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Abstract. We analyze the existence and stability of phase-locked states of neurons coupled electrically with gap
junctions. We show that spike shape and size, along with driving current (which affects network frequency), play a
large role in which phase-locked modes exist and are stable. Our theory makes predictions about biophysical models
using spikes of different shapes, and we present simulations to confirm the predictions. We also analyze a large system
of all-to-all coupled neurons and show that the splay-phase state can exist only for a certain range of frequencies.

1. Introduction

Electrical coupling between neurons has long been thought to have the effect of synchronizing
oscillatory neurons, especially if the neurons involved are similar to one another. Here we analyze
in more detail the effects of coupling periodically spiking cells by electrical synapses, and show that
gap junctions can actively foster asynchrony.

We focus on the effects of spike shape and size, along with driving current (which influences the
network frequency). Even when the spikes are very thin, the current flow during the spike is shown
to have a significant effect on the self-organization of the network, and the current flow during
the afterpotentials is an important part of the synchronizing process. Indeed the frequency of the
network plays a significant role in whether the circuit will synchronize, changing the balance of
these processes by altering the percentage of time occupied by the spike in a cycle.

We analyze what modes of stable locking are possible for the network, and show that synchro-
nization is possible at much higher frequencies than for coupling via inhibitory synapses. However,
at very high frequencies, gap junctions can be asynchronizing if the strength of the synapse is suffi-
ciently low; at intermediate frequencies, asynchronous modes can stably exist with the synchronous
ones.

The models we use are described by an integrate-and-fire formalism, with the addition of action
potentials that are inserted when a cell reaches threshold. The electrical synapses are modeled
as giving currents proportional to the differences in the voltages of the two cells. The analysis is
done by means of the ‘spike response method’ (Gerstner and van Hemmen 1992; Gerstner 1995;
Gerstner et al. 1996; Chow 1998), in which the effects of the coupling and the spikes are encoded in
‘response kernels’. Bressloff and Coombes (1998, 1999) have a similar formalism for analyzing these
types of networks. Though the spike response method was invented for synaptic interactions, we
show here that it can be used for electrical interactions as well. Indeed the spike response method
allows us to consider the simultaneous effects of both kinds of coupling in a uniform formalism.
We consider the consequences of the interaction of electrical and inhibitory synapses in a future
publication. Here we consider only electrical coupling, and focus on the different effects of spike
shape on synchronization in different regimes.
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We start in Sec. 2 with the equations of the neurons and the synapses as coupled differential
equations. Because the equations are piecewise linear between spikes, they can be explicitly inte-
grated to compute the response kernels. We compute those kernels in terms of the spike parameters,
the strength of the electrical synapses and the intrinsic recovery rate of the uncoupled neuron. This
gives explicit solutions for the coupled equations in terms of those parameters and the driving
currents to each of the cells (which need not be the same). These explicit solutions are the basis
for the analysis in the rest of the paper. We note that the solutions have the same form as those
analyzed in Chow (1998) describing interactions of cells via synaptic interactions. Thus the general
stability criteria developed in that paper can also be used for the current problem.

In Sec. 3, we consider phase-locked solutions between two spiking neurons connected by gap
junctions. We find that, depending on the parameters of the neurons and the gap junction strength,
the neurons can either synchronize, anti-synchronize, be phase-locked at an arbitrary phase, or lose
periodic firing. One nonintuitive result is that changing the shape of the spikes may have different
effects on the network in different parameter regimes. For example, increasing the amplitude and
width of the spikes diminishes the range over which synchrony is stable when the frequency is
relatively high. However, at low frequencies in which there is bistability, it can enhance synchrony
by diminishing the range of parameters over which the competing anti-synchronous solutions are
stable.

For non-synchronous modes such as anti-synchrony or splay phase, electrical coupling can change
the period of the network. Not only does the period of each cell change in such non-synchronous
modes, but the network period also increases significantly; for example, in the anti-synchronous
mode, the network frequency is twice that of the cell frequency. Thus, relatively weak electrical
coupling may be functionally important in creating appropriate frequency ranges for oscillations
in a coupled network. Whether a given mode of locking has a stable existence also depends on
the network frequency. The theory predicts a sequence of bifurcations as the driving current to
the cells, and hence the frequency of the network, is changed. We test that theory against the two
biophysical models and find agreement for a model that has large spikes and another model that
has small spikes (see Appendix A for details of the models).

In Sec. 4 we consider an all-to-all electrically coupled network of neurons. We show that a large
family of periodic phase-locked states can exist, including synchronous and clustered states. We
also show that the splay-phase state, in which all the neurons fire in sequence, can exist and be
stable only over a finite range of periods. In the Discussion , we review some related modeling work,
and place our results in the context of physiological systems that are electrically coupled.

2. Equations and Methods
2.1. SPIKING NEURON MODEL

We consider a simple integrate-and-fire model of the neuron with the form
av - S
C—=T—gV+> A(-1, 1
di gr Zl: ( ) (1)

where V is the voltage, C' the capacitance, I the applied current, gr, is an effective passive leak
conductance, A(f) is a term representing spiking and restoring currents, and #' represents the times
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that V (£) reaches a threshold V = V- from below. When V reaches threshold, a new term A(f — ')
is added which generates a spike (action potential) and resets the potential V to Vj.
The current A(#) associated with an individual spike and recovery is chosen to be

;1({) _ {QLVAeéiu N ’ (2)

0<
—C(Vp —Vo+ Vi)t —A), A <

Here V4 is a spiking amplitude scale, E is the rise rate of the spiking current, A is the width of
the spike from threshold to the peak, Vs is the maximum amplitude above threshold the spike
reaches before the potential is reset, and 4(+) is the Dirac delta function (which is used to reset the
potential). A(f) represents nonlinear currents that mediate a fast activation to generate a spike,
followed by an even faster inactivation and hyperpolarization to bring the potential back to V. Vs
is completely determined by the membrane dynamics and fl(f)

The potential can be shifted and rescaled with v = (V — V) /(Vr — V4) so that the threshold
has a value of v = 1 and the reset potential is v = 0. We also rescale time by ¢ = ¢/, where

Tm = C/gr. We then arrive at a rescaled system of the form

%:pr(t), 3)
where 7
= Ty ®
and o
Al) = { iA(i - on)d(t— A), 0A<<tt,S > (5)

with vg = Va/ (Ve = Vo), var = Var/ (Ve = Vo), A = A/1,,, and € = €7,,,, The membrane equation
has four dimensionless parameters: the applied current I, the spike rise rate &, the spike width A,
and the spike amplitude scale v4. The latter three parameters control the shape and amplitude of
the spike. In this form, I must be larger than unity in order for the potential to reach the threshold
for firing.

To compute the scaled maximum amplitude vy, we integrate (3) over the width of one spike.
Taking initial conditions to be the potential at threshold (v = 1 and ¢t = 0) we obtain

_ VA _
v(t)=14+1I(1—¢eY) + ft—e, t< A 6
(t) ( )t 17 5[ ] (6)
with vy, defined by vy = v(A) — 1. For a fast-rising and narrow spike (compared to the membrane
time scale) we can assume vy ~ v2e$2 /(14 €). Figure 1 shows four examples of the voltage traces
for different parameters of the model given in (3).

2.2. SPIKE RESPONSE MODEL FOR COUPLED NEURONS

We use the spike response formalism for a system of two neurons coupled with resistive gap junc-
tions. (We can also include synaptic coupling within this formalism.) In doing so, the effects of
the gap junction coupling will be separated from the intrinsic dynamics. After the equations are
derived, we will apply the techniques previously used to understand the dynamics of synaptically
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Figure 1. Examples of voltage traces for the integrate-and-fire model with parameters a) £ = 50, A = 0.1, va = 1,
I=13b)¢=12,A=01,va=11=130¢)&=12, A =05 va=11=155d)&é=12 A =05, vs =1,
I =1.55.

coupled neurons. We will also show how this method can be generalized to a network of IV all-to-all
coupled neurons.
The equations are

dv

d—tl = I1*1)1*g(7)1 *7)2)+ZA(t7t!1)7 (7)
1

dv

d—: = I2*1)2*9(7)2*7)1)+ZA(t7tl2)a (8)

l

where g is a gap junction strength (scaled by gr,), and ¢! represents the times when v; crosses the
threshold from below. The spiking kernel A(t) generates a spike and resets the potential to zero.
Our strategy is to express the dynamics for v; in terms of a set of response kernels which we will
explicitly calculate.

We first transform into normal modes: v, = v; + v9 and v_ = v; — vo to obtain
dv
d—::I+—v++ZA(t—tﬁ)+ZA(t—t§1) (9)
1 m
dv_ !
= L—rv,-l-;A(t—tl)—%:A(t—t?), (10)

where r =1+2g, I, =11 + I and I_ = I} — I5. Integrating gives

vp = LU —e )+ ) (=) + D ne(t —t5"), (11)
l m
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s
_T‘

(-

(L—e ™)+ D n(t—1]) =D n-(t —15). (12)

l

Since we are interested in the steady state, we can start the interaction at any initial conditions;
we have taken initial conditions of vy =v_ = 0.
The kernels are nonzero only for positive argument. They are given by

t 7
Na(t) = /0 e malt-t) A\ at!, (13)

and after integrating

VA(Tq + &) et — el 0<t<A
t) = 14
na( ) { _(1 +oy — T}Q(A))efr"(th), A<t, ( )
where a = +, r; =1 and r_ = r. We note that for fast-rising and narrow spikes vy; ~ 74 (A).

Returning to the original coordinates and assuming that the neurons have been spiking for a
long time so that initial conditions have decayed away, we obtain the spike response equations

vi(t) = D+ 3 st — 1) + D ve(t — 5, (15)
! m

7)2(t) = j2 + Z’Ys(t - tlZ) + Z’Yc(t*flﬂ)a (16)
! m

where
I}_%[<1+%>II+<1%>IQ}, (17)
fz_%[<1—%>11+<1+%>12}, (18)
and
1 = () +0-(0) (19)
%o = 5Ine () 1] (20)

vs 18 the spike generation and reset kernel and -y, is the coupling kernel in the spike response
method (Gerstner et al. 1996; Chow 1998). We note that }_,, v.(t — ¢]") can be interpreted as the
contribution to the membrane potential due to the gap junction coupling. It is the gap junction
analog of the post-synaptic potential.

Written out explicitly, the -y, kernel is given by

N [(1 + &) et — e+ (r4£) 7 [ett — e*”]} L0<t<A
Vs(t) = { 1 [e*(t*A) N 5664(“&] | Act (21)
where
8. =1+ 27.(A). (22)

The 4 kernel has the shape of a single spike as seen in Fig. 2 a). Increasing the gap junction
strength through r mainly affects the recovery phase.
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Figure 2. a) Two examples of the v5 kernel with parameters A = 0.1, £ = 50, va = 1, and gap junction conductances
g = 0.5 (solid line) and g = 5 (dashed line). Two examples of the . kernel with A = 0.1, £ = 50, va = 1, and gap
junction conductances g = .5 (solid line) and g = 5 (dashed line).

The . kernel is given by

e e — e ) ) M -] o<t <A

Velt) = B {e,(t,A) _ 5064(th)] ’ A < t. 29)

1
2

The 7. kernel is the contribution to the electrical coupling due to a single spike. Examples of .
are shown in Fig. 2 b). For short times, -, is positive, rising until a cusp which occurs at the peak
of the spike. After the cusp, 7. begins to decrease, becoming negative for long times. The sum over
the . kernels can be thought of as setting a ‘background potential level’ upon which the spiking
takes place.

The parameter 0., which is a measure of the maximum amount of excitatory input received, is
important for controlling the background potential level. Later, it will be seen that ¢, is the critical
parameter for determining the synchronizing behavior of the network. For fast rising spikes, we can
assume exp(¢A) >> exp(—A) leading to

de~1+uvy (1%), (24)

where we have used vy = 74 (A) ~ v4ef2 /(1 4 €). §. can be increased by increasing r through the
gap junction strength ¢ or increasing the maximum spike amplitude vy;. (Note that vy, is measured
in reference to a fixed post-spike hyperpolarization.) While increasing the spike rise rate £ increases
v, if vy is kept fixed, increasing € actually decreases d.. For weak coupling strength (g << 1), d.

has the form
2gv

1+¢&°

In the ensuing text, we will refer to spikes with d. >> 1 as ‘large spikes’ and for §. ~ 1 as ‘small

de ~ 1+ (25)

spikes’.

3. Phase-locked states

In this section we apply the formalism of the previous section and analyze the existence and stability
of phase-locked states for two neurons coupled through gap junctions. We focus on the states of
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synchrony (S) and anti-synchrony (AS) although a third phase-locked state can also exist. We show
that by changing the frequency of the network, the neurons can make transitions between these
phase-locked states. In some instances bistability is possible.

3.1. CONDITIONS FOR PERIODIC PHASE-LOCKING

We are interested in the existence and stability of phase-locked periodic solutions. Here, we describe
a self-consistent method for determining the period 1" of a periodic solution and the phase difference
¢ between the cells in that periodic solution. We show that there is a function G(¢,T') whose zeros
for fixed T give the phase difference; there is a companion equation that is used to determine T'.

We consider two neurons firing in a phase-locked pattern. We analyze this situation by supposing
the neurons fire periodically at t\ = —IT and t5 = (¢ — I[)T. Without loss of generality, we assume
that cell 1 is ahead of or at the same position as cell 2, i.e., ¢ > 0. The next time the i neuron fires
is when the potential v; reaches threshold from below (i.e. ©; > 0). Thus, using the spike response
equations, we can derive a condition for phase-locked firing. Noting that neuron 1 will next fire at
t = 0 and neuron 2 will next fire at ¢ = ¢T" we obtain from (15) and (16)

n(0) = 1 =L+ %0IT)+ > 7(T —¢T,) (26)
I>1 I>1

va(T) = 1 = L+ 7(T)+ > (T + ¢T), (27)
>1 1>0

This is a set of two equations with two unknowns. Note that the second sum in (27) starts with
the index [ = 0 because cell 2 feels the effect of cell 1 in the first cycle, but not vice versa.
We can rewrite this system in a more convenient form. Subtracting (27) from (26) yields

~ o~ I, — I
G.1) =T~ = {52, (28)
where
G($,T) = 7(¢T) + > [ (T + ¢T) — 7 (IT — ¢T)]. (29)

I>1

This equation can be interpreted as a condition for the phase ¢ given a fixed period T' (provided a
solution with that 7" is possible). Adding (27) to (26) and dividing by two yields

F(¢,T)=1-1, (30)

where

F($.T) = 59:(8T) + Y 0s(T) + 5 (veiT = §T) + (T + ¢T))] G1)
>1

and I = (I, + I)/2 = (I, + I)/2. This equation gives a condition for the period T given a fixed
phase ¢.

Although (30) could possibly allow multiple solutions for a given phase ¢ , there is only one
‘physical’ solution which is given by the smallest solution for 7'. This is because the neuron is
considered to fire and reset immediately upon crossing the threshold from below. A condition that
also must be satisfied is that a neuron must remain subthreshold throughout its period. We examine
this condition in detail for AS in Sec. 3.3.
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For homogeneous systems (i.e. Iy = I3), S (¢ = 0) and AS (¢ = 0.5) both satisfy (28). For S,
the period condition (30) is the same as that for a single neuron. As we will show in Sec. 3.2, a
solution to (30) can almost always be found for S. However, the existence of AS is not guaranteed.
As will be shown in Sec. 3.3, a neuron may not remain subthreshold while the other neuron fires.

Stability of these periodic phase-locked solutions can also be analyzed. In Chow (1998), a suf-
ficient condition and a separate necessary condition for stable phase-locking were derived. The
sufficient condition for stability of a locked solution with phase ¢ is that the slope of the kernels (v,
and ,) are both positive at times t = [T 4+ ¢T, i.e., they are rising at the time of firing (Gerstner
et al. 1996; Chow 1998). The necessary condition for stability is that the derivative of G(¢,T') with
respect to ¢ must be positive (Van Vreeswijk et al. 1994; Chow 1998).

3.2. PERIOD OF PHASE-LOCKING

The network period depends on the parameters and the phase-locked state. For a given fixed phase
¢, the period T is determined implicitly from (30). Here, we will show that for S, a solution for the
period can always be found if the input current is suprathreshold and not too large. However, for
AS (30) may not always have a solution for T'. We show that if I is too small (depending on the
other parameters) there is no solution, implying that AS does not exist in that regime. As will be
seen in Sec. 3.3, even if a solution exists to (30), AS still may not exist if the value obtained for the
period is too large.

When both S and AS exist, we analyze (30) to see the relationship between their periods, Tg
and T'yg respectively. The result is that for large spikes, T'ag < Tg for fixed parameter values but
the opposite is true for small spikes. We also look at how the period changes with parameters. We
show that increasing the gap junction strength g decreases T'yg for large spikes, but increases it for
small spikes. Since (30) is a continuous function of ¢, T changes continuously with changing ¢.

For S, using (19) and (20), (31) becomes

F(0,Ts) =Y 1y (ITs). (32)
1>1

Inserting the kernel ny from (14) into (32) and evaluating the sums, condition (30) becomes

e? -

F(OaTs):mzlfL (33)
for T's > A. It can be easily shown that this is the period condition for an uncoupled neuron (Chow
1998). The period is defined implicitly by (33).

The function F(0,Ts) is negative and monotone increasing in Ts. For 1 < I < 1+ (1 —¢e?)7!

there is always a solution for T's. (We note that the period is well defined only for Ts > A.) Solving
(33) for Ts yields
I-14¢e>

The threshold for firing is I = 1. The period decreases with increasing I.
For AS, (31) gives

F(1/2,Tas) = > vs(ITas) + > ve(mTas + Tas/2). (35)
1>1 m>0
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Inserting the kernels (21) and (23) for t > A into (35) and evaluating the sums leads to the period
condition (30)
Oc era 1 eA _

EeTTAS/Q_'_]__ieTAS/Q*l:1_1- (36)

F(1/27TAS) =

for T4s > 2A. As discussed previously, the smallest T4 g satisfying (36) is the only physical solution.

There are situations where a solution to (36) does not exist. From (36), we see that for a given
I, for 6. large enough and r small enough then T4s does not exist since F(1/2,T4g) stays above
1 — I. By the same reasoning, solutions for T4g can then exist for subthreshold input (I < 1); the
excitation provided by each neuron through the gap junction would sustain firing.

Except for cases where 6. and r are very large, near the smallest solution of (36) we have
OF (1/2,Tas)/O0T > 0. This implies that increasing I decreases the period. From (36) we see that
increasing ¢, increases F'(1/2,T4gs) and thus decreases T'4s. This can be understood heuristically
since the spike contributes an effective excitation through the gap junction and J. increases with
increasing width and amplitude of the spike. We note that . increases when r = 1 4+ 2g increases.
On the other hand the factor e’"A/(erTAS/2 +1), increases only if T4g < 2A and decreases otherwise.
However for relatively small » and T4 s (recall that small is in comparison to the effective leak time),
the factor decreases slowly. Thus, for cells with large spikes and periods fast compared to the leak,
increasing r generally decreases the period for AS, while for cells with small spikes and long periods,
increasing r increases the period.

We can compare the periods of AS to S by rewriting F/(1/2,T') as

F(1/2,T) = F(0,T) + ¢(T) (37)

where
5, €A 1 2

2T241 272410
Comparing to (33), we find T's = T'4s when b = 0. For a given period, there are a set of possible
parameters &, and r for which ¢ = 0. The trivial solution is d. = 1 and » = 1 which corresponds
to uncoupled neurons. For weak coupling and a small spike amplitude Ts ~ Tsg. If ¢p > 0 then
Ts > Tss and vice versa. From (38), we find that 1) can be positive if . is large enough. Again,
this can be understood heuristically: For strong spikes and weak coupling, AS has a shorter period,
but for weak spikes and strong coupling the opposite is true.

P(T) =

(38)

3.3. EXISTENCE OF THE ANTI-SYNCHRONOUS STATE

In order for AS to exist, the potential of the neurons must remain below threshold for the duration of
a period. This can be violated if the spikes have large enough amplitude or the electrical coupling is
strong enough so that when one of the neuron spikes it induces the second neuron to cross threshold,
i.e. as soon as one of the neurons fire, the other will be induced to fire nearly immediately and
the neurons will tend to synchronize. This effect is similar to fast threshold modulation (Somers
and Kopell 1993). The spike mediated through the gap junction acts like a brief excitatory pulse
synchronizing the two neurons, prohibiting anti-synchrony.

We can make this more concrete by considering AS where # = —IT and t}, = T/2 — IT. The
potential of neuron 1 obeys

vi(t) =T+ [t +1T) +ye(t — T/2+1T)], t>0. (39)
>0
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We require v (t) < 1 for 0 < ¢ < T'. When the spike of neuron 2 is felt by neuron 1 at t =T/2 + A
there is a chance that neuron 1 may be induced to fire. To prevent this, we must have

u(T/24A) =T + Y [%(T/2+ A +1T) + 7. (A +1T)] < 1. (40)
>0

Using (21), (23) in (40) and evaluating the sums yields

1
0o < [3—2I
c < 1+€T

Tl) (14¢7772), (41)

The applied current and the period are related through condition (36). For homogeneous neurons,
I; = I. Solving (36) for I and substituting into (41) yields

1—e2 Seemd T
c —rT/2
e < <1+6’T/21+€TT/21>(1+6 ) (42)

For very narrow spikes (A ~ 0), this inequality is approximately

sinhrT'/2

) - -
¢ < sinhrT/2 — 1

(43)

As the period T increases the right hand side of (43) decreases towards unity. Hence, as the
period gets longer, §. must be smaller in order for AS to exist. In the limit of T" — oo, condition
(43) becomes d, < 1. Recall that d. > 1 and decreases with decreasing spike amplitude. Thus as the
period approaches infinity, the spike amplitude must approach zero for AS to exist. The behavior is
the same for increasing the gap junction strength r. For a fixed spike amplitude and gap junction
strength there is a maximum period allowable for AS to exist. The larger the spike or stronger the
gap junction the smaller this maximum.

3.4. GLOBAL BEHAVIOR

A global view of the existence and stability of phase-locked states can be obtained from condition
(28) if we treat the period T as a bifurcation parameter. For a fixed period T, (28) provides the
phase ¢ of any locked solution; by Chow (1998), that solution is unstable if the slope of G(¢,T) is
negative. In section 3.7, we will relate the bifurcation unfolding for 7" to the network parameters 1
and g.

We can compute G(¢,T') explicitly by evaluating the sums in (29) to obtain for 7' > 2A

1 [e—(T+6T—A) _ ,~(T—¢T-A)
G(¢.T) =v.(¢T) — 5

2 1—e T
5 e T(T+eT—-A) _ —r(T-¢T-A) T <A "
— <
: — . eT<a (44)
]_ ef((bT*A) — ef(Tf(bT*A)
efr((beA) o efr(quﬁTfA)

— 4,

T ] . A< ¢T <T)2, (45)
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Figure 3. Four examples of G(¢) with parameters A = 0.1, £ =50, g = .5, va = 1 and period a) T =2, b) T =1, c)
T =0.25,and d) T = 0.2.

and G(¢,T) is an odd function about ¢ = 1/2. The functional form for G for T' < 2A is much more
complicated.

Four examples of G(¢, T) vs. ¢ for a progression of different fixed periods T' are shown in Fig. 3.
Phase-locked solutions are given by the zero crossings of G(¢,T). If the slope at the zero crossing
is negative then the solution is unstable. Though the condition G'(¢,T) > 0 is only a necessary
condition for stability, it allows us to use the graphs of G to give insight into the regimes for
which various locked solutions are stable. Bifurcations take place at critical points T that satisfy
G(¢, Tc) = 0. The four figures in Fig. 3 capture the qualitative dynamics of a system coupled with
weak gap junctions. The bifurcation sequence is summarized in Fig. 4. For strong gap junctions,
synchrony is always stable as one would expect. As the gap junction strength is reduced the state
will transition into the corresponding weak gap junction state for that particular period.

We consider the bifurcation unfolding for weak gap junctions as the period is decreased (See
Fig. 4). For a long period, as in Fig 3a, both ¢ = 0 and ¢ = 0.5 are zeros with G'(¢,T) > 0. Thus,
the necessary condition for stable S and AS are both satisfied. However, AS may not exist for long
periods as shown in Sec. 3.3. There is also an unstable third mode which appears symmetrically
around AS. (This third mode also exists for synaptic coupling (van Vreeswijk et al., 1994; Hansel
et al., 1995; Chow, 1998).) G(¢,T) has a cusp between ¢ = 0 and the third mode, which comes
from the cusp in 7.. As the period is decreased, the third mode approaches ¢ = 0.5 until an inverse
pitchfork bifurcation at G'(0.5,T) = 0 when AS loses stability and the third mode disappears (Fig. 3

b). This corresponds to the value Té451

in Fig. 4. With a further decrease in period, S loses stability
through a pitchfork bifurcation and a stable third mode reappears (Fig. 3 ¢). This occurs at Tg in
Fig. 4. As the period decreases even further, the cusp approaches ¢ = 0.5. At T' = Té“SQ = 2A, the
cusp crosses ¢ = 0.5 and stable AS appears (Fig. 3 d). This bifurcation is discontinuous because of
the cusp. For a smooth spike, the cusp would be smoothed and the AS would gain stability through
a pitchfork bifurcation. For even shorter periods, as will be seen in Sec. 3.6, the AS state can lose

stability to the third mode at Té‘S?’.
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Figure 4. Bifurcation sequence for phase-locked states with phase ¢ and period T for weak gap junctions. Solid lines
indicate stable states and dashed lines unstable. Moving from left to right corresponds to increasing period and
moving from right to left corresponds to increasing frequency. There are four bifurcation points: T43", Tg52, TAS?
and T35

3

In the synchronous state, the period of the neurons are given by their intrinsic dynamics because
the effect of the electrical coupling is zero. For AS, the contribution from the electrical coupling
affects the period (although this effect may be small). In the two following sections, we will show
how the critical points change as the network parameters are varied. We also consider the sufficient
conditions for stability of S and AS in these sections. With these results and those of Sec. 3.2, we
can construct the bifurcation sequence for changes in the applied current I and the gap junctional
strength g. This bifurcation diagram gives information about necessary conditions for stability of
S and AS. In the next two sections we also consider the sufficient conditions.

3.5. SYNCHRONY

As seen in Sec. 3.4, S can become unstable if the period is too short. From (29) we find

G'(0,T)/T =7:(0) + 2y ~e(IT), (46)
1>1

where the prime indicates a derivative with respect to ¢, and dot indicates the derivative with
respect to t. For 7. given by (23), 4.(0) = 0. This reflects the fact that the neurons do not imme-
diately affect each other upon firing. Inserting (23) into (46) and evaluating the sum, we find that
for T > A

G'(0,T))T = (47)
Note that 6. > 1 since 7.(A) > 0 and r > 1. Thus for 7' small enough, . large enough, and r not
too large, the second term will dominate the first term in (47) and G’(0,T) will become negative
indicating instability of S.

The lower bound of the period for stable S is given by the critical period Tg , which satisfies
G'(0, Tg) = 0. For T below Tg, the necessary condition for stability is violated, and stable S cannot
exist. We examine how T2 behaves when we change the parameters. The critical condition (47)
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can be rearranged to take the form

rTS
ot — 1
S = e (48)

For large r, Tg decreases with increasing r. Thus for very strong gap junctions, the lower bound
is the width of the spike, implying that synchrony can be stable at any allowable period (periods
smaller than the width of the spike are not allowable in our model). This synchronizing tendency is
the general presumption of gap junctions. However, if the gap junction is not strong, then there can
be a range of frequencies for which S is unstable. The left hand side of (48) is monotone increasing
in Tg . Thus Tg increases with increasing d. or A. The conditions for stable synchrony depend
importantly on the spike width A and on d.. As either of these is increased, a longer period (lower
frequency) is required for stable S. A larger amplitude spike leads to a larger §. and hence makes
it more difficult to synchronize two neurons in the sense that the range of frequencies where they
can synchronize is reduced.

We now consider sufficient conditions for stability. In Chow (1998), it was shown that §,(IT") > 0,
Y.(0) > 0, and 4.(mT) > 0, for | > 0,m > 1, was sufficient for stability. From (21) and Fig. 2 a),
the slope of v, is always positive. From (23) and Fig. 2 b), the slope of 7.(IT) is negative between
the maximum at ¢ = A and the minimum ¢ = ¢,,;, but positive everywhere else. Minimizing (23)
for t > A gives

1
timin = A + %0 Ind.(1+ 2g). (49)
g

Recall that 4.(0) = 0. For T' > t,i, we have 4.(mT') > 0, ensuring stability. For T' < t,,;,, the slope

of 7.(T) can be negative and stability is no longer ensured. (Note that 7" > A i.e. the period must

be longer than the width of a spike). For strong gap junctions t,,;, approaches A. This implies that

as the gap junction becomes stronger, S is guaranteed to be stable at higher and higher frequencies.
For g << 1, we can use (25) for d. in (49) and expand to obtain

UM
1+¢

Thus, for weak gap junction strength, g has no effect on #,,;, at linear order.
3.6. ANTI-SYNCHRONY

The behavior of G(¢,T') indicates that AS could be stable for either long periods or very short
periods. We now investigate these possibilities in more detail. A necessary condition for stability of
AS is that G'(0.5,T) > 0. The sufficient conditions for stability are given by 417"+ 7/2) > 0 and
Y(IT +T/2) > 0.
From (29) we find that
G'(0.5,7)/T =2 4.(T + T/2). (51)
1>0

After evaluating the sum we obtain

: —(3T/2-A) —r(3T/2—A)
605, myyr = { T T et TS 52
ekﬁ - 567461,ﬁ, T > 2A.
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where

. VA 565T/2 4 67T/2 §€§T/2 4 TefrT/Q
() = 2 | £ o 53

First consider the behavior for T' < 2A = Té452. This is the situation where the spikes are
overlapped, i.e. one neuron reaches threshold while the other neuron is still in a spiking phase.
From (52) and as seen in Fig. 3 d), AS can be stable for T' = TA°2, provided r is small enough.
However, 4.(0) = 0 and is monotone increasing in 7" until 7" = 2A. Thus, if T is reduced there is
a bifurcation at T4%? when G'(0.5, TA%3) = 0, (not shown in Fig. 3). Stability of AS is possible
for Té453 <T< Té‘SQ. For small r, increasing r will increase TéqS?’. Thus the regime for stable AS
at these short periods is reduced and could possibly be eliminated by increasing the gap junction
strength.

The sufficient conditions for stability are satisfied if T'/2 > ty,in, where t,, is given in (49).
This sets a minimum on the period that depends on d.. In the short period regime, we have shown
that AS could satisfy the necessary condition for stability when the period is reduced to less than
twice the width of the spike. However, at this point the sufficient conditions are not satisfied since
T/2 < A < tpin. Although stable solutions are possible if the sufficient condition is violated, it
may be that, for extremely high frequencies, neither S nor AS are stable.

For T slightly larger than 2A, G'(0.5T") is negative. Once the spikes are no longer overlapped,
AS immediately loses stability. This bifurcation is seen in Fig. 3 ¢) and d). The bifurcation is
discontinuous because the spike shapes are not smooth. Had a smoother spike shape been chosen
the transition from stability to instability would be continuous.

As the period is increased, the necessary condition for AS stability begins to be satisfied at the
critical period Té451 satisfying G'(0.5, Té‘Sl) = 0. Thus, Té451 gives a lower bound for stable AS in
the long period regime (7" > 2A). Applying this to (52) for this regime gives the following condition
for this lower bound :

sinh(rT451/2)

= r8em DA, 54
sinh(TA5T/2) ' °¢° (54)

The left hand side of (54) is monotone increasing in T4! so increasing d. or A increases Tg5!.
Thus large spikes increases the lower bound on period for stable AS in the long period range.

For strong gap junctions, Té‘Sl decreases and in the limit r — oo, Té‘Sl — 2A. The maximum
period allowed for existence of AS as given by (43) also decreases as r is increased and at a slightly
faster rate. This implies that as the gap junction strength increases AS can be stable at shorter
periods in the long period regime although it likely loses existence before the period can get too
short.

To summarize, the necessary condition for stability of AS is satisfied for periods longer than
Té451 provided the gap junction is not too strong. It is also satisfied for short periods between
Té453 and Té452, although the sufficient conditions are not satisfied. This region is reduced with
increasing gap junction strength. For long periods, existence is lost if the gap junction is too strong
or the period is too long. Results from Section 3.5 lead to the conclusion that, in the short period
regime, large spikes diminish the range of periods over which synchrony is stable. From this section
we see that, in the long period regime, large spikes diminish the range over which AS is stable.
These results are borne out in numerical solutions, as will be shown in Sec. 3.9
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Figure 5. Bifurcation sequence for phaselocked states with phase ¢ and applied current I for large spikes. Solid lines
indicate stable states, dashed lines unstable, and dotted lines unknown behavior. Moving from left to right corresponds
to decreasing period. There are four bifurcation points: 145", 155, 1552, and IZ.

3.7. BIFURCATIONS FOR I AND g

In Sec. 3.4, we showed that for weak gap junctions a bifurcation sequence shown in Fig. 4 takes
place for changes in the period T'. We now relate this sequence to bifurcations, using as parameters
the applied current I and gap junction strength g. This is accomplished by identifying the locations
of the four bifurcation points: Té‘SI, Té‘SQ, Té‘S3, and Tg.

From Sec. 3.2 we showed that increasing the applied current I decreases the period 7. Thus
moving from right to left on the bifurcation plot in Fig. 4 corresponds to increasing /. However,
for a fixed I, the states, S, AS, or third mode will have different periods so the diagram will not
carry over directly. The bifurcation sequence will vary according to whether the period decreases or
increases as the phase of the periodic locked state moves away from ¢ = 0. For each T bifurcation
point in Fig. 4, there is a corresponding I bifurcation point which we label Igm, IéSQ, IgSS, and
7.

The bifurcation diagram for large spikes is shown in Fig. 5. In this case, the period decreases
with increasing phase (i.e. for a fixed I, AS has a shorter period than the third mode which has
a shorter period than S). Thus, increasing I will almost lead to the same bifurcation sequence
as decreasing T'. We simply reverse the plot in Fig. 4. The one difference is that for very large I
beyond the bifurcation point Té‘S?’, AS cannot bifurcate to the third mode because the latter has
a longer period and may not exist at the bifurcation point. AS may lose stability to a nonperiodic
or nonphase-locked state which our analysis does not consider.

The situation changes for the bifurcation diagram for small spikes (d. small) which is shown in
Fig. 6. In this case, for fixed parameters, S has a shorter period than the third mode and AS. The
bifurcation picture given in Fig. 4 breaks down since the S state cannot bifurcate into the third
mode if the third mode does not exist at that parameter. The third mode could exist for higher
values of I but it may not be connected to S through a simple bifurcation. There may also be
nonperiodic or nonphase-locked behavior. At very large I, AS could possibly exist and bifurcate
into the third mode. However, the sufficient conditions for stable AS are not satisfied in this regime.

Recall from the previous two sections that the critical points T move towards larger values as
dc and A are increased (except for Té452 = 2A which only changes with changing A). This implies
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Figure 6. Bifurcation sequence for phaselocked states with phase ¢ and applied current I for small spikes. Solid lines
indicate stable states, dashed lines unstable, dotted lines unknown behavior.

that the corresponding critical points in the I diagram () move towards lower values. Thus, for
larger §. and A, the bifurcation points have lower values of [ if the spikes are large, and higher
values if the spikes are small. The bifurcation sequences for g can be deduced by examining Fig. 5
and 6. As the gap junction strength g is increased for g fairly strong, the critical points T will
decrease (I¢ will increase). Thus, the bifurcations occur at a higher value of 1. Hence, the region for
stable S increases. The region in which the necessary condition for AS stability is satisfied increases
in the low I regime. However, as discussed in Sec. 3.3, AS also loses existence at lower I. Thus for
very strong g, only S will exist stably. As g is decreased, the state can bifurcate into AS or third
mode depending on the value of I.

3.8. ADDING HETEROGENEITY

With the addition of heterogeneity, the locking condition (28) shows that neither S nor AS are
solutions. However, it was shown in Chow (1998) that near synchrony and near anti-synchrony
are possible for weak enough heterogeneity. As long as G'(¢,T) is positive at the phase-locked
solution then stability is possible. The stronger the gap junction the more likely two neurons will
synchronize. This is expected heuristically but can also be seen from the behavior of G(¢,T).

Recall from (29) that G(¢,T) is constructed from a sum over ~.(¢) at periodic intervals. As the
gap junction strength increases, v.(¢) begins to look more and more like 74 (¢#) which has positive
slope everywhere. Since 7.(0) = 0, it does not contribute to stability of the synchronous state of
¢ = 0. However, v.(t) increases with ¢ for the duration of the spike. This can cause G(¢,T') to rise
fairly steeply for ¢ > 0. So for ¢ near to but away from zero the spike contributes positively to
G'(¢,T). This also implies that a fast rising spike may also make synchrony easier to maintain in
the presence of heterogeneity.

3.9. APPLICATION TO BIOPHYSICAL NEURON MODELS
We compared the predictions of our analysis on the integrate-and-fire model to biophysical conductance-

based neuron models. We considered two different models that represented ranges of possible spike
shapes. Figure 7 show examples of the spike forms for an interneuron model of White et al. (1998)
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Figure 7. a) Voltage trace for the Interneuron model with I = 0. b) Voltage trace for the Reduced Traub-Miles model
with I = 2.0.

and a reduced Traub-Miles (RTM) model (Traub et al. 1997, Ermentrout and Kopell, 1998). The
dynamical equations are given in Appendix A. The interneuron model has a wider spike, and a
larger spike (the size of the spike is in reference to a post-spike hyperpolarization) compared to
the RTM model. This implies that the interneuron model has a larger d. than the RTM model. In
the RTM model, the spiking currents play a very small role in the recovery phase and so a passive
decay to threshold is a good approximation. However, for the interneuron model, the spiking cur-
rents seem to play an important role in the recovery. From the figures it appears that the effective
leak time of the interneuron model is longer than the RT'M model. Recall that time has been scaled
by the leak time in the analysis. Thus for a fixed period, lengthening the leak time (i.e. reducing
the leak rate) effectively shortens the scaled period. We looked for steady state behavior over a
range of applied currents I and gap junction conductances g, and ran for many hundreds of periods
to ensure that the observed states were not transient.

We first summarize the analysis of our simplified model. For very strong gap junctions, synchrony
is the only state that can exist. For weak gap junctions a bifurcation sequence can be observed as
the applied current is changed. The bifurcation sequence will be different for large and small spikes
as seen in Figs. 5 and 6. We predict that the interneuron model should behave as a large spike cell
and the RTM model should behave like a small spike cell. From Sec. 3.2, we predict that increasing
the gap junction strength should decrease the period of AS for the interneuron model since the
effective leak time of the interneuron model is long and §, is large. On the other hand it should
increase the RTM period since the leak time is short and . is small. The same arguments also
predict that for a fixed set of neuronal parameters the period of S will be longer than the period of
AS for the interneuron model but the opposite will hold for the RTM model.

For the interneuron model with weak coupling (g = 0.025), we numerically found a bifurcation
sequence (see Table I) that matched our analytical results. For low levels of applied current, only
the synchronous (S) state could be found. At a current of I = —0.55, AS appeared. S and AS
coexisted for —0.55 < I < 1.65. An example of AS in the bistable regime is shown in Fig. 8. At
I =1.65, AS lost stability. S persisted with increasing current until I = 19 where it bifurcated into
a stable third mode as seen in Fig. 9. The phase difference of the third mode approached ¢ = 0.5
until 7 = 23 when it bifurcated into AS. Figure 10 shows the voltage traces for AS and I = 25. At
I ~ 25.4, AS lost stability to a nonperiodic state (see Fig. 11). Although difficult to perceive in the
figure, the amplitudes of the spikes are slowly increasing and decreasing.
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Table I. Table of period T" and stable states
for the interneuron model with g = 0.025
as a function of varying applied current T

I T State
< -0.55 > 68.1 S (only)
-0.55 - 1.65 68.1 — 9.6 S
24 7.7 AS
1.65 19 9.6 3.4 S
19 23 3.4 3.1  Third mode
> 23 < 3.1 AS
25 2.7 AS
> 254 Nomnperiodic

0 20 40 60 80 100

Figure 8. Interneuron model: Anti-synchrony in the bistable regime, g = 0.025, I=-055T=24ms.

As the gap junction strength was increased in any of the above states, the cells fell into S as
expected. The period of AS was always shorter than S in the bistable regime also as expected. In the

bistable regime, the periods differed roughly by about 20%. Increasing the gap junction strength
shortened the AS period, also as predicted (see Fig. 12).

25 |

v(t) 0 r "“;

25 || |l

Figure 9. Interneuron model: Third Mode, g = 0.025, I =23, T = 3.1.
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Figure 10. Interneuron model: Anti-synchrony in the high frequency regime, g = 0.025, I=25T=27

20

Figure 11. Interneuron model: Nonperiodic state in the high frequency regime, g = 0.025, I = 25.4

The bifurcation sequence for the RTM model with weak coupling (¢ = 0.01) is given in Table II.
For very low currents, only the synchronous state existed. At 7 = 0.08 and a period of T = 158 ms,
the AS state came into existence and both S and AS were stable. Figure 13 shows an example of
the AS state. At T = 0.55 the AS state became unstable. Our numerics for the RTM model found
that synchrony extended to very high frequencies. This was to be expected since the spike was
extremely narrow. (We note that the sufficient conditions for stable AS are not satisfied for 7' < A,

Table II. Table of period T and sta-
ble states for the RTM model with
g = 0.01 as a function of varying
applied current 7. The non-S behav-
ior found at very high I was for
smaller values of g.

I T State
< 0.08 > 114 S (only)
0.08 0.55 158 42 AS
114 — 39 S
> 0.55 < 39 S

Very large Non-S
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Figure 12. AS period as a function of the gap junction strength for the interneuron model. The S period has the value
of 19.0 for I = 0 and 50.8 for I = —0.05 and does not change with g. AS has a shorter period than S for a fixed I
and g.

50

0 50 100 150 200

Figure 13. Reduced Traub-Miles model: Anti-synchrony in the bistable regime, g = 0.01, I = .55, T' = 42 ms.

so AS need not be observed at high frequencies.) In our analytical model, the width A corresponds
to the time for the spike to reach the peak from threshold. For the RTM model this was on the
order of 0.1 ms which would require a biologically improbable period near T' ~ 0.2 or 5000 Hz.
On the other hand the time spent above threshold for the spike was approximately 0.5 ms, which
would require 7' ~ 1 ms or 1000 Hz. We were unable to drive the RTM model fast enough for S to
lose stability. At very high applied current (I ~ 1370, T' ~ .8 ms), a Hopf bifurcation took place
and continuous spiking was replaced by steady state. (This is often observed in conductance based
models but does not occur in our analytical model). However, when we lowered the gap junction
strength to g = 0.0001, we were able to find non-synchronous behavior for very large I. Figure 14
shows a third mode state for I = 1000.

In the bistable regime, the AS period was longer than the S period, opposite of the interneuron
model, and the predicted result for small spikes (i.e. d. small). The periods between S and AS
differed roughly by about 10%. Increasing the gap junction strength increased the period of the AS
state, also as expected (see Fig. 15).
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Figure 15. AS period as a function of the gap junction strength for the RTM model. The S period has the value of
41.8 for I = 0.3 and 55.8 for I = 0.5. AS has a longer period than S.

4. Larger networks

We consider an all-to-all coupled network of N neurons with gap junctions. Although this is proba-
bly unrealistic for very large N it does serve to gain some qualitative understanding of large network
effects. We consider the model

;:I—UZ'—QZ(UZ'_'U]')+ZA(t_té)7 (55)

where ¢ is the neuron index. We consider a network of homogeneous neurons although the analysis
can be done as well with heterogeneous applied currents. We rewrite (55) in the form of a matrix

equation
dv -
= M-F 56
o M-+ f, (56)
where
U1 I+, A — 1)
v . T+ 5, At —t
A I P AR (57)

vy T+ 3, At —tYy)
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and
1 (N 1)g g g
“1—(N=1gq ---
M= g (_ )9 I : (58)
g g o =1 = (N —1)g

Proceeding as we had for two neurons, we diagonalize system (56). Due to the high degree of
symmetry, the matrix M only has two distinct eigenvalues —1, and —1 — Ng (which is N — 1 times
degenerate). Transforming to the diagonalized system, integrating and transforming back gives us
the spike response form

vi(t) =T+ To(t—th) + > Y Te(t —1t}), (59)
l

j#iom

where
L(t) = ng (8) + (N = 1)n-(2) (60)
Le(t) = na(t) —n-(2). (61)

The kernel 7, (t) is identical to the two neuron network kernel (14) and 7_(¢) has the same form
but with r_ = 1 4+ Ng. The equations are similar to those of the N neuron synaptically coupled
neuronal network which was studied in Chow (1998).

We now consider periodic phase-locked states in a network of homogeneous neurons. Suppose
the neurons fire at té = ¢; — IT". At threshold they satisfy the condition

1=T+4Y T,(IT)+ > Te(mT + (¢; — ¢;)T) (62)
l

j7m

Due to the permutation symmetry of the neuron index, any symmetric combination of the phases
is a possible phase-locked periodic solution (Chow, 1998). Examples include the synchronous state
where all the neurons fire together, anti-synchrony where half the neurons fire and then the other
half fires, the splay-phase state where the neurons fire periodically in sequence, and clustered states.

The synchronous solution always exists if the driving current is above threshold. The period is
given by the single neuron period. The analysis for the existence of the anti-synchronous solution
follows as in the two neuron case. We now examine conditions under which the splay phase solution
can exist. The splay-phase state is defined by ¢; = iT /N, where i varies from 0 to N — 1. The
splay-phase state can exist if a solution for the period T' can be found for

1=7+3 1,07+ 3 FC(mT—%T). (63)
>1 j,m>1

For simplicity, suppose the spikes are separated by at least A (i.e. spikes do not overlap). Then

Ty(t) = —e 8 — (N = 1)d.e 702, (64)
Lo(t) = —e (78) £ §e7(28), (65)

We may now substitute this into (63) and sum the resulting geometric series to obtain

A A rA rA
1= 4 (N-1)fo — §—rs

el —1 eT/N —1 erT — 1 CeTT/N -1 (66)
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The period of the splay-phase state is given by the smallest solution of T' to (66). For a fixed N, a
solution can always be found for some I and T'. However, there will be a maximum period that can
sustain the splay phase due to the fast threshold modulation effect as described for anti-synchrony
in Sec. 3.1, i.e., the neurons must remain subthreshold when the other neurons fire.

The sufficient conditions for stability are that I',(mT — ]]VT) > 0, for all m and j (Chow, 1998).
Thus the separation between the neurons must exceed t,,;, from (49) to ensure stability. This
sets a minimum period of T' = Nt,,;,. It also suggests that there is a region of allowed periods
for stable splay-phase. If the period is too short the state loses (sufficient condition for) stability,
and if the period is too long it loses existence. The allowed period for the splay-phase must also
scale with the number of neurons in the network N since the separation between the neurons must
remain relatively constant independent of network size. This means that the applied current must
be reduced as IV increases in order to sustain a stable splay phase state. Numerical simulations
of the interneuron model confirmed these observations. We simulated networks up to N = 8 and
found the existence of the splay phase state only over a mid range of periods.

5. Discussion
5.1. RELATED MODELING WORK

The first papers to point out that electrical coupling can be anti-synchronizing were by Sherman
and Rinzel (1992, 1994) using simulations done in the context of pancreatic beta cells, which
have bursting electrical behavior. Later work on this system (de Vries et al., 1998) used the fact
that the envelopes of the bursts were roughly sinusoidal in shape, and used an analysis near a Hopf
bifurcation to see how the coupling could destabilize synchrony. Two other papers (Han et al., 1995,
1997) showed that electrical coupling can give rise to anti-synchronous solutions if the component
of the cells have trajectories close to a homoclinic bifurcation.

The analysis that we do in this paper concerns networks of spiking neurons, focusing on the
shapes of the spikes. The most similar work deals with excitatory and inhibitory chemical synapses,
using the spike response method (Gerstner and van Hemmen 1992; Gerstner 1995; Gerstner et al.
1996; Chow 1998). These and other related models (van Vreesijk et al., 1994; Hansel et al. 1995;
Bressloff and Coombes, 1998; Bressloff and Coombes, 1999) showed that, for integrate and fire
models, inhibitory synapses can stabilize synchrony (provided the time scales of rise and fall of
the synapse are slow enough), while excitation generally destabilizes the synchronous solution. (See
also Terman et al. (1998) and Bose et al. (1999) for related results about inhibition and excitation
in bursting neurons.) One way to understand intuitively the result that gap junctions can be anti-
synchronizing is to think of the effects of the electrical coupling as combining those of excitation and
inhibition. To see this, consider the coupling currents for a non-rectified electrical synapse when the
spikes are not (yet) synchronous. In the spike phase of the cycle of one cell, the coupling currents to
the other cell are depolarizing, acting like excitation; in the post-polarization phase, these currents
can be hyperpolarizing (depending on the phase of the other cell). This intuition suggests that
wide and tall spikes should help to destabilize the synchronous state, whereas a long and deep
post-polarization phase should encourage synchrony. This is indeed what the mathematics confirms,
producing more details about effects of sizes and shapes as well as rigor. This intuition also suggests
why frequency of the network plays a role in synchronization: as the frequency increases, the size
of the interspike interval decreases much more than any change in the shape of the spike, favoring
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the effects of the spike over those of the post-polarization phase and thus favoring destabilization
of the synchronous solution. This argument shows that one should not expect frequency to play an
important role in stability of sinusoidal like oscillators coupled electrically.

There are several other papers on electrically coupled neurons (or compartments) that are relat-
ed to the current work. Kepler et al. (1990) considered the electrical coupling of a bursting cell and
a passive cell to show that the coupling may increase or decrease the frequency of the oscillation,
depending on the shape of the waveform of the oscillator. Kopell et al. (1998) showed that if one
of the elements of the network is bistable and the other is an oscillator, the network can exhib-
it much greater complexity; the latter paper introduced new geometric techniques very different
from the ones in this paper or in Kepler et al.(1990). Manor et al. (1997) showed that cells with
heterogeneous properties, none of them oscillators, could produce an oscillation in an electrically
coupled system that is the appropriate ‘average’ of the dynamics. Electrical coupling is also rel-
evant to understanding the dynamics of compartmental models in which the conductances vary
between compartments (Booth and Rinzel 1995; Li ef al.1996; Mainen and Sejnowski 1996; Pinsky
and Rinzel, 1994; Medvedev et al. 1999).

Finally, we point out that the literature on neural oscillators is large and rapidly growing, so the
above list constitutes only the work that is most directly related to the themes of this paper. Ritz
and Sejnowski (1997) provide a review of some recent papers on neural oscillators.

5.2. GAP JUNCTIONS IN PHYSIOLOGICAL SYSTEMS

Gap junctions are found in many tissues of the body, including the nervous system. (For reviews, see
Bennett (1997) and Dermietzel and Spray (1993)). Even in the nervous system, electrical coupling
is found in a wide variety of cells, including astrocytes and oligendrocytes as well as neurons. Many
functions have been attributed to these electrical synapses, including exchanges of metabolites
and second messengers, and buffering the K+ activity surrounding active neurons (Dermietzel and
Spray, 1993). For neurons, the most common function ascribed to electrical synapses is mediating
synchrony among active cells or relaying signals quickly. Though gap junctions are thought to be
most prevalent (at least in vertebrates) during early development, they are also known to exist
in the adult mammalian central nervous system, e.g. in the neocortex (Gibson et al., 1999), the
hippocampus (Draguhn et al.1998), the inferior olive (Llinas et al.1974), and the retina (Dowling
1991).

In this paper, we have shown that electrical coupling can organize a rhythm to be asynchronous,
especially at low coupling strengths. The ability of a collection of spiking neurons to synchronize is
dependent on the size and shape of the spike form, as well as the frequency at which the cells are
firing. At low coupling strengths and very high firing rates (dependent on the shape of the spike
wave form), the synchronized state is unstable and a pair of cells fires in anti-synchrony. For a lower
range of frequencies, the synchronized and anti-synchronized states are bistable. For a population,
the network behavior can have the phases splaying out over the circle.

One preparation in which there are well-documented gap junctional connections and oscillator
cells firing at high rates is the pacemaker nucleus of the weakly electric fish , Apteronotus Dye 1988,
1991; Moortgat et al. 1999a, b.) In this tissue, cells fire very precisely, and synchronously (Dye,
1988). Evidence for distribution of phases of the pacemaker cells of that nucleus is given in Fig. 8 of
Dye (1988). Pharmacological manipulations that increase the internal concentration of Ca?* | and
are presumed to decrease the strength of the gap junctional coupling (Spray and Bennett, 1985), do
partially desynchronize the population; however, the desynchronization may be due to differences
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in the natural frequencies rather than the ability of the weak coupling to actively desynchronize
even identical cells, as discussed above. In contrast to Dye (1991), Moortgat et al. (1999a) observe
that adding gap junction blockers results in a general reduction of the frequency of oscillation of
the pacemaker nucleus. This is predicted above for the model with large spikes.

Gap junctions have recently been documented within two distinct subsets of interneurons in the
rat neocortex (Gibson et al., 1999), one of which (the fast-spiking interneurons) gets strong inputs
from the thalamus. In recent work, Gibson and Beierlein (Pers. Comm.) have injected depolarizing
current into pairs of electrically coupled fast-spiking interneurons to modulate their frequency. In
one pair of cells at a frequency of 40Hz, the pair oscillated synchronously; with further depolarization
that caused the frequency of each cell to go up to approximately 100 Hz, the cells fired in anti-
synchrony. This is in agreement with predictions from our theory. However, other pairs did not
show this effect.

Another potential application of this work concerns bursting behavior of interneurons in the hip-
pocampus. In recent simulations of data from the work of Zhang et al. (1998), Skinner et al. (1999)
investigated a model network of cells coupled by gap junctions and inhibitory synapses. Blocking
the inhibition increased the frequency of each of the cells; at the higher frequencies, the spikes
within a burst of the electrically coupled cells had an anti-synchronous relationship. In a future
publication, we will analyze this system and show that one important effect of the inhibition on
the network can be to change its frequency, which in turn effects what configurations are stable
using the electrical coupling. The techniques used for the analysis are similar to those used in Chow
(1998) to analyze the effects of chemical synapses on model neurons. For these neurons, the effects
of the chemical and electrical neurons in the spike-response equations are additive. Hence, the same
formalism can be used for situations involving both kinds of synapses acting in parallel.

High frequency spiking is also found in hippocampal interneurons during ripples, and gap junc-
tional coupling is implicated in the coordination of these rhythms (Draguhn et al. 1998). More
recent work (Traub et al. 1999) suggests that the mechanism of production of the rhythms involves
spontaneous production of spikes in the axons with transmittal through a sparsely connected net-
work of axo-axonal connections. Though the mechanism that produces the frequency in that case
is different (it depends on the network connectivity and the spontaneous rate of action potentials),
it remains to be understood if the mechanism that produces the coherence of the network is similar
to the one described in this paper.

In any physiological situation, the network behavior is affected by heterogeneity, spatial structure
of the neurons, connectivity of the network and interaction with chemical synapses. The analysis
presented considered only connections between soma and/or axons, in which spatial and delay
effects are not included. For dendro-dendritic connections such delays would be important. Though
it is not within the scope of this paper to present the complete analysis, we report here that a
similar (but more complicated) analysis of neurons connected with gap junctions at the end of a
passive dendrite leads to a change in parameter ranges in which different configurations are stable.
In particular, the regime in which asynchrony is stable is greatly increased and that in which
synchrony is stable is reduced. We believe that this is due to the filtering properties of the dendrite,
which changes the shape of the spike at the synapse.

Ability to fire in an asynchronous way increases the flexibility of network dynamics. This paper
provides insight into how such asynchrony can be fostered by electrical coupling, even in the absence
of the above complexities, all of which create a much richer dynamical environment. It remains to
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understand how these extra features might interact with the mechanisms described in this paper
to allow flexible modulation of network behavior.
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Appendix
A. Neuron Dynamics

In our simulations, we considered a network of N conductance-based single compartment neuron
models coupled electrically with gap junctions. The membrane potential obeyed the current balance
equation

avy -
C—Z:I—INa_IK_IL_Zg(Vi_Vj)a (67)

di J#i
where i is the neuron index which runs from 1 to N, g is the gap junction conductance, I is
the applied current, In, = gnem>h(V; — Vo) and I = grn*(V; — Vi) are the spike generating
currents, I, = g1 (V; — V1) is the leak current, and C = 1uF /cm?.

The interneuron model in White et al. (1998) used parameters: gy, = 30 mS/cm?, gx =
20 mS/cm?, g;, = 0.1 mS/cm?, Vy, = 45 mV, Vg = —80 mV, V;, = —60 mV. The acti-
vation variable m was assumed fast and substituted with its asymptotic value m = mqy(v) =
(1 4 exp[—0.08(v + 26)]) !. The gating variables h and n obey

dh hoo(v) — h dn _ Neoo (V) — 1 (68)
dt m(v) dt T(v)

with hso(v) = (1 + exp[0.13(v + 38)]) !, 7(v) = 0.6/(1 + exp[—0.12(v + 67)]), noo(v) = (1 +
exp[—0.045(v + 10)]) !, and 7, (v) = 0.5 + 2.0/(1 + exp[0.045(v — 50)]).

The reduced Traub-Miles model (Traub et al. 1997; Ermentrout and Kopell 1998) used param-
eters: gy, = 100 mS/cm?, g = 80 mS/cm?, g;, = 0.05 mS/cm?, Vi, = 50 mV, Vg = —100 mV,
Vi = —67mV; m = Mo (v) = dm(v)/(Gm (v) + Bm (v)), where dp, (v) = 0.32(54+v) /(1 —exp(— (v +
54)/4)) and S, (v) = 0.28(v 4 27)/(exp((v + 27)/5) — 1);

dn . >
o = an(v)(1 —n) — Bp(v)n (69)

with &, (v) = 0.032(v + 52)/(1 — exp(—(v + 52)/5)), Bu(v) = 0.5exp(— (v + 57)/40); h = hoo(v) =
max[1 — 1.25n, 0].

The ODEs were integrated using the CVODE method with the program XPPAUT written by
G.B. Ermentrout and obtainable from http://www.pitt.edu/~phase/.
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