a penalty of 12 cycles, and
that accesses that must go to main memory require 60
cycles; these values were again chosen to model current
processors.

The simulator does not model details such as pipelining
or multiple instruction issue. Not modeling out of order
execution does not cause a serious problem for our results.
Processors such as the Itanium and Power 4 include exten-
sive out of order execution and still provide sampling based
monitors that can relate a given miss to the associated
program counter, what they lack is the ability to record
information about the evicted cache line. In a previous study
(Buck and Hollingsworth 2004), we validated the accuracy
of the simulator used in the paper with hardware counters
available on the Itanium 2.

Unless otherwise noted, the sampling interval was set
to sample an average of one in every 25000 cache misses
(the actual value was pseudo-randomly varied throughout
each run).

The code that implements the miss and eviction sampling
is written in C and is linked into the application. As a result,
it runs under the simulator, and is included in the virtual
cycle count and cache simulation. This allows us to study the
overhead and perturbation of our instrumentation software.

In the next sections, we will describe the results we
obtained when simulating miss and eviction sampling on
a number of applications from the SPEC CPU95 (Lebeck
and Wood 1994) and SPEC CPU2000 (Henning 2000)
benchmark suites. From SPEC CPU95, we used the appli-
cation su2cor. From SPEC CPU 2000, we used applu, gzip,
mgrid, swim, and wupwise. All programs were compiled
with either the Compaq C compiler V6.3-028 or the Com-
paq Fortran compiler V5.4A-1472. The C compiler flags
used were -fast and -arch host (which includes among other
things -O3) and for Fortran we used the flags -arch host,
-O5 and -tune host.

3.1 Accuracy of Results

We will first examine the accuracy of sampling cache miss
and eviction information. Our tool records information at
a number of levels of granularity. At the coarsest level of

Fig. 2 Stat bucket data structure.
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data centric information, it records the number of cache
misses that took place when accessing the objects in each
stat bucket. This can be broken down into the misses for
each stat bucket that occurred in each line of code in the
application.

Cache eviction information represents another level of
granularity. The tool records the number of times mem-
ory associated with each stat bucket is evicted by loads of
memory associated with each other stat bucket. This can
also be broken down by the line of code at which the
evictions took place.

In order to allow a comparison of actual statistics ver-
sus those estimated by the instrumentation code, the sim-
ulator collects the same types of information gathered by
the instrumentation. This is done at a low level in the sim-

ulator, and counts every cache miss and eviction. This pro-
vides us with exact values to compare the results from the
instrumentation code against.

3.1.1 Cache misses We will first examine the results
of sampling cache misses. Although previous works of the
authors have addressed gathering cache miss information
using sampling (Buck and Hollingsworth 2000, 2004), here
we will examine whether the accuracy of the information
obtained is affected by the additional overhead and per-
turbation of collecting detailed cache eviction information,
which involves more instrumentation code and larger
instrumentation data structures.

Table 1 shows the results of sampling cache misses in
the set of applications we tested. It lists the five objects

Table 1
Cache misses sampled with eviction information

Application Stat Bucket
Actual Sampled

Rank % Rank %

applu C 1 19.2 3 18.6

B 2 19.2 2 19.3

A 3 19.1 1 19.7

D 4 14.4 5 13.9

rsd 5 13.9 4 14.1

gzip spec_init(88)-main(276) 1 99.5 1 100.0

mgrid U 1 50.5 1 51.3

R 2 39.0 2 39.0

V 3 10.2 3 9.6

su2cor U 1 16.8 1 16.7

W1-intact 2 9.2 2 9.0

W2-intact 3 8.1 3 8.2

W2-sweep 4 6.9 4 7.0

W1-sweep 5 5.8 5 5.8

swim UNEW 1 13.3 2 13.4

PNEW 2 13.3 3 13.2

VNEW 3 13.3 1 13.6

CU 4 6.7 9 6.6

CV 5 6.7 5 6.7

U 10 6.7 4 6.7

wupwise U 1 30.3 1 29.0

UD 2 15.1 2 15.5

T 3 13.4 3 13.6

S 4 12.5 4 13.0

P 5 11.3 5 11.3
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causing the most cache misses in each application, exclud-
ing any objects causing less than 1% of the total number
for the application. The “stat bucket” column lists the
names of the stat buckets, which may represent varia-
bles or data structures in dynamically allocated memory.
As explained in Section 2.2, buckets representing dynami-
cally allocated memory are named by the code path through
which they were allocated. This is shown as a series of
function names with line numbers. For example, gzip con-
tains a block of memory that was allocated by spec_init
at line 88, which was called from main at line 276.

The “rank” columns show the order of the objects when
ranked by number of cache misses, and the percent col-
umns show the percentage of all cache misses that were
due to the named stat bucket. The actual values are the
precise values, collected at a low level in the simulator,
whereas the sampled values are as estimated by the instru-
mentation code. This information was gathered from sep-
arate instrumented and uninstrumented runs during the
same portion of the applications’ executions (this is made
possible by the simulator).

3.1.2 Cache evictions Table 2 shows information about
the evictions taking place in one of our test applications,
mgrid. It lists the three objects that caused the most cache
misses in the application in the “stat bucket” column. In
the “evicted by” column, it lists the objects that caused
more than 1% of the total evictions of each variable. The
“rank” columns show the order of the objects when ranked
by number of evictions of the variable they caused. The “%”
columns show the percentage of all of evictions of the
object in the “variable” column that were caused by the
object in the “evicted by” column. Again, the “actual” col-
umns show precise information as gathered by the simu-
lator in a run with no instrumentation, while the “sampled”

columns show the values collected by the instrumenta-
tion code.

Sampling one in 25000 cache misses returned accurate
information for the applications we tested. The largest dif-
ference between the actual and sampled values in Table 2
is for the evictions of U by itself, for which the percentage
value estimated by sampling is approximately 0.5 higher
than the actual one.   

To quantify the accuracy of sampling across all the
applications we tested, we measured the difference between
actual and sampled values for the buckets that were iden-
tified as the top ten in terms of cache misses for each
application. It is important to note that when measuring the
error in the sampled data, we are only concerned with var-
iables that are causing a large number of cache misses (which
implies that they are experiencing a large number of cache
evictions as well). Any variable identified as causing few
cache misses can be disregarded as unimportant to per-
formance tuning. Reflecting this, we discarded any buck-
ets in the top ten that did not cause at least 10% of the total
cache misses in an application. Out of the remaining
buckets, the largest difference in the estimated percentage
of evictions caused by a bucket to the actual value was
seen in wupwise, with a difference of 5.1%.

Table 3 shows eviction results from all applications tested.
The objects shown are the top five in terms of cache misses,
in order, excluding objects causing less than 1% of all
cache misses. The row labels identify the objects causing
evictions, and the column labels show the objects being
evicted. The numbers in each box are the percentage of the
total evictions of the column object that are caused by the
row object. The variable names in su2cor that include the
suffixes -i and -s indicate variables of the given names that
are defined in the subroutines “intact” and “sweep,” respec-
tively, and the variable “spec_init” in gzip represents a block
of memory dynamically allocated by the function “spec_
init.” We can see from the percentages shown that all
applications show significant patterns in evictions of
some of the objects listed in the tables. For all six applica-
tions, there is at least one object listed that causes 35% or
more of the cache evictions of another.

3.1.3 Evictions by code area At the finest level of
granularity supported by the eviction sampling instru-
mentation code, we keep counts for how many times each
variable was evicted by each other variable at each line of
code in the application. Table 4 shows an example, again
from mgrid. For each variable named in the left column, it
lists the five lines of code at which the most evictions of U
caused by the named variable occurred (excluding lines at
which less than 1% of the total evictions of U occurred).
The lines are ranked by the number of evictions, and the
percentages shown are the percent of all evictions of U
caused by the given variable and line, both actually and as

Table 2
Cache evictions in mgrid

Stat 
Bucket

Evicted By
Actual Sampled

Rank % Rank %

U U 1 60.3 1 60.8

R 2 20.2 2 20.1

V 3 19.5 3 19.1

V U 1 97.0 2 96.8

V 2 2.9 3 3.2

R R 1 73.8 1 74.1

U 2 25.9 2 25.7
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estimated by sampling. Even at this level of granularity,
the results returned are close to the actual values, with the
largest difference being the number of evictions of U
caused by accessing V at line 204 in the function resid; the
estimated value is 1.1 percentage points lower than the
actual one.

The accuracy seen with mgrid was typical of the appli-
cations we tested. To verify this, we again looked at the 10
buckets causing the most cache misses in each application,
excluding any buckets causing less than 10% of the total
cache misses. The largest error in the reported percentage
of cache evictions of a given bucket caused by a particular
combination of another bucket and a line of code was
approximately 3.9 percentage points, seen in wupwise, for
evictions of the variable T caused by cache misses in U.
The error in the estimation accounts for only 0.7% of the
total evictions of the variable. Table 5 shows the evictions
of T by U caused by each line of code, excluding informa-

Table 3
Percentage of evictions of variables (columns) caused by each other variable (rows)

applu su2cor

c a b d rsd U W1-i W2-i W2-s W1-s

c 41.5 4.0 21.1 27.9 8.4 U 20.0 57.9 32.6 25.1 27.0

a 11.3 44.5 22.7 17.8 11.3 W1-i 27.8 0.2 45.2 2.3 4.2

b 23.7 21.9 43.7 1.9 7.8 W2-i 26.7 0.5 2.7 29.2 12.8

d 11.9 21.4 2.4 44.4 7.8 W2-s 7.6 17.9 13.5 3.0 0.4

rsd 5.5 4.1 6.7 4.6 52.2 W1-s 2.5 22.1 3.1 30.0 4.1

other 6.1 4.1 3.4 3.4 12.5 other 15.4 1.4 2.9 10.4 51.5

gzip swim

prev window spec_init UNEW PNEW VNEW CU CV

prev 61.2 82.5 44.5 UNEW 6.7 51.3 23.5 0.0 32.7

window 36.0 15.2 39.9 PNEW 28.8 7.0 30.5 0.0 0.0

spec_init 1.0 0.1 5.2 VNEW 31.5 25.1 11.7 0.1 0.0

other 1.8 2.2 10.4 CU 0.0 0.0 0.0 35.1 34.9

CV 0.0 0.0 16.0 0.0 0.0

other 33.0 16.6 18.3 64.8 32.4

mgrid wupwise

U R V U UD T S P

U 60.8 25.7 96.8 U 41.4 35.7 40.8 25.2 27.3

R 20.1 74.1 0.0 UD 16.0 50.3 0.0 0.0 8.8

V 19.1 0.2 3.2 T 13.2 0.0 47.7 7.4 0.0

other 0.0 0.0 0.0 S 11.2 0.0 6.5 67.4 0.8

P 8.2 7.1 0.0 0.0 63.1

other 10.0 6.9 5.0 0.0 0.0

Table 4
Percent of total evictions of U by stat bucket 
and code line

Stat 
Bucket

Function Line
Actual Sampled

Rank % Rank %

U resid 218 1 20.6 1 21.0

psinv 162 2 10.8 2 9.9

resid 216 3 4.6 3 4.2

interp 287 4 3.1 6 3.1

interp 308 5 2.9 4 3.5

interp 296 7 2.8 5 3.1

V resid 204 1 16.4 1 16.7

R resid 204 1 19.6 1 20.1

Psinv 176 2 0.2 2 0.2
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tion about lines that caused less than 1% of the evictions
of T. Although the error causes the two lines of code
shown to be ranked incorrectly, the estimates made by
sampling are sufficiently close to be useful.

3.2 Perturbation of Results

We will now look at how sampling cache evictions affects
the cache behavior of an application. Figure 3 shows the
percent increase in cache misses due to instrumentation
code when running each of the applications and sampling
at several sampling frequencies. This information was
obtained by comparing the number of cache misses in a
run without instrumentation (cache misses are still meas-
ured by the simulator) with the number of misses in a set
of runs in which we sampled one in 250, one in 2500, one
in 25000, and one in 250000 cache misses. Note that the
scale of the y axis is logarithmic.

At our default sampling frequency, one in 25000 misses,
the increase in cache misses was extremely low for all
applications. We see the largest increase with gzip, which
experienced approximately 0.3% more cache misses with
instrumentation than without. At higher sampling frequen-
cies, the instrumentation code begins to significantly per-
turb the results; for gzip, sampling one in 250 misses results
in a 15% increase in cache misses. The average increase
across all applications at this sampling frequency was
approximately 5%. Similar to sampling only cache misses,

this shows that sampling more frequently does not always
lead to higher accuracy, due to the instrumentation
code’s effect on the cache.

3.3 Instrumentation Overhead

Figure 4 shows the overhead that is added to the execu-
tion time of each application by the instrumentation code
when sampling cache evictions at several frequencies.
This includes the virtual cycle count of the instructions
executed in the instrumentation code, as well as a per-
interrupt cost for handling an interrupt and delivering it
to instrumentation code.

At the default sampling frequency of one in 25000
misses, the highest overhead was seen in swim, which had
an increase in execution time of slightly less than 1%. The
overhead becomes more significant at higher sampling fre-
quencies, with the overhead for swim rising to 66% when
sampling one in 250 cache misses. The average overhead
over all applications when sampling one in 250 cache
misses was approximately 36%.

4 Tuning Using Eviction Data

This section will present an example of using the data pro-
vided by the cache eviction tool to optimize an applica-
tion. We will examine mgrid from the SPEC CPU2000
benchmark suite. For this application, our tool indicates
that two arrays, U and R, cause approximately 90% of all
cache misses. Looking at the eviction information for mgrid
in Table 3, we find that each of these is most often being
evicted by accesses to itself.

To better understand this problem, we looked at the
next finer level of granularity in the data to determine
what parts of the code are causing this to happen. Table 6
shows the lines of code at which the most evictions of U
by U and R by R are occurring.

Three lines together cause almost 36% of all evictions
of U by itself, one in the function psinv and the others in

Table 5
Evictions of T by U in wupwise

Function Line
Actual Sampled

Rank % Rank %

zgemm 263 1 16.8 2 12.8

zgemm 250 2 15.8 1 14.1

Fig. 3 Percent increase in cache misses when sam-
pling evictions.

Fig. 4 Instrumentation overhead when sampling cache
evictions.
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the function resid. For evictions of R by itself, the table
shows that a small set of lines from psinv cause approxi-
mately 43% of all such evictions.

Looking at the function “resid,” we find the loop
shown in Figure 5. The array U that is used in this loop is
declared elsewhere as a large single-dimensional array,
parts of which are passed into resid and other functions in
such a way that they are interpreted as one- or three-
dimensional arrays of various sizes; in the case of resid,
part of U is passed in as an N by N by N array. The array
R is used similarly. The fact that these arrays are declared
and used in this way may prevent the compiler from per-
forming optimizations that would involve changing their
layout in memory, since the layout depends on values
computed at runtime.

With the reference data set from the SPEC2000 bench-
marks, resid is called with varying values for N, up to 130.

Each element of U is eight bytes, so the array U can be
over 16 MB in size. Because of the large size of the array,
the references to U with subscripts I2-1 to I2+1, and I3-1
to I3+1 will likely be evicted from the cache before being
reused in other iterations, suggesting that tiling (Lam,
Rothberg, and Wolf 1991; Wolf and Lam 1991) would be
effective at increasing reuse. We tiled the loop with a tile
size of 8 by 8 by 8, which allowed an entire tile for each of
the three arrays accessed to fit into the L1 cache. We also
padded the first dimension of the array to make its size a
multiple of the cache line size and in such a way as to help
eliminate conflicts within tiles. We then padded the begin-
ning of the arrays so that they would start on cache line
boundaries as used in resid. Note that as mentioned above,
the arrays are not used as first declared in the program,
which must be taken into account when padding. For
instance, the main program passes part of U, offset from the
beginning, into resid as resid’s argument U, so the main
program’s U must be padded such that the offset begins on
a cache line boundary. Finally, since the code inside the
loop is short, we unrolled the innermost loop over a tile, in
order to eliminate some of the extra overhead of the new
loops introduced for tiling. The function “psinv” has a loop
similar to the one in “resid,” to which the same optimiza-
tions were applied.

While a compiler could potentially apply the code trans-
formations mentioned automatically, for the reasons dis-
cussed above it would be difficult for it to combine them
with changing the layout of the arrays, making it advanta-
geous to perform the transformations manually.

Figure 6 shows the number of cache misses in U, V, and
R before and after the optimizations. Although slightly more

Table 6
Evictions by code region in mgrid

Bucket/
Evicted By

Function Line
%

Evictions

U evicted by U resid 218 21.0

psinv 162 9.9

resid 216 4.2

R evicted by R psinv 168 14.9

psinv 174 14.6

psinv 176 13.8

Fig. 5 Loop from function resid.
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cache misses take place in V (2%), there are 29% and
20% fewer misses in U and R, respectively. Overall, cache
misses were reduced by 22%. Looking only at cache misses
in resid, our simulator shows that there are 48% fewer
misses in U, but approximately 2% more misses in V and
R, for an overall improvement of 29%. The “psinv” func-
tion shows a similar pattern; R causes 48% fewer cache
misses, while U causes 2% more. These provide a spee-
dup in these functions of 11% for resid and 7% for psinv,
and an overall speedup of 8%.

5 Related Work

Most current processors include some kind of perform-
ance monitoring counters on-chip. These typically provide
low-level information about resource utilization such as
cache hit and miss information, stalls, and integer and float-
ing point instructions executed. Examples include the MIPS
(Zagha et al. 1996), Compaq Alpha (Compaq Computer
Corporation 1998), UltraSPARC (Sun Microsystems 1997;
Lauterbach and Horel 1999), and the Intel Itanium (Huck
et al. 2000; Sharangpani and Arora 2000; Intel 2003) fam-
ilies of processors. All of these can provide cache miss
information.

Other systems have used flexibility provided by the hard-
ware to add data centric cache instrumentation. ATUM
(Agrawal, Sites, and Horowitz 1986) uses the ability to
change the microcode in some processors to collect memory
reference information. The FlashPoint (Martonosi, Ofelt,
and Heinrich 1996) system uses the fact that the Stanford
FLASH multiprocessor (Kuskin et al. 1994) implements
its coherence protocols in software, allowing instrumen-
tation to be added at this level.

Mtool (Goldberg and Hennessy 1993) provides informa-
tion about the amount of performance lost because of the
memory hierarchy, but only relates this information back to
program source lines, not data structures. MemSpy (Mar-
tonosi, Gupta, and Anderson 1992) provides data-oriented
information as well as code-oriented, but uses simulation
to collect its data.

StormWatch (Chilimbi et al. 1995) is another system
that allows a user to study memory system interaction. It is

used for visualizing memory system protocols under Tem-
pest (Reinhardt, Larus, and Wood 1994), a library that
provides software shared memory and message passing.
However, the goal of StormWatch is to study how to adapt
a memory system protocol to suit the application, rather
than how to change the application to match the memory
system.

Bershad et al. (1994) describe a method of dynamically
reducing conflict misses in a large direct-mapped cache
using information provided by an inexpensive piece of
hardware called a Cache Miss Lookaside Buffer, which
keeps a list of pages on which cache misses occur, associ-
ated with the number of misses on each. This can be used
to detect when a set of pages that map to the same loca-
tions in the cache are causing a large number of misses.

Another hardware feature that has been proposed as a
means of both measuring memory behavior and adapting
to it is an informing memory operation (Horowitz et al.
1996). An informing memory operation allows an applica-
tion to detect whether a particular access hits in the cache.
The authors propose several uses for this facility, includ-
ing performance monitoring, adapting the application’s
execution to tolerate latency, and enforcing cache coher-
ence in software.

In an earlier paper (Buck and Hollingsworth 2000), the
authors of this paper compared the effectiveness of sam-
pling with that of using conditional counters with a base
and bound for isolating misses to specific data structures.
A later paper examined sampling cache misses using fea-
tures of an existing processor, the Itanium 2 (Buck and
Hollingsworth 2004). However, neither of these discussed
measuring cache evictions.

Itzkowitz et al. (2003) describe a set of extensions
to the Sun ONE Studio compilers and performance tools
that use hardware counters to gather information about
the behavior of the memory system. These extensions can
show event counts on a per-instruction basis, and can also
present them in a data centric way by showing aggre-
gated counts for structure types and elements. Since the
UltraSPARC-III processors used by this tool do not pro-
vide information about the instruction and data addresses
associated with an event, the values reported by this tool
are inferred and may be imprecise.

6 Conclusion

We have shown that information about cache evictions
can lead to a better understanding of how application data
structures are interacting in the cache. In the mgrid exam-
ple, the fact that accesses to an array were often the cause
of an eviction of data from the same array allowed us to
eliminate many of the evictions and subsequent misses.

We also found that if simple support for measuring infor-
mation about evictions is provided by the hardware, then

Fig. 6 Optimizing cache misses in mgrid.
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we can use sampling to collect accurate eviction informa-
tion with low overhead. The required hardware support is
not substantially different from the information that some
processors already provide about cache miss addresses. We
believe that the ability to sample cache eviction addresses
is a feature that would complement the existing perform-
ance monitoring features in current processors, and that it
would be practical to implement.
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