
Relevance Vector Ranking for Information Retrieval

Fengxia Wang, Huixia Jin, Xiao Chang

Relevance Vector Ranking for Information Retrieval

1
Fengxia Wang,

2
Huixia Jin,

 3
Xiao Chang

1, *3
Department of Computer Science and Technology

Xi’an Jiaotong University,710049, China

wangfengxia@gmail.com，changxiao66@gmail.com
2
 Department of Physics and Telecom Engineering

 Hunan City University,Yiyang, 413008, China

jinhuixia1980@163.com
doi:10.4156/jcit.vol5. issue9.12

Abstract
In recent years, learning ranking function for information retrieval has drawn the attentions of the

researchers from information retrieval and machine learning community. In existing approaches of

learning to rank, the sparse prediction model only can be learned by support vector learning approach.

However, the number of support vectors grows steeply with the size of the training data set. In this

paper, we propose a sparse Bayesian kernel approach to learn ranking function. By this approach

accurate prediction models can be derived, which typically utilize fewer basis functions than the

comparable SVM-based approaches while offering a number of additional advantages. Experimental

results on document retrieval data set show that the generalization performance of this approach

competitive with two state-of-the-art approaches and the prediction model learned by it is typically

sparse.

Keywords: Learning to Rank, Relevance Vector Learning, Sparse Model

1. Introduction

Ranking is the central problem for information retrieval. The retrieval results can be rated by giving

the grades to the results on the relevant to user‟s query. The similarity between user‟s query and

document is used to rank the documents. The technique is proposed to eliminate the affixes and

their effects on recognizing similar Persian documents [1]. Content-Time-based Ranking

algorithm combines keywords, update time and content time of Web page into the ranking

procedure [2]. In practice, the instances are ranked by mapped them to the score with ranking function.

The task of learning to rank is to find a model on samples data, which can help to predict the order of

new instances.

Supported vector machine (SVM) methodology was introduced to develop ranking algorithms[3]

[4]. A preference learning algorithm based on regularized least squares is proposed in [5]. RankBoost

[6] works by combining many “weak” rankings of the given instances. RankNet [7] use a probabilistic

cost function on instances pairs and model the underlying ranking function using a two layeres neural

network. In [8], proposed a loss function named Fidelity to measure loss of ranking and adopted a

generalized additive model, similar to the boosting approach, to learn a ranking function. A Bayesian

framework to preference learning, which based on Gaussian processes is proposed in [9]. Conditional

independence tree is introduced to ranking,which is the combination of decision tree and naive Bayes

[10]. A Ranking tree algorithm is proposed based on decision tree [11]. Naive Bayesian is utilized to

ranking in [12] and the experiments show that naive Bayes has some advantage over C4.5. RankGP

[13], a Genetic Programming learning method, was proposed for learning ranking functions. In [14],

proposed a generalization bound based on the p-norm objective and boosting-style algorithm for the

problem of ranking was given.

In the existing approaches of learning to rank, the sparse prediction model only can be derived by

Ranking SVM [3]. Sparse prediction model means the efficient prediction and the less risk to over-fit

the training data. Sparse prediction model is desired especially in the real-time system. To the support

vector learning approach, however, the number of support vectors grows steeply with the size of the

training data.

118

Journal of Convergence Information Technology

Volume 5, Number 9. November 2010

In this paper, a relevance vector ranking algorithm is proposed to address the problem of sparse

ranking model. This work was inspired by the relevance vector machines (RVM) [15] which have

received much attention in the machine learning literature as a means of achieving sparse

representations in the context of regression and classification. The Bayesian approach is employed to

learn prediction model. As a learning result, the posterior distributions of many of the weights in the

prediction model will sharply peaked around zero. The sample instances corresponding to the non-zero

weights are named as „Relevance Vector‟. This property means efficient prediction and less risk to

over-fit training data.

This paper is organized as follows. In Section 2, the problem statement is described. In Section 3,

the proposed learning technique is given. The experimental results are shown in Section 4. In Section 5,

the conclusion of this paper and future works are given.

2. Problem Statement

One central problem of information retrieval is to determine which documents are relevant and

which are not to the user‟s information need. Given the document set
1 2{ , ,..., }ND d d d and a query q ,

the relevance of a document with the query can be measured by cosine similarity, BM25, etc.

According to the score of the function, the documents in D can be rated. In practice, better result can be

obtained by combining the relevance measures to rate the instances. The ideal ranking function of

combining the relevance measures can be learned with the approach of learning to rank.

In learning to rank problem, the original training data set is i.i.d data set S {(, y)}N

i i i x
1

, each

instance
ix is associated with a label yi

. The instance
ix is an n-dimensions observation vector, i.e.

n

i x . R is a label space,
1 2 kR {R ,R , ,R } . The object in R can be ranked

as
k R R 2 R 1R R R . (

R
 represents the order among ranks). R i

is the label of rank i. In

information retrieval, elements in observation vector can be the relevance measures between document

and user‟s query. The label is the rank scale of relevance between instance and user‟s query.

The strategy of learning to rank from pairwise data has been employed to design the algorithms.

Following this strategy, a new pairwise data setπ should be generated by combining the instances in

the original training data set S. The element
i is a couple that can be written as  ,i id r . The

element
id in

i denotes an instances pair, which can be written as  ,x x . The element
ir in

i indicate

the preference relation between two instances in the data pair
id . The value of

ir is set with the

function  ,   which takes the form as

 
1,

,
0, or

y y
y y

y y y y


  

 

(1)

where y and y are the labels corresponding to the instance x and x .

The goal of learning to rank is transformed to learning a ranking model from pairwise data set π .

3. Proposed Method for Learning to Rank

3.1. Kernel-Based Ranking Function Model

Assuming the model space of mapping object to real number is  : XfH . Each

model f inH creates an order X in input space X  n , according the following rule

   Xi j i jf f x x x x (2)

119

Relevance Vector Ranking for Information Retrieval

Fengxia Wang, Huixia Jin, Xiao Chang

which means that there is an unobservable latent function value  f x associated with each

instance x , and that the preference relation between any two instances dependents on the latent

function values of them.

Assuming the ranking model f in H is a linear model, which takes the SVM-like form

        1 2

1

d , d ,
M

i i i

i

f w


    x x x

(3)

where M is the number of pairwise instances in data set π ,    , is the kernel function, w is a weight

vector,  1

id is the left element in pair
id ,  2

id is the right element in pair
id .

3.2. Prior

We encode a preference for smoother function with a zero-mean Gaussian prior distribution over w .

The automatic relevance determination (ARD) can be made by this prior. The prior distribution is

given as the form

   

 

1

0

1
T

22

| N 0,

1
 2 A exp A

2

i

M

i

i

M

p w 





 

 
   

 

w α

w w

(4)

where
1

2
i


 is the variance of the distribution of

iw .
i is called hyperparameter. α is a vector of M

hyperparameters. There is an individual hyperparameter associated independently with every weight.

We collect all hyperparameters into a diagonal matrix 1 2A=diag(, , ,)M   .

3.3. Likelihood for preference variables

Given x and '
x are observation vectors of two instances in original input space. First, the observation

vectors are mapped to the real numbers by latent function f . Then the preference relation

between x and '
x can be derived by comparing the value of  f x and  f '

x . The rule of discriminating

the preference relation of a pair takes the form

   

   

1, 0

0, 0

f f
r

f f

  
 

 

'

'

x x

x x

(5)

Then the probabilistic function  ,i ip r d w denotes the conditional distribution that a preference

label variable r is drew from, given two input vectors x and '
x . Adopting the Bernoulli distribution

for  ,i ip r d w , the likelihood of target vector r on datasetπ can be written as the form

 

             
1

1
1 2 1 2

1

(| D,) ,

 1
ii

M

i i

i

M rr

i i i i

i

p p r

Sig f f Sig f f









     
  





r w d w

d d d d

(6)

120

Journal of Convergence Information Technology

Volume 5, Number 9. November 2010

where D is the instances pair set in π , r is the label set corresponding to the set D,

      1 2

i iSig f fd d denotes the conditional probabilistic function as the form

      
      

1 2

2 1

1

1 exp
i i

i i

Sig f f
f f

 
 

d d
d d

(7)

which is the sigmoid function that is popular used to relate a real number to probability.

3.4. Posterior probability

Given hyperparameter vector α , the posterior parameter distribution conditioned on the data is given

by combining the likelihood and prior within Bayes‟ rule. The posterior probability can then be written

as the form

(| D,) (|)
(| ,)

()

p p
p

p


r w w α
w r α

r

(8)

where the prior (|)p w α is defined as in (4), the likelihood function (| D,)p r w is defined as in (6).

3.5. Learning Algorithm

First, fix the value of prior parameter vector α , the weight of latent function model is found by

maximize the weight posterior  | ,p w r τ . Then we applied the Laplace approximation [16] in

evidence evaluation. The prior parameter vector α is computed by maximize “evidence for the

hyperparameters”. The complete learning algorithm process by iterated re-estimated the weight and the

prior parameter until some suitable convergence criteria have been satisfied.

For Latent Function Model Parameters Estimate, The MAP estimate on the latent functions is

referred to find a 
MAP

w H which maximize the weight w posteriori probability of given prior

parameter vectorα . The Newton‟s method [17] is adapted to find
MAP

w .

For prior parameter vector α , a practical efficient update equation is adopted, which is proposed in

[16]. This method follows the strategy of maximizing “evidence for the hyperparameters”. Derivative

of optimization objective equating to zero and rearranging, gives the update form

new

2

1 i ii

i

i

a
a

w

 


(9)

where
iw is the i-th posterior mean weight,

ii is the i-th diagonal element of matrix  . The matrix  is

defined as

1
2

2

E()


 
   

 

w

w
, where    E() ln | D, |p p w r w w α .

The learning algorithm proceeds by repeated application of latent function parameters estimate and

prior parameters optimization, concurrent updating of model weights
MAP

w and *
α , until the suitable

convergence criteria has been satisfied. We name this learning algorithm as RVRank, for which details

are summarized in Algorithm 1.

4. Experiment and Results

4.1. Experiment Setting

121

Relevance Vector Ranking for Information Retrieval

Fengxia Wang, Huixia Jin, Xiao Chang

The relevance vector learning to rank algorithm is implemented in Matlab 2006. Because of the

sigmoid function is used in likelihood, this algorithm is named as RVRankS.

In experiments, the performance of RVRankS is compared with two proposed state-of-the-art

ranking algorithms:

One is supported vector learning to rank, is called RankSVM [4]. A binary exactable tool SVM
light

1

is used in the experiment.

Another one is preference learning with Gaussian processes, is named as GPPL [18]. The C

language source code of GPPL
2
 is downloaded for the experiment. This approach owns the advantages

of giving the probabilistic prediction of the results and learning all of the parameters in learning

process. But the learned prediction model by it is not sparse.

In the experiments, Gaussian kernel function is used in all three algorithms. The Gaussian kernel

function takes the form as

 
2

2, exp
2

  
  

 
 

'

'
x x

x x

where  is the parameter that should be set.

The parameter  in Gaussian kernel function is automatically searched by GPPL.

For RankSVM, the 5-fold cross validation on training set was used to determine the optimal values

of error/margin trade-off parameter and the parameter in kernel function. The search is done on grid

linearly space by 0.2 in the region of   10 10 10 10log ,log 3 log 3, 3 log 3C C        .

For RVRankS, the 5-fold cross validation on training set was used to determine the optimal values

of the parameter  in Gaussian kernel function. The search is done on grid linearly space by 0.2 in the

region of 103 log 3    .

The normalized discounted cumulative gain (NDCG) [19] is adopted as a performance measure,

which takes the form

1
 http://svmlight.joachims.org/

2
 http://www.gatsby.ucl.ac.uk/~chuwei/plgp.htm

Algorithm 1. Relevance Vector Learning to Rank Algorithm

Input: Training data set S;

Initial prior parameter vector α ;

Kernel function parameter  ;

Convergency criteria  .

Output: Model weight vector
*

w ;

Prior parameter vector
*

α ;

Begin

Generate Kernel matrix M on data set S;

Repeat

MAP
w

w arg min E(w) ;

 *

2

1
, 1, , lengthi ii

i

i

a
a i

w

 
  α ;

 Maximal element in   *
α α ;

Until  less than convergency criteria 

End

122

Journal of Convergence Information Technology

Volume 5, Number 9. November 2010

 

 

r jk

j 1

2 1
NDCG@k (k)

log 1 j


  




where (k) is the NDCG at k of ideal ranking list. It is used as a normalization factor of the NDCG at

k in the ranking list of prediction results.

4.2. Experiments on Document Retrieval Data

The OHSUMED collection [20] is used in document retrieval research. The relevance judgments of

documents in OHSUMED are either „d‟ (definitely relevant), „p‟ (possibly relevant), or „n‟ (not

relevant). Rank „n‟ has the largest number of documents, followed by „p‟ and „d‟.

The OHSUMED has been collected into a Benchmark dataset LETOR [21] for ranking algorithm

research. In this data set, each instance is represented as a vector of features, determined by a query and

a document. Every vector consists of 25 features. The value of features has been computed.

We built five groups data sets with 2, 4, 6, 8, 10 queries as training set respectively. To the each

training set scale, data set is randomly partitioned into training/test splits as the training queries

quantity. The partition was repeated ten times independently. The ten training/test date sets were

generated for each training set scale.

Three algorithms were run on these data sets. The evaluation results of NDCG@5 and NDCG@10

are given in Figure 1 and Figure 2. It is clear that the precision of first five instances and ten instances

predicted by RVRankS is better than other two algorithms.

Figure 1. Results of scaling experiment of three algorithms on OHSUMED data set. NDCG@5 vs. the

size of training data set.

Figure 2. Results of scaling experiment of three algorithms on OHSUMED data set. NDCG@10 vs.

the size of training data set.

123

Relevance Vector Ranking for Information Retrieval

Fengxia Wang, Huixia Jin, Xiao Chang

In Figure 3, it is clear that the number of the training instances pairs utilized in prediction model

learned by RVRankS increased slowly with enlarging the size of training data. While the number of the

training instances pairs utilized in prediction model learned by RankSVM grows steeply.

5. Conclusion and Future Works

In this paper, the approach of relevance vector learning to rank is given. Experimental results on

document retrieval data set show that the generalization of this approach is competitive with two state-

Figure 3. The number of pairs utilized in the prediction model by algorithms running on OHSUMED

data set vs. the size of the training data set.

of-the-art algorithms, and that the number of vectors utilized in the prediction model learned by this

approach is dramatically less than that of learned by support vector approach.

For future works, it will be interesting to conduct the experiment on more real world data sets, to

use new approximation inference techniques to improve the performance of prediction and to develop

the faster algorithms to tackle relatively large data sets.

6. References

[1] Kashefi O, Mohseni N, Minaei B, "Optimizing document similarity detection in Persian

information retrieval", Journal of Convergence Information Technology, vol.5, no. 2, pp.101-106,

2010.

[2] Jin P, Li X, Chen H, Yue L, "CT-Rank: A Time-aware Ranking Algorithm for Web Search",

Journal of Convergence Information Technology, vol.5, no. 6, 2010.

[3] Herbrich R, Graepel T, Obermayer K. "Support vector learning for ordinal regression". In

Proceeding of the 9th International Conference on Artificial Neural Networks (ICANN), pp. 97-

102, 1999.

[4] Joachims T. "Optimizing Search Engines using Clickthrough Data". In Proceeding of the ACM

Conference on Knowledge Discovery and Data Mining, pp. 133-142, 2002.

[5] Pahikkala T, Tsivtsivadze E, Airola A, Boberg J, Salakoski T. "Learning to rank with pairwise

regularized least-squares". In Proceeding of the 30th International Conference on Research and

Development in Information Retrieval -Workshop on Learning to Rank for Information Retrieval,

pp. 27-33, 2007.

[6] Freund Y, Iyer R, Schapire RE, Singer Y. "An efficient boosting algorithm for combining

preferences". In Proceeding of the 15th International Conference on Machine Learning, pp. 1532-

4435, 1998.

[7] Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G. "Learning to

rank using gradient descent". In Proceeding of the 22nd International Conference on Machine

Learning, pp. 89-96, 2005.

124

Journal of Convergence Information Technology

Volume 5, Number 9. November 2010

[8] Tsai M-F, Liu T-Y, Qin T, Chen H-H, Ma W-Y. "FRank: A Ranking Method with Fidelity Loss".

In Proceeding of the 30th International Conference on Research and Development in Information

Retrieval, pp. 383-390, 2007.

[9] Chu W, Ghahramani Z. "Preference learning with Gaussian processes". In Proceeding pp. 137,

2005.

[10] Su J, Zhang H. "Learning conditional independence tree for ranking". In Proceeding of the 4th

Ieee International Conference on Data Mining, pp. 531-534, 2004.

[11] Xia F, Zhang WS, Li FX, Yang YW, "Ranking with decision tree", Knowledge and Information

Systems, vol.17, no. 3, pp.381-395, 2008.

[12] Zhang H, Su J, "Naive Bayes for optimal ranking", J EXP THEOR ARTIF IN, vol.20, no. 2,

pp.79-93, 2008.

[13] Fan W, Gordon MD, Pathak P, "A generic ranking function discovery framework by genetic

programming for information retrieval", INFORM PROCESS MANAG, vol.40, no. 4, pp.587-

602, 2004.

[14] Rudin C, "The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top

of the List", J MACH LEARN RES, vol.10, no. pp.2233-2271, 2009.

[15] Tipping ME, "Sparse Bayesian Learning and the Relevance Vector Machine", J MACH LEARN

RES, vol.1, no. 3, pp.211-244, 2001.

[16] MacKay DJC, "A Practical Bayesian Framework for Backpropagation Networks", NEURAL

COMPUT, vol.4, no. 3, pp.448-472, 1992.

[17] Nocedal J, Wright SJ. Numerical Optimization. Springer-Verlag New York, New York, 1999.

[18] Chu W, Ghahramani Z. "Preference learning with Gaussian processes". In Proceeding of the

22nd International Conference on Machine Learning, pp. 137-144, 2005.

[19] Kekalainen J, "Binary and graded relevance in IR evaluations - Comparison of the effects on

ranking of IR systems", INFORM PROCESS MANAG, vol.41, no. 5, pp.1019-1033, 2005.

[20] Hersh W, Buckley C, Leone TJ, Hickam D. "OHSUMED: an interactive retrieval evaluation and

new large test collection for research". In Proceeding of the 17th International Conference on

Research and Development in Information Retrieval, pp. 192-201|358, 1994.

[21] Liu TY, Xu J, Qin T, Xiong W, Li H. "Letor: Benchmark dataset for research on learning to rank

for information retrieval". In Proceeding of the 30th International Conference on Research and

Development in Information Retrieval -Workshop on Learning to Rank for Information Retrieval,

2007.

125

