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Abstract: This paper considers synthesis problems of stabilizing dynamic output
feedback controllers for linear time-delay systems via infinite-dimensional Linear
Matrix Inequality (LMI) approach. We derive an existence condition and an
explicit formula of dynamic output feedback controllers for linear time-delay
systems, which guarantee the internal stability of the closed loop systems. The
derived dynamic output feedback controllers can be interpreted as controllers
which consist of memory state feedback controllers and memory observers. Next,
we introduce a technique to reduce conditions for synthesis in the form of infinite-
dimensional LMIs to a finite number of LMIs, and present a feasible algorithm
for synthesis of controllers based on the finite-dimensional LMIs. Finally we
demonstrate the efficacy of the proposed dynamic output feedback controllers by
a numerical case study.
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1. INTRODUCTION

The fact that the state space of linear time-delay
systems is infinite-dimensional leads generally to
infinite-dimensional characterizations for analy-
sis and synthesis in linear time-delay systems.
For example it is well known that the optimal
LQ control for linear time-delay systems is given
memory, i.e. infinite-dimensional, state feedback
form whose feedback gains are characterized by
the infinite-dimensional Riccati equations; as for
state feedback control synthesis, we could say that
memory state feedback controllers achieve better
performance than memoryless state feedback con-
trollers (T. Azuma and Uchida, 2002; J. He and

Lee, 1998; K. Ikeda and Uchida, 2001; Loiseau
and Brethe, 1996; Louisell, 1991). Of course, the
infinite-dimensional characterizations give us con-
trary hard problems in computations and imple-
mentations. Our concern is to find a feasible ap-
proach to such infinite-dimensional tasks in syn-
thesis for linear time-delay systems.

Recently the Linear Matrix Inequality (LMI) ap-
proach (S. Boyd and Balakrishnan, 1994; Dullerud
and Paganini, 2000) has been developed in anal-
ysis and synthesis problems for linear time-delay
systems and its advantages in numerical computa-
tions are presented (Choi and Chung, 1995; Choi
and Chung, 1997; de Souza and Li, 1999; J. He



and Lee, 1998); however, the approach is mostly
developed under some finite-dimensional assump-
tions assured by a special form of Lyapunov func-
tional in analysis and/or a memoryless controller
form in synthesis. One exception which does not
require such finite-dimensional assumptions is a
series of the works by Gu (Gu, 1997a; Gu, 1997b);
he proposes a discretization technique, which can
characterize a general Lyapunov functional with a
finite number of LMIs. As more recent references
on LMI for linear time-delay systems(de Souza,
2000) (and references inside) and (A. Fattouh
and Dion, 2000) should be mentioned; a synthesis
problem of state feedback with delay is discussed
in (de Souza, 2000) and a memoryless state feed-
back is designed for a system with distributed
time-delays in (A. Fattouh and Dion, 2000). Those
methods are developed under the assumption that
the full state is directly available. However, in
most practical situations, the actual state is not
available directly. Thus it is important to consider
output feedback control synthesis problems.

In this paper, we derive an existence condition
of stabilizing dynamic output feedback controllers
for linear time-delay systems in the form of
infinite-dimensinal LMIs, which is an extension
developed in our work (T. Azuma and Uchida,
2002). The derived dynamic output feedback con-
trollers are based on the Lyapunov functional that
is a natural extension of the functional to solve
the state feedback control problem of linear time-
delay systems, where the basic structure of the
Lyapunov function to solve H∞ output feedback
control problem of linear systems without delays
proposed in (Uchida and Fujita, 1989; Uchida and
Fujita, 1992) is adopted as the key idea to con-
struct the functional. Thus the derived dynamic
output feedback controllers can be interpreted as
controllers which consist of memory state feed-
back controllers and observers. Because these ob-
servers have a special structure such as the mem-
ory type, we call these observers as ”memory ob-
servers”. Next we reduce the infinite-dimensional
LMIs to a finite-dimensional LMIs by applying
the technique proposed in results (T. Azuma and
Uchida, 1997; T. Azuma and Fujita, 2000). Fi-
nally, we demonstrate the efficacy of the derived
output feedback controllers by a numerical case
study.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMURATION

Consider the following linear time-delay system
defined on the time interval [0,∞) and described
by

ẋ(t) = A0x(t) +A1x(t− h) +Bu(t),
y(t) = Cx(t),
x(β) = φ(β), −h ≤ β ≤ 0,

(1)

where x(t) ∈ R
n is the internal variable, u(t) ∈ R

r

is the control input, y(t) ∈ R
m is the measurement

output, φ(β) ∈ L2([−h, 0];Rn) is a continuous
initial function. The parameter h denotes the time
delay and h > 0.

The purpose of this paper is to design dynamic
output feedback controllers which stabilize the lin-
ear time-delay system (1). In this paper, we use
the following functional for stabilization of the
linear time-delay system (1).

V (xs) = x′(t)Mx(t) + e′(t)γ2T−1e(t)

+
∫ 0

−h

x′(t+ β)Qx(t+ β)dβ

−
∫ 0

−h

x′(t+ β)Qe(t+ β)dβ

−
∫ 0

−h

e(t+ β)′Qx(t+ β)dβ

+
∫ 0

−h

e′(t+ β)(γ2H +Q)e(t+ β)dβ

+x′(t)
∫ 0

−h

Mx(t+ β)dβ

+e′(t)
∫ 0

−h

γ2T−1e(t+ β)dβ

+
∫ 0

−h

x′(t+ α)Mdαx(t)

+
∫ 0

−h

e′(t+ α)γ2T−1dαe(t)

+
∫ 0

−h

∫ 0

−h

x′(t+ α)(S(α, β) +M)x(t+ β)dαdβ

−
∫ 0

−h

∫ 0

−h

x′(t+ α)S(α, β)e(t + β)dαdβ

−
∫ 0

−h

∫ 0

−h

e′(t+ α)S(α, β)x(t + β)dαdβ

+
∫ 0

−h

∫ 0

−h

e′(t+ α)(γ2J(α, β)

+S(α, β) + γ2T−1)e(t+ β)dαdβ, (2)

where

xs = (x(t), xt, e(t), et),
xt = {x(t+ β)| − h ≤ β ≤ 0},
et = {e(t+ β)| − h ≤ β ≤ 0},
M, Q, T, H ∈ R

n×n,

S(α, β), J(α, β) ∈ L2([−h, 0]× [−h, 0];Rn×n),

and e(t) denotes the error e(t) = x(t) − xu(t) in
which xu(t) denotes the state of dynamic output
feedback controllers. The parameter γ is a free
parameter in case of synthesis problems for stabi-
lization of the linear time-delay system (1) via dy-
namic output feedback controllers. The parameter
γ influences feasibility of dynamic output feedback



controllers. If H∞ contol problems are considered,
γ is the L2 gain of the closed loop systems.

Remark 1. We have a result concerning about
stabilization problems of the system (1) by using
this functional. This is a natural extension of
the functional to solve the state feedback control
problem of linear time-delay systems, whose basic
structure is based on the Lyapunov function to
solve H∞ output feedback control problem of
linear systems without delays proposed in (Uchida
and Fujita, 1989; Uchida and Fujita, 1992).

In this paper, we use a notation,

Θ(α, β) =
[

Θ0 Θ1(β)
Θ′

1(α) Θ2(α, β)

]
> 0,

∀α, β ∈ [−h, 0],
which means that Θ0 and Θ2(α, β) are symmetric,
that is Θ0 = Θ′

0 and Θ2(α, β) = Θ′
2(α, β) =

Θ2(β, α), and symmetric matrix,

1
2
(Θ(α, β) + Θ′(α, β)) =[

Θ0
1
2 (Θ1(α) + Θ1(β))

1
2 (Θ

′
1(α) + Θ′

1(β))
1
2 (Θ2(α, β) + Θ2(β, α))

]
,

is positive definite for each (α, β) ∈ [−h, 0] ×
[−h, 0], where “ ′ ” denotes transposition of vec-
tor and matrix. Note that, if a matrix function
Θ(α, β) > 0 is continuous in (α, β), there exists a
positive number λ such that Θ(α, β) ≥ λI for all
(α, β) ∈ [−h, 0]× [−h, 0], where I denotes identity
matrix.

3. OUTPUT FEEDBACK CONTROL
SYNTHESIS

We have the following main theorem for stabiliza-
tion problems of the system (1) using dynamic
output feedback controllers based on the Lya-
punov functional (2).

Theorem 2. Given γ ∈ R, if there exist constant
matrices N, L, R, H, Z0, Y0 and continuously
differentiable matrix functions Z01(β), Y01(β),
X(α, β), J(α, β) which satisfy the following in-
equalities for ∀α ∈ [−h, 0] and ∀β ∈ [−h, 0],

Θst(α, β) :=
[
Θst

11(α, β) γ−1Θst
12

γ−1(Θst
12)

′ Θst
22(α, β)

]
< 0,

[
N γ−1I
γ−1I R

]
> 0,

L > 0, H > 0, X(α, β) > 0, J(α, β) > 0,

(3)

where

Θst
11(α, β) =




A0N +NA′
0

−B2Z0 − Z ′
0B

′
2

+L+ 2N
A1N −N

NA′
1 −N −L

A0N +X(α, 0) +N
−B2Z0 − Z ′

01(α)B′
2

A1N −N
−X(α,−h)

NA′
0 +X(0, β) +N

−Z ′
0B

′
2 −B2Z01(β)

NA′
1 −X(−h, β)−N

−B2Z01(β) − Z ′
01(α)B

′
2

−
(

∂
∂α + ∂

∂β

)
X(α, β)



,

Θst
12 =


 2I A1 − I −A0 + I

−I 0 0
A0 + I A1 − I 0


 ,

Θst
22(α, β) =




RA0 +A′
0R

−Y0C2 − C′
2Y

′
0

+H + 2R
RA1 −R

A′
1R −R −H

RA0 + J(α, 0) +R
−Y0C2 − C′

2Y
′
01(α)

RA1 −R
−J(α,−h)

A′
0R+ J(0, β) +R

−C ′
2Y

′
0 − Y01(β)C2

A′
1R− J(−h, β)−R

−Y01(β)C2 − C′
2Y

′
01(α)

−
(

∂
∂α + ∂

∂β

)
J(α, β)



,

then the closed loop system with the output
feedback controller
ẋu(t) = AK0xu(t) +AK1xu(t− h)

+
∫ 0

−h

AK2(β)xu(t+ β)dβ

+BK0y(t) +
∫ 0

−h

BK01(β)y(t+ β)dβ,

u(t) = CK0xu(t) +
∫ 0

−h

CK01(β)xu(t+ β)dβ,

(4)

where

AK0 =A0 +BCK0 −BK0C + γ−2TE,

AK1 = (I + γ−2TM)A1,

AK2(β) = (I + γ−2TM)BCK01(β) −BK01(β)C,
BK0 = TY0,

BK01(β) = TY01(β),
CK0 =−Z0M,

CK01(β) =−Z01(β)M,
T = (I − γ−2PM)−1P,

E =MA0 +A′
0M −MBZ0M,

is internally stable, where M := N−1, P := R−1.

Though the detail of the proof of this theorem is
omitted, the key idea in the proof is explained.

The key idea is to use the output feedback control
synthesis technique for linear systems with no
time-delay proposed in papers (Uchida and Fujita,
1989; Uchida and Fujita, 1992). According to this



output feedback control synthesis technique, the
state of the closed loop system xcl(t) is defined as
follows,

xcl(t) =
[

x(t)
x(t)− xu(t)

]
.

For linear time-delay system (1), the closed loop
system with the controller (4) is given as

ẋcl(t) =Acl0xcl(t) +Acl1xcl(t− h)
+

∫ 0

−h

Acl01(β)xcl(t+ β)dβ, (5)

where

Acl0 =
[
A0 +B2CK0 −B2CK0

−γ−2TE A0 −BK0C2 + γ−2TE

]
,

Acl1 =
[

A1 0
−γ−2TMA1 A1 + γ−2TMA1

]
,

Acl01(β) =
 B2CK01(β) −B2CK01(β)

−γ−2TMB2CK01(β)
γ−2TMB2CK01(β)

−BK01(β)C2


 .

Using the condition (3) in Theorem 2, we can
prove that the functional (2) is a Lyapunov func-
tional for the closed loop system (5).

Now considering the element of the state of the
closed loop system xcl(t), a condition x(t) = xu(t)
is satisfied in the steady state if the internal
stability of the closed loop system is assured. Thus
the dymanics of xu(t) can be interpreted as an
observer of the state x(t) for the linear time-delay
system (1). The dynamics xu(t) in (4) can be
rewritten as

ẋu(t) = (A0 + γ−2TE)xu(t)
+(A1 + γ−2TMA1)xu(t− h)
+

∫ 0

−h

γ−2TMBCK01(β)xu(t+ β)dβ

+Bu(t) +BK0(y(t)− Cxu(t))

+
∫ 0

−h

BK01(β)(y(t+ β)− Cxu(t+ β))dβ.

Considering that this dynamics is an observer for
the linear time-delay system (1), the last term of
this dynamics denotes the integral of the observer
error y − Cxu. So we call this observer as the
”memory observer”. This memory observer is a
new one with the special structure for the linear
time-delay system (1). Thus the derived dynamic
output feedback controller (4) can be understood as
the controller which consists of the memory state
feedback contoller and the memory observer. The
fact that the dynamics xu(t) in (4) properly acts
as an observer for linear time-delay system (1) is
shown in the numerical example.

Remark 3. Theorem 2 is proposed for the dy-
namic output feedback control synthesis of the
linear time-delay system (1). This theorem is an

extension of the result of the memory state feed-
back control synthesis for linear time-delay sys-
tems (T. Azuma and Uchida, 2002).

4. REDUCTION TO A FINITE NUMBER OF
LMI CONDITIONS

Inequalities in Theorem 2 depend on parameters
α and β. It seems difficult to solve these infinite-
dimensional (parameter-dependent) inequalities
directly. In our approach, we reduce these infinite-
dimensional inequalities to a finite number of
LMIs by using the technique in (T. Azuma and
Uchida, 1997; T. Azuma and Fujita, 2000), and
obtain the solution of the infinite-dimensional
inequalities by computing the finite number of
LMIs.

Here we restrict solution in their theorems to the
following forms,

X(α, β) = X0 + g1(α, β)X1 + · · ·+ glX (α, β)XlX ,
J(α, β) = J0 + h1(α, β)J1 + · · ·+ hlJ (α, β)JlJ ,
Z01(β) = Z01

0 + p1(β)Z01
1 + · · ·+ plZ (β)Z01

lZ
,

Y01(β) = Y 01
0 + q1(β)Y 01

1 + · · ·+ qlY (β)Y 01
lY
,

(6)

where gi, hi : R
2 → R is continuous differentiable

function of α and β such that

gi(α, β) = gi(β, α), hi(α, β) = hi(β, α),

and pi, qi : R → R is a continuous differentiable
function of β and the unknown matrices satisfy

Xi ∈ R
n×n, X ′

i = Xi (i = 0, , 1, · · · , lX),
Ji ∈ R

n×n, J ′
i = Ji (i = 0, , 1, · · · , lJ),

Z01
i ∈ R

l×n (i = 0, 1, · · · , lZ),
Y 01

i ∈ R
l×n (i = 0, 1, · · · , lY ).

Note that equations (6) satisfy matrix inequalities
(3). Then inequalities in Theorem 2 can be written
in the form of the following parameter dependent
LMI condition,

F0(M) + f1(ξ)F1(M) + · · ·+ fr(ξ)Fr(M) < 0,(7)

where ξ ∈ Ξ = {[α β]′ | α ∈ [−h, 0], β ∈
[−h, 0]}, fi : R

2 → R is a continuous function
of α and β, and a symmetric matrix function Fi

depends affinely on the unknown matrix M =
[X0, · · · , XlX , J0, · · · , JlJ , Z

01
0 , · · · , Z01

lZ
Y 01

0 , · · · ,
Y 01

lY
]. The parameter dependent LMI condition

(7) can be reduced to a finite number of LMI
conditions as follows.

Theorem 4. (T. Azuma and Uchida, 1997) Let
{p1, p2, · · · , pq} be vertices of a convex poly-
hedron which includes the curved surface T ,

T = {[f1(ξ) f2(ξ) · · · fr(ξ)]′ | ξ ∈ Ξ}.
Assume that there exists M which satisfies the
following LMI condition for all pi(i = 1, 2, · · · , q),



F0(M) + pi1F1(M) + · · ·+ pirFr(M) < 0, (8)

where pij is the jth element of pi. ThenM satisfies
(7) for all ξ ∈ Ξ.

A general technique to construct a convex poly-
hedron which includes the curved surface T is
proposed in (T. Azuma and Uchida, 1997). In the
special case that r = 2s

fi(α, β) =
{
fi(α), i = 1, 2, · · · , s,
fi(β), i = s+ 1, s+ 2, · · · , 2s, ,

fi(α) and fi(β) are polynomial functions of α
and β respectively, we can use a simple technique
to construct such a convex polyhedron, which is
given by the paper (K. Ikeda and Uchida, 2001). If
the parameter is scalar and fi is given as a general
polynomial function, a technique to construct
a convex polyhedron which includes the curved
surface T is proposed in the paper (T. Azuma and
Fujita, 2000) and less conservative results can be
obtained by using this technique.

5. NUMERICAL EXAMPLE

In this section, we illustrate the efficacy of the
memory output feedback controller proposed in
Theorem 2. Consider the following time-delay
system,

ẋ(t) = A0x(t) +A1x(t− h) +Bu(t)
y(t) = Cx(t)

where the system parameter is given as follows,

A0 =
[
1 2
3 −1

]
, A1 =

[
1 2
0 0

]

B =
[
1
0

]
, C =

[
0 1

]
, h = 1.0,

and the initial state is given as

x(β) =
[
0
0

]
, −h ≤ β < 0, x(0) =

[
10
5

]
.

Here note that the open loop system (u(t) = 0) is
unstable(See Fig. 1).

To use the technique of the previous section 4, we
restrict solutions of Theorem 2 as follows,

X(α, β) = X0 + (α+ β)X1 + (α2 + β2)X2

J(α, β) = J0 + (α+ β)J1 + (α2 + β2)J2

Z01(β) = Z01
0 + βZ01

1 + β2Z01
2

Y01(β) = Y 01
0 + βY 01

1 + β2Y 01
2 .

(9)

The value of γ is chosen as 100 by considering
feasibility of controllers in Theorem 2. Finally the
finite number of LMIs is 30 and the computation
time is 7 [sec] by using MATLAB on the computer
with Athron-1GHz and 512MB-memory. System
parameters of the obtained dynamic output feed-
back controller (4) are given as

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5x 10
4

time [s]

 x
(t

)

Fig. 1. The initial value response of the open loop
system
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Fig. 2. The initial value response of the closed loop
system
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time [s]

 e
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Fig. 3. The response of the estimated error x(t)−
xu(t)

AK0 =
[−71.996 −511.41

2.9336 −172.79
]
,

AK1 =
[

1.0026 2.0052
0.0010161 0.0020322

]
,

AK2(β) =
[ −32.084 −410.22
−0.032516 −146.57

]
+ β

[ −20.779 −18.5
−0.021058 0.061289

]

+β2

[
6.8301 −30.575

0.0069221 −14.62
]
,



BK0 =
[
436.52
171.72

]
,

BK01(β) =
[
375.25
146.53

]
+ β

[ −2.396
−0.0825

]
+ β2

[
38.4
14.628

]
,

CK0 =
[−72.826 −76.707 ]

,

CK01(β) =
[−32.0 −34.883 ]

+ β
[−20.725 −20.842 ]

+β2
[
6.8124 7.8042

]
.

Using this controller, we obtain the simulation
result depicted in Fig. 2 and Fig. 3. Fig. 2 shows
the initial value response of the state x(t) =
[x1(t) x2(t)]′ of the closed loop system, where the
solid line denotes x1(t) and the dotted line denotes
x2(t). The state x(t) of the closed loop system
converges zero. Fig. 3 shows the response of the
observer error e(t) = x(t) − xu(t) = [e1(t) e2(t)]′,
where the solid line denotes e1(t) and the dotted
line denotes e2(t). The error e(t) also converges
zero.

6. CONCLUSION

In this paper, dynamic output feedback controller
synthesis problems for linear time-delay systems
via infinite-dimensional LMI approach were con-
sidered. An existence condition for synthesis prob-
lems of dynamic output feedback controllers was
derived in the form of infinite-dimensional LMIs.
The derived dynamics of output feedback con-
trollers xu(t) can be interpreted as observers for
linear time-delay systems. Because the observers
have a special structure such as the memory type,
we call the observers as ”memory observers”. Thus
derived dynamic output feedback controllers con-
sisted of memory state feedback controllers and
memory observers. A technique to reduce the
infinite-dimensional LMIs to a finite-dimensional
LMIs, which provide feasible formulas, was also
shown . Finally we demonstrated the efficacy of
the derived dynamic output feedback controller
and our proposed approach by a numerical exam-
ple.
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