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ABSTRACT

The paper proposes a robust estimation method which im-

plements, in cascade, two algorithms: (i) a Random Sample

and Consensus (RANSAC) algorithm and (ii) a novel non-

linear prediction error estimator minimizing a cost function

inspired by the mathematical definition of Gibbs entropy.

The minimization of the nonlinear cost function allows to

refine the Consensus Set found with standard RANSAC in

order to reach optimal estimates of geometric transformation

parameters under image stitching context. The method has

been experimentally tested and compared with a standard

RANSAC-MSAC algorithm where noticeable improvements

are recorded in terms of computational complexity and qual-

ity of the stitching process, namely of the mean squared

symmetric re-projection error.

Index Terms— Image matching, Homography Estima-

tion, RANSAC-LEL

1. INTRODUCTION

Robust estimation in computer vision has been applied to

many problems that range from line and plane estimation

[1] to foundamental matrix estimation [2] etc. Any robust

estimator technique must find the parameter vector being

at the same time prone to the presence of outliers that are in

disagreement with the assumed model. Several robust estima-

tion methods have been proposed in the last years: maximum

likelihood estimators, least median of squares (LMeds) [3]

and later the most popular Random Sample and Consensus

(RANSAC) [4] which has become a standard. RANSAC has

gained more interests to several robust estimation problems

due to its ability to detect and clean datasets with more than

50% of outliers. Repeatedly, subsets of the input data (for

example, a set of tentative correspondences) are randomly

selected (with replacement), and model parameters are com-

puted by fitting these subsets. In the second step, the quality

of the parameters is evaluated on the input data.

However, RANSAC requires to select some tuning coef-

ficients such as the error tolerance which is unknown in ad-

vance in many real world problems. The performance of stan-

dard RANSAC can be improved by modifying its cost func-

tion using an M-Estimator Sample and Consensus (MSAC)

[5] approach, but this also requires a user-specified error toler-

ance. The process is terminated when the probability of find-

ing a better model becomes lower than a user-specified prob-

ability. Optimized version of RANSAC have been proposed

in [6] to speed-up the estimation process, and in [7] for im-

age matching process using regional affine filters to classify

inliers against outliers. In this paper the RANSAC method

to estimate homography is introduced and compared with the

proposed RANSAC-LEL technique inspired by the results in

[8]. Experimental results suggest the superiority of the pro-

posed technique in terms of precision of the solution (MSE)

and computational complexity.

2. AN ENTROPY-LIKE ESTIMATOR

Let us consider a sample set X = {[x′,x]i}
N
i=1 of point cor-

respondeces x′ ↔ x between two images. We consider Aθ

a model representing a geometric transformation to be es-

timated with respect to noisy computed correspondeces X.

To this aim, given θ([x′,x]1, . . . , [x
′,x]h) the parameter vec-

tor estimated with h << N observations and representing

a minimal sample set (for equi-form, affine and projective

h = 2, 3, 4 respectively). The optimal estimated model is

given by x
′ = Aθx which produces an error given by the

symmetric transfer function. Let us define the error associated

to the solutionAθ and computed over each correspondence as

given by the i− th residual

r2i = e([x′,x]i,Aθ) =

= d(xi,A
−1
θ x

′
i)

2 + d(x′
i,Aθxi) i = 1, . . . N (1)

with d the Euclidean distance. In conventional RANSAC ter-

minology, the residual defined in (1) defines a Consensus Set

(CS) defined by the following:

S(θ) = {[x′,x] ∈ X : e([x′,x]i,Aθ) ≤ δ} (2)

Given the residual ri as in equation (1), let us define [8]:

D =

N
∑

j=1

r2j , (3)



namely the Least Square (LS) estimation cost. Then define

the relative squared residuals qi as

if D 6= 0 =⇒ qi :=
r2i

∑N

j=1 r
2
j

: qi ∈ [0, 1],

N
∑

i=1

qi = 1,

(4)

and finally

H =

{

0 if D = 0

− 1
logN

∑N

i=1 qi log qi otherwise
(5)

namelyH enjoys all the mathematical properties of a normal-

ized entropy function associated to the sequence of ”probabil-

ity” - like qi : i = 1, 2, . . . , N . In particular:

H ∈ [0, 1] (6)

H = 0 iff







ri = 0 ∀ i ∈ [1, N ]
or

∃ ! i∗ : ri∗ 6= 0 and ri = 0 ∀ i 6= i∗
(7)

H = 1 iff r2i = r2j 6= 0 ∀ i, j ∈ [1, N ]. (8)

Notice that the hypothesis that D 6= 0 in the definition (5) is

needed just to prevent the singular situation occurring when

the LS fit is perfect. This is not a practical limit as prior

to computing H one can always check if the LS fit is per-

fect. In Physics the entropy of a system admitting N dis-

crete states with probabilities p1, p2, . . . , pN is computed as

−
∑N

i=1 pi log pi. It is a very well known fact that such func-

tion is a very sensitive measure of the distribution of the prob-

abilities. Configurations with only a fraction of highly proba-

ble states have a much lower entropy of configurations where

most states are approximately equally probable. Motivated

by this fact, the function H is defined with the aim of com-

puting a robust estimate of the model parameter vector θ. In
particular given that the entropy-like function H as defined

by equation (5) depends on θ through the residuals ri, the
following estimator is proposed:

θ̂LEL := argmin
θ

H (9)

where LEL stands for Least Entropy-Like [8]. The idea be-

hind the θ̂LEL estimator defined in (9) is that such estimate

will correspond either to making all the residuals null, or

to making the relative squared residuals as little equally dis-

tributed as possible according to the entropy-like functionH ,

the available data and the model structure. The key to ro-

bustness with respect to outliers is related to the fact that

the devised penalty function does not directly measure the

(weighted) mean square error (that as known tends to level out

or ”low pass” residuals), but only the distribution of the rela-

tive squared errors. A more detailed analysis of the properties

of this estimator, including the singular situations associated

with the (practically impossible) perfect fit case ri = 0 ∀ i,

can be found in [8]. According with the experience so far ac-

quired with simulated [8] and real range data for plane estima-

tion [9] [1] the computation of θ̂LEL can be successfully per-

formed locally and numerically from an initialization value

sufficiently close to the real value of θ.
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Fig. 1. Comparisons of inliers between weak Ransac (a-b)

and the successively optimized LEL solution (c-d). Note the

reduction of the respective consensus sets dimensions. Com-

pare results in (c) and (d) with those obtained with standard

RANSAC-MSAC of figure 2.
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Fig. 2. Results from standard RANSAC-MSAC that produces

60 noisy correspondeces.

3. EXPERIMENTAL SETUP

The dataset is composed of a sequence of underwater images

(379×172 pixels) acquired from a ROV while inspecting an

interesting archeological site acquired in the Porto Cesareo’s

(Lecce, Italy) Marine Protected Area (images were acquired



from an area that contains seven columns in cipolin marble

dating to the Roman age). An affine transformation is used

for stitching. SURF detector [10] and correlations are used to

extract and establish keypoints correspondences. In general,

LEL estimator can be applied after two different RANSAC

procedures: (1) RANSAC-LEL using ”weak” RANSAC

procedure, i.e. assuming a very high probability of inliers

(resulting in a small number of iterations); (2) using optimal

RANSAC-MSAC with a robust Consensus Set. In either

cases, LEL estimator outperform RANSAC-MSAC alone.

In the first configuration the speed-up is very noticeable.

We will describe the first procedure and compare to classical

RANSAC-MSAC [5]. Algorithm 1 shows the RANSAC-LEL

pseudo-code. Both the algorithms are able to detect the affine

transformation, and the two solutions provide different Con-

sensus Sets as well as different symmetric transfer errors. To

make RANSAC-MSAC robust, we have set PInliers = 0.6
and no limit to maximum iterations. Instead, RANSAC-LEL

uses PInliers = 0.999 and few classical RANSAC [4] inter-

ations in order to have an initial estimate (in a least square

sense) of the solution θRANSAC to successively optimize the

least entropy-like cost function. This initial stage brings to a

wanted large and noisy Consensus set CSRANSAC due to a

high PInlier. Then the minimization of the non-linear eq. (5)

is performed with Levenberg Marquardt method (similarly to

[9]), that allows to smoothly switch from the GaussNewton

method to the steepest descent. The estimation vector that in

our experiments regards and affine transformation, θ̂k ∈ R
6

is updated as follows:

θ̂k+1 := θ̂k − γ(∇2
θH+ µ · diag∇2

θH)−1∇2
θH

⊤ (10)

where it moves toward the solution of the optimization prob-

lem along the direction where the Gradient ∇θH ∈ R
1×6 is

smaller. The solution found θLEL with the optimization stage

is then used to compute the symmetric transfer error and to

histogram the residuals (figure 1d). The distribution reveals a

significant accumulation near zero, where the Consensus Set

is defined. To this aim, a suitable threshold δ as in eq. (2) is

found after kernel density estimation (Parzen windows with

Gaussian kernels K(·)) of residuals ri

f̂h
θ̂
(r; [r

1θ̂
, . . . , r

Nθ̂
]) =

1

N

N
∑

i=1

1

h
θ̂

K

(

r − ri
h
θ̂

)

(11)

and finding first local minimum on the right side of the first

mode near zero as shown in figure 3. So far, this threshold

defines a new consensus set CSLEL which is always smaller

than CSRANSAC . Thus with CSLEL a new solution is re-

estimated using classical least squares method. Figure 1a-b

shows correspondeses and residual distribution from the weak

RANSAC CSRANSAC , which follows in figure 1c-d the re-

sults of the entropy cost minimization by starting from the so-

lution obtained with weak RANSAC. LEL estimator gives al-

ways smaller consensus sets but with more precise correspon-

dences, i.e. with the a reduced mean squared symmetric trans-

fer error. The results obtained with fewer iterations can be

compared with the robust and complex RANSAC-MSAC of

figure 2a-b. Figure 4 shows comparisons of the mean squared

symmetric transfer error between RANSAC-MSAC and the

proposed technique (weak) RANSAC-LEL. The figure also

shows another experiment that allows to prove that LEL esti-

mator always reduces residual errors even when applied after

the RANSAC-MSAC method. The computational complex-

ity has been measured in terms of elapsed time to find cor-

respondences and estimate homography, and are reported in

figure 5. It is interesting to note that RANSAC-LEL has a

noticeable lower complexity, i.e. a faster computation. The

mosaic built with 20 images, is shown in figure 6. Note that

the images have not been rectified and no radiometric correc-

tion has been performed. In conclusion we proved that the

novel least entropy-like estimator produces better estimates

either used in cascade to a weak RANSAC algorithm or to the

robust RANSAC-MSAC with a smaller number of PInliers.

Algorithm 1 RANSAC-LEL Algorithm

1: Given data set X = {xi}
N
i=1 of noisy correspondences

2: Get Consensus Set (CSRANSAC) with weak RANSAC

iterations PInliers = 0.9999 (results in less than 10 iter-

ations) and compute θRANSAC with least squares

3: Compute θLEL by optimizing LEL cost function of eq.

(5) by using Levenberg Marquardt (LM) method with ini-

tial guess θ0 = θRANSAC

4: Recompute residuals with new model θLEL and points in

CSRANSAC

5: Compute kernel density estimation of new residuals with

bandwidth hθ = (1/4) · MAD(r1, . . . , r|CSRANSAC |)
and find new threshold after first mode as shown in figure

3

6: Get new Consensus Set (CSLEL) with the found thresh-

old

7: Recompute the new model θ with CSLEL using least

squares
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Fig. 3. Kernel density estimation of residuals with Gaussian

Kernels and threshold setup.
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Fig. 4. Cost functions based on symmetric transfer errors

for the RANSAC-LEL (PInliers = 0.9999, σ = 0.89),
RANSAC-MSAC (PInliers = 0.6, σ = 0.8), and LEL ap-

plied after RANSAC-MSAC.
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Fig. 5. Time in seconds needed to build the mosaic from 20

underwater images.
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