
CONTEXT-BASED VISION: RECOGNIZINGOBJECTS USING INFORMATION FROM BOTH2D AND 3D IMAGERYThomas M. Strat and Martin A. FischlerArti�cial Intelligence CenterSRI International333 Ravenswood AvenueMenlo Park, California 94025AbstractThis paper describes results from an ongoing project concerned with recognizing ob-jects in complex scene domains, and especially in the domain that includes the naturaloutdoor world. Traditional machine recognition paradigms assume either (1) that allobjects of interest are de�nable by a relatively small number of explicit shape models,or (2) that all objects of interest have characteristic, locally measurable features. Thefailure of both assumptions in a complex domain such as the natural outdoor world hasa dramatic impact on the form of an acceptable architecture for an object recognitionsystem.In our work, we make the use of contextual information a central issue, and ex-plicitly design a system to identify and use context as an integral part of recognition.In so doing, we provide a new paradigm for visual recognition that eliminates thetraditional dependence on stored geometric models and universal image partitioningalgorithms. This paradigm combines the results of many simple procedures that ana-lyze monochrome, color, stereo, or 3D range images. By interpreting their results alongwith relevant contextual knowledge, a reliable recognition result is achieved, even inthe face of imperfect visual procedures. Initial experimentation with the system onground-level outdoor imagery has already demonstrated competence beyond what webelieve is attainable with other existing vision systems1.1 IntroductionMuch of the progress that has been made to date in machine vision has been based, almostexclusively, on shape comparison and classi�cation employing locally measurable attributesof the imaged objects (e.g., color and texture) [2, 5, 6, 11, 13]. Natural objects viewed1Supported by the Defense Advanced Research Projects Agency under contracts MDA903-86-C-0084,89F737300, and DACA76-90-C-0021. 1



under realistic conditions do not have uniform shapes which can be matched against storedprototypes, and their local surface properties are too variable to be unique determiners ofidentity. The standard machine vision recognition paradigms fail to provide a means forreliably recognizing any of the object classes common to the natural outdoor world (e.g.,trees, bushes, rocks, and rivers). In this paper and its predecessors [7, 8, 21, 22], we haveoutlined a new paradigm which explicitly invokes context and stored knowledge to controlthe complexity of the decision-making processes involved in correctly identifying naturalobjects and describing natural scenes.Scene description is properly viewed as a problem in scienti�c discovery. Ultimately acollection of assertions must be provided, each assertion stating the identity and relevantattributes (e.g., spatial location) of some object depicted (or possibly invisible, but inferredto be present) in an imaged scene. There are two critical di�erences between the problemdomain addressed in this paper and the class of problems capable of being solved by existingmachine vision paradigms.1.1 Hypothesis GenerationThe �rst critical di�erence concerns hypothesis generation. The acceptance of either of twoassumptions trivializes the hypothesis generation problem for conventional machine visionsystems. Conventional systems have no e�ective machinery for hypothesis generation whenboth assumptions are invalid | in a sense, this failure of both assumptions is one of themain attributes of a complex domain.The two assumptions are:1. All objects of interest are de�ned by a relatively small number of explicit shape models.This makes it computationally feasible to exhaustively search for the presence of thesemodels (via \geometric alignment") as a way of producing a suitable description ofsome given scene (as in [4] and [13], for example).2. All objects of interest have characteristic features, homogeneous and locally measur-able in an image (e.g., color or texture), which are reliable indicators of the object'sidentity. This either allows direct determination of the presence of objects using sta-tistical decision theoretic methods (based on classi�cation of the corresponding featurevectors); or permits the successful employment of a \universal" partitioning algorithmwhich �nds regions (homogeneous in the given attributes) in the imagery correspondingto the objects of interest.The validity of the second assumption allows a single universal procedure (the partitioningalgorithm) to �nd regions in the imagery which are good delineations of the objects ofinterest. These regions provide an e�ective basis for generating the required hypotheses forobject location and identity [6].The failure of both assumptions has a dramatic impact on the form of an acceptablearchitecture/control-structure for an object recognition system facing a complex domain.2



Not only are we required to introduce an explicit mechanism for computationally feasiblehypothesis generation, but we must provide additional machinery for representing and ac-cessing the supporting information necessary for such hypothesis generation. We are forcedto cross the line from what has been called model-based vision to an \AI-complete" problemdomain.Much of our work has addressed devising the representations and control structures (i.e.,the introduction of context sets in a production rule type framework) needed to merge thevision-speci�c and more general AI technologies.1.2 Hypothesis EvaluationThe second critical di�erence between the approach we propose and existing machine visionparadigms is their distinct treatment of the scene objects to be recognized. Conventionalmachine vision paradigms de�ne scene objects to be independent entities which can (andshould be) isolated from the rest of the scene and then labeled on the basis of their di�erencesfrom other objects for which we have names (and models). The system we describe in thispaper, called Condor, treats objects as component parts of larger contexts (many di�erentcontexts for each object) from which they cannot be separated | like quarks in modernphysics, they never appear in isolation and have no independent existence. Once a contextis recognized, its individual components may be instantiated and given names.The need to embed objects in more extensive contexts, rather than treating them asindependent entities, is due to the following considerations (in complex domains):1. The image appearance of an object can be quite variable, not only due to intrinsic shapevariability, but also due to viewing conditions (e.g., resolution, occlusion, and lighting).The object's relationship to its surroundings is often a major factor in determining itsidentity | even for a human.2. Some objects (such as a river or a bridge) cannot be de�ned, let alone recognized inan image, independent of their embedding in the surrounding terrain.The architectural and computational implications of context-based de�nitions is of equalsigni�cance to those caused by the need to provide special machinery for hypothesis gener-ation. Fortunately, much of the needed machinery can serve both functions. Thus, contextsets not only de�ne objects, but control the generation of (candidate) hypotheses from either2D or 3D imagery and the subsequent evaluation of those hypotheses.Having to deal with contexts, rather than independent objects introduces a major increasein computational complexity. Contexts are much more numerous than the objects they arecomposed of, and contexts are less precisely de�ned. The veri�cation problem changes fromidentifying objects based on su�cient conditions (e.g., of similarity) to that of eliminatingalternatives based on failure to satisfy necessary conditions. We are required to deduce muchmore about the nature of the overall scene | especially its physical structure.3



To the extent that the Condor architecture, and its representations and partitioning ofknowledge are successful in advancing the state-of-the-art in machine vision for complexnatural scenes, we believe that this success will also contribute to increased competence inother non-vision related AI classi�cation tasks in complex domains, but especially to thosetasks which require decision making involving both iconic and symbolic information.2 BackgroundThe term `recognition' in its most general sense involves associating linguistic labels withscene entities. The vast majority of research on recognition in machine vision relies on theuse of a known geometric model of the object being \recognized." Such systems are oftenintended for use in an industrial setting where one or a small number of parts are to belocated within a scene. The goal of these systems is the location and orientation of theobjects of interest.Some research has been directed toward relaxing the strict assumption of a fully speci�edgeometric model. These techniques employ a parameterized model (as in Acronym [5]), or ageneric model (as in Fua [9]). While much less restrictive in scope, these techniques all relyon shape as the primary attribute for recognition.A third category of recognition research involves no dependency on stored geometricmodels. Recognition is attempted on the basis of cues besides shape, such as size, location,appearance, purpose, and context. Hawkeye [3], MSYS [2], and the approach described here,are examples of the few systems that have been designed without a primary reliance ongeometric models.For the natural world, precise geometric models of natural objects are not available, andexisting techniques o�er little insight on how to recognize natural scenes. There has beensome work directed toward the goal of semantic understanding of natural outdoor scenes,but surprisingly, very little new work has been initiated in the last ten years [2, 11, 16, 17,18, 23, 25]. All of these approaches begin by partitioning the image into regions, whichpresumably mirrors a \natural" decomposition of the scene into \objects." The regions arethen analyzed in one way or another to determine their interrelationships, to merge them intolarger regions, and ultimately, to assign each region a label that categorizes it semantically.This basic reliance on an initial \universal" partitioning is a critical weakness that we avoidin the approach o�ered in this paper.3 Conceptual ArchitectureThe conceptual architecture of the system we describe, called Condor (for context-drivenobject recognition), is depicted in Figure 1. The input to the system is an image or setof images that may include intensity, range, color, or other data modalities. The primaryoutput of the system is a labeled 3D model of the scene. The labels included in the output4



Figure 1: Conceptual architecture of Condordescription denote object classes that the system has been tasked to recognize, plus othersfrom the recognition vocabulary that happen to be found useful during the recognitionprocess. An object class is a category of scene features such asfsky, ground, geometric-horizon, skyline, foliage, bush, tree-trunk, tree-crown, tree, trail, ...g A central component of the architecture is a special-purpose knowledge/database used forstoring and providing access to knowledge about the visual world, as well as tentative con-clusions derived during operation of the system. In Condor, these capabilities are providedby the Core Knowledge Structure (CKS) [20].The conceptual architecture is much like that of a production system; there are manycomputational processes interacting through a shared data structure. Interpretation of animage involves the following four process types.� Candidate generation (hypothesis generation)� Candidate comparison (hypothesis evaluation)� Clique formation (grouping mutually consistent hypotheses)� Clique selection (selection of a \best" description)Each process acts like a daemon, watching over the knowledge base and invoking itself whenits contextual requirements are satis�ed. All processing occurs asynchronously and each5



process is assumed to have access to su�cient computational resources. All processes haveaccess to the entire knowledge base, but each type of process will only store the kind ofinformation shown in the diagram (Figure 1).3.1 Context setsThe invocation of all processing operations in Condor is governed by context through the useof context sets: an action is initiated only when one or more of its controlling context setsis satis�ed. Thus, the actual sequence of computations, and the labeling decisions that aremade, are dictated by contextual information (stored in the Core Knowledge Structure), bythe computational state of the system, and by the image data available for interpretation.A context set is a collection of context elements that are su�cient for inferring somerelation or carrying out some operation on an image. Syntactically, a context set is embeddedin a rule denoted by L : fCE1; CE2; � � � ; CEng =) Awhere L is the name of the class associated with the context set, A is an action to beperformed, and the CEi comprise a set of conditions that de�ne a context. For convenience,we often refer to the entire rule as a context set.Example: The context set fSKY-IS-CLEAR, CAMERA-IS-HORIZONTAL, RGB-IS-AVAILABLEgde�nes a set of conditions under which it is appropriate to use the operator BLUE-REGIONS to delineate candidate sky hypotheses.There is a collection of context sets for every class in the recognition vocabulary. Intheory, Condor performs the actions A that are associated with every satis�ed context set.A context set is satis�ed only when the known context is su�cient to establish the truthof all its elements. Often it will not be possible to establish whether a context-set elementis true or false, in which case the element is considered to be unsatis�ed.Visual interpretation knowledge is encoded in context sets, which serve as the uniformknowledge representation scheme used throughout the system. Context sets are employedin three varieties of rules.� Type I: Candidate generation� Type II: Candidate evaluation� Type III: Consistency determinationContext sets of each type are constructed for each class in the recognition vocabulary.The most di�cult part of building any AI system is encoding the knowledge that drives thesystem. Constructing context sets in Condor is tantamount to knowledge base constructionand remains a critical task requiring a solid understanding of the limitations and applicability6



conditions of potential image understanding routines. Condor has been designed with thisin mind, and o�ers several features that facilitate this process.First, the construction task is eased somewhat by the separation of the knowledge baseaccording to classes. Therefore, when constructing context sets for class L, the only otherclasses that must be considered are those that are immediately relevant for recognizinginstances of class L.Second, context sets need only de�ne su�cient conditions for applying the associatedoperation | they need not attempt to de�ne the full boundary of applicability. Thus, onecan be quite conservative when constructing context sets, only encoding knowledge that isclearly relevant, and ignoring that which may be dubious.Third, although it is desirable that the context sets and their associated operations be asinfallible as possible, they need not be perfect. The entire architecture of Condor has beendesigned to achieve reliable recognition results, even in the presence of unreliable operators,imperfect evaluators, and faulty decision-makers. This is achieved primarily through theuse of large numbers of redundant operations in every stage of processing, so that a singlemistake is unlikely to a�ect the �nal interpretation.Finally, some form of learning is essential if a large system with a broad range of com-petence is to be constructed. We have proposed a mechanism whereby context sets can bemodi�ed automatically, using the experiences of the system to re�ne the knowledge baseincrementally [22]. The collection of context sets can be allowed to evolve, with or withouthuman intervention.3.2 Hypothesis generationThe customary approach to recognition in machine vision is to design an analysis techniquethat is reliable in as many contexts as possible. In contrast to this tendency toward large,monolithic procedures, the strategy embodied in Condor is to make use of a large number ofrelatively simple procedures. Each procedure is competent only in some restricted context,but collectively, these procedures o�er the potential to recognize a feature in a wide range ofcontexts. The key to making this strategy work is to use contextual information to predictwhich procedures are likely to yield desirable results, and which are not.While it may be extremely di�cult to write a recognition procedure that is competentacross many di�erent contexts, it is often quite easy to devise a procedure that works well insome speci�c context. For example, �nding foliage that is silhouetted against the sky is farsimpler than �nding foliage in general. Similarly, �nding foliage in an environment whereonly a single species of tree occurs, is easier than �nding foliage associated with any kind oftree. By assembling a collection of such context-speci�c procedures, it has been possible torecognize foliage in many di�erent situations under a wide variety of conditions.A collection of recognition procedures is associated with each class in the recognitionvocabulary. Of course, no procedure, not even one applied in very restricted contexts, willbe su�ciently reliable that its results can be accepted with con�dence. Accordingly, theoutput of each procedure is treated as a candidate hypothesis.7



A candidate hypothesis is any image feature that is potentially an instance of some spec-i�ed class. In most of our examples, an image region is associated with each candidate, butin general, a candidate is any hypothesis that asserts the presence of some object in the3D scene depicted in the image being analyzed. Candidates are generated by specializedoperators using both intensity and range data and every candidate is associated with theclass of which it is potentially an instance.

Figure 2: Schematic diagram of data dependency in Condor. A separate organization ofinformation is required for each clique being formed.A large portion of the Condor architecture is devoted to sorting out the better candidatehypotheses from the poorer ones. Figure 2 shows the generation and subsequent processingof candidates throughout the system.The invocation of recognition procedures is governed by candidate generation context setswhich de�ne the conditions under which it is sensible to employ each recognition procedure.Example: Horizontal surface patches are likely to be part of the ground, but they canonly be computed when range data is available. The context set in the following rulecontrols the invocation of this operator.GROUND : fCLIQUE-IS-EMPTY, DENSE-RANGE-IS-AVAILABLE g=) HORIZONTAL-SURFACE-PATCHES8



The elements in a candidate generator context set encode the assumptions that weremade when the associated operator was written. This formalism ensures that each operatorwill only be employed in circumstances in which it can reasonably be expected to succeed.The context set not only identi�es an applicable procedure, but also supplies the informationto establish intelligently the inevitable parameters (such as a threshold or a window-size)associated with that operator.Obviously, context sets can be very speci�c, very generic, or anywhere in between. Itis intended that candidate generator context sets be provided that span this range. Oneencodes very speci�c context sets for operators that work well only in very special circum-stances, presumably a context that has some special signi�cance to the larger goals of theembedded system. Generic operators that provide reasonable performance over a broadrange of contexts, are employed when the more competent specialized procedures are notapplicable. Generally, the more candidate generator context sets that are provided, the moreoperators that will be applicable in any given context. Ideally, there will always be multipleoperators invoked so that the system need never rely on a single routine.It should be clear that it is possible to make use of large, carefully constructed procedureswhen they exist. Thus, if one has already expended a great deal of e�ort tuning a large,monolithic recognition procedure, it can be incorporated into Condor alongside any otheroperators that might also exist.The interaction of context sets across classes is of interest. The context elements in onecontext set may refer to the existence of other labeled entities. For example, a tree trunkcandidate generation routine may require knowledge of the ground surface as part of itscontext. Whenever a need for recognition of other classes is detected, Condor adds thatclass to its list of labels that are actively being recognized. In this way, when Condor istasked to recognize a speci�c class from its target vocabulary, it will automatically seek toinstantiate other classes from its recognition vocabulary that are relevant.3.3 Clique formationThe result of the candidate generation process is a collection of candidates for each label inthe active recognition vocabulary. Because the operators cannot be expected to be su�cientlyrobust, extra steps must be taken to �nd those candidates that truly are instances of theirassociated classes.To obtain this increase in reliability, we make use of a principle of maximal coherencywhich holds that the best interpretation of an image is the one which coherently explainsthe greatest portion of a scene. Candidates that are not consistent with a partial imageinterpretation cannot be part of the �nal interpretation. The goal, similar in spirit to thatemployed by McKeown in SPAM [15], is to �nd a mutually consistent set of candidates thatexplains as much of the image as possible.A set of mutually consistent candidate hypotheses, called a clique, represents a possibleinterpretation of the image. Condor builds a number of cliques and chooses the \best" oneas its �nal interpretation. Naturally, it would be computationally infeasible to generate all9



possible cliques | instead, cliques are generated in a special order (described in the nextsection) to increase the likelihood that a good interpretation is found early. Thus, the longerthat Condor analyses an image, the better its interpretation is likely to be.Inconsistency is determined by context-speci�c procedures whose application is mediatedby context sets (see also Figure 2).Example: A candidate for ground cannot extend above the skyline.GROUND : f CLIQUE-CONTAINS(skyline) g =) PARTIALLY-ABOVE-SKYLINEAs was the case with candidate generation, the inconsistency determination routinesare assembled into context sets that encode the assumptions necessary for their successfulapplication. Each operator tests a candidate for consistency with all the incumbents alreadypresent in a clique. If any satis�ed context set �nds a candidate to be inconsistent, thenit is not admitted into that clique, although it may participate in other cliques. Thus,consistency determination context sets provide necessary (but not su�cient) conditions forclique inclusion.A clique contains a collection of candidates annotated with inferred 3D properties andrelations. The inconsistency operators encode geometric and physical relationships that mustbe consistent with known facts about the environment and the various semantic classes.The operators may involve either 2D image-plane computations or such 3D constraints assize, support, orientation, occupancy of solid objects, etc. The 2D constraints are usefulfor rapidly eliminating some candidates when they are easily seen to be inconsistent, orwhen su�cient 3D information cannot be established to allow more sophisticated spatialreasoning procedures to be applied. The consistency determination context sets includecontext elements that specify what 3D information must be known. Their use causes anattempt to infer that information if it is not already known.3.4 Candidate comparisonThe search for the largest coherent set of candidates can be combinatorially infeasible with-out further constraint | the number of potential cliques is exponential in the number ofcandidates. For this reason, cliques are generated in a special order.At any point during the processing of an image, there will be a collection of candidatesfor each label to be instantiated. Some of these candidates are obviously better examplesof the class denoted by the label than are others. By �rst building cliques from the bestcandidates of each class, we are much more likely to encounter good cliques early in thesearch (typically several within the �rst half-dozen cliques). Condor has used this best-�rststrategy to successfully avoid the combinatorics that would otherwise prevent recognition.The task here is to order the candidates within each class so the better ones may beadded to cliques before the others. The di�culty is choosing a suitable metric to accomplishthis ordering. For most classes of interest in the outdoor world, there is no single evaluationmetric that gives a reliable ordering. One could conceive of multiple metrics that evaluate10



the candidates along various dimensions, but that would still leave the problem of compar-ing multi-dimensional evaluation vectors. In order to justify a weighted sum of the vectorcomponents, one would have to make the unlikely assumption of some form of independence.A similar independence assumption would be required if the evaluation measures were to begiven a probabilistic interpretation and combined using probability theory.The solution we have adopted is to make use of multiple evaluators, but not to assumethat they are independent in any way. Instead, they are used to compare two candidatesfor a given label, with each evaluator casting a vote for the candidate it ranks higher. If allevaluators favor one candidate over another, a preference ordering between the candidatesis established. Otherwise, no ordering is imposed. The net e�ect of comparing (pairwise) allcandidates for a given label is to impose a partial order on those candidates. The candidatesat the tops of the partial orders are tested for consistency with the cliques before those belowthem.An evaluator is a function that scores the relative likelihood that a candidate for a classis actually an instance of that class. The evaluators that apply in any context are describedby candidate evaluation context sets.Example: When viewed obliquely, the ground usually exhibits a horizontally striated tex-ture. HORIZONTALLY-STRIATED is a function that measures this property within acandidate region.GROUND : fCAMERA-IS-HORIZONTALg =) HORIZONTALLY-STRIATEDAs before, the context sets allow the relevant knowledge to be subdivided into manage-able pieces. The elements of each context set encode the conditions under which a rela-tively simple-minded evaluation function gives meaningful information. It is intended thatmany evaluation functions be provided with context sets, so that robust comparisons resultwhenever a unanimous vote occurs. One candidate is preferred over another only when allevaluators occurring in satis�ed context sets score it as least as high as the other candidate.As always, context-set elements that refer to other object classes cause other compu-tations to be triggered. Satis�ed context-set elements also provide information for settingparameters that may be required by the associated evaluation functions.The structure of the comparisons is noteworthy because it contrasts with the way com-parisons are performed in nearly every other recognition system. The usual approach is topartition an image and to consider which of several potential class labels is the best de-scription of a region. In Condor, we start with several partitions (candidates) and considerwhich of several candidates is the most likely instance of a class. For example, a conventionalrecognition system would consider whether a particular region was more likely to be a treetrunk or a road or a bush. Condor would have several potential delineations of a tree trunkand would consider which is the best description of the trunk.This departs from conventional approaches in two signi�cant ways. First, comparing can-didate regions for a given label requires knowledge of the semantics of that label only, whereasthe customary approach of comparing two labels for a given region requires knowledge of the11



relationships between many semantic categories. When considering which candidate is thebest tree trunk, Condor needs to know only about tree trunks and related categories (suchas branches, roots, and the ground). In contrast, to decide what label to assign to a givenregion using a conventional approach, one must be able to compare any pair of labels. Thisrequires knowledge of the relationships between every pair of semantic categories, and growsrapidly as new classes are added to the recognition vocabulary. The Condor orientationprovides a basis for believing that su�cient knowledge might eventually be encoded in thesystem to allow robust comparison even in a large-scale system.Second, we enforce the condition that the comparisons lead to a preference only if onecandidate is clearly a better choice than another. With this conservative approach, we canreap additional computational savings by pruning large portions of the search for maximallyconsistent cliques. For example, if candidate C1 is clearly a better instance of class L thancandidate C2 in the context of a particular clique, and C1 is found to be inconsistent with thatclique, then C2 can be eliminated as a potential member of that clique as well. Ruling out C2may eliminate other candidates recursively. Thus we avoid the need to test the consistencyof C2 and any of its inferiors. Furthermore, it may at times be impossible otherwise toestablish C2 as inconsistent, in which case this pruning step prevents the clique from beingcontaminated with a bad candidate. Although it does not follow logically that C2 cannot bea class L instance (i.e., a less likely candidate may indeed be consistent), its elimination is apowerful heuristic that is nearly always warranted by the computational savings that results.We can a�ord to chance the elimination of a valid candidate because we simultaneouslygenerate additional cliques that may happen to avoid repeating an unjusti�ed elimination.Thus even when some generators yield unreliable candidates, and the comparisons makeoccasional mistakes, it may still be possible to build a clique that yields a completely accuratesemantic labeling of an image.3.5 The recognition processLet us summarize the processing steps that have been described so far (Figure 2). For eachlabel in the active recognition vocabulary, all candidate generation context sets are evaluated.The operators associated with those that are satis�ed are executed, producing candidates foreach class. Candidate comparison context sets that are satis�ed are then used to evaluateeach candidate for a given class, and if all such evaluators prefer one candidate over another,a preference ordering is established between them. These preference relations are assembledto form partial orders over the candidates, one partial order for each class. Next, a searchfor mutually coherent sets of candidates is conducted by incrementally building cliques ofconsistent candidates, beginning with empty cliques. A candidate is nominated for inclusioninto a clique by choosing one of the candidates at the top of one of the partial orders.Consistency determination context rules are used to test the consistency of a nominee withcandidates already in the clique. A consistent nominee is added to the clique; an inconsistentone is removed from further consideration with that clique. Further candidates are addedto the cliques until none remain. Additional cliques are generated in a similar fashion as12



computational resources permit. Ultimately, one clique is selected as the best semanticlabeling of the image on the basis of the portion of the image that is explained and thereliability of the operators that contributed to the clique.Each of the processing steps occurs simultaneously in our conceptual view, but there aresome implicit sequencing constraints. Candidate evaluators begin to construct partial ordersas soon as candidates become available. Incremental addition of candidates to cliques beginsas soon as partial orders are available. Theoretically, there is no need to wait for one stageto complete before latter stages are begun, but it may be desirable when computationalresources are limited.The interaction among context sets is signi�cant. The addition of a candidate to a cliquemay provide context that could trigger a previously unsatis�ed context set to generate newcandidates or establish new preference orderings. For example, once one bush has beenrecognized, it is a good idea to look speci�cally for similar bushes in the image. A candidategeneration context set that includes an element that is satis�ed only when a bush is in aclique implements this tactic.Similarly, as cliques evolve, the partial orders for each class may change. Ideally, oneshould wait for all candidate generation and comparison activity to subside before nominatinga candidate into a clique. We regard this synchronization as an implementation issue thatis best resolved by tailoring the strategy to the particular computing architecture employed.Given su�cient computational resources, all synchronization strategies will attain the sameinterpretation.It is important to remember that multiple cliques will be in various stages of constructionsimultaneously. Each clique has its own partial orders from which to choose, althoughmany candidates will be identical in several or all of the cliques. Context set satisfaction isdetermined individually for each clique.4 Implementation of Condor4.1 Processing SequenceAll of the computations carried out by Condor are controlled by context sets. At any giventime, there might be many satis�ed context sets whose operators could be invoked. Condoras implemented evaluates context sets in an order that is designed to provide additionalinformation rapidly. For example, it is sensible to build all partial orders as completely aspossible before starting to build cliques, although this is not required by the conceptualarchitecture. Although the context sets are evaluated in a �xed order, their satisfactiondepends on the context so far derived. Thus, the order in which operators are invokeddepends primarily on the contextual information. The order of context set evaluation wehave chosen serves mainly to accelerate the interpretation of images.The sequence of operation in Condor is summarized in Figure 3. The serialization of aninherently parallel architecture is complicated by the interdependencies among the processing13



Figure 3: Sequence of computationsteps. When �rst presented with an image and tasked to recognize a target vocabulary,Condor generates candidates and compares them to impose a partial order on the candidatesin the target vocabulary. Any additional classes that are found to be of use are added to theactive recognition vocabulary and are processed similarly. Next, a candidate from the top ofone of the partial orders is added to a clique. This changes the context relevant to that clique,so the candidate generation process is repeated and the partial orders are reevaluated in thatnew context. A comprehensive caching mechanism2 is employed to prevent reevaluating anyoperations that have not changed. A new nominee is chosen from the tops of the partialorders and checked for consistency with the clique. If it is found to be consistent, it isadded to the clique and removed from its partial order. If inconsistent, it is removed fromfurther consideration for membership in that clique, although it may join another cliquelater. The inconsistent nominee is removed from its partial order along with any candidateover which it is preferred. This cycle is repeated until no candidates remain for nomination,thus completing the development of the �rst clique.Additional cliques are generated by iterating the entire process. Any operations thatoccurred before construction of the �rst clique began need not be repeated since their context2The caching mechanism associates a result with an operation and all its parameters. When the sameresult is needed for constructing another clique, the value is retrieved rather than recomputed.14



is still valid. To accomplish this, the system is rewound to that point and construction of thesecond clique begins. Condor generates di�erent cliques by nominating candidates in di�erentorders. Many strategies exist for selecting di�erent orders and the heuristic nominatingfunction can be modi�ed to implement them. The strategy that Condor standardly uses isto seed each clique with a candidate that had been ruled out by an earlier clique, therebyguaranteeing that a new and di�erent clique will result.After each clique is completed, it is compared with the best previous clique to determinewhich interpretation of the image is better. There is no theoretically sound way of comparingtwo cliques, and the method we employ is somewhat ad hoc. Each clique is scored on thebasis of the portion of the image that is explained and the reliability of the operators thatgenerated the candidates in the clique. The higher scoring clique is retained and additionalcliques are generated until a scoring threshold is exceeded or available computation time isexhausted. At that point, the highest scoring clique is accepted as the best interpretation ofthe image, and the candidates it contains are considered to have been recognized.The contents of this best clique are then used to update the 3D model of the environment.Newly found objects are inserted in the Core Knowledge Structure. Candidates depictingpreviously known objects are used to update the location, size, shape, and appearance ofthat object in the CKS. The name of the operator that successfully delineated each objectin the image is stored with the object so that it might be invoked again when that objectnext comes in the �eld of view. The result is an updated model of the visual world, that willprovide more context for the recognition of objects in subsequent images.4.2 Representation of contextBecause Condor has been designed to make use of a persistent store of information about thevisual world, it is necessary to provide a mechanism for its representation. Condor requiresaccess to scene objects based on their location and various semantic properties. This role is�lled by the Core Knowledge Structure.The CKS is an object-oriented knowledge/database that was originally designed to serveas the central information manager for a perceptual system [19, 20]. The following fourfacilities of the CKS are of particular importance for Condor.4.2.1 Multiple ResolutionThe CKS employs a multiresolution octree to locate objects only as precisely as warranted bythe data. Similarly, a collection of geometric modeling primitives are available to representobjects at an appropriate level of detail. In parallel with the octree for spatial resolution is asemantic network that represents things at multiple levels of semantic resolution. Condor'srecognition vocabulary is represented as nodes in the semantic network, which allows thesystem to refer to objects at an appropriate level in the abstraction hierarchy.15



4.2.2 Inheritance and inferenceThe CKS uses the semantic network to perform some limited types of inference that easethe burden of querying the data store. Thus, query responses are assembled not only fromthose objects that syntactically match the query, but also from objects that can be inferredto match given the relations encoded in the semantic network. For example, the CKS can bequeried for all trees within 10 meters of any dirt road, and will �nd all such trees regardlessof whether they were originally categorized as oaks or pines or whether any roadway waspresent when they were instantiated in the database. Spatial inference is provided basedon geometric constraints computed by the octree manipulation routines. Inheritance ofattributes that are unspeci�ed is performed in a similar fashion. For example, a query for allobjects taller than 5 meters will be satis�ed by all trees not speci�cally known to be shorterthan 5 meters, but not satis�ed by any rocks (unless they are known to be higher than 5meters).4.2.3 Conicting dataOne of the realities of analyzing imagery of the real world is that conicts will result frommistakes in interpretation and from unnoticed changes in the world. The database usedby Condor must not collapse when conicting information is stored. The CKS treats allincoming data as the opinions of the data sources, so logical inconsistencies will not corruptthe database. Similarly, values derived through multiple inheritance paths are treated asmultiple opinions. This strategy has several advantages and disadvantages. Rather thanfusing information as it arises, the CKS has the option of postponing combination until itsresults are needed. This means that the fusion can be performed on the basis of additionalinformation that may become available, and in a manner that depends on the immediatetask at hand. Some information may never be needed, in which case the CKS may foregoits combination entirely. The disadvantages are the need to store a larger quantity of dataand a slowed response at retrieval time. For an object recognition system like Condor, theCKS seems to provide the right tradeo�.Condor uses the multiple opinion facility to store the attributes of recognized objects.Each attribute value is annotated with the image in which it was identi�ed, its time ofacquisition, and time of recognition. In so doing, it is possible to reason about the validityof the stored data, and to react accordingly. The opinion mechanism is also used to storemultiple cliques in Condor. Each candidate is stored in the CKS as the opinion of the cliqueto which it pertains.4.2.4 User interfaceAlthough Condor is designed to be a fully automated recognition system, a comprehensiveuser interface is invaluable for development and debugging. The CKS provides a menu-drivenquery mechanism that is useful for inspecting the intermediate states of computation. Inaddition, the CKS has been integrated with SRI's Cartographic Modeling Environment [12]16



to provide a capability of generating synthetic views of terrain. This allows one to visualizethe contents of the database from an arbitrary viewpoint by rendering a synthetic image.Doing so provides a window into the information that Condor is assuming as it interpretsan image.4.3 Context set constructionContext sets are the key to any recognition abilities that Condor demonstrates. While wehave not yet evolved a precise procedure for designing context sets, we can provide someinsight based on our experience in building context sets for natural object recognition.Type I context sets (candidate generation) are constructed based on an assessment ofwhat operators may work for each label in the recognition vocabulary. Based on a represen-tative sample of imagery from the target domain, we composed image processing operationsthat work reasonably well in various circumstances from either intensity or range data. Fac-tors that inuenced the choice of which operators to include were the likelihood of success,the ease of implementation, the lack of any alternative operators, and the availability ofexisting code. Table 1 lists the types of operators that are actually employed by Condor togenerate candidates (for the experimentation site in the foothills near Stanford University).For each operator, the assumptions that it requires are encoded as context elements in acontext set that controls the invocation of the operator. These context elements limit thesituations in which the operator will be applied, ensure the existence of any required data,and establish the parameter settings associated with the operator.Algorithm ExplanationASSOCIATION Finds connected sets of pixels in a binary imageSTRIATIONS Finds the orientation and strength of local textureDELINEATION Finds line-like structureOUTLINING Finds the boundary of a regionTHRESHOLDING Uses scale-space techniques to choose thresholdsEDGE FINDING Any of several well-known edge-�nding routinesCONTRAST enhancement Stretches the histogram of an imageSMOOTHING Low-pass �lterHISTOGRAMMING Computes a histogram and associated statisticsTEXTURE Any of several well-known algorithms for measuring textureSEGMENTATION Completely partitions an image using KNIFE [14]DENSE STEREO Computes a dense depth image using CYCLOPS [1]SPARSE STEREO Computes depths at some easily correlated points [10]HOMOGENEITY A noise tolerant algorithm for measuring local homogeneityTable 1: Candidate generation operatorsType II context sets (candidate evaluation) are assembled from evaluation metrics thatcan be used to compare two candidates. Context elements that de�ne the conditions un-der which the metrics are meaningful are collected into context sets for each label in the17



recognition vocabulary. The metrics themselves need not order candidates perfectly, butshould perform substantially better than a random ordering. Condor requires a unanimousvote of all applicable metrics before ordering two candidates, so a faulty metric is likely toleave some candidates unordered but not reverse ordered. It is important that preferencesbe correct when they are made. Non-preferences will require more cliques to be searchedbut will not lead to incomplete recognition results. Table 2 shows some of the evaluationmetrics that are used by Condor.Evaluation metric ExplanationABOVE-GEOMETRIC-HORIZON Raised objects are more likely found above the horizonABOVE-SKYLINE Raised objects above the skyline are preferredBELOW-GEOMETRIC-HORIZON Prefer ground candidates below the horizonBELOW-SKYLINE Prefer ground candidates below the skylineBLUE Prefer blue sky candidates on a sunny dayBRIGHT Prefer bright sky candidatesELLIPSOIDAL When range data is available, prefer ellipsoidal bushes and tree-crownsELLIPTIC Prefer bushes and tree-crowns that are shaped like ellipses (in 2D)GREEN Prefer green grass in the winter and spring in CaliforniaHIGHLY-TEXTURED Prefer foliage candidates that are highly texturedHORIZONTAL Prefer ground candidates that are horizontal (in 3D)HORIZONTALLY-STRIATED Prefer ground candidates that exhibit horizontal striationsNEAR-TOP Prefer sky candidates that are near the top of the imageNO-SKY-BELOW Prefer bush and rock candidates that are not above the skyREASONABLE-SIZE Prefer trees and bushes that are sized appropriatelySIMILAR-COLOR Prefer candidates that are similar in color to known objectsSIMILAR-TEXTURE Prefer candidates that have similar texture as a known objectUNDEFINED-RANGE Prefer sky candidates that is uncorrelated in stereo2D-VERTICALITY Prefer tree trunks that are approximately vertical in the image3D-VERTICALITY When range is available, prefer tree trunks that are verticalTable 2: Evaluation metricsType III context sets (consistency determination) de�ne the conditions under which in-consistency of a candidate with a clique can be established. Any constraints that make itimpossible for a candidate hypothesis to be valid given the assumption that the candidatesalready in the clique are correct, are encoded and assembled into Type III context sets. Itis important that inconsistent candidates be correctly identi�ed so that physically impossi-ble cliques are not constructed. However, it is not necessary that a complete de�nition ofconsistent candidates be encoded. This asymmetry was designed speci�cally because it isfar simpler to specify what could not be a tree, for example, than it is to specify what is atree. Some of the consistency determination constraints that are used by Condor are listedin Table 3. 18



Consistency constraint ExplanationABOVE-SKY-REGION Most objects must not be completely o� the groundLEANING Objects that lean too much are unsupportedMISMATCHED-BRIGHTNESS The intensity of sky, for example, cannot vary too muchNOT-SUPPORTED-BY-GROUND Most plants must be rooted in the groundOVERLAPS-IN-IMAGE Some hypotheses that are inconsistent in 2D are ruled outPARTIALLY-ABOVE-SKYLINE The ground cannot extend above the skylinePARTIALLY-BELOW-GEOMETRIC-HORIZON The sky cannot extend below the horizonTable 3: Consistency constraints5 Example of natural object recognition
Figure 4: A typical image from the Stanford foothillsTo illustrate the basic processing sequence, Condor was tasked to recognize the sky, theground, and the foliage, appearing in the image shown in Figure 4. This relatively easy imagewas acquired in the foothills behind the Stanford University campus in the afternoon of asunny day using an ordinary 35mm camera. To make the description as clear as possible,some of the machinery incorporated in Condor has been deactivated while creating thisexample. In particular, no prior knowledge of the terrain or features on that terrain is used.5.1 Candidate generationCondor begins by generating candidates for each of the classes in the target vocabulary. Therelevant candidate generation context sets are shown in Table 4. Tables 5 and 6 show therelevant Type II and Type III context sets used in this example.19



# Class Context elements Operator1 SKY CLIQUE-IS-EMPTY SEGMENTATION-REGIONS2 SKY CLIQUE-IS-EMPTY WEAKLY-TEXTURED-REGIONS3 SKY CLIQUE-IS-EMPTY WEAKLY-STRIATED-REGIONS4 SKY CLIQUE-IS-EMPTY BRIGHT-REGIONS5 SKY CLIQUE-IS-EMPTY ^ SKY-IS-CLEAR BLUE-REGIONS^ RGB-IS-AVAILABLE6 SKY LAST-SELECTED-CANDIDATE-IS(sky) SIMILAR-REGIONS7 GROUND CLIQUE-IS-EMPTY SEGMENTATION-REGIONS8 GROUND CLIQUE-IS-EMPTY ^ CAMERA-IS-HORIZONTAL HORIZONTAL-STRIATION-REGIONS9 GROUND CLIQUE-IS-EMPTY ^ DENSE-RANGE-IS-AVAILABLE HORIZONTAL-SURFACE-PATCHES10 GROUND LAST-SELECTED-CANDIDATE-IS(ground) SIMILAR-REGIONS-REGIONS11 FOLIAGE CLIQUE-IS-EMPTY TEXTURE-ABOVE-THRESHOLD12 FOLIAGE CLIQUE-IS-EMPTY VEGETATIVE-TRANSPARENCY13 FOLIAGE CLIQUE-IS-EMPTY ^ RGB-IS-AVAILABLE GREEN-REGIONS14 FOLIAGE LAST-SELECTED-CANDIDATE-IS(foliage) SIMILAR-REGIONS15 FOLIAGE CLIQUE-IS-EMPTY ^ DENSE-RANGE-IS-AVAILABLE HIGHLY-FRACTAL-REGIONS16 RAISED-OBJECT CLIQUE-IS-EMPTY SEGMENTATION-REGIONS17 RAISED-OBJECT CLIQUE-IS-EMPTY VERTICAL-STRIATION-REGIONS18 RAISED-OBJECT CLIQUE-IS-EMPTY ^ DENSE-RANGE-IS-AVAILABLE DENSE-REGIONS-ABOVE-GROUND19 RAISED-OBJECT CLIQUE-IS-EMPTY ^ SPARSE-RANGE-IS-AVAILABLE SPARSE-REGIONS-ABOVE-GROUND20 RAISED-OBJECT LAST-SELECTED-CANDIDATE-IS(complete-sky) NON-SKY-REGIONS-ABOVE-SKYLINE21 COMPLETE-GROUND LAST-SELECTED-CANDIDATE-IS(geometric-horizon) REGION-BELOW-GEOMETRIC-HORIZON22 COMPLETE-GROUND LAST-SELECTED-CANDIDATE-IS(ground) UNION-OF-GROUND-REGIONS23 COMPLETE-GROUND LAST-SELECTED-CANDIDATE-IS(skyline) REGION-BELOW-SKYLINE25 COMPLETE-SKY LAST-SELECTED-CANDIDATE-IS(sky) UNION-OF-SKY-REGIONS^ SITE-IS(Stanford-hills)Table 4: Type I Context Sets: Candidate GenerationWhile generating candidates for the sky label, context set 5 was not satis�ed because nocolor image is available and context set 6 was not satis�ed because no candidates have beenselected yet for inclusion in a clique. Context sets 1{4 are satis�ed and the sky candidatesthey generate are shown in Figure 5a. Notice that three of the candidates (910, 912, and914) are fairly similar | Condor must eventually sort out which one(s) to include in eachclique based on how well they �t in the context of other members in the clique.Ground candidates are generated by context sets 7{10 and are shown in Figure 5b. Foliagecandidates are generated by context sets 11{15. The candidate generation context sets forraised-object are used to generate additional foliage candidates because foliage is a subcategoryof raised-object in the abstraction hierarchy. The foliage candidates are depicted in Figure 5c.5.2 Candidate comparisonNext, Condor compares the candidates for each class to construct the partial orders. Can-didate evaluation context sets 41{53 are used for evaluating sky candidates. Only contextsets 41, 42, 43, and 49 are satis�ed. Their associated operators are used to evaluate eachof the sky candidates and the results are assembled in Table 7. Each evaluator returns ascore between 0.0 and 1.0. Only the relative magnitude of this score for each evaluator ismeaningful. The scores are not normalized across evaluators because there is no basis to doso. 20



# Class Context elements Operator41 SKY ALWAYS ABOVE-HORIZON42 SKY SKY-IS-CLEAR ^ TIME-IS-DAY BRIGHT43 SKY SKY-IS-CLEAR ^ TIME-IS-DAY UNTEXTURED44 SKY SKY-IS-CLEAR ^ TIME-IS-DAY ^ RGB-IS-AVAILABLE BLUE45 SKY SKY-IS-OVERCAST ^ TIME-IS-DAY BRIGHT46 SKY SKY-IS-OVERCAST ^ TIME-IS-DAY UNTEXTURED47 SKY SKY-IS-OVERCAST ^ TIME-IS-DAY ^ WHITERGB-IS-AVAILABLE48 SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED49 SKY CAMERA-IS-HORIZONTAL NEAR-TOP50 SKY CAMERA-IS-HORIZONTAL ^ ABOVE-SKYLINECLIQUE-CONTAINS(complete-sky)51 SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY52 SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE53 SKY RGB-IS-AVAILABLE ^ CLIQUE-CONTAINS(sky) SIMILAR-COLOR61 GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED62 GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM63 GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONTAL-SURFACE64 GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTAL-SURFACE65 GROUND CAMERA-IS-HORIZONTAL ^ BELOW-SKYLINECLIQUE-CONTAINS(complete-ground)66 GROUND CAMERA-IS-HORIZONTAL ^ BELOW-GEOMETRIC-HORIZONCLIQUE-CONTAINS(geometric-horizon) ^: CLIQUE-CONTAINS(skyline)67 GROUND TIME-IS-DAY DARK71 FOLIAGE ALWAYS HIGHLY-TEXTURED72 FOLIAGE ALWAYS HIGH-VEGETATIVE-TRANSPARENCY73 FOLIAGE CAMERA-IS-HORIZONTAL NEAR-TOP74 FOLIAGE RGB-IS-AVAILABLE GREEN76 RAISED-OBJECT SPARSE-RANGE-IS-AVAILABLE SPARSE-HEIGHT-ABOVE-GROUND77 RAISED-OBJECT DENSE-RANGE-IS-AVAILABLE DENSE-HEIGHT-ABOVE-GROUND78 RAISED-OBJECT CAMERA-IS-HORIZONTAL ^ ABOVE-SKYLINECLIQUE-CONTAINS(complete-sky)Table 5: Type II Context Sets: Candidate Evaluation# Class Context elements Operator81 SKY GEOMETRIC-HORIZON-KNOWN PARTIALLY-BELOW-GEOMETRIC-HORIZON82 SKY ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUE83 SKY ADDING-TO-CLIQUE ^ CLIQUE-CONTAINS(sky) MISMATCHED-BRIGHTNESS84 SKY SPARSE-RANGE-IS-AVAILABLE MUST-NOT-HAVE-FINITE-RANGE87 GROUND CLIQUE-CONTAINS(complete-sky) PARTIALLY-ABOVE-SKYLINE88 GROUND ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUE89 GROUND DENSE-RANGE-IS-AVAILABLE SLOPE-TOO-STEEP91 FOLIAGE ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUE93 COMPLETE-GROUND ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUETable 6: Type III Context Sets: Consistency DeterminationEvaluator 909 910 911 912 914ABOVE-HORIZON 1.00 1.00 1.00 1.00 1.00BRIGHT 0.44 0.71 0.94 0.76 0.67UNTEXTURED 0.19 0.67 0.52 0.50 0.36NEAR-TOP 0.51 0.79 0.37 0.73 0.66Table 7: Initial evaluation of sky candidates21



(a) sky (b) ground (c) foliageFigure 5: Some candidates generated by Condor22



Examining the table reveals that candidate 910 was scored at least as high as candi-date 909 by every evaluator. Therefore, 910 is preferred over 909 as a sky candidate. Otherunanimous preferences are910 � 914; 912 � 909; 912 � 914; and 914 � 909 :These relations are assembled into a partial order and displayed in Figure 6, after removingtransitivities. Candidate 909, which roughly delineates the trees, is at the bottom of thepartial order as one would hope. Candidates 910, 911, and 912, were found to be equallypromising sky regions.
Figure 6: Partial order of candidates for sky

Figure 7: Partial order of candidates for ground23



Figure 8: Partial order of candidates for foliageThe partial orders generated for ground and foliage are shown in Figures 7 and 8. Atthis point the active recognition vocabulary isfsky, ground, foliage, geometric-horizon, complete-sky, complete-ground, skylinegand Condor proceeds to generate candidates and partial orders for the remainder of theseclasses3.5.3 Clique formationWhen all satis�ed context sets for classes in the active recognition vocabulary have beenemployed, Condor begins to build cliques of mutually consistent candidates. The candidatesat the tops of the four partial orders are eligible to be introduced into an (empty) clique. Thechoice of which candidate to nominate �rst is made with the aid of a heuristic that chooseson the basis of the reliability of the operator that generated the candidate, the desirability ofadding the candidate's class to the clique, the nearness of the candidate to the camera, andthe size of the candidate. If this choice is made poorly, it may lead to a small clique and morecliques will have to be generated before a large, mutually coherent clique is constructed.3These are of no special interest and are not shown.24



According to the heuristic, the geometric-horizon candidate is chosen �rst and added asthe sole candidate in Clique 1. This tentative conclusion constitutes new context, albeitfor Clique 1 only. All Type I context sets are reevaluated to see if any new candidates aregenerated, and all Type II context sets are reevaluated to update the partial orders. Theonly new candidate that is produced is a complete-ground candidate generated by contextset 21. Type II context set 66 is now satis�ed and adds BELOW-GEOMETRIC-HORIZON to thelist of evaluators for ground candidates. Its use happens to cause no changes in the groundpartial order.Condor continues to test candidates for inclusion in the clique, adding those that areconsistent and pruning those that are not. After each addition to the clique, the context setsare reevaluated to determine whether additional candidate generation operators or evaluationmetrics have become applicable in the new context. The partial orders are updated aftereach change and processing continues until no candidates remain to be tested.Figure 9 shows the complete sequence of nominations to the �rst clique. The compositelabeling of the image that results from those that were accepted is given by Figure 10. Atotal of 36 candidates were generated for this clique, of which 18 were accepted in the clique,10 were found to be inconsistent, and 8 were pruned without testing.5.4 Clique selectionIn this case, the �rst clique generated did a good job recognizing the target vocabulary, butCondor has no de�nitive way of knowing this. Condor generates additional cliques to see ifits interpretation can be improved. In this experiment, six additional cliques were generated,but none of them exceeded the reliability and coverage of the components of the �rst clique.As a result, Condor selects the �rst clique as its best interpretation and stores its resultsin the CKS database to be used as context for future reference. When range data is available,it is used to position the objects in the world. Without range data, Condor uses the imagelocation of detected objects along with a digital terrain model stored in the CKS to constrainthe possible locations of each object. This updated database is then used by Condor duringanalysis of subsequent images as context to aid interpretation.6 EvaluationWe are currently conducting an extensive series of experiments to test the validity of our ideasand to explore the limits of the implemented system. For purposes of this experimentation,we have concentrated on tailoring the context-set knowledge base to the task of recognizingnatural objects in ground level images obtained from a two-square mile portion of the foothillsbehind the Stanford University campus. Our ultimate goal is for Condor to be able tounderstand the scene in any non-degenerate image acquired in this area. The natural objectsoccurring in this environment consist of trees, bushes, rocks, trails, and grass in addition tothe sky and the ground. 25



Figure 9: Sequence of candidates nominated for inclusion in Clique 1
Figure 10: Composite labeling found by Clique 126



Our intent is to develop a capacity for recognition that is on a par with that exhibited, say,by a rabbit, which inhabits the same environment. While the representations and cognitiveprocesses employed by a rabbit are undoubtedly di�erent than those reported here, weattempt to provide the same information that is available to a rabbit and to strive for thesame level of recognition. This requires the ability to recognize scenes under many conditionsincluding variations due to sun angle, weather, seasonal changes, normal plant growth, anddiscrete changes such as when a tree has fallen or a new trail has been blazed. A key issuein our research has been determining what contextual information should be recognized andstored to enable robust recognition under such a diversity of conditions.We have taken over 100 photographs at the experimental site of which approximately30 have been digitized and analyzed by Condor. This data includes monochrome as wellas color imagery, and range data obtained from automatic compilation of binocular stereopairs. A digital terrain model of the area and the information appearing on a USGS mapprovide initial context.The image depicted in Figure 11 is indicative of the level of complexity inherent in thescenes being analyzed by Condor. With this image and a digital terrain model of the scene,Condor is able to correctly locate the ground, the sky, the grass, and six of the trees thatare present in the scene. Figure 12 shows wire frame models that have been constructed foreach of the recognized trees. An absolute size is given to the tree models by retrieving thedepth to each tree trunk from a range image constructed by binocular stereo. Reprojectionof the wire frame model from another vantage point yields Figure 13.We are conducting a series of experiments to demonstrate the competence of the systemand the value of contextual information during recognition. The preliminary results fromthese studies are summarized below:Experiment 1: A single image is analyzed using only the initial context obtained from themap. Upon completion, Condor stores its recognition results in the CKS and reanalyzesthe same image or a similar but di�erent image of the same scene. In many cases, therecognition result is improved by using the newly acquired context. Repeated analysisof the image set leads to both faster recognition of known objects as well as detectionof some previously unrecognized objects.Experiment 2: A sequence of imagery collected during a simulated traverse of the terrainis analyzed by Condor. The results of processing each image are stored in the CKS andmade available as context for analyzing subsequent images. The temporal continuityprovided by the information in the CKS allows Condor to improve the results it wouldhave obtained without this additional contextual information. Upon completion of thesequence, Condor has built a 3D model of the objects visible during the traverse, andhas annotated each with information that aids its recognition.Experiment 3: A collection of images from a restricted area but varying widely in view-point, scale, time-of-day, season, and sky conditions are analyzed by Condor. In most27



Figure 11: A natural outdoor scene from the experimentation site.cases Condor obtains a consistent recognition result, demonstrating that the context-set knowledge base is insensitive to these types of change.7 Complexity analysisIn the region-based approach to machine vision, an image is partitioned into r disjoint regionsand a program must decide which of l potential labels to assign to each region. Because theseassignments cannot be made independently, there are lr potential labelings of the image fromwhich the program must select the best.In the model-based approach the regions associated with each model class are to bedetermined. Given l model classes and r possible locations of each model instance, thereare rl potential con�gurations of model instances in the worst case. (See Tsotsos [1988] forfurther elaboration.)Most, if not all, of the existing systems for recognition can be viewed as strategies toexplore either of these exponential search spaces. In contrast, Condor de�nes an entirelydi�erent search space | one that is polynomial in both the number of regions and thenumber of labels being considered | by identifying and exploring only the most promisingportions of the space. 28



Figure 12: Result of analyzing Figure 11.7.1 Computation timeTo compute the computational complexity of the Condor architecture, it is convenient tocharacterize the algorithm as repeatedly testing candidates for consistency with a partiallyinstantiated clique. At each stage, Condor must generate new candidates, update the partialorders, select a candidate for inclusion, and test it for consistency with the clique. In practice,Condor rarely needs to generate many new candidates after the initial iteration, but foranalyzing worst-case complexity, we will assume that it does. Letl = the number of labels in the recognition vocabularyc = the number of candidates for each labelr = the number of candidate regions in the largest cliqueq = the total number of cliques constructed.At most, Condor must construct a total of lc candidates. Completely rebuilding each partialorder requires c2 operations, so lc2 operations are required for partial order construction inthe worst case. Selecting a candidate from the tops of the partial orders is no worse thanlinear in the number of candidates and testing for consistency could require as many as rtests. The maximum number of operations required for one complete iteration is2lc+ lc2 + r : (1)29



Figure 13: A perspective view of the 3D model produced from the analysis of the imageshown in Figure 11.This cycle must be repeated for each of the r candidates introduced into the clique. Com-pletely repeating the entire process for q cliques is not necessary, but would require(2lc+ lc2 + r)rq (2)operations. Therefore, the worst-case complexity for analyzing one image isO(qr2 + lrqc2) : (3)Formula 3 gives the total time complexity for analyzing one image and yields two importantobservations:� Despite the combinatorics inherent in the recognition problem, our approach has noexponential behavior. The complexity is only quadratic in the number of regions tobe recognized. This behavior is attributable to the fact that Condor constructs a �xednumber of cliques and does not exhaustively search the exponential recognition space.While there is no guarantee that Condor will �nd the optimal clique, the context-based generation and relative ordering of candidates ensure that only good cliques aregenerated early in the search. 30



� The complexity is linear in the number of terms in the recognition vocabulary. There-fore, expanding the system by adding additional categories to be recognized resultsonly in a proportional increase in run time. This behavior is important because itallows Condor to be expanded to recognize a broad range of categories without a pro-hibitive increase in computation. We know of no other visual recognition system thatpossesses this property.7.2 The number of cliquesThe key to achieving desirable computational complexity is to accept candidates into cliqueswith su�cient reliability that the best clique is found early in the search. How reliable mustcandidate acceptance be?Let p be the probability that a candidate nominated for inclusion into a clique is amember of the best clique (i.e., the label associated with the candidate is correct).4 Theprobability of constructing a clique with r valid regions is pr. On average, it will be necessaryto construct q = 1pr cliques before the best one is found. Thus, if the best clique is to befound within the �rst q cliques, it will be necessary thatp � q�1r :It is clear that candidate acceptance must be perfect if only one clique is to be generated.If 95% reliability is attainable, then 7 cliques would be required; if only 90% reliability wereattainable, then 68 cliques would be needed.Although most of the operations employed by Condor are individually unreliable, theircollective use is highly reliable. For example, in the course of analyzing the image in Figure 4,candidates that were accepted into cliques were 98% correct, based on a subjective assessmentof which candidates were valid. At other stages of the analysis,� 53% of the candidates generated by the context sets were valid.� 78% of the candidates at the tops of the partial orders were valid.� 82% of the candidates nominated for inclusion were valid.� 98% of the candidates accepted by the consistency checking context sets to any cliquewere valid.� 100% of the candidates in the best clique were valid.4We assume for this analysis that the probability is the same for all nominated candidates.31



8 ConclusionThe Condor architecture embodies a new approach to visual recognition which� integrates the information available in both 2D and 3D imagery;� uses the consensus of many simple procedures to achieve reliable results;� exploits contextual information to aid the recognition process; and� augments a database of contextual information with its own recognition results toimprove its performance incrementally over time.Many computational vision systems have been devised to recover the three-dimensionallocation and orientation of surfaces from image data. However, shape recovery is only a partof the functionality that is required of a vision system for autonomous robots, for militarysurveillance, for space station assembly and repair, and so on. In order for these systemsto interact intelligently with their environments, they must be able to recognize things interms of physical attributes and semantic qualities, not just shapes. Condor implements anew theory of computer vision that eliminates the traditional dependence on stored geomet-ric models and universal image partitioning algorithms, and provides a basis for semanticinterpretation.References[1] Barnard, Stephen T., \Stochastic Stereo Matching over Scale," International Journal of Com-puter Vision, 3(1), 1989.[2] Barrow, Harry G., and Tenenbaum, Jay M., \MSYS: A System for Reasoning about Scenes,"Technical Note 121, Arti�cial Intelligence Center, SRI International, April 1976.[3] Barrow, Harry G., Thomas D. Garvey, Jan Kremers, J. Martin Tenenbaum, and Helen C.Wolf, \Interactive Aids for Cartography and Interpretation," Technical Note 137, Arti�cialIntelligence Center, SRI International, January, 1977.[4] Bolles, R.C., Horaud, R., and Hannah, M.J., \3DPO: A 3D Part Orientation System," inProceedings 8th International Joint Conference on Arti�cial Intelligence, Karlsruhe, WestGermany, August 1983, pp. 1116{1120.[5] Brooks, Rodney A., \Model-Based 3-D Interpretations of 2-D Images," IEEE Transactions onPattern Analysis and Machine Intelligence, Volume 5, Number 2, March 1983, pp. 140{150.[6] Draper, Bruce A., Robert T. Collins, John Brolio, Allen R. Hanson, and Edward M. Riseman,\The Schema System," International Journal of Computer Vision, Vol. 2, No. 3, January,1989, pp. 209{250. 32
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