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Abstract:

Background: Clinically, chronic nephrotoxicity may lead to renal functional impairment and progress to end stage renal failure. The

renoprotective effect of a flavonoid naringin (NG) against cyclosporine A(CsA)-induced nephrotoxicity was investigated in this study.

Methods: Nephrotoxicity was induced in male albino Wistar rats by injecting 25 mg/kg body weight of CsA for a period of 21 days.

CsA-induced rats were also cotreated with 40 mg of NG/kg body weight, orally.

Results: After the experimental period, the levels of lipid peroxides (TBARS) and hydroxyl radical (OH�) were found to be elevated,

whereas the levels of SOD, catalase, glutathione, vitamin C, E and A were decreased in CsA-induced rats. NG co-treatment signifi-

cantly decreased the levels of lipid peroxides and hydroxyl radicals and restored the levels of enzymic and non-enzymic antioxidants

in renal tissues. Histological analysis revealed that CsA administration caused severe and widespread necrosis with dilatation of

proximal tubules, vacuolization, tubular cell desquamation and intraluminal cast formation with massive infiltration of inflamma-

tory cells. CsA-induced histopathological renal changes were minimal in animals which received NG treatment. The western blot

and confocal microscopic expression of heme oxygenase-1 was restored by NG. In CsA-induced animals the expression was re-

duced compared to NG treated animals.

Conclusions: The present study reveals that NG can act as effective renoprotective drug against CsA-induced toxicity.
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Introduction

The introduction of cyclosporine (CsA) has stimu-

lated a new era in transplantation medicine world-

wide, resulting in substantial improvement of the

overall success rates after solid organ transplantation.

However, graft failure in the long-term remained basi-

cally unchanged due to nephrotoxicity [39]. Clini-

cally, chronic nephrotoxicity may lead to renal func-

tional impairment and progress to end stage renal fail-

ure. The cause for the nephrotoxicity of CsA has not

been fully elucidated. CsA nephrotoxicity is charac-

terized by intense renal vasoconstriction that often

progresses to chronic injury with irreversible struc-

tural and functional renal damage [7]. During the last

decade, considerable attention has been focused on

the involvement of reactive oxygen species (ROS) in

various organs including the kidney. ROS have been

proposed as mediators of different kidney diseases es-

pecially in toxic, ischemic or immunological condi-
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tions [34]. The implications of ROS in CsA nephro-

toxicity was strengthened by the fact that many anti-

oxidants and free radical scavengers provide marked

functional and histopathological protection against

CsA nephrotoxicity [60].

The heme oxygenase (HO) enzyme system cata-

lyzes the rate-limiting step in the degradation of

heme. Two major HO isoforms have been identified,

HO-1 and HO-2, which are the products of different

genes. HO-1 (the inducible form) is highly sensitive

to numerous stimuli that cause oxidative stress: heme,

growth factors, nitric oxide, modified lipids, changes

in oxygen tension, cytokines, and therapeutic agents.

These stimuli do not activate HO-2, the constitutive

form, which is regulated only by glucocorticoids.

HO-1 induction has salutary effects in diseases and its

protective effects are exhibited by its anti-inflamma-

tory, antiapoptotic, antioxidant, and anti-proliferative

properties [32].

The positive role of dietary polyphenol, such as cit-

rus flavanoids, in human health is the object of grow-

ing scientific interest. Flavanoids, known as nature’s

tender drugs, possess various biological and pharma-

cological activities including antioxidant, anti-

inflammatory, anticancer, antimicrobial and antiviral

[47]. They are a large class of natural polyphenolic

compounds, occurring in fruits and vegetables regu-

larly consumed by humans. Naringin (NG), one of the

bioflavanoids in grapefruit and citrus fruits, has been

reported to exhibit anti-oxidative effects [16, 35], and

inhibit lipid peroxidation in biological membranes

[26]. NG has been demonstrated to have antiviral ac-

tions [20], reduce the level of cytochrome P450 1A2

protein [57], and aid in the regulation of lipid and

ethanol metabolism [53]. Accordingly, NG has exten-

sive pharmacological activity and may reduce the

CsA-induced nephrotoxicity.

In the present study, we investigated the therapeu-

tic effect of NG on renal lipid peroxides, enzymatic,

non-enzymatic antioxidants, histological changes in

CsA-induced nephrotoxicity and the expression of

HO-1 during the experimental period.

Materials and Methods

Animals

Male albino rats of Wistar strain (180 ± 20 g) were

obtained from the Laboratory Animal Maintenance

Unit, Saveetha University, Vellapanchavadi, Chennai,

India. The animals were acclimatized to the labora-

tory conditions for a period of 2 weeks. They were

maintained at an ambient temperature of 25 ± 2°C and

12/12 h of light–dark cycle and were given a standard

rat feed (Hindustan Lever Ltd., Bangalore) and water

ad libitum. The experiments were conducted accord-

ing to the ethical norms approved by Ministry of So-

cial Justices and Empowerment, Government of India

and Institutional Animal Ethics Committee Guide-

lines.

Experimental design

The rats were divided into four groups (n = 6 in each

group) of the same age. Group 1 served as control ani-

mals and received olive oil (vehicle). Group 2 – Rats

were administered with CsA (Sandoz Ltd., Switzer-

land) (25 mg/kg body weight) dissolved in olive oil

orally for a period of 21 days. Group 3 – Rats were

treated with a single dose with 40 mg/kg body weight

of NG (Sigma Aldrich Co., St. Louis, USA) (based on

the effective dosage fixation studies) orally until the

end of the experiment, after CsA administration as

mentioned in group 2. Group 4 – Rats received the

same dose of NG (40 mg/kg body weight) alone as

mentioned in group 3 for a period of 21 days.

After the experimental period, the animals were

sacrificed and blood was collected and the kidney tis-

sue was washed in physiological saline. For histopa-

thological studies, a piece of 1 cm3 of kidney tissue

was cut and placed immediately in phosphate buff-

ered formal saline (pH 7.4). The plasma was collected

from the blood samples used for the biochemical in-

vestigations.

Biochemical studies

The levels of lipid peroxides were estimated in

plasma and kidney tissue by the method of Ohkawa

et al. [36]. Hydroxyl radical production was measured

in tissue homogenate by the method of Cederbaum

and Cohen [9]. Superoxide dismutase was assayed

following the method of Misra and Fridovich [28].

Catalase was assayed according to the method of

Sinha et al. [55]. Glutathione reductase was assayed

by the method of Staal et al. [56]. The activity of glu-

tathione peroxidase was assayed by the method of

Rotruck et al. [48]. The activity of glutathione S trans-

ferase was assayed by the method of Habig et al. [15].

Pharmacological Reports, 2013, 65, 1336�1344 1337

Naringin ameliorates CsA induced renal damage
Yamini Chandramohan and Chetenchery Somasundaram Parameswari



The protein content was determined by the method of

Lowry et al. [25]. Renal vitamin C was estimated by

the method of Omaye et al. [38], vitamin E was esti-

mated by the method of Desai [12] and vitamin A was

estimated by the method of Bessy [5].

Histopathological analysis

A portion of the kidney tissue was fixed in 10% for-

maldehyde solution and embedded in paraffin. Sec-

tions were cut at 4 mm in thickness, stained with he-

matoxylin and eosin and viewed under light micro-

scope for histological changes.

Confocal microscopic analysis of HO-1

Paraffin embedded tissue sections were rehydrated

first in xylene and then in graded ethanol solutions.

The slides were then blocked with 3% BSA in TBS

for 2 h, immunostained with respective mouse mono-

clonal primary antibodies HO-1, (Abcam, USA) di-

luted at appropriate dilutions with 3% BSA in TBS

and incubated overnight at 4°C. After washing the

slides thrice with TBS, the sections were then incu-

bated with goat anti rabbit-FITC conjugated secon-

dary antibody and goat anti rabbit-PE conjugated sec-

ondary antibody, diluted 1 : 40 with 3% BSA in TBS

and incubated for 2 h at room temperature. Slides

were counterstained with DAPI and PI, respectively,

and were visualized under a confocal microscope

(Leica TCS-SP2 XL).

Western blot analysis

Western blot analysis of HO-1 was performed follow-

ing the method in [24].

Statistical analysis

All the data were analyzed using SPSS/10 Student

Software. Hypothesis testing methods included one-

way analysis of variance (ANOVA). The values are

expressed as the mean ± SD, p value of less than 0.05

and 0.001 were considered to indicate statistical sig-

nificance.

Results

The body weight of each animal was recorded and

percentage of weight gain was noted along with

changes in kidney to body weight ratio and presented

in Table 1. A significant weight loss and a significant

increase (p < 0.001) in kidney/body weight ratio was

observed as a result of CsA administration compared

to the control group. CsA reduces the amount of food

intake, which results in well known decreased body

weight. Administration of NG markedly increased

mean final body weight and decreased the mean kid-

ney to body weight ratio (p < 0.001). No significant

changes in comparison with control (Group 1) and

NG treated groups (Group 4) were observed.

Figure 1 shows the effect of CsA and NG on the lev-

els of LPO and OH_ in kidney tissue of control and ex-

perimental animals. Tissue LPO and OH� levels were

significantly increased in CsA administered group

(Group 2) as compared to the control (Group 1). NG

supplementation (Group 3) significantly (p < 0.05) de-

creased the concentration of LPO and OH� as com-

pared to the CsA induced rats (Group 2). No significant

difference was found between control group (Group 1)

and NG alone treated animals (Group 4). The enhance-

ment of antioxidant defense by NG has also played

a major role to decrease the toxicity in this model

which has been established well in other models.
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Tab. 1. Body weight gain and changes in kidney body weight ratio of control and experimental animals

Parameters Control CsA CsA + NG NG

Body weight gain (%) 35 22a 28b 33ns

Kidney/body weight ratio (mg) 12.86 ± 0.05 16.24 ± 0.25a 15.32 ± 0.04b 13.11 ± 0.18ns

Values are expressed as the mean ± SD for six animals in each group. a CsA vs. control, b CsA vs. CsA + NG, p < 0.001; ns – non-significant
(NG vs. control)



Table 2 represents the levels of enzymic antioxi-

dants such as SOD, CAT, GPx, GR and GST in the re-

nal tissue homogenate of rats in control and experi-

mental groups. The activities of enzymic antioxidants

were significantly (p < 0.05) reduced in CsA induced

rats (Group 2) as compared to the control animals

(Group 1). NG administration (Group 3) significantly

increased the enzymic antioxidant activity as com-

pared with CsA induced rats (Group 2). No significant

changes were observed in NG alone treated group of

rats (Group 3) when compared to control.

Table 3 represents the levels of non-enzymic anti-

oxidants such as GSH, vitamin C, vitamin E and vita-

min A in the kidney of control and experimental

groups. The levels of non-enzymic antioxidants were

significantly (p < 0.05) reduced in CsA-induced rats

(Group 2) as compared to the control rats (Group 1),

which may be due to increased utilization of these an-

tioxidants to counter lipid peroxidation. NG admini-

stration (Group 3) significantly (p < 0.05) increased

the non-enzymic antioxidant levels as compared with

CsA induced rats (Group 2), which in turn may be due

to scavenging free radicals and alleviating oxidative

stress, thus restoring the levels of vitamin’s to near

normal. No significant changes were found between

control (Group 1) and NG alone treated group of rats

(Group 3).

Figure 2 presents the histological changes of renal

tissue in control and CsA-induced experimental ani-

mals. Histological analysis revealed that CsA admini-
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Fig. 1. Effect of naringin (NG) and cyclosporine (CsA) on the levels of
lipid peroxidation and hydroxyl radical formation in the kidney of con-
trol and experimental group of animals. Values are expressed as the
mean ± SD for six animals in each group. Units: LPO – µmoles of
MDA released/mg of protein, OH• – ng/mg of protein. One way
ANOVA followed by post-hoc test LSD. a CsA vs. control, b CsA vs.
CsA + NG, p < 0.05; ns – non-significant (NG vs. control)

Tab. 2. Effect of CsA and NG on the levels of kidney enzymic antioxidants

Parameters Control CsA CsA + NG NG

SOD 7.08 ± 0.45 4.13 ± 0.56* 7.01 ± 0.67** 7.29 ± 0.53ns

CAT 43.20 ± 2.07 25.15 ± 2.87* 39.26 ± 4.41** 42.17 ± 2.75ns

GPX 9.67 ± 0.87 5.03 ± 0.75* 7.35 ± 0.70** 9.82 ± 0.70ns

GR 4.53 ± 0.20 2.22 ± 0.45* 4.39 ± 0.39** 4.61 ± 0.27ns

GST 16.95 ± 1.53 9.47 ± 1.61* 16.63 ± 2.03** 16.26 ± 1.58ns

Units: SOD – 50% inhibition of epinephrine autoxidation/min/mg protein; CAT – µmoles of H2O2 decomposed/min/mg protein; GPx – µmoles of
GSH oxidized/min/mg protein; GST – µmoles of CDNB conjugated/min/mg protein. Values are expressed as the mean ± SD; n = 6. One way
ANOVA followed by post-hoc test LSD (p < 0.05). Comparisons: * control vs. CsA; ** CsA vs. CsA + NG; ns control vs. NG

Tab. 3. Effect of CsA and NG on the levels of kidney non-enzymic antioxidants

Parameters Control CsA CsA+NG NG

GSH 31.60 ± 2.98 15.21 ± 2.47* 27.14 ± 3.10** 30.26 ± 2.79ns

Vitamin C 0.74 ± 0.04 0.42 ± 0.03* 0.58 ± 0.04** 0.71 ± 0.03ns

Vitamin E 2.53 ± 0.12 1.77 ± 0.22* 2.09 ± 0.15** 2.48 ± 0.09ns

Vitamin A 0.10 ± 0.01 0.03 ± 0.05* 0.07 ± 0.01** 0.09 ± 0.01ns

Units: GSH – nmoles/g tissue; vitamin E – µg/g; vitamin C – µg/g; vitamin A – mg/g. Values are expressed as the mean ± SD; n = 6. One way
ANOVA followed by post-hoc test LSD. p < 0.05. Comparisons: * control vs. CsA; ** CsA vs. CsA + NG; ns control vs. NG



stration (Fig. 2B) caused severe and widespread ne-

crosis with dilatation of proximal tubules, vacuoliza-

tion, tubular cell desquamation and intraluminal cast

formation with massive infiltration of inflammatory

cells. CsA-induced histopathological renal changes

were minimal in animals which received NG treat-

ment (Fig. 2C). NG (Fig. 2D) alone treated animals

showed normal renal architecture compared to control

(Fig. 2A) group of animals. Histopathological scoring

was performed by a pathologist unaware of the treat-

ment protocol. Renal tubular damage was evaluated

using a semiquantitative scale in which the percentage

of tubules showing necrosis was scored as follows:

0 = normal; 1 = 10%; 2 = 10-25%; 3 = 25–75%; 4 =

> 75%.

Figure 3 demonstrates confocal microscopic analy-

sis of HO-1, counterstained with PI and the secondary

antibody was tagged with Alexa fluor 488. CsA treat-

ment caused a significant reduction of the expression

of heme oxygenase (Fig. 4B). The expression was ele-

vated in NG treated animals, whereas Control cells

and NG alone treated groups of animals exhibited

moderate expression of HO (Figs. 3A and D). Upon

treatment with NG, the expression of HO was re-

markably close to the control animals (Fig. 3C). In-

deed, present study suggests that administration of

NG increased HO levels, perhaps due to anti-inflam-

matory properties. This suggests that HO-1 upregula-

tion by NG is responsible, at least in part, for these

protective effects.

Figure 4 shows the effect of NG on western blot

analysis of HO-1, a stress protein, expression in the
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a

b

Fig. 2. Effect of naringin on histological analysis of kidney in control
and experimental groups of animals. (a) A – Control group; D – NG
alone treated group with normal renal histological picture showing in-
tact glomeruli (black arrow). B – CsA-induced group showing dam-
age to the glomeruli with extensive tubular necrosis, tubular dilata-
tion, vacuolization and cast formation with chronic infiltration of in-
flammatory cells (black arrow). C –- CsA + NG treated group display-
ing remarkable improvement in the histological appearance of glom-
eruli with less inflammatory cells. (b) Data are expressed as the mean
± SD, n = 6 animals. a CsA vs. control, b CsA vs. CsA + NG, p < 0.05;
ns – non-significant (NG vs. control)

Fig. 3. Effect of NG on confocal microscopic analysis of HO-1 of con-
trol and experimental groups of animals. Tissue sections were immu-
nostained with the primary anti-HO-1 antibody and Alexa fluor 488
conjugated secondary antibody (green) viewed under confocal mi-
croscopy (magnification 400´). A tissue sections were counterstain-
ed with PI (red) for nuclear localization. (A) Control, (B) CsA-induced
showing decreased green fluorescence around the epithelial region,
(C) CsA + NG treated group shows increased green fluorescence,
(D) NG group showed fewer positive fluorescence. Quantification of
HO-1: The result was quantified per 0.245 mm2 of HO-1 positively
stained cells. Hypothesis testing method included one-way analysis
of variance (ANOVA) followed by least significant difference (LSD)
test. Values are expressed as the mean ± SD. a CsA vs. control, b CsA
vs. CsA + NG, p < 0.05 (magnification 20×; scale bar 100 µM), ns –
non-significant (NG vs. control)



renal tissue of control and experimental groups of ani-

mals. Administration of CsA (lane 2) significantly de-

creased the expressions of HO. Supplementation of

NG (Group 3; lane 3) significantly elevated the ex-

pressions as compared to Group 2. No significant

changes in the expressions of HO-1 were observed in

Group 4 animals compared to Control group. b-Actin

was used as a loading control. Quantitative data ex-

pressing the corresponding protein levels were as-

sessed using densitometry and are expressed in rela-

tive intensity arbitrary units.

Discussion

Chronic kidney disease (CKD) is a global threat, and

health care burden due to CKD has increased world-

wide in the past decade. Cyclosporine continues to be

the backbone of post transplant immunosuppression.

However, side effects associated with CsA treatment

are numerous and kidney dysfunction is the main

complication of CsA treatment. Many experimental

studies suggest that ROS take part in the pathogenesis

of several kidney diseases. It has also been implicated

in models of acute renal failure induced by gentamy-

cin, glycerol and CsA in animals [1, 18, 22]. In vitro

studies have demonstrated that CsA induces lipid per-

oxidation in rat kidney and liver microsomes. In vivo

studies in rats showed that lipid peroxidation induced

by CsA was dose-dependent and paralleled the renal

functional alterations, measured as decreased glom-

erular filtration rate and renal blood flow, and in-

creased renal vascular resistance. Lipid peroxidation

index, measured as liberation of conjugate dienes and

MDA in renal cortex homogenates, and thiobarbituric

acid reactive substances (TBARS) in blood and urine,

increased with respect to control animals [59].

Increased plasma and kidney tissue MDA values

are observed with CsA administration with excess

production of hydrogen peroxide in living cells [21],

which then gives rise to increased hydroxyl radical

formation. NG has proved to possess lipid lowering,

anti-lipoperoxidative and antioxidant properties [45].

Recently, NG has been demonstrated to play an im-

portant role in regulating antioxidative capacity by in-

creasing SOD and catalase activities by upregulating

the gene expression of SOD, catalase, and glutathione

peroxidase [19]. In our present study, the levels of

LPO and OH� were increased in CsA-induced groups

compared to control groups. Supplementation of NG

significantly reduced the levels of LPO and OH� due

to it’s potential antioxidant property.

The antioxidant enzymes SOD, GPx and catalase

are the major defense against oxidative damage [17].

Reduction of renal SOD activity in CsA-treated rats

was observed in our study, which was similar to the

previous studies [29]. Reduced glutathione, together

with GPx, is important in maintaining the structure of

mitochondrial and cell membranes. Reductions in

GPx activity noted in the CsA treated rats in the pres-

ent study are consistent with results obtained by oth-

ers [3]. Flavonoids usually contain one or more aro-

matic hydroxyl groups in their moiety, which is

responsible for their antioxidant activity [58]. Narin-

genin have already been pharmacologically evaluated

as a potential antioxidant [50]. Co-supplementation of

NG, in the present study, significantly (p < 0.05) in-

creased the tissue level of enzymatic antioxidants

compared to CsA-treated rats. This might indicate the

usefulness of NG, as an excellent source of antioxi-

dant, in modulating CsA-induced nephrotoxicity.

In this investigation, severe depletion of non-

enzymatic antioxidants such as GSH, vitamin C, E, A

was observed in kidney tissue homogenate of CsA-

induced (Group 2) animals. Vitamin C and E exhibit

a protective effect against free radical-induced oxida-

tive damage [6, 13]. Vitamin E is the only significant
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Fig. 4. Effect NG on western blot analysis of HO-1 in control and
experimental groups of animals. Lane 1, Lane 2, Lane 3 and Lane 4
correspond to control, CsA, CsA + NG and NG, respectively. Quanti-
tative data expressing the corresponding protein levels were as-
sessed using densitometry and are expressed in relative intensity ar-
bitrary units. Values are expressed as the mean ± SD. a CsA vs. con-
trol, b CsA vs. CsA + NG, p < 0.01, ns - non-significant (NG vs. con-
trol)



lipid-soluble, chain-breaking antioxidant present in

human blood cells. Its scavenging effect of oxygen

radicals has been clarified in various studies [44, 52].

Vitamin C imparts its protection by undergoing oxida-

tion to dehydroascorbate. For its reversal to ascorbate,

GSH is required. Consequently, when GSH is re-

duced, there is a fall in the level of vitamin C. De-

crease in the levels of vitamins C and E during CsA

administration leads to increased susceptibility of the

tissues to free radical damage. Increased tissue con-

centration of these antioxidants in NG treated animals

may be due to scavenging of free radicals and allevi-

ating oxidative stress.

Thus, histopathological study reveals that CsA ad-

ministration caused a significant damage to renal ultra

structure, showing marked tubular damage being the

main reason for nephrotoxicity, which is in accord

with previous findings [49]. Additionally, treatment

of NG partially recovered CsA-induced degenerative

damages in the kidney, which may be due to de-

creased lipid peroxidation and increased antioxidant

enzyme activities. Already NG has been effective in

preventing ferric nitrilotriacetate induced oxidative

damage in rat kidney [54], which supports the present

study.

The importance of HO-1 in dictating the outcome

of many diseases are the observations that pharmacol-

ogical induction or overexpression of HO-1, as well

as administration of the different end-products of

heme catabolism by HO-1, all have significant benefi-

cial or therapeutic effects in a large number of patho-

logic conditions. These include, severe sepsis [11, 41,

51], severe malaria [42], ischemia–reperfusion injury

[2, 14, 31], rejection of transplanted organs [8], induc-

tion of immunological tolerance [61], autoimmune

neuroinflammation [10], restenosis [4, 37], myocar-

dial infarction [27] and, as illustrated more recently,

type 2 diabetes and obesity [23].

The mechanism by which HO-1 induces cytopro-

tection remains unclear. Most of the end products of

heme degradation, including biliverdin/bilirubin, fer-

ritin, and carbon monoxide, may potentially modulate

oxidative stress. Carbon monoxide may induce vaso-

dilatation that could be protective in situations of or-

gan injury and also has anti-apoptotic and anti-

inflammatory properties [43].

Heme is a tetrapyrrole with a redox active iron cen-

ter, and functions as a co-factor for various proteins

such as hemoglobin, myoglobin, cytochromes, cata-

lases [40, 30]. Tissue damage or cell injury can desta-

bilize heme proteins and result in free heme which in

turn can damage cellular components and disrupt cel-

lular function [33].

It has been reported that the mRNA and protein

levels of HO-1, an enzyme responsive to changes in

the redox status, vary after treatment with CsA [46].

Alterations in heme oxygenase levels with decreased

expression in CsA treated animals indicate that down

regulation of HO-1 expression by CsA could be one

mechanism underlying CsA-induced toxicity. The

CsA-induced decrease in HO-1 expression is partial

and restorable, and attempts to preserve HO levels

may attenuate CsA toxicity. Therefore, HO has anti-

oxidant capacity and act as potent anti-inflammatory

protein whenever oxidative injury takes place. Indeed,

present study suggests that administration of NG in-

creased HO levels, perhaps due to anti-inflammatory

properties. This suggests that HO-1 upregulation by

NG is responsible, at least in part, for these protective

effects.

Flavonoids, including the aglycones, hesperetin,

and naringenin, have been reported to induce heme

oxygenase 1 (HO-1) protein expression in macro-

phages [24] and have proved that HO-1 is involved in

the inhibitory mechanism of flavonoids on LPS-

induced iNOS and NO production. In that context,

similar mechanism would have been implied by NG

to upregulate heme oxygenase expression in renal tis-

sues of CsA challenged rats. Thus, the effectiveness

of NG administration in preventing renal toxicity is

clearly evident by this study and it helps to maintain

the HO-1 levels and thus further reduces the oxidative

stress by this pathway. This result suggests that HO-1

plays a pivotal role in the maintenance of renal func-

tions by protecting the renal tubular epithelial cells

under oxidative stress.

The present study confers that NG co-sup-

plementation significantly decreased the levels of free

radicals such as LPO and OH� and enhanced the anti-

oxidant status and restored the normal architecture of

kidney in CsA challenged rats. Further expression of

HO-1 was maintained during NG treatment which

may be the major reason for renoprotection.
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