
Dynamics of spiking neurons with electrical couplingCarson C. ChowDepartment of Mathematics, University of Pittsburgh, Pittsburgh, PA 15206�Nancy KopellDepartment of Mathematics and Center for BioDynamics, Boston University, Boston, MA 02215August 31, 1999Abstract. We analyze the existence and stability of phase-locked states of neurons coupled electrically with gapjunctions. We show that spike shape and size, along with driving current (which a�ects network frequency), play alarge role in which phase-locked modes exist and are stable. Our theory makes predictions about biophysical modelsusing spikes of di�erent shapes, and we present simulations to con�rm the predictions. We also analyze a large systemof all-to-all coupled neurons and show that the splay-phase state can exist only for a certain range of frequencies.1. IntroductionElectrical coupling between neurons has long been thought to have the e�ect of synchronizingoscillatory neurons, especially if the neurons involved are similar to one another. Here we analyzein more detail the e�ects of coupling periodically spiking cells by electrical synapses, and show thatgap junctions can actively foster asynchrony.We focus on the e�ects of spike shape and size, along with driving current (which in
uences thenetwork frequency). Even when the spikes are very thin, the current 
ow during the spike is shownto have a signi�cant e�ect on the self-organization of the network, and the current 
ow duringthe afterpotentials is an important part of the synchronizing process. Indeed the frequency of thenetwork plays a signi�cant role in whether the circuit will synchronize, changing the balance ofthese processes by altering the percentage of time occupied by the spike in a cycle.We analyze what modes of stable locking are possible for the network, and show that synchro-nization is possible at much higher frequencies than for coupling via inhibitory synapses. However,at very high frequencies, gap junctions can be asynchronizing if the strength of the synapse is su�-ciently low; at intermediate frequencies, asynchronous modes can stably exist with the synchronousones.The models we use are described by an integrate-and-�re formalism, with the addition of actionpotentials that are inserted when a cell reaches threshold. The electrical synapses are modeledas giving currents proportional to the di�erences in the voltages of the two cells. The analysis isdone by means of the `spike response method' (Gerstner and van Hemmen 1992; Gerstner 1995;Gerstner et al. 1996; Chow 1998), in which the e�ects of the coupling and the spikes are encoded in`response kernels'. Bresslo� and Coombes (1998, 1999) have a similar formalism for analyzing thesetypes of networks. Though the spike response method was invented for synaptic interactions, weshow here that it can be used for electrical interactions as well. Indeed the spike response methodallows us to consider the simultaneous e�ects of both kinds of coupling in a uniform formalism.We consider the consequences of the interaction of electrical and inhibitory synapses in a futurepublication. Here we consider only electrical coupling, and focus on the di�erent e�ects of spikeshape on synchronization in di�erent regimes.� ccc@math.pitt.edu



2 Carson C. Chow and Nancy KopellWe start in Sec. 2 with the equations of the neurons and the synapses as coupled di�erentialequations. Because the equations are piecewise linear between spikes, they can be explicitly inte-grated to compute the response kernels. We compute those kernels in terms of the spike parameters,the strength of the electrical synapses and the intrinsic recovery rate of the uncoupled neuron. Thisgives explicit solutions for the coupled equations in terms of those parameters and the drivingcurrents to each of the cells (which need not be the same). These explicit solutions are the basisfor the analysis in the rest of the paper. We note that the solutions have the same form as thoseanalyzed in Chow (1998) describing interactions of cells via synaptic interactions. Thus the generalstability criteria developed in that paper can also be used for the current problem.In Sec. 3, we consider phase-locked solutions between two spiking neurons connected by gapjunctions. We �nd that, depending on the parameters of the neurons and the gap junction strength,the neurons can either synchronize, anti-synchronize, be phase-locked at an arbitrary phase, or loseperiodic �ring. One nonintuitive result is that changing the shape of the spikes may have di�erente�ects on the network in di�erent parameter regimes. For example, increasing the amplitude andwidth of the spikes diminishes the range over which synchrony is stable when the frequency isrelatively high. However, at low frequencies in which there is bistability, it can enhance synchronyby diminishing the range of parameters over which the competing anti-synchronous solutions arestable.For non-synchronous modes such as anti-synchrony or splay phase, electrical coupling can changethe period of the network. Not only does the period of each cell change in such non-synchronousmodes, but the network period also increases signi�cantly; for example, in the anti-synchronousmode, the network frequency is twice that of the cell frequency. Thus, relatively weak electricalcoupling may be functionally important in creating appropriate frequency ranges for oscillationsin a coupled network. Whether a given mode of locking has a stable existence also depends onthe network frequency. The theory predicts a sequence of bifurcations as the driving current tothe cells, and hence the frequency of the network, is changed. We test that theory against the twobiophysical models and �nd agreement for a model that has large spikes and another model thathas small spikes (see Appendix A for details of the models).In Sec. 4 we consider an all-to-all electrically coupled network of neurons. We show that a largefamily of periodic phase-locked states can exist, including synchronous and clustered states. Wealso show that the splay-phase state, in which all the neurons �re in sequence, can exist and bestable only over a �nite range of periods. In the Discussion , we review some related modeling work,and place our results in the context of physiological systems that are electrically coupled.2. Equations and Methods2.1. Spiking neuron modelWe consider a simple integrate-and-�re model of the neuron with the formC dVd~t = ~I � gLV +Xl ~A(~t� ~tl); (1)where V is the voltage, C the capacitance, ~I the applied current, gL is an e�ective passive leakconductance, ~A(~t) is a term representing spiking and restoring currents, and ~tl represents the times
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Dynamics of spiking neurons with electrical coupling 3that V (~t) reaches a threshold V = VT from below. When V reaches threshold, a new term ~A(~t� ~tl)is added which generates a spike (action potential) and resets the potential V to V0.The current ~A(~t) associated with an individual spike and recovery is chosen to be~A(~t) = ( gLVAe~�~t; 0 < ~t � ~�;�C(VT � V0 + VM )�(~t� ~�); ~� < ~t; (2)Here VA is a spiking amplitude scale, ~� is the rise rate of the spiking current, ~� is the width ofthe spike from threshold to the peak, VM is the maximum amplitude above threshold the spikereaches before the potential is reset, and �(�) is the Dirac delta function (which is used to reset thepotential). ~A(~t) represents nonlinear currents that mediate a fast activation to generate a spike,followed by an even faster inactivation and hyperpolarization to bring the potential back to V0. VMis completely determined by the membrane dynamics and ~A(~t).The potential can be shifted and rescaled with v = (V � V0)=(VT � V0) so that the thresholdhas a value of v = 1 and the reset potential is v = 0. We also rescale time by t = ~t=�m where�m = C=gL. We then arrive at a rescaled system of the formdvdt = I � v +A(t); (3)where I = (~I � gLV0)gL(VT � V0) ; (4)and A(t) = ( vAe�t; 0 < t � �;�(1 + vM )�(t ��); � < t; (5)with vA = VA=(VT � V0), vM = VM=(VT � V0), � = ~�=�m, and � = ~��m, The membrane equationhas four dimensionless parameters: the applied current I, the spike rise rate �, the spike width �,and the spike amplitude scale vA. The latter three parameters control the shape and amplitude ofthe spike. In this form, I must be larger than unity in order for the potential to reach the thresholdfor �ring.To compute the scaled maximum amplitude vM , we integrate (3) over the width of one spike.Taking initial conditions to be the potential at threshold (v = 1 and t = 0) we obtainv(t) = 1 + I(1� e�t) + vA1 + � [e�t � e�t]; t < � (6)with vM de�ned by vM = v(�)� 1. For a fast-rising and narrow spike (compared to the membranetime scale) we can assume vM ' vAe��=(1+ �). Figure 1 shows four examples of the voltage tracesfor di�erent parameters of the model given in (3).2.2. Spike response model for coupled neuronsWe use the spike response formalism for a system of two neurons coupled with resistive gap junc-tions. (We can also include synaptic coupling within this formalism.) In doing so, the e�ects ofthe gap junction coupling will be separated from the intrinsic dynamics. After the equations arederived, we will apply the techniques previously used to understand the dynamics of synaptically
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4 Carson C. Chow and Nancy Kopell
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Figure 1. Examples of voltage traces for the integrate-and-�re model with parameters a) � = 50, � = 0:1, vA = 1,I = 1:3, b) � = 12, � = 0:1, vA = 1, I = 1:3, c) � = 12, � = 0:5, vA = 1, I = 1:55, d) � = 12, � = 0:5, vA = :1,I = 1:55.coupled neurons. We will also show how this method can be generalized to a network of N all-to-allcoupled neurons.The equations are dv1dt = I1 � v1 � g(v1 � v2) +Xl A(t� tl1); (7)dv2dt = I2 � v2 � g(v2 � v1) +Xl A(t� tl2); (8)where g is a gap junction strength (scaled by gL), and tli represents the times when vi crosses thethreshold from below. The spiking kernel A(t) generates a spike and resets the potential to zero.Our strategy is to express the dynamics for vi in terms of a set of response kernels which we willexplicitly calculate.We �rst transform into normal modes: v+ = v1 + v2 and v� = v1 � v2 to obtaindv+dt = I+ � v+ +Xl A(t� tl1) +Xm A(t� tm2 ) (9)dv�dt = I� � rv� +Xl A(t� tl1)�Xm A(t� tm2 ); (10)where r = 1 + 2g, I+ = I1 + I2 and I� = I1 � I2. Integrating givesv+ = I+(1� e�t) +Xl �+(t� tl1) +Xm �+(t� tm2 ); (11)
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Dynamics of spiking neurons with electrical coupling 5v� = I�r (1� e�rt) +Xl ��(t� tl1)�Xm ��(t� tm2 ): (12)Since we are interested in the steady state, we can start the interaction at any initial conditions;we have taken initial conditions of v+ = v� = 0.The kernels are nonzero only for positive argument. They are given by��(t) = Z t0 e�r�(t�t0)A(t0)dt0; (13)and after integrating ��(t) = ( vA(r� + �)�1[e�t � e�r�t]; 0 < t � ��(1 + vM � ��(�))e�r�(t��); � < t; (14)where � = �, r+ = 1 and r� = r. We note that for fast-rising and narrow spikes vM ' �+(�).Returning to the original coordinates and assuming that the neurons have been spiking for along time so that initial conditions have decayed away, we obtain the spike response equationsv1(t) = Î1 +Xl 
s(t� tl1) +Xm 
c(t� tm2 ); (15)v2(t) = Î2 +Xl 
s(t� tl2) +Xm 
c(t� tm1 ); (16)where Î1 = 12 ��1 + 1r� I1 + �1� 1r� I2� ; (17)Î2 = 12 ��1� 1r� I1 + �1 + 1r� I2� ; (18)and 
s = 12[�+(t) + ��(t)]; (19)
c = 12[�+(t)� ��(t)]: (20)
s is the spike generation and reset kernel and 
c is the coupling kernel in the spike responsemethod (Gerstner et al. 1996; Chow 1998). We note that Pm 
c(t� tmi ) can be interpreted as thecontribution to the membrane potential due to the gap junction coupling. It is the gap junctionanalog of the post-synaptic potential.Written out explicitly, the 
s kernel is given by
s(t) = 8<: vA2 h(1 + �)�1[e�t � e�t] + (r + �)�1[e�t � e�rt]i ; 0 < t � ��12 he�(t��) + �ce�r(t��)i ; � < t: (21)where �c = 1 + 2
c(�): (22)The 
s kernel has the shape of a single spike as seen in Fig. 2 a). Increasing the gap junctionstrength through r mainly a�ects the recovery phase.
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Figure 2. a) Two examples of the 
s kernel with parameters � = 0:1, � = 50, vA = 1, and gap junction conductancesg = 0:5 (solid line) and g = 5 (dashed line). Two examples of the 
c kernel with � = 0:1, � = 50, vA = 1, and gapjunction conductances g = :5 (solid line) and g = 5 (dashed line).The 
c kernel is given by
c(t) = 8<: vA2 h(1 + �)�1[e�t � e�t]� (r + �)�1[e�t � e�rt]i ; 0 < t � ��12 he�(t��) � �ce�r(t��)i ; � < t: (23)The 
c kernel is the contribution to the electrical coupling due to a single spike. Examples of 
care shown in Fig. 2 b). For short times, 
c is positive, rising until a cusp which occurs at the peakof the spike. After the cusp, 
c begins to decrease, becoming negative for long times. The sum overthe 
c kernels can be thought of as setting a `background potential level' upon which the spikingtakes place.The parameter �c, which is a measure of the maximum amount of excitatory input received, isimportant for controlling the background potential level. Later, it will be seen that �c is the criticalparameter for determining the synchronizing behavior of the network. For fast rising spikes, we canassume exp(��) >> exp(��) leading to�c ' 1 + vM �1� 1 + �r + �� ; (24)where we have used vM � �+(�) ' vAe��=(1 + �). �c can be increased by increasing r through thegap junction strength g or increasing the maximum spike amplitude vM . (Note that vM is measuredin reference to a �xed post-spike hyperpolarization.) While increasing the spike rise rate � increasesvM , if vM is kept �xed, increasing � actually decreases �c. For weak coupling strength (g << 1), �chas the form �c ' 1 + 2gvM1 + � : (25)In the ensuing text, we will refer to spikes with �c >> 1 as `large spikes' and for �c � 1 as `smallspikes'. 3. Phase-locked statesIn this section we apply the formalism of the previous section and analyze the existence and stabilityof phase-locked states for two neurons coupled through gap junctions. We focus on the states of
gappre.tex; 31/08/1999; 13:54; no v.; p.6



Dynamics of spiking neurons with electrical coupling 7synchrony (S) and anti-synchrony (AS) although a third phase-locked state can also exist. We showthat by changing the frequency of the network, the neurons can make transitions between thesephase-locked states. In some instances bistability is possible.3.1. Conditions for periodic phase-lockingWe are interested in the existence and stability of phase-locked periodic solutions. Here, we describea self-consistent method for determining the period T of a periodic solution and the phase di�erence� between the cells in that periodic solution. We show that there is a function G(�; T ) whose zerosfor �xed T give the phase di�erence; there is a companion equation that is used to determine T .We consider two neurons �ring in a phase-locked pattern. We analyze this situation by supposingthe neurons �re periodically at tl1 = �lT and tl2 = (�� l)T . Without loss of generality, we assumethat cell 1 is ahead of or at the same position as cell 2, i.e., � � 0. The next time the ith neuron �resis when the potential vi reaches threshold from below (i.e. _vi > 0). Thus, using the spike responseequations, we can derive a condition for phase-locked �ring. Noting that neuron 1 will next �re att = 0 and neuron 2 will next �re at t = �T we obtain from (15) and (16)v1(0) = 1 = Î1 +Xl�1 
s(lT ) +Xl�1 
c(lT � �T; ) (26)v2(�T ) = 1 = Î2 +Xl�1 
s(lT ) +Xl�0 
c(lT + �T ); (27)This is a set of two equations with two unknowns. Note that the second sum in (27) starts withthe index l = 0 because cell 2 feels the e�ect of cell 1 in the �rst cycle, but not vice versa.We can rewrite this system in a more convenient form. Subtracting (27) from (26) yieldsG(�; T ) = bI1 � bI2 = I1 � I21 + 2g ; (28)where G(�; T ) = 
c(�T ) +Xl�1[
c(lT + �T )� 
c(lT � �T )]: (29)This equation can be interpreted as a condition for the phase � given a �xed period T (provided asolution with that T is possible). Adding (27) to (26) and dividing by two yieldsF (�; T ) = 1� �I; (30)where F (�; T ) = 12
c(�T ) +Xl�1[
s(lT ) + 12(
c(lT � �T ) + 
c(lT + �T ))] (31)and �I = (bI1 + bI2)=2 = (I1 + I2)=2. This equation gives a condition for the period T given a �xedphase �.Although (30) could possibly allow multiple solutions for a given phase � , there is only one`physical' solution which is given by the smallest solution for T . This is because the neuron isconsidered to �re and reset immediately upon crossing the threshold from below. A condition thatalso must be satis�ed is that a neuron must remain subthreshold throughout its period. We examinethis condition in detail for AS in Sec. 3.3.
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8 Carson C. Chow and Nancy KopellFor homogeneous systems (i.e. I1 = I2), S (� = 0) and AS (� = 0:5) both satisfy (28). For S,the period condition (30) is the same as that for a single neuron. As we will show in Sec. 3.2, asolution to (30) can almost always be found for S. However, the existence of AS is not guaranteed.As will be shown in Sec. 3.3, a neuron may not remain subthreshold while the other neuron �res.Stability of these periodic phase-locked solutions can also be analyzed. In Chow (1998), a suf-�cient condition and a separate necessary condition for stable phase-locking were derived. Thesu�cient condition for stability of a locked solution with phase � is that the slope of the kernels (
sand 
c) are both positive at times t = lT � �T , i.e., they are rising at the time of �ring (Gerstneret al. 1996; Chow 1998). The necessary condition for stability is that the derivative of G(�; T ) withrespect to � must be positive (Van Vreeswijk et al. 1994; Chow 1998).3.2. Period of phase-lockingThe network period depends on the parameters and the phase-locked state. For a given �xed phase�, the period T is determined implicitly from (30). Here, we will show that for S, a solution for theperiod can always be found if the input current is suprathreshold and not too large. However, forAS (30) may not always have a solution for T . We show that if I is too small (depending on theother parameters) there is no solution, implying that AS does not exist in that regime. As will beseen in Sec. 3.3, even if a solution exists to (30), AS still may not exist if the value obtained for theperiod is too large.When both S and AS exist, we analyze (30) to see the relationship between their periods, TSand TAS respectively. The result is that for large spikes, TAS < TS for �xed parameter values butthe opposite is true for small spikes. We also look at how the period changes with parameters. Weshow that increasing the gap junction strength g decreases TAS for large spikes, but increases it forsmall spikes. Since (30) is a continuous function of �, T changes continuously with changing �.For S, using (19) and (20), (31) becomesF (0; TS) =Xl�1 �+(lTS): (32)Inserting the kernel �+ from (14) into (32) and evaluating the sums, condition (30) becomesF (0; TS) = e�1� eTS = 1� �I; (33)for TS > �. It can be easily shown that this is the period condition for an uncoupled neuron (Chow1998). The period is de�ned implicitly by (33).The function F (0; TS) is negative and monotone increasing in TS . For 1 < �I � 1 + (1 � e�)�1there is always a solution for TS . (We note that the period is well de�ned only for TS > �.) Solving(33) for TS yields TS = ln �I � 1 + e��I � 1 ! : (34)The threshold for �ring is �I = 1. The period decreases with increasing �I.For AS, (31) gives F (1=2; TAS) =Xl�1 
s(lTAS) + Xm�0 
c(mTAS + TAS=2): (35)
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Dynamics of spiking neurons with electrical coupling 9Inserting the kernels (21) and (23) for t > � into (35) and evaluating the sums leads to the periodcondition (30) F (1=2; TAS) = �c2 er�erTAS=2 + 1 � 12 e�eTAS=2 � 1 = 1� �I: (36)for TAS > 2�. As discussed previously, the smallest TAS satisfying (36) is the only physical solution.There are situations where a solution to (36) does not exist. From (36), we see that for a given�I, for �c large enough and r small enough then TAS does not exist since F (1=2; TAS) stays above1� �I. By the same reasoning, solutions for TAS can then exist for subthreshold input (�I < 1); theexcitation provided by each neuron through the gap junction would sustain �ring.Except for cases where �c and r are very large, near the smallest solution of (36) we have@F (1=2; TAS)=@T > 0. This implies that increasing �I decreases the period. From (36) we see thatincreasing �c increases F (1=2; TAS) and thus decreases TAS . This can be understood heuristicallysince the spike contributes an e�ective excitation through the gap junction and �c increases withincreasing width and amplitude of the spike. We note that �c increases when r = 1 + 2g increases.On the other hand the factor er�=(erTAS=2+1), increases only if TAS < 2� and decreases otherwise.However for relatively small r and TAS (recall that small is in comparison to the e�ective leak time),the factor decreases slowly. Thus, for cells with large spikes and periods fast compared to the leak,increasing r generally decreases the period for AS, while for cells with small spikes and long periods,increasing r increases the period.We can compare the periods of AS to S by rewriting F (1=2; T ) asF (1=2; T ) = F (0; T ) +  (T ) (37)where  (T ) = �c2 er�erT=2 + 1 � 12 e�eT=2 + 1 : (38)Comparing to (33), we �nd TS = TAS when  = 0. For a given period, there are a set of possibleparameters �c and r for which  = 0. The trivial solution is �c = 1 and r = 1 which correspondsto uncoupled neurons. For weak coupling and a small spike amplitude TS � TAS . If  > 0 thenTS > TAS and vice versa. From (38), we �nd that  can be positive if �c is large enough. Again,this can be understood heuristically: For strong spikes and weak coupling, AS has a shorter period,but for weak spikes and strong coupling the opposite is true.3.3. Existence of the anti-synchronous stateIn order for AS to exist, the potential of the neurons must remain below threshold for the duration ofa period. This can be violated if the spikes have large enough amplitude or the electrical coupling isstrong enough so that when one of the neuron spikes it induces the second neuron to cross threshold,i.e. as soon as one of the neurons �re, the other will be induced to �re nearly immediately andthe neurons will tend to synchronize. This e�ect is similar to fast threshold modulation (Somersand Kopell 1993). The spike mediated through the gap junction acts like a brief excitatory pulsesynchronizing the two neurons, prohibiting anti-synchrony.We can make this more concrete by considering AS where tl1 = �lT and tl2 = T=2 � lT . Thepotential of neuron 1 obeysv1(t) = I1 +Xl�0[
s(t+ lT ) + 
c(t� T=2 + lT )]; t > 0: (39)
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10 Carson C. Chow and Nancy KopellWe require v1(t) < 1 for 0 < t < T . When the spike of neuron 2 is felt by neuron 1 at t = T=2 +�there is a chance that neuron 1 may be induced to �re. To prevent this, we must havev1(T=2 +�) = I1 +Xl�0[
s(T=2 +�+ lT ) + 
c(� + lT )] < 1: (40)Using (21), (23) in (40) and evaluating the sums yields�c < �3� 2I1 + 1eT=2 � 1� (1 + e�rT=2): (41)The applied current and the period are related through condition (36). For homogeneous neurons,I1 = �I. Solving (36) for �I and substituting into (41) yields�c <  1 + 1� e�eT=2 � 1 + �cer�erT=2 � 1! (1 + e�rT=2): (42)For very narrow spikes (� ' 0), this inequality is approximately�c < sinh rT=2sinh rT=2� 1 (43)As the period T increases the right hand side of (43) decreases towards unity. Hence, as theperiod gets longer, �c must be smaller in order for AS to exist. In the limit of T ! 1, condition(43) becomes �c < 1. Recall that �c � 1 and decreases with decreasing spike amplitude. Thus as theperiod approaches in�nity, the spike amplitude must approach zero for AS to exist. The behavior isthe same for increasing the gap junction strength r. For a �xed spike amplitude and gap junctionstrength there is a maximum period allowable for AS to exist. The larger the spike or stronger thegap junction the smaller this maximum.3.4. Global behaviorA global view of the existence and stability of phase-locked states can be obtained from condition(28) if we treat the period T as a bifurcation parameter. For a �xed period T , (28) provides thephase � of any locked solution; by Chow (1998), that solution is unstable if the slope of G(�; T ) isnegative. In section 3.7, we will relate the bifurcation unfolding for T to the network parameters Iand g.We can compute G(�; T ) explicitly by evaluating the sums in (29) to obtain for T � 2�G(�; T ) = 
c(�T )� 12 "e�(T+�T��) � e�(T��T��)1� e�T� �c e�r(T+�T��) � e�r(T��T��)1� e�rT # ; �T � �; (44)G(�; T ) = �12 "e�(�T��) � e�(T��T��)1� e�T� �c e�r(�T��) � e�r(T��T��)1� e�rT # ; � < �T < T=2; (45)
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Figure 3. Four examples of G(�) with parameters � = 0:1, � = 50, g = :5, vA = 1 and period a) T = 2, b) T = 1, c)T = 0:25, and d) T = 0:2.and G(�; T ) is an odd function about � = 1=2. The functional form for G for T < 2� is much morecomplicated.Four examples of G(�; T ) vs. � for a progression of di�erent �xed periods T are shown in Fig. 3.Phase-locked solutions are given by the zero crossings of G(�; T ). If the slope at the zero crossingis negative then the solution is unstable. Though the condition G0(�; T ) > 0 is only a necessarycondition for stability, it allows us to use the graphs of G to give insight into the regimes forwhich various locked solutions are stable. Bifurcations take place at critical points TC that satisfyG(�; TC) = 0. The four �gures in Fig. 3 capture the qualitative dynamics of a system coupled withweak gap junctions. The bifurcation sequence is summarized in Fig. 4. For strong gap junctions,synchrony is always stable as one would expect. As the gap junction strength is reduced the statewill transition into the corresponding weak gap junction state for that particular period.We consider the bifurcation unfolding for weak gap junctions as the period is decreased (SeeFig. 4). For a long period, as in Fig 3a, both � = 0 and � = 0:5 are zeros with G0(�; T ) > 0: Thus,the necessary condition for stable S and AS are both satis�ed. However, AS may not exist for longperiods as shown in Sec. 3.3. There is also an unstable third mode which appears symmetricallyaround AS. (This third mode also exists for synaptic coupling (van Vreeswijk et al., 1994; Hanselet al., 1995; Chow, 1998).) G(�; T ) has a cusp between � = 0 and the third mode, which comesfrom the cusp in 
c. As the period is decreased, the third mode approaches � = 0:5 until an inversepitchfork bifurcation at G0(0:5; T ) = 0 when AS loses stability and the third mode disappears (Fig. 3b). This corresponds to the value TAS1C in Fig. 4. With a further decrease in period, S loses stabilitythrough a pitchfork bifurcation and a stable third mode reappears (Fig. 3 c). This occurs at T SC inFig. 4. As the period decreases even further, the cusp approaches � = 0:5. At T = TAS2C � 2�, thecusp crosses � = 0:5 and stable AS appears (Fig. 3 d). This bifurcation is discontinuous because ofthe cusp. For a smooth spike, the cusp would be smoothed and the AS would gain stability througha pitchfork bifurcation. For even shorter periods, as will be seen in Sec. 3.6, the AS state can losestability to the third mode at TAS3C .
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ΤFigure 4. Bifurcation sequence for phase-locked states with phase � and period T for weak gap junctions. Solid linesindicate stable states and dashed lines unstable. Moving from left to right corresponds to increasing period andmoving from right to left corresponds to increasing frequency. There are four bifurcation points: TAS1C , TAS2C , TAS3C ,and TSCIn the synchronous state, the period of the neurons are given by their intrinsic dynamics becausethe e�ect of the electrical coupling is zero. For AS, the contribution from the electrical couplinga�ects the period (although this e�ect may be small). In the two following sections, we will showhow the critical points change as the network parameters are varied. We also consider the su�cientconditions for stability of S and AS in these sections. With these results and those of Sec. 3.2, wecan construct the bifurcation sequence for changes in the applied current I and the gap junctionalstrength g. This bifurcation diagram gives information about necessary conditions for stability ofS and AS. In the next two sections we also consider the su�cient conditions.3.5. SynchronyAs seen in Sec. 3.4, S can become unstable if the period is too short. From (29) we �ndG0(0; T )=T = _
c(0) + 2Xl�1 _
c(lT ); (46)where the prime indicates a derivative with respect to �, and dot indicates the derivative withrespect to t. For 
c given by (23), _
c(0) = 0. This re
ects the fact that the neurons do not imme-diately a�ect each other upon �ring. Inserting (23) into (46) and evaluating the sum, we �nd thatfor T > � G0(0; T )=T = e�eT � 1 � �c rer�erT � 1 ; (47)Note that �c > 1 since 
c(�) > 0 and r > 1. Thus for T small enough, �c large enough, and r nottoo large, the second term will dominate the �rst term in (47) and G0(0; T ) will become negativeindicating instability of S.The lower bound of the period for stable S is given by the critical period T SC , which satis�esG0(0; T SC ) = 0. For T below T SC , the necessary condition for stability is violated, and stable S cannotexist. We examine how T SC behaves when we change the parameters. The critical condition (47)
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Dynamics of spiking neurons with electrical coupling 13can be rearranged to take the form erTSC � 1eTSC � 1 = r�ce(r�1)� (48)For large r, T SC decreases with increasing r. Thus for very strong gap junctions, the lower boundis the width of the spike, implying that synchrony can be stable at any allowable period (periodssmaller than the width of the spike are not allowable in our model). This synchronizing tendency isthe general presumption of gap junctions. However, if the gap junction is not strong, then there canbe a range of frequencies for which S is unstable. The left hand side of (48) is monotone increasingin T SC . Thus T SC increases with increasing �c or �. The conditions for stable synchrony dependimportantly on the spike width � and on �c. As either of these is increased, a longer period (lowerfrequency) is required for stable S. A larger amplitude spike leads to a larger �c and hence makesit more di�cult to synchronize two neurons in the sense that the range of frequencies where theycan synchronize is reduced.We now consider su�cient conditions for stability. In Chow (1998), it was shown that _
s(lT ) > 0,_
c(0) � 0, and _
c(mT ) > 0, for l � 0;m � 1, was su�cient for stability. From (21) and Fig. 2 a),the slope of 
s is always positive. From (23) and Fig. 2 b), the slope of 
c(lT ) is negative betweenthe maximum at t = � and the minimum t = tmin but positive everywhere else. Minimizing (23)for t > � gives tmin = �+ 12g ln �c(1 + 2g): (49)Recall that _
c(0) = 0. For T > tmin, we have _
c(mT ) > 0, ensuring stability. For T < tmin, the slopeof 
c(T ) can be negative and stability is no longer ensured. (Note that T > � i.e. the period mustbe longer than the width of a spike). For strong gap junctions tmin approaches �. This implies thatas the gap junction becomes stronger, S is guaranteed to be stable at higher and higher frequencies.For g << 1, we can use (25) for �c in (49) and expand to obtaintmin ' �+ 1 + vM1 + � (50)Thus, for weak gap junction strength, g has no e�ect on tmin at linear order.3.6. Anti-synchronyThe behavior of G(�; T ) indicates that AS could be stable for either long periods or very shortperiods. We now investigate these possibilities in more detail. A necessary condition for stability ofAS is that G0(0:5; T ) > 0. The su�cient conditions for stability are given by _
s(lT + T=2) > 0 and_
c(lT + T=2) > 0.From (29) we �nd that G0(0:5; T )=T = 2Xl�0 _
c(lT + T=2): (51)After evaluating the sum we obtainG0(0:5; T )=T = 8<: 2 _
c(T=2) + e�(3T=2��)1�e�T � �cr e�r(3T=2��)1�e�rT ; T � 2�e�(T=2��)1�e�T � �cr e�r(T=2��)1�e�rT ; T > 2�: (52)
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14 Carson C. Chow and Nancy Kopellwhere _
c(T=2) = vA2 "�e�T=2 + e�T=21 + � � �e�T=2 + re�rT=2r + � # ; T � 2� (53)First consider the behavior for T � 2� � TAS2C . This is the situation where the spikes areoverlapped, i.e. one neuron reaches threshold while the other neuron is still in a spiking phase.From (52) and as seen in Fig. 3 d), AS can be stable for T = TAS2C , provided r is small enough.However, _
c(0) = 0 and is monotone increasing in T until T = 2�. Thus, if T is reduced there isa bifurcation at TAS3C when G0(0:5; TAS3C ) = 0, (not shown in Fig. 3). Stability of AS is possiblefor TAS3C < T � TAS2C . For small r, increasing r will increase TAS3C . Thus the regime for stable ASat these short periods is reduced and could possibly be eliminated by increasing the gap junctionstrength.The su�cient conditions for stability are satis�ed if T=2 > tmin, where tmin is given in (49).This sets a minimum on the period that depends on �c. In the short period regime, we have shownthat AS could satisfy the necessary condition for stability when the period is reduced to less thantwice the width of the spike. However, at this point the su�cient conditions are not satis�ed sinceT=2 < � < tmin. Although stable solutions are possible if the su�cient condition is violated, itmay be that, for extremely high frequencies, neither S nor AS are stable.For T slightly larger than 2�, G0(0:5T ) is negative. Once the spikes are no longer overlapped,AS immediately loses stability. This bifurcation is seen in Fig. 3 c) and d). The bifurcation isdiscontinuous because the spike shapes are not smooth. Had a smoother spike shape been chosenthe transition from stability to instability would be continuous.As the period is increased, the necessary condition for AS stability begins to be satis�ed at thecritical period TAS1C satisfying G0(0:5; TAS1C ) = 0. Thus, TAS1C gives a lower bound for stable AS inthe long period regime (T > 2�). Applying this to (52) for this regime gives the following conditionfor this lower bound : sinh(rTAS1C =2)sinh(TAS1C =2) = r�ce(r�1)�: (54)The left hand side of (54) is monotone increasing in TAS1C so increasing �c or � increases TAS1C .Thus large spikes increases the lower bound on period for stable AS in the long period range.For strong gap junctions, TAS1C decreases and in the limit r !1, TAS1C ! 2�. The maximumperiod allowed for existence of AS as given by (43) also decreases as r is increased and at a slightlyfaster rate. This implies that as the gap junction strength increases AS can be stable at shorterperiods in the long period regime although it likely loses existence before the period can get tooshort.To summarize, the necessary condition for stability of AS is satis�ed for periods longer thanTAS1C provided the gap junction is not too strong. It is also satis�ed for short periods betweenTAS3C and TAS2C , although the su�cient conditions are not satis�ed. This region is reduced withincreasing gap junction strength. For long periods, existence is lost if the gap junction is too strongor the period is too long. Results from Section 3.5 lead to the conclusion that, in the short periodregime, large spikes diminish the range of periods over which synchrony is stable. From this sectionwe see that, in the long period regime, large spikes diminish the range over which AS is stable.These results are borne out in numerical solutions, as will be shown in Sec. 3.9
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Figure 5. Bifurcation sequence for phaselocked states with phase � and applied current I for large spikes. Solid linesindicate stable states, dashed lines unstable, and dotted lines unknown behavior. Moving from left to right correspondsto decreasing period. There are four bifurcation points: IAS1C , IAS2C , IAS3C , and ISC .3.7. Bifurcations for I and gIn Sec. 3.4, we showed that for weak gap junctions a bifurcation sequence shown in Fig. 4 takesplace for changes in the period T . We now relate this sequence to bifurcations, using as parametersthe applied current I and gap junction strength g. This is accomplished by identifying the locationsof the four bifurcation points: TAS1C , TAS2C , TAS3C , and T SC .From Sec. 3.2 we showed that increasing the applied current I decreases the period T . Thusmoving from right to left on the bifurcation plot in Fig. 4 corresponds to increasing I. However,for a �xed I, the states, S, AS, or third mode will have di�erent periods so the diagram will notcarry over directly. The bifurcation sequence will vary according to whether the period decreases orincreases as the phase of the periodic locked state moves away from � = 0. For each T bifurcationpoint in Fig. 4, there is a corresponding I bifurcation point which we label IAS1C , IAS2C , IAS3C , andISC .The bifurcation diagram for large spikes is shown in Fig. 5. In this case, the period decreaseswith increasing phase (i.e. for a �xed I, AS has a shorter period than the third mode which hasa shorter period than S). Thus, increasing I will almost lead to the same bifurcation sequenceas decreasing T . We simply reverse the plot in Fig. 4. The one di�erence is that for very large Ibeyond the bifurcation point TAS3C , AS cannot bifurcate to the third mode because the latter hasa longer period and may not exist at the bifurcation point. AS may lose stability to a nonperiodicor nonphase-locked state which our analysis does not consider.The situation changes for the bifurcation diagram for small spikes (�c small) which is shown inFig. 6. In this case, for �xed parameters, S has a shorter period than the third mode and AS. Thebifurcation picture given in Fig. 4 breaks down since the S state cannot bifurcate into the thirdmode if the third mode does not exist at that parameter. The third mode could exist for highervalues of I but it may not be connected to S through a simple bifurcation. There may also benonperiodic or nonphase-locked behavior. At very large I, AS could possibly exist and bifurcateinto the third mode. However, the su�cient conditions for stable AS are not satis�ed in this regime.Recall from the previous two sections that the critical points TC move towards larger values as�c and � are increased (except for TAS2C = 2� which only changes with changing �). This implies
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Figure 6. Bifurcation sequence for phaselocked states with phase � and applied current I for small spikes. Solid linesindicate stable states, dashed lines unstable, dotted lines unknown behavior.that the corresponding critical points in the I diagram (IC) move towards lower values. Thus, forlarger �c and �, the bifurcation points have lower values of I if the spikes are large, and highervalues if the spikes are small. The bifurcation sequences for g can be deduced by examining Fig. 5and 6. As the gap junction strength g is increased for g fairly strong, the critical points TC willdecrease (IC will increase). Thus, the bifurcations occur at a higher value of I. Hence, the region forstable S increases. The region in which the necessary condition for AS stability is satis�ed increasesin the low I regime. However, as discussed in Sec. 3.3, AS also loses existence at lower I. Thus forvery strong g, only S will exist stably. As g is decreased, the state can bifurcate into AS or thirdmode depending on the value of I.3.8. Adding HeterogeneityWith the addition of heterogeneity, the locking condition (28) shows that neither S nor AS aresolutions. However, it was shown in Chow (1998) that near synchrony and near anti-synchronyare possible for weak enough heterogeneity. As long as G0(�; T ) is positive at the phase-lockedsolution then stability is possible. The stronger the gap junction the more likely two neurons willsynchronize. This is expected heuristically but can also be seen from the behavior of G(�; T ).Recall from (29) that G(�; T ) is constructed from a sum over 
c(t) at periodic intervals. As thegap junction strength increases, 
c(t) begins to look more and more like �+(t) which has positiveslope everywhere. Since _
c(0) = 0, it does not contribute to stability of the synchronous state of� = 0. However, _
c(t) increases with t for the duration of the spike. This can cause G(�; T ) to risefairly steeply for � > 0. So for � near to but away from zero the spike contributes positively toG0(�; T ). This also implies that a fast rising spike may also make synchrony easier to maintain inthe presence of heterogeneity.3.9. Application to Biophysical Neuron ModelsWe compared the predictions of our analysis on the integrate-and-�re model to biophysical conductance-based neuron models. We considered two di�erent models that represented ranges of possible spikeshapes. Figure 7 show examples of the spike forms for an interneuron model of White et al. (1998)
gappre.tex; 31/08/1999; 13:54; no v.; p.16



Dynamics of spiking neurons with electrical coupling 17
0 10 20 30 40 50

t

−50

0

50

v(t)

a)

0 10 20 30 40 50
t

−100

−50

0

50

v(t)

b)

Figure 7. a) Voltage trace for the Interneuron model with ~I = 0. b) Voltage trace for the Reduced Traub-Miles modelwith ~I = 2:0.and a reduced Traub-Miles (RTM) model (Traub et al. 1997, Ermentrout and Kopell, 1998). Thedynamical equations are given in Appendix A. The interneuron model has a wider spike, and alarger spike (the size of the spike is in reference to a post-spike hyperpolarization) compared tothe RTM model. This implies that the interneuron model has a larger �c than the RTM model. Inthe RTM model, the spiking currents play a very small role in the recovery phase and so a passivedecay to threshold is a good approximation. However, for the interneuron model, the spiking cur-rents seem to play an important role in the recovery. From the �gures it appears that the e�ectiveleak time of the interneuron model is longer than the RTM model. Recall that time has been scaledby the leak time in the analysis. Thus for a �xed period, lengthening the leak time (i.e. reducingthe leak rate) e�ectively shortens the scaled period. We looked for steady state behavior over arange of applied currents I and gap junction conductances g, and ran for many hundreds of periodsto ensure that the observed states were not transient.We �rst summarize the analysis of our simpli�edmodel. For very strong gap junctions, synchronyis the only state that can exist. For weak gap junctions a bifurcation sequence can be observed asthe applied current is changed. The bifurcation sequence will be di�erent for large and small spikesas seen in Figs. 5 and 6. We predict that the interneuron model should behave as a large spike celland the RTM model should behave like a small spike cell. From Sec. 3.2, we predict that increasingthe gap junction strength should decrease the period of AS for the interneuron model since thee�ective leak time of the interneuron model is long and �c is large. On the other hand it shouldincrease the RTM period since the leak time is short and �c is small. The same arguments alsopredict that for a �xed set of neuronal parameters the period of S will be longer than the period ofAS for the interneuron model but the opposite will hold for the RTM model.For the interneuron model with weak coupling (g = 0:025), we numerically found a bifurcationsequence (see Table I) that matched our analytical results. For low levels of applied current, onlythe synchronous (S) state could be found. At a current of I = �0:55, AS appeared. S and AScoexisted for �0:55 � I < 1:65. An example of AS in the bistable regime is shown in Fig. 8. AtI = 1:65, AS lost stability. S persisted with increasing current until I = 19 where it bifurcated intoa stable third mode as seen in Fig. 9. The phase di�erence of the third mode approached � = 0:5until I = 23 when it bifurcated into AS. Figure 10 shows the voltage traces for AS and ~I = 25. AtI ' 25:4, AS lost stability to a nonperiodic state (see Fig. 11). Although di�cult to perceive in the�gure, the amplitudes of the spikes are slowly increasing and decreasing.
gappre.tex; 31/08/1999; 13:54; no v.; p.17



18 Carson C. Chow and Nancy KopellTable I. Table of period T and stable statesfor the interneuron model with g = 0:025as a function of varying applied current T .I T State< -0.55 > 68.1 S (only)-0.55 { 1.65 68.1 { 9.6 S24 { 7.7 AS1.65 { 19 9.6 { 3.4 S19 { 23 3.4 { 3.1 Third mode> 23 < 3.1 AS25 2.7 AS> 25.4 Nonperiodic
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Figure 8. Interneuron model: Anti-synchrony in the bistable regime, g = 0:025, ~I = �0:55, T = 24 ms.As the gap junction strength was increased in any of the above states, the cells fell into S asexpected. The period of AS was always shorter than S in the bistable regime also as expected. In thebistable regime, the periods di�ered roughly by about 20%. Increasing the gap junction strengthshortened the AS period, also as predicted (see Fig. 12).
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Figure 9. Interneuron model: Third Mode, g = 0:025, ~I = 23, T = 3:1.
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Figure 10. Interneuron model: Anti-synchrony in the high frequency regime, g = 0:025, ~I = 25, T = 2:7.
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Figure 11. Interneuron model: Nonperiodic state in the high frequency regime, g = 0:025, ~I = 25:4The bifurcation sequence for the RTM model with weak coupling (g = 0:01) is given in Table II.For very low currents, only the synchronous state existed. At ~I = 0:08 and a period of T = 158 ms,the AS state came into existence and both S and AS were stable. Figure 13 shows an example ofthe AS state. At ~I = 0:55 the AS state became unstable. Our numerics for the RTM model foundthat synchrony extended to very high frequencies. This was to be expected since the spike wasextremely narrow. (We note that the su�cient conditions for stable AS are not satis�ed for T < �,Table II. Table of period T and sta-ble states for the RTM model withg = 0:01 as a function of varyingapplied current T . The non-S behav-ior found at very high I was forsmaller values of g.I T State< 0.08 > 114 S (only)0.08 { 0.55 158 { 42 AS114 { 39 S> 0.55 < 39 SVery large Non-S
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Figure 12. AS period as a function of the gap junction strength for the interneuron model. The S period has the valueof 19.0 for I = 0 and 50.8 for I = �0:05 and does not change with g. AS has a shorter period than S for a �xed Iand g.
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Figure 13. Reduced Traub-Miles model: Anti-synchrony in the bistable regime, g = 0:01, ~I = :55, T = 42 ms.so AS need not be observed at high frequencies.) In our analytical model, the width � correspondsto the time for the spike to reach the peak from threshold. For the RTM model this was on theorder of 0:1 ms which would require a biologically improbable period near T ' 0:2 or 5000 Hz.On the other hand the time spent above threshold for the spike was approximately 0:5 ms, whichwould require T ' 1 ms or 1000 Hz. We were unable to drive the RTM model fast enough for S tolose stability. At very high applied current (I ' 1370, T ' :8 ms), a Hopf bifurcation took placeand continuous spiking was replaced by steady state. (This is often observed in conductance basedmodels but does not occur in our analytical model). However, when we lowered the gap junctionstrength to g = 0:0001, we were able to �nd non-synchronous behavior for very large I. Figure 14shows a third mode state for I = 1000.In the bistable regime, the AS period was longer than the S period, opposite of the interneuronmodel, and the predicted result for small spikes (i.e. �c small). The periods between S and ASdi�ered roughly by about 10%. Increasing the gap junction strength increased the period of the ASstate, also as expected (see Fig. 15).
gappre.tex; 31/08/1999; 13:54; no v.; p.20



Dynamics of spiking neurons with electrical coupling 21
0 1 2 3 4

t

−60

−40

−20

0

20

v(t)

Figure 14. Reduced Traub-Miles model: Third mode for g = 0:0001, ~I = 1000, T = 5:761 ms.
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Figure 15. AS period as a function of the gap junction strength for the RTM model. The S period has the value of41.8 for I = 0:3 and 55.8 for I = 0:5. AS has a longer period than S.4. Larger networksWe consider an all-to-all coupled network of N neurons with gap junctions. Although this is proba-bly unrealistic for very large N it does serve to gain some qualitative understanding of large networke�ects. We consider the modeldvidt = I � vi � gXj 6=i(vi � vj) +Xl A(t� tli); (55)where i is the neuron index. We consider a network of homogeneous neurons although the analysiscan be done as well with heterogeneous applied currents. We rewrite (55) in the form of a matrixequation d~vdt =M � ~v + ~f; (56)where ~v = 0BBBB@ v1v2...vN 1CCCCA ; ~f = 0BBBB@ I +PlA(t� tl1)I +PlA(t� tl2)...I +PlA(t� tlN )1CCCCA ; (57)
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22 Carson C. Chow and Nancy Kopelland M = 0BBBB@�1� (N � 1)g g � � � gg �1� (N � 1)g � � � g... ... ...g g � � � �1� (N � 1)g 1CCCCA : (58)Proceeding as we had for two neurons, we diagonalize system (56). Due to the high degree ofsymmetry, the matrixM only has two distinct eigenvalues �1, and �1�Ng (which is N � 1 timesdegenerate). Transforming to the diagonalized system, integrating and transforming back gives usthe spike response form vi(t) = I +Xl �s(t� tli) +Xj 6=iXm �c(t� tlj); (59)where �s(t) = �+(t) + (N � 1)��(t) (60)�c(t) = �+(t)� ��(t): (61)The kernel �+(t) is identical to the two neuron network kernel (14) and ��(t) has the same formbut with r� = 1 + Ng. The equations are similar to those of the N neuron synaptically coupledneuronal network which was studied in Chow (1998).We now consider periodic phase-locked states in a network of homogeneous neurons. Supposethe neurons �re at tli = �i � lT . At threshold they satisfy the condition1 = I +Xl �s(lT ) +Xj;m �c(mT + (�i � �j)T ) (62)Due to the permutation symmetry of the neuron index, any symmetric combination of the phasesis a possible phase-locked periodic solution (Chow, 1998). Examples include the synchronous statewhere all the neurons �re together, anti-synchrony where half the neurons �re and then the otherhalf �res, the splay-phase state where the neurons �re periodically in sequence, and clustered states.The synchronous solution always exists if the driving current is above threshold. The period isgiven by the single neuron period. The analysis for the existence of the anti-synchronous solutionfollows as in the two neuron case. We now examine conditions under which the splay phase solutioncan exist. The splay-phase state is de�ned by �i = iT=N , where i varies from 0 to N � 1. Thesplay-phase state can exist if a solution for the period T can be found for1 = I +Xl�1 �s(lT ) + Xj;m�1�c(mT � jN T ): (63)For simplicity, suppose the spikes are separated by at least � (i.e. spikes do not overlap). Then�s(t) = �e�(t��) � (N � 1)�ce�r(t��); (64)�c(t) = �e�(t��) + �ce�r(t��): (65)We may now substitute this into (63) and sum the resulting geometric series to obtainI � 1 = e�eT � 1 + e�eT=N � 1 + (N � 1)�c er�erT � 1 � �c er�erT=N � 1 : (66)
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Dynamics of spiking neurons with electrical coupling 23The period of the splay-phase state is given by the smallest solution of T to (66). For a �xed N , asolution can always be found for some I and T . However, there will be a maximum period that cansustain the splay phase due to the fast threshold modulation e�ect as described for anti-synchronyin Sec. 3.1, i.e., the neurons must remain subthreshold when the other neurons �re.The su�cient conditions for stability are that _�c(mT � jN T ) > 0, for all m and j (Chow, 1998).Thus the separation between the neurons must exceed tmin from (49) to ensure stability. Thissets a minimum period of T = Ntmin. It also suggests that there is a region of allowed periodsfor stable splay-phase. If the period is too short the state loses (su�cient condition for) stability,and if the period is too long it loses existence. The allowed period for the splay-phase must alsoscale with the number of neurons in the network N since the separation between the neurons mustremain relatively constant independent of network size. This means that the applied current mustbe reduced as N increases in order to sustain a stable splay phase state. Numerical simulationsof the interneuron model con�rmed these observations. We simulated networks up to N = 8 andfound the existence of the splay phase state only over a mid range of periods.5. Discussion5.1. Related modeling workThe �rst papers to point out that electrical coupling can be anti-synchronizing were by Shermanand Rinzel (1992, 1994) using simulations done in the context of pancreatic beta cells, whichhave bursting electrical behavior. Later work on this system (de Vries et al., 1998) used the factthat the envelopes of the bursts were roughly sinusoidal in shape, and used an analysis near a Hopfbifurcation to see how the coupling could destabilize synchrony. Two other papers (Han et al., 1995,1997) showed that electrical coupling can give rise to anti-synchronous solutions if the componentof the cells have trajectories close to a homoclinic bifurcation.The analysis that we do in this paper concerns networks of spiking neurons, focusing on theshapes of the spikes. The most similar work deals with excitatory and inhibitory chemical synapses,using the spike response method (Gerstner and van Hemmen 1992; Gerstner 1995; Gerstner et al.1996; Chow 1998). These and other related models (van Vreesijk et al., 1994; Hansel et al. 1995;Bresslo� and Coombes, 1998; Bresslo� and Coombes, 1999) showed that, for integrate and �remodels, inhibitory synapses can stabilize synchrony (provided the time scales of rise and fall ofthe synapse are slow enough), while excitation generally destabilizes the synchronous solution. (Seealso Terman et al. (1998) and Bose et al. (1999) for related results about inhibition and excitationin bursting neurons.) One way to understand intuitively the result that gap junctions can be anti-synchronizing is to think of the e�ects of the electrical coupling as combining those of excitation andinhibition. To see this, consider the coupling currents for a non-recti�ed electrical synapse when thespikes are not (yet) synchronous. In the spike phase of the cycle of one cell, the coupling currents tothe other cell are depolarizing, acting like excitation; in the post-polarization phase, these currentscan be hyperpolarizing (depending on the phase of the other cell). This intuition suggests thatwide and tall spikes should help to destabilize the synchronous state, whereas a long and deeppost-polarization phase should encourage synchrony. This is indeed what the mathematics con�rms,producing more details about e�ects of sizes and shapes as well as rigor. This intuition also suggestswhy frequency of the network plays a role in synchronization: as the frequency increases, the sizeof the interspike interval decreases much more than any change in the shape of the spike, favoring
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24 Carson C. Chow and Nancy Kopellthe e�ects of the spike over those of the post-polarization phase and thus favoring destabilizationof the synchronous solution. This argument shows that one should not expect frequency to play animportant role in stability of sinusoidal like oscillators coupled electrically.There are several other papers on electrically coupled neurons (or compartments) that are relat-ed to the current work. Kepler et al. (1990) considered the electrical coupling of a bursting cell anda passive cell to show that the coupling may increase or decrease the frequency of the oscillation,depending on the shape of the waveform of the oscillator. Kopell et al. (1998) showed that if oneof the elements of the network is bistable and the other is an oscillator, the network can exhib-it much greater complexity; the latter paper introduced new geometric techniques very di�erentfrom the ones in this paper or in Kepler et al.(1990). Manor et al. (1997) showed that cells withheterogeneous properties, none of them oscillators, could produce an oscillation in an electricallycoupled system that is the appropriate `average' of the dynamics. Electrical coupling is also rel-evant to understanding the dynamics of compartmental models in which the conductances varybetween compartments (Booth and Rinzel 1995; Li et al.1996; Mainen and Sejnowski 1996; Pinskyand Rinzel, 1994; Medvedev et al. 1999).Finally, we point out that the literature on neural oscillators is large and rapidly growing, so theabove list constitutes only the work that is most directly related to the themes of this paper. Ritzand Sejnowski (1997) provide a review of some recent papers on neural oscillators.5.2. Gap junctions in physiological systemsGap junctions are found in many tissues of the body, including the nervous system. (For reviews, seeBennett (1997) and Dermietzel and Spray (1993)). Even in the nervous system, electrical couplingis found in a wide variety of cells, including astrocytes and oligendrocytes as well as neurons. Manyfunctions have been attributed to these electrical synapses, including exchanges of metabolitesand second messengers, and bu�ering the K+ activity surrounding active neurons (Dermietzel andSpray, 1993). For neurons, the most common function ascribed to electrical synapses is mediatingsynchrony among active cells or relaying signals quickly. Though gap junctions are thought to bemost prevalent (at least in vertebrates) during early development, they are also known to existin the adult mammalian central nervous system, e.g. in the neocortex (Gibson et al., 1999), thehippocampus (Draguhn et al.1998), the inferior olive (Llinas et al.1974), and the retina (Dowling1991).In this paper, we have shown that electrical coupling can organize a rhythm to be asynchronous,especially at low coupling strengths. The ability of a collection of spiking neurons to synchronize isdependent on the size and shape of the spike form, as well as the frequency at which the cells are�ring. At low coupling strengths and very high �ring rates (dependent on the shape of the spikewave form), the synchronized state is unstable and a pair of cells �res in anti-synchrony. For a lowerrange of frequencies, the synchronized and anti-synchronized states are bistable. For a population,the network behavior can have the phases splaying out over the circle.One preparation in which there are well-documented gap junctional connections and oscillatorcells �ring at high rates is the pacemaker nucleus of the weakly electric �sh , Apteronotus Dye 1988,1991; Moortgat et al. 1999a, b.) In this tissue, cells �re very precisely, and synchronously (Dye,1988). Evidence for distribution of phases of the pacemaker cells of that nucleus is given in Fig. 8 ofDye (1988). Pharmacological manipulations that increase the internal concentration of Ca2+ , andare presumed to decrease the strength of the gap junctional coupling (Spray and Bennett, 1985), dopartially desynchronize the population; however, the desynchronization may be due to di�erences
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Dynamics of spiking neurons with electrical coupling 25in the natural frequencies rather than the ability of the weak coupling to actively desynchronizeeven identical cells, as discussed above. In contrast to Dye (1991), Moortgat et al. (1999a) observethat adding gap junction blockers results in a general reduction of the frequency of oscillation ofthe pacemaker nucleus. This is predicted above for the model with large spikes.Gap junctions have recently been documented within two distinct subsets of interneurons in therat neocortex (Gibson et al., 1999), one of which (the fast-spiking interneurons) gets strong inputsfrom the thalamus. In recent work, Gibson and Beierlein (Pers. Comm.) have injected depolarizingcurrent into pairs of electrically coupled fast-spiking interneurons to modulate their frequency. Inone pair of cells at a frequency of 40Hz, the pair oscillated synchronously; with further depolarizationthat caused the frequency of each cell to go up to approximately 100 Hz, the cells �red in anti-synchrony. This is in agreement with predictions from our theory. However, other pairs did notshow this e�ect.Another potential application of this work concerns bursting behavior of interneurons in the hip-pocampus. In recent simulations of data from the work of Zhang et al. (1998), Skinner et al. (1999)investigated a model network of cells coupled by gap junctions and inhibitory synapses. Blockingthe inhibition increased the frequency of each of the cells; at the higher frequencies, the spikeswithin a burst of the electrically coupled cells had an anti-synchronous relationship. In a futurepublication, we will analyze this system and show that one important e�ect of the inhibition onthe network can be to change its frequency, which in turn e�ects what con�gurations are stableusing the electrical coupling. The techniques used for the analysis are similar to those used in Chow(1998) to analyze the e�ects of chemical synapses on model neurons. For these neurons, the e�ectsof the chemical and electrical neurons in the spike-response equations are additive. Hence, the sameformalism can be used for situations involving both kinds of synapses acting in parallel.High frequency spiking is also found in hippocampal interneurons during ripples, and gap junc-tional coupling is implicated in the coordination of these rhythms (Draguhn et al. 1998). Morerecent work (Traub et al. 1999) suggests that the mechanism of production of the rhythms involvesspontaneous production of spikes in the axons with transmittal through a sparsely connected net-work of axo-axonal connections. Though the mechanism that produces the frequency in that caseis di�erent (it depends on the network connectivity and the spontaneous rate of action potentials),it remains to be understood if the mechanism that produces the coherence of the network is similarto the one described in this paper.In any physiological situation, the network behavior is a�ected by heterogeneity, spatial structureof the neurons, connectivity of the network and interaction with chemical synapses. The analysispresented considered only connections between soma and/or axons, in which spatial and delaye�ects are not included. For dendro-dendritic connections such delays would be important. Thoughit is not within the scope of this paper to present the complete analysis, we report here that asimilar (but more complicated) analysis of neurons connected with gap junctions at the end of apassive dendrite leads to a change in parameter ranges in which di�erent con�gurations are stable.In particular, the regime in which asynchrony is stable is greatly increased and that in whichsynchrony is stable is reduced. We believe that this is due to the �ltering properties of the dendrite,which changes the shape of the spike at the synapse.Ability to �re in an asynchronous way increases the 
exibility of network dynamics. This paperprovides insight into how such asynchrony can be fostered by electrical coupling, even in the absenceof the above complexities, all of which create a much richer dynamical environment. It remains to
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26 Carson C. Chow and Nancy Kopellunderstand how these extra features might interact with the mechanisms described in this paperto allow 
exible modulation of network behavior.AcknowledgmentsWe would like to thank John White and Bard Ermentrout for many interesting discussions. We alsothank R. Traub and D. Needleman for helpful suggestions. This work was supported by NIH grantK01 MH01508 (CC), the Alfred P. Sloan Research Fellowship (CC), NIMH grant 47150 (NK), andNSF grant 9200131 (NK). AppendixA. Neuron DynamicsIn our simulations, we considered a network of N conductance-based single compartment neuronmodels coupled electrically with gap junctions. The membrane potential obeyed the current balanceequation CdVidt = ~I � INa � IK � IL �Xj 6=i g(Vi � Vj); (67)where i is the neuron index which runs from 1 to N , g is the gap junction conductance, ~I isthe applied current, INa = gNam3h(Vi � VNa) and IK = gKn4(Vi � VK) are the spike generatingcurrents, IL = gL(Vi � VL) is the leak current, and C = 1�F/cm2.The interneuron model in White et al. (1998) used parameters: gNa = 30 mS/cm2, gK =20 mS/cm2, gL = 0:1 mS/cm2, VNa = 45 mV, VK = �80 mV, VL = �60 mV. The acti-vation variable m was assumed fast and substituted with its asymptotic value m = m1(v) =(1 + exp[�0:08(v + 26)])�1. The gating variables h and n obeydhdt = h1(v)� h�h(v) ; dndt = n1(v)� n�n(v) ; (68)with h1(v) = (1 + exp[0:13(v + 38)])�1, �h(v) = 0:6=(1 + exp[�0:12(v + 67)]), n1(v) = (1 +exp[�0:045(v + 10)])�1, and �n(v) = 0:5 + 2:0=(1 + exp[0:045(v � 50)]).The reduced Traub-Miles model (Traub et al. 1997; Ermentrout and Kopell 1998) used param-eters: gNa = 100 mS/cm2, gK = 80 mS/cm2, gL = 0:05 mS/cm2, VNa = 50 mV, VK = �100 mV,VL = �67 mV; m = m1(v) = ~�m(v)=(~�m(v)+ ~�m(v)), where ~�m(v) = 0:32(54+v)=(1�exp(�(v+54)=4)) and ~�m(v) = 0:28(v + 27)=(exp((v + 27)=5) � 1);dndt = ~�n(v)(1 � n)� ~�n(v)n (69)with ~�n(v) = 0:032(v + 52)=(1 � exp(�(v + 52)=5)), ~�n(v) = 0:5 exp(�(v + 57)=40); h = h1(v) =max[1� 1:25n; 0].The ODEs were integrated using the CVODE method with the program XPPAUT written byG.B. Ermentrout and obtainable from http://www.pitt.edu/�phase/.
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