
ISSN: 2278 – 7798

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 2, Issue 2, February 2013

256

All Rights Reserved © 2013 IJSETR

A SURVEY ON LOSSLESS DICTIONARY BASED

DATA COMPRESSION ALGORITHMS

NISHAD PM, Dr. R.Manicka Chezian

Abstract- Data compression is a common requirement for

most of the computerized applications. There are number of

data compression algorithms, which are dedicated to

compress different data formats. Even for a single data type

there are number of different compression algorithms,

which use different approaches. This paper presents survey

on several dictionary based lossless data compression

algorithms and compares their performance based on

compression ratio and time ratio on Encoding and

decoding. A set of selected algorithms are examined and

implemented to evaluate the performance in compressing

benchmark text files. An experimental comparison of a

number of different dictionary based lossless data

compression algorithms is presented in this paper. This

paper concluded by stating which algorithm performs well

for text data.

Keywords: Data compression, Encryption, Decryption,

Lossless Compression, Lossy Compression

1. Introduction

Compression is the art of representing the

information in a compact form rather than its original

or uncompressed form [1]. In other words, using the

data compression, the size of a particular file can be

reduced. This is very useful when processing, storing

or transferring a huge file, which needs lots of

resources. If the algorithms used to encrypt works

properly, there should be a significant difference

between the original file and the compressed file.

When data compression is used in a data transmission

application, speed is the primary goal. Speed of

transmission depends upon the number of bits sent,

the time required for the encoder to generate the

coded message and the time required for the decoder

to recover the original ensemble. In a data storage

application, the degree of compression is the primary

concern. Compression can be classified as either

lossy or lossless. Lossless compression techniques

reconstruct the original data from the compressed file

without any loss of data. Thus the information does

not change during the compression and

decompression processes. These kinds of

compression algorithms are called reversible

compressions since the original message is

reconstructed by the decompression process. Lossless

compression techniques are used to compress

medical images, text and images preserved for legal

reasons, computer executable file and so on [2].

Lossy compression techniques reconstruct the

original message with loss of some information. It is

not possible to reconstruct the original message using

the decoding process, and is called irreversible

compression [3]. The decompression process results

an approximate reconstruction. It may be desirable,

when data of some ranges which could not

recognized by the human brain can be neglected.

Such techniques could be used for multimedia

images, video and audio to achieve more compact

data compression.

Various dictionary based lossless data

compression algorithms have been proposed and

used. Some of the main techniques in use are the

LZ77, LZR, LZSS, LZH and LZW Encoding and

decoding. This paper examines the performance of

the above mentioned algorithms are used. In

particular, performance of these algorithms in

compressing text data is evaluated and compared.

2. Methods and Materials

In order to evaluate the effectiveness and

efficiency of dictionary based lossless data

compression algorithms the following materials and

methods are used.

3 LZ77

Jacob Ziv and Abraham Lempel had introduced a

simple and efficient compression method published

in their article "A Universal Algorithm for Sequential

Data Compression". This algorithm is referred to as

LZ77 in honor to the authors and the publishing date

1977. LZ77 is a dictionary based algorithm that

addresses byte sequences from former contents

instead of the original data. In general only one

coding scheme exists; all data will be coded in the

same form:

 Address to already coded contents

 Sequence length

 First deviating symbol

Figure -1 sliding window of LZ77

ISSN: 2278 – 7798

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 2, Issue 2, February 2013

257

All Rights Reserved © 2013 IJSETR

If no identical byte sequence is available

from former contents, the address 0, the sequence

length 0 and the new symbol will be coded.

Pseudo code Encoding –algorithm

while look-ahead buffer is not empty

go backwards in search buffer to find longest match

of the look-ahead buffer

if match found

print: (offset from window boundary, length of match,

next symbol in lookahead

buffer);

shift window by length+1;

else

print: (0, 0, first symbol in look-ahead buffer);

shift window by 1;

fi

end while

Pseudo code Decoding –algorithm

for each token (offset, length, symbol)

if offset = 0 then

print symbol;

else

go reverse in previous output by offset characters and

copy

character wise for length symbols;

print symbol;

fi

Next

Improvements

3.1 LZR

The LZR modification allows pointers to

reference anything that has already been encoded

without being limited by the length of the search

buffer (window size exceeds size of expected input).

Since the position and length values can be arbitrarily

large, a variable-length representation is being used

positions and lengths of the matches.

3.2 LZSS

The mandatory inclusion of the next non-

matching symbol into each codeword will lead to

situations in which the symbol is being explicitly

coded despite the possibility of it being part of the

next match. Example: In

"abbca|caabb", the first match is a reference to "ca"

(with the first non-matching symbol being "a") and

the next match then is "bb" while it could have been

"abb" if there were no requirement to explicitly code

the first non-matching symbol. The popular

modification by Storer and Szymanski (1982)

removes this requirement. Their algorithm uses fixed-

length codeword‟s consisting of offset (into the

search buffer) and length (of the match) to denote

references. Only symbols for which no match can be

found or where the references would take up more

space than the codes for the symbols are still

explicitly coded.

Pseudo code LZSS Encoding –algorithm

While (lookAheadBuffer not empty)

{

Get a pointer (position, match) to the longest match;

If (length > minimum_mach_length){

Output (pointer_flag, position, length);

Shift the window length characters along;

} else {

Output (SYMBOL_FLAG, first symbol of look

ahead buffer);

Shift the window 1 character along;

}

}

3.3 LZB

LZB uses an elaborate scheme for encoding

the references and lengths with varying sizes.

3.4 LZH

The LZH implementation employs Huffman

coding to compress the pointers.

4 LZ78

The LZ78 is a dictionary-based compression

algorithm that maintains an explicit dictionary. The

code words output by the algorithm consist of two

elements: an index referring to the longest matching

dictionary entry and the first non-matching symbol.

 In addition to outputting the codeword for

storage/transmission, the algorithm also adds the

index and symbol pair to the dictionary. When a

symbol that not yet in the dictionary is encountered,

the codeword has the index value 0 and it is added to

the dictionary as well. With this method, the

algorithm gradually builds up a dictionary.

w := NIL;

while (there is input){

K := next symbol from input;

if (wK exists in the dictionary) {

w := wK;

} else {

output (index(w), K);

add wK to the dictionary;

ISSN: 2278 – 7798

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 2, Issue 2, February 2013

258

All Rights Reserved © 2013 IJSETR

w := NIL;

}

}

Note that this simplified pseudo-code version of the

algorithm does not prevent the dictionary from

growing forever. There are various solutions to limit

dictionary size, the easiest being to stop adding

entries and continue like a static dictionary coder or

to throw the dictionary away and start from scratch

after a certain number of entries has been reached.

4.1 LZW

The LZW algorithm uses dictionary while

decoding and encoding but the time taken for

creating the dictionary is large, so to reduce the time

complexity a new methodology is proposed in this

paper. The number of shift before of a new pattern

and the number of comparison required to find the

pattern in the dictionary is reduced after the

implementation of multiple dictionaries. The

experimental result shows massive reduction in the

time complexity.

LZW compression uses a code table

common choice is to provide 4096 entries in the

table. In this case, the LZW encoded data consists of

12 bit codes, each referring to one of the entries in

the code table. Decompression is achieved by taking

each code from the compressed file, and translating it

through the code table to find what character or

characters it represents. Codes 0-255 in the code table

are always assigned to represent single byte from the

input file. When the LZW program starts to encode a

file, the code table contains only the first 256 entries,

with the remainder of the table being blank. This

means that the first code in the compressed file is of

single byte from the input file being converted to 12

bits. As the encoding continues, the LZW algorithm

identifies repeated sequences in the data, and adds

them to the code table. Compression starts the second

time a sequence is encountered. The key point is that

a sequence from the input file is not added to the

code table until it has already been placed in the

compressed file as individual characters (codes 0 to

255). This is important because it allows the

decompression program to reconstruct the code table

directly from the compressed data, without having to

transmit the code table separately.

The compression algorithm uses two

variables: CHAR and STRING. The variable, CHAR,

holds a single character, (i.e.), a single byte value

between 0 and 255. The variable, STRING, is a

variable length string, (i.e.), a group of one or more

characters, with each character being a single byte.

The algorithm starts by taking the first byte from the

input file, and placing it in the variable, STRING.

Table -1 show this action in line 1. This is followed

by the algorithm looping for each additional byte in

the input file. Each time a byte is read from the input

file it is stored in the variable, CHAR. The data table

is then searched to determine if the concatenation of

the two variables, STRING+CHAR, has already been

assigned a code. If a match in the code table is not

found, three actions are taken, (i), output the code for

STRING, When a match in the code table is found,

(ii), the concatenation of STRING+CHAR is stored in

the variable, STRING, without any other action taking

place. That is, if a matching sequence is found in the

table, no action should be taken before determining

whether there is a longer matching sequence is

present in the table or not. An example of this is

shown in line 5, where the sequence:

STRING+CHAR = ‘AB’, is identified as already

having a code in the table. In line 6, the next

character from the input file, „B’, is added to the

sequence, and the code table is searched for: „ABB’.

Since this longer sequence is not in the table, the

algorithm adds it to the table, outputs the code for the

shorter sequence that is in the table (code 256), and

starts over searching for sequences beginning with

the character, ‘B’. This flow of events is continued

until there are no more characters in the input file.

The program is wrapped up with the code

corresponding to the current value of STRING being

written to the compressed file. LWZ compression

algorithm is illustrated in Table-1. The

Decompression algorithm uses four variables

NCODE, OCODE, STRING, and CHAR. The

decompression algorithm starts by taking the first

byte from the input file and placing it in the variable,

OCODE and output the OCODE. This action is

shown in table-2 line 1. This is followed by the

algorithm looping for each additional byte in the

input file; each time a byte is read from the input file

it is stored in the variable, NCODE. The data table is

then searched to find the variable NCODE. If a match

in the code table is not found STRING = OCODE

+CHAR else if the NCODE is found then STRING =

NCODE, then output the STRING. First Character

of STRING is assigned to CHAR, then adds entry

(OCODE+ CHAR) in table for and assigns NCODE

to OCODE. This process will continue up to the last

input. The decoding algorithm is shown in table-2.

ISSN: 2278 – 7798

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 2, Issue 2, February 2013

259

All Rights Reserved © 2013 IJSETR

The Existing implimentation of LZW, with

BST and simple binary search has several limitations

that directly leads to the time complexity. in LZW the

comparison ratio riquired for the new pattern while

encoding (NCODE) and

decoding(OLDCODE+CHAR) is huge. For example

if NCODE and OLDCODE+CHAR is „ABBBD‟

then the absence of the pattern is returended after

comparing all the elements in the dictionary (shown

in table 1 line number -16 for encoding and table-2

line number 10 for decoding). in binary search tree

Implimentation (BST) of LZW the search for the

pattern „ABBBD‟ the comparison required through

„AB‟,‟BC‟,‟ABB‟,‟BA‟, „ABBB‟ then only the

additional node is updated in the tree shown in

figure-2. in simple binary seearch the Comparison

ratio and Shifting before the insertion in huge shown

that directly leads to tme complexity.

Pseudo code for LZW Encoding –algorithm

STRING = get input CHAR

WHILE there are still input CHAR DO

CHARACTER = get input CHAR

IF STRING+CHAR is in the string table then

STRING = STRING+CHAR

ELSE

 Output the code for STRING

Add STRING+CHAR to the string table

STRING = CHAR

 END of IF

END of WHILE

output the code for STRING

Pseudo code for LZW Decoding–algorithm

Read OCODE

 output OCODE

 WHILE there are still input characters DO

ISSN: 2278 – 7798

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 2, Issue 2, February 2013

260

All Rights Reserved © 2013 IJSETR

 Read NCODE

 STRING = get translation of NCODE

 output STRING

 CHAR = first character in STRING

 add OLD_CODE + CHAR to the translation

table

 OLD_CODE = NEW_CODE

 END of WHILE

The GIF Controversy GIF image compression is

probably the first thing that comes to mind for most

people who have ever heard about the Lempel Ziv

algorithm. Originally developed by CompuServe in

the late 1980s, the GIF file format employs the LZW

technique for compression. Apparently, CompuServe

designed the GIF format without knowing that the

LZW algorithm was patented by Unisys.

For years, the GIF format, as well as other

software using the LZW algorithm, existed

peacefully and became popular, without ever being

subject to licensing fees by the patent holder. Then in

1994, Unisys announced a licensing agreement with

CompuServe, and subsequently started demanding

royalties from all commercial software developers

selling software that incorporated LZW compression.

Later the royalty demand was extended to non-

commercial software, sparking an even greater

outrage among the internet and software development

community than the initial announcement. Demands

to "Burn all GIFs" and efforts to produce a patent-

free alternative to GIF, PNG, received considerable

attention, but nevertheless GIF continues to be

popular. The patent on the LZW algorithm will

expire in June 2003. Still, several other algorithms of

the Lempel Ziv family remain protected by patents.

Jean-loup Gailly, the author of the gzip compression

program has done extensive research into

compression patents

Chart 1: Comparison LZ77 and LZ78

5. Comparison

The following chart shows a comparison of

the compression rates for the Different LZ77 and

LZ78 variants. The compression rate is measured in

bits/symbol, indicating how many bits are needed on

average to encode a symbol (for binary files: symbol

= byte).

6. Conclusions

An experimental comparison of a number of

different dictionary based lossless compression

algorithms for text data is carried out. Several

existing lossless compression methods are compared

for their effectiveness. Although they are tested on

different type of files, the main interest is on different

test patterns. By considering the compression ratio,

the LZW algorithm may be considered as the most

efficient algorithm among the selected ones. Those

values of this algorithm are in an acceptable range

and it shows better results.

References

[1]Pu, I.M., 2006, Fundamental Data

Compression, Elsevier, Britain.

[2] Blelloch, E., 2002. Introduction to Data

Compression, Computer Science Department,

Carnegie Mellon University.

[3] Kesheng, W., J. Otoo and S. Arie, 2006.

Optimizing bitmap indices with efficient compression,

ACM Trans. Database Systems, 31: 1-38.

[4] Kaufman, K. and T. Shmuel, 2005. Semi-lossless

text compression, Intl. J. Foundations of Computer

Sci., 16: 1167-1178.

[5] Campos, A.S.E, Basic arithmetic coding by

Arturo Campos Website, Available from:

http://www.arturocampos.com/ac_arithmetic.html.

(Accessed 02 February 2009)

[6] Vo Ngoc and M. Alistair, 2006. Improved

wordaligned binary compression for text indexing,

IEEE Trans. Knowledge & Data Engineering, 18:

857-861.

[7] Cormak, V. and S. Horspool, 1987. Data

compression using dynamic Markov modeling,

Comput. J., 30: 541–550.

[8] Capocelli, M., R. Giancarlo and J. Taneja, 1986.

Bounds on the redundancy of Huffman codes, IEEE

Trans. Inf. Theory,32: 854–857.

[9] Gawthrop, J. and W. Liuping, 2005. Data

compression for estimation of the physical

parameters of stable and unstable linear systems,

Automatica, 41: 1313-1321.

[10] comp . compression FAQ. http: // www.

faqs.org/faqs/compressionfaq/.

[11] Bell,T.C.,Clearly, J. G., AND Witten, I. H. Text

Compression. Prentice Hall, Upper Sadle River, NJ,

1990.

ISSN: 2278 – 7798

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 2, Issue 2, February 2013

261

All Rights Reserved © 2013 IJSETR

[12] Sayood, K. “Introduction to Data Compression”.

Academic Press, San Diego, CA, 1996, 2000.

[13] Ziv, J., and Lempel, A. “A universal algorithm

for sequential data Compression”. IEEE Transactions

on Information Theory 23 (1977), 337–343.

[14] ZIV, J., AND LEMPEL, A. Compression of

individual sequences via variable-rate coding. IEEE

Transactions on Information Theory 24 (1978), 530–

536.

Biography

 First Author Nishad PM M.Sc.,

M.Phil. Seven months Worked as

a project trainee in Wipro in

2005, five years experience in

teaching, one and half year in

JNASC and Three and half year

in MES Mampad College. He has

published eight papers national level/international

conference and journals. He has presented three

seminars at national Level. Now he is pursuing Ph.D

Computer Science in Dr. Mahalingam center for

research and development at NGM College Pollachi.

 Second Author Dr. R.Manicka

chezian received his M.Sc.,

degree in Applied Science from

P.S.G College of Technology,

Coimbatore, India in 1987. He

completed his M.S. degree in

Software Systems from Birla

Institute of Technology and Science, Pilani,

Rajasthan, India and Ph D degree in Computer

Science from School of Computer Science and

Engineering, Bharathiar University, Coimbatore,

India. He served as a Faculty of Maths and Computer

Applications at P.S.G College of Technology,

Coimbatore from 1987 to 1989. Presently, he has

been working as an Associate Professor of Computer

Science in N G M College (Autonomous), Pollachi

under Bharathiar University, Coimbatore, India since

1989. He has published thirty papers in

international/national journal and conferences: He is

a recipient of many awards like Desha Mithra Award

and Best Paper Award. His research focuses on

Network Databases, Data Mining, Distributed

Computing, Data Compression, Mobile Computing,

Real Time Systems and Bio-Informatics.

