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In this paper, we study ruin probabilities in two generalized risk models. The effects of
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1 Introduction

Let {Xn, n = 1, 2, · · ·} and {Yn, n = 1, 2, · · ·} be two sequences of independent and

identically distributed (i.i.d.) nonnegative random variables. Define

ψ(u) = Pr

{

∞
⋃

k=1

(Uk < 0)

}

, (1.1)

where

Uk = u+
k
∑

t=1

(Xt − Yt), k = 1, 2, · · · , (1.2)

or equivalently, the stochastic process {Un, n = 1, 2, · · ·} satisfies

Un = Un−1 +Xn − Yn, n = 1, 2, · · · , (1.3)

with U0 = u ≥ 0.

The quantity ψ(u) arises in many applied probability models and has been extensively

studied in risk theory and queueing theory as the ruin probability in different risk models

and the tail probability of the equilibrium waiting time in the G/G/1 queue, respectively.

See, for example, Grandell (1991), Rolski et al (1999), Ross (1996), and Willmot and Lin

(2001), and references therein.

In a risk theoretic setting, if Yn denotes the total claims during the nth period, i.e.

from time n− 1 to time n, and Xn represents the total premiums during the nth period,

then ψ(u) is the ultimate ruin probability with the initial surplus u in the classical risk

model (1.2). An important point to note about the classical risk model is that the surplus

level at time n does not depend on the timing of payment of premiums or claims because

there is no interest component in the model. Such issues are, however, important if we

include such an element in the model.

In this paper, we consider two generalizations of the classical risk model, in which

the effects of timing of payments and interest on the surplus process and on the ruin

probability can be included. In doing so, let {In, n = 1, 2, · · ·} be another sequence of

nonnegative random variables, and define two generalized processes by

Un = (Un−1 +Xn)(1 + In)− Yn, n = 1, 2, · · · , (1.4)
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and

Un = Un−1(1 + In) +Xn − Yn, n = 1, 2, · · · , (1.5)

respectively.

It is not hard to check that (1.4) implies

Un = u
n
∏

k=1

(1 + Ik) +
n
∑

k=1



(Xk(1 + Ik)− Yk)
n
∏

t=k+1

(1 + It)



 , n = 1, 2, · · · , (1.6)

while (1.5) is equivalent to

Un = u
n
∏

k=1

(1 + Ik) +
n
∑

k=1



(Xk − Yk)
n
∏

t=k+1

(1 + It)



 , n = 1, 2, · · · , (1.7)

where
∏b
t=a(1 + It) = 1 if a > b.

Mathematically, (1.4) and (1.5) are the generalizations of the classical risk model (1.3).

In fact, (1.3) is a special case of (1.4) and (1.5) when In = 0 for n = 1, 2, · · ·. Furthermore,

models (1.4) and (1.5) can be interpreted in a risk theoretic setting. To see that, assume

that an insurer would receive interest on its surplus each period. Let In denote the rate

of interest during the nth period, i.e. from time n− 1 to time n. Assume that Yn is the

amount of claims during the nth period, and is paid at the end of the nth period, i.e. at

time n. If Xn is the amount of premiums during the nth period, and is received at the

beginning of the nth period, i.e. at time n − 1, then, the surplus of the insurer at time

n denoted by Un with the initial surplus u satisfies (1.4). On the other hand, if Xn is

received at the end of the nth period, then Un satisfies (1.5). Therefore, (1.4) and (1.5)

allow us to adopt the effects of timing of payment and interest on the surplus, and the

ruin probabilities in the models.

The effects of interest on ruin probabilities have been discussed in several references.

Sundt and Teugels (1995, 1997) have studied the effects of a constant rate on the ruin

probability in the compound Poisson risk model. For more topics in the continuous time

risk models with rates of interest, see Asmussen (2000), Rolski et al (1999), and references

therein. Yang (1999) has considered a special case of (1.7) when {In, n = 1, 2, · · ·}

are identical constants. Further, Cai (2002) has discussed models (1.6) and (1.7) when

{In, n = 1, 2, · · ·} are independent and identically distributed (i.i.d.) rates of interest.
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However, the assumption of constant and i.i.d. rates are not particularly realistic since

rates of interest are usually statistically dependent over time.

In this paper, we consider a dependent model for {In, n = 1, 2, · · ·}, in which {In, n =

1, 2, · · ·} are assumed to have a dependent autoregressive structure of order one, i.e. In

satisfies,

In = αIn−1 +Wn, n = 1, 2, · · · , (1.8)

where 0 ≤ α < 1 and I0 = i0 ≥ 0 are constants, and {Wn, n = 1, 2, · · ·} is a sequence

of i.i.d. nonnegative random variables. Furthermore, we assume that {Yn, n = 1, 2, · · ·},

{Xn, n = 1, 2, · · ·}, and {Wn, n = 1, 2, · · ·} are independent, and they have common

distribution functions F (y) = Pr{Y1 ≤ y}, H(x) = Pr{X1 ≤ x}, and G(w) = Pr{W1 ≤

w}, respectively, with F (0) = 0.

We note that if α = 0, (1.8) gives the stochastic model of i.i.d. rates of interest; if

α = 0 and Wn = i, a constant, for all n = 1, 2, · · ·, (1.8) yields the model of a constant

rate. (1.8) is a dependent model for rates of interest, see, for example, Kellison (1991).

In addition, (1.8) is equivalent to

In = αni0 + αn−1W1 + · · ·+ αWn−1 +Wn, n = 1, 2, · · · , (1.9)

which implies that the rates of interest depend heavily on the recent rates. Furthermore,

we point out that the mean EIn = EW1/(1− α) + (i0 −EW1/(1− α))α
n has a constant

limit of EW1/(1−α) as n→∞, is increasing in n when EW1 ≥ i0(1−α) and decreasing

when EW1 ≤ i0(1−α). But In itself is neither increasing nor decreasing in n. The model

can also be interpreted as the average business increasing or decreasing over time.

We denote the ultimate ruin probability in model (1.6) with a rate model (1.8), the

initial surplus u, and the initial rate i0 by

φ(u, i0) = Pr{
∞
⋃

k=1

(Uk < 0)}

where Uk is given in (1.6), and define the ultimate ruin probability in model (1.7) with a

rate model (1.8), the initial surplus u, and the initial rate i0 by

ϕ(u, i0) = Pr{
∞
⋃

k=1

(Uk < 0)}
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where Uk is given in (1.7).

To calculate the ruin probability ψ(u) is not easy but the calculations of the ruin prob-

abilities φ(u, i0) and ϕ(u, i0) are even harder due to the complication of models (1.6) and

(1.7). One of probabilistic methods concerned commonly in risk theory is to derive prob-

ability inequalities for the ruin probabilities. An celebrated result for the ruin probability

ψ(u) in the classical risk model is the Lundberg inequality, which states if EX1 > EY1

(we still assume that this condition holds in this paper) and there is a constant R > 0

satisfying

Ee−R(X1−Y1) = 1 , (1.10)

then

ψ(u) ≤ e−Ru , u ≥ 0 , (1.11)

see, for example, Rolski et al (1999).

It is not difficult to see that

φ(u, i0) ≤ ϕ(u, i0) ≤ ψ(u), u ≥ 0. (1.12)

Thus, the ruin probability ψ(u) in the classical risk model is reduced by adding the interest

income to the surplus. Also, the timing of payments has effects on the ruin probabilities

φ(u, i0) and ϕ(u, i0). Indeed, it is intuitive to see (1.12) since the premiums are paid

earlier in model (1.4) than in model (1.5) and there is no interest income in (1.2). On

the other hand, considering (1.12), any interesting upper bounds for φ(u, i0) and ϕ(u, i0),

saying

φ(u, i0) ≤ ∆(u, i0) and ϕ(u, i0) ≤ Λ(u, i0), u ≥ 0,

should satisfy

∆(u, i0) ≤ Λ(u, i0) ≤ e−Ru, u ≥ 0. (1.13)

In this paper, we will derive probability inequalities for φ(u, i0) and ϕ(u, i0), which both

are generalizations of the Lundberg upper bound and satisfy (1.13). In Section 2, we first

derive integral equations for φ(u, i0) and ϕ(u, i0), and then give probability inequalities for

φ(u, i0) and ϕ(u, i0) in Section 3. Finally, we give an illustrative application to the ruin

probability in the compound binomial risk process under the dependent rates of interest

in Section 4.
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2 Integral equations for ruin probabilities

Define the finite time ruin probability in model (1.6) with a rate model (1.8), the initial

surplus u, and the initial rate i0 by

φn(u, i0) = Pr{
n
⋃

k=1

(Uk < 0)}

= Pr







n
⋃

k=1



u
k
∏

t=1

(1 + It) +
k
∑

j=1

(Xj(1 + Ij)− Yj)
k
∏

t=j+1

(1 + It) < 0











.

Then

lim
n→∞

φn(u, i0) = φ(u, i0).

We first give the following integral equations for φn(u, i0) and φ(u, i0).

Lemma 2.1 For n = 1, 2, · · ·,

φn+1(u, i0)

=
∫ ∞

0

∫ ∞

0
F̄ ((u+ x)(1 + αi0 + w))dH(x)dG(w)

+
∫ ∞

0

∫ ∞

0

∫ (u+x)(1+αi0+w)

0
φn((u+ x)(1 + αi0 + w)− y, αi0 + w)dF (y)dH(x)dG(w)

and

φ(u, i0)

=
∫ ∞

0

∫ ∞

0
F̄ ((u+ x)(1 + αi0 + w))dH(x)dG(w)

+
∫ ∞

0

∫ ∞

0

∫ (u+x)(1+αi0+w)

0
φ((u+ x)(1 + αi0 + w)− y, αi0 + w)dF (y)dH(x)dG(w).

Proof. From (1.6) and (1.8), we have U1 = (u + X1)(1 + I1) − Y1 = (u + X1)(1 +

αi0 + W1) − Y1. Given Y1 = y,X1 = x, and W1 = w, let h = αi0 + w. Thus, if

y > (u+ x)(1 + αi0 + w) = (u+ x)(1 + h), then

Pr {U1 < 0|Y1 = y,X1 = x,W1 = w} = 1,

which implies

Pr

{

n+1
⋃

k=1

(Uk < 0) |Y1 = y,X1 = x,W1 = w

}

= 1.
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Let {Ỹn, n = 1, 2, · · ·}, {X̃n, n = 1, 2, · · ·}, and {W̃n, n = 1, 2, · · ·} are independent

copies of {Yn, n = 1, 2, · · ·}, {Xn, n = 1, 2, · · ·}, and {Wn, n = 1, 2, · · ·}, respectively.

Then, given W1 = w, by (1.9), we know that

It = αti0 + αt−1W1 + αt−2W2 + · · ·+ αWt−1 +Wt

= αt−1(αi0 + w) + αt−2W2 + · · ·+ αWt−1 +Wt

= αt−1h+ αt−2W2 + · · ·+ αWt−1 +Wt

has the same distribution as that of Ĩt−1 = αt−1h+ αt−2W̃1 + · · ·+ αW̃t−2 + W̃t−1, where

{Ĩn, n = 1, 2, · · ·} has a similar autoregressive structure as that of {In, n = 1, 2, · · ·},

namely,

Ĩn = αĨn−1 + W̃n, n = 1, 2, · · · ,

but with a different initial rate Ĩ0 = ĩ0 = h = αi0 + w.

Hence, if 0 ≤ y ≤ (u+ x)(1 + αi0 + w) = (u+ x)(1 + h), then

Pr {U1 < 0|Y1 = y,X1 = x,W1 = w} = 0,

which implies by (1.4) that for 0 ≤ y ≤ (u+ x)(1 + h),

Pr

{

n+1
⋃

k=1

(Uk < 0) |Y1 = y,X1 = x,W1 = w

}

= Pr

{

n+1
⋃

k=2

(Uk < 0) |Y1 = y,X1 = x,W1 = w

}

= Pr







n+1
⋃

k=2



((u+ x)(1 + h)− y)
k
∏

t=2

(1 + It) +
k
∑

j=2

(Xj(1 + Ij)− Yj)
k
∏

t=j+1

(1 + It) < 0











= Pr







n
⋃

k=1



((u+ x)(1 + h)− y)
k
∏

t=1

(1 + Ĩt) +
k
∑

j=1

(X̃j(1 + Ĩj)− Ỹj)
k
∏

t=j+1

(1 + Ĩt) < 0











= φn((u+ x)(1 + h)− y, ĩ0)

= φn((u+ x)(1 + h)− y, h).

Therefore, by conditioning on Y1, X1, and W1, we get

φn+1(u, i0) = Pr

{

n+1
⋃

k=1

(Uk < 0)

}
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=
∫ ∞

0

∫ ∞

0

∫ ∞

0
Pr

{

n+1
⋃

k=1

(Uk < 0) |Y1 = y,X1 = x,W1 = w

}

dF (y)dH(x)dG(w)

=
∫ ∞

0

∫ ∞

0

∫ ∞

(u+x)(1+h)
dF (y)dH(x)dG(w)

+
∫ ∞

0

∫ ∞

0

∫ (u+x)(1+h)

0
φn((u+ x)(1 + h)− y, h)dF (y)dH(x)dG(w)

=
∫ ∞

0

∫ ∞

0
F̄ ((u+ x)(1 + h))dH(x)dG(w)

+
∫ ∞

0

∫ ∞

0

∫ (u+x)(1+h)

0
φn((u+ x)(1 + h)− y, h)dF (y)dH(x)dG(w). (2.1)

Thus, the integral equation for φ(u, i0) in Lemma 2.1 follows from letting n→∞ in (2.1),

limn→∞ φn(u, i0) = φ(u, i0), and the Lebesgue dominated convergence theorem. 2

Similarly, by denoting the finite time ruin probability in model (1.7) with a rate model

(1.8), the initial surplus u, and the initial rate i0 by

ϕn(u, i0) = Pr{
n
⋃

k=1

(Uk < 0)}

= Pr







n
⋃

k=1



u
k
∏

t=1

(1 + It) +
k
∑

j=1

(Xj − Yj)
k
∏

t=j+1

(1 + It) < 0











,

we then get the following integral equations for ϕn(u, i0) and ϕ(u, i0).

Lemma 2.2 For n = 1, 2, · · ·,

ϕn+1(u, i0)

=
∫ ∞

0

∫ ∞

0
F̄ (u(1 + αi0 + w) + x)dH(x)dG(w)

+
∫ ∞

0

∫ ∞

0

∫ u(1+αi0+w)+x

0
ϕn(u(1 + αi0 + w) + x− y, αi0 + w)dF (y)dH(x)dG(w)

and

ϕ(u, i0)

=
∫ ∞

0

∫ ∞

0
F̄ (u(1 + αi0 + w) + x)dH(x)dG(w)

+
∫ ∞

0

∫ ∞

0

∫ u(1+αi0+w)+x

0
ϕ(u(1 + αi0 + w) + x− y, αi0 + w)dF (y)dH(x)dG(w).
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Proof. In this case,

Uk = u
k
∏

t=1

(1 + It) +
k
∑

j=1

(Xj − Yj)
k
∏

t=j+1

(1 + It).

The rest of the proof of Lemma 2.2 is similar to that of Lemma 2.1. 2

3 Probability inequalities for ruin probabilities

Using the integral equations derived in Section 2 for φ(u, i0) and ϕ(u, i0), we can derive

probability inequalities for φ(u, i0) and ϕ(u, i0). We first get a probability inequality for

φ(u, i0).

Theorem 3.1 Suppose that R1 > 0 is a constant satisfying

Ee−R1(X1(1+W1)−Y1) = 1 . (3.1)

Then,

φ(u, i0) ≤ β1Ee
R1Y1 Ee−R1(u+X1)(1+αi0+W1), u ≥ 0 (3.2)

where

(β1)
−1 = inf

t≥0

∫∞

t eR1ydF (y)

eR1tF̄ (t)
. (3.3)

Proof. For any x ≥ 0, we have

F̄ (x) =

(
∫∞

x eR1ydF (y)

eR1xF̄ (x)

)−1

e−R1x
∫ ∞

x
eR1ydF (y)

≤ β1e
−R1x

∫ ∞

x
eR1ydF (y) (3.4)

≤ β1e
−R1xEeR1Y1 . (3.5)

Then, for any u ≥ 0 and any i0 ≥ 0,

φ1(u, i0) = Pr{Y1 > (u+X1)(1 + I1)} = Pr{Y1 > (u+X1)(1 + αi0 +W1)}

=
∫ ∞

0

∫ ∞

0
F̄ ((u+ x)(1 + αi0 + w))dH(x)dG(w),
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which implies by (3.5) that

φ1(u, i0) ≤ β1Ee
R1Y1

∫ ∞

0

∫ ∞

0
e−R1(u+x)(1+αi0+w)dH(x)dG(w)

= β1Ee
R1Y1 Ee−R1(u+X1)(1+αi0+W1) .

Under an inductive hypothesis, we assume for any u ≥ 0 and any i0 ≥ 0,

φn(u, i0) ≤ β1Ee
R1Y1 Ee−R1(u+X1)(1+αi0+W1). (3.6)

Thus, for 0 ≤ y ≤ (u+ x)(1 + αi0 + w), by (3.6), αi0 ≥ 0, and W1 ≥ 0, we have

φn((u+ x)(1 + αi0 + w)− y, αi0 + w)

≤ β1Ee
R1Y1 Ee−R1((u+x)(1+αi0+w)−y+X1)(1+α(αi0+w)+W1)

≤ β1Ee
R1Y1 Ee−R1((u+x)(1+αi0+w)−y+X1)(1+W1)

≤ β1Ee
R1Y1 Ee−R1((u+x)(1+αi0+w)−y)−R1X1(1+W1)

= β1Ee
R1Y1 Ee−R1X1(1+W1) e−R1((u+x)(1+αi0+w)−y)

= β1 e
−R1((u+x)(1+αi0+w)−y). (3.7)

Thus, by Lemma 2.1, (3.4), and (3.7), we get

φn+1(u, i0)

≤ β1

∫ ∞

0

∫ ∞

0
e−R1(u+x)(1+αi0+w)

∫ ∞

(u+x)(1+αi0+w)
eR1ydF (y)dH(x)dG(w)

+ β1

∫ ∞

0

∫ ∞

0
e−R1(u+x)(1+αi0+w)

∫ (u+x)(1+αi0+w)

0
eR1ydF (y)dH(x)dG(w)

= β1

∫ ∞

0

∫ ∞

0
e−R1(u+x)(1+αi0+w)

∫ ∞

0
eR1ydF (y)dH(x)dG(w)

= β1Ee
R1Y1Ee−R1(u+X1)(1+αi0+W1) .

Hence, for any n = 1, 2, · · ·, (3.6) holds. Therefore, (3.2) follows from letting n → ∞ in

(3.6) and limn→∞ φn(u, i0) = φ(u, i0). 2

An improved upper bound in Theorem 3.1 can be obtained when F is new worse

than used in convex ordering (NWUC), see Cao and Wang (1991) for the definition and

properties of NWUC.
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Corollary 3.1 Under the conditions of Theorem 3.1, if F is new worse than used in

convex ordering (NWUC), then,

φ(u, i0) ≤ Ee−R1(u+X1)(1+αi0+W1), u ≥ 0 . (3.8)

Proof. By Proposition 6.1.1 of Willmot and Lin (2001), we know that if F is NWUC

then β1 = (EeR1Y1)−1. Thus (3.8) follows from (3.2). 2

We can show that the upper bound in Theorem 3.1 is less than the Lundberg upper

bound. In doing so, we have the following result about R1 and R.

Proposition 3.1 If EX1 > EY1 and R1 > 0 in (3.1) and R > 0 in (1.10) exist, then

R1 ≥ R, in particular, if both X1 and W1 are not degenerate at 0, then R1 > R.

Proof. By considering the following functions:

f(r) = Ee−r(X1(1+W1)−Y1) − 1

and

g(r) = Ee−r(X1−Y1) − 1 ,

we have,

f ′′(r) = E
[

(X1(1 +W1)− Y1)
2 e−r(X1(1+W1)−Y1)

]

≥ 0 ,

which implies that f(r) is a convex function. In addition, f(0) = 0 and f ′(0) = EY1 −

EX1(1 +W1) ≤ EY1 − EX1 < 0. Similarly, g(r) is also a convex function with g(0) = 0

and g′(0) = E(Y1 −X1) < 0. Therefore, if R1 > 0 and R > 0 exist, then they are unique

positive roots of f(r) and g(r) respectively on (0,∞). Further, if r > 0 such that g(r) ≥ 0,

then r ≥ R. However,

e−R1(X1(1+W1)−Y1) ≤ e−R1(X1−Y1).

Thus,

1 = Ee−R1(X1(1+W1)−Y1) ≤ Ee−R1(X1−Y1),
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or

g(R1) = Ee−R1(X1−Y1) − 1 ≥ 0,

which implies that R1 > R, in particular, if both X1 andW1 are not degenerate at 0, then

1 = Ee−R1(X1(1+W1)−Y1) < Ee−R1(X1−Y1),

or

g(R1) = Ee−R1(X1−Y1) − 1 > 0,

which implies that R1 > R. 2

Denote the upper bound in Theorem 3.1 by A(u, i0), i.e.

A(u, i0) = β1Ee
R1Y1Ee−R1(u+X1)(1+αi0+W1),

we have the following result.

Proposition 3.2 For any u ≥ 0,

A(u, i0) ≤ e−Ru.

Proof. By W1 ≥ 0, αi0 ≥ 0, (3.1), and Proposition 3.1, we have for u ≥ 0,

A(u, i0)

= β1Ee
R1Y1Ee−R1u(1+αi0+W1)−R1X1(1+αi0+W1)

≤ β1Ee
R1Y1Ee−R1u(1+αi0)−R1X1(1+W1)

= β1Ee
R1Y1Ee−R1X1(1+W1)e−R1u(1+αi0)

= β1e
−R1u(1+αi0)

≤ e−R1u(1+αi0) ≤ e−Ru.

2

Proposition 3.2 means that the upper bound in Theorem 3.1 is less than the Lundberg

upper bound. Next, we obtain the following probability inequality for ϕ(u, i0).
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Theorem 3.2 Let R > 0 be a constant satisfying (1.10). Then,

ϕ(u, i0) ≤ β Ee−Ru(1+αi0+W1), u ≥ 0 (3.9)

where

(β)−1 = inf
t≥0

∫∞

t eRydF (y)

eRtF̄ (t)
. (3.10)

Proof. Similarly to (3.4) and (3.5), we have for any x ≥ 0,

F̄ (x) ≤ βe−Rx
∫ ∞

x
eRydF (y)

≤ βe−RxEeRY1 ,

which implies that for any u ≥ 0 and any i0 ≥ 0,

ϕ1(u, i0) = Pr{Y1 > u(1 + I1) +X1}

=
∫ ∞

0

∫ ∞

0
F̄ (u(1 + αi0 + w) + x)dH(x)dG(w)

≤ β EeRY1

∫ ∞

0

∫ ∞

0
e−R(u(1+αi0+w)+x)dH(x)dG(w)

= β EeRY1 Ee−R(u(1+αi0+W1)+X1)

= β Ee−Ru(1+αi0+W1) .

Using the similar inductive arguments as those used in the proof of Theorem 3.1, we can

prove that for any n = 1, 2, · · ·, u ≥ 0, and i0 ≥ 0,

ϕn(u, i0) ≤ β Ee−Ru(1+αi0+W1) . (3.11)

Therefore, (3.9) follows from letting n→∞ in (3.11) and limn→∞ ϕn(u, i0) = ϕ(u, i0). 2

Also, a refinement of the upper bound in Theorem 3.2 is available when F is NWUC.

Corollary 3.2 Under the conditions of Theorem 3.2, if F is NWUC, then

ϕ(u, i0) ≤ (EeRY1)−1Ee−Ru(1+αi0+W1), u ≥ 0 . (3.12)
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Proof. The proof of Corollary 3.2 is similar to that of Corollary 3.1. 2

Denote the upper bound in Theorem 3.2 by B(u, i0), i.e.

B(u, i0) = βEe−Ru(1+αi0+W1),

we can show that (1.13) holds for A(u, i0) and B(u, i0).

Proposition 3.3 For any u ≥ 0

A(u, i0) ≤ B(u, i0) ≤ e−Ru. (3.13)

Proof. The proof of proposition 3.3 is similar to that of Proposition 3.2. 2

Proposition 3.3 means that the upper bound in Theorem 3.1 for φ(u, i0) is less than

the upper bound in Theorem 3.2 for ϕ(u, i0), and (1.13) is satisfied by the upper bounds

derived in this paper.

Further, we point out that the upper bounds in Theorems 3.1 and 3.2 are optimal

in the sense that if {Xn = c Tn, n = 1, 2, · · ·}, c > 0, α = W1 = 0, and T1 and Y1 are

exponential random variables, then the upper bounds in Theorems 3.1 and 3.2 equal the

exact value of the ruin probability in the compound Poisson risk process with exponential

claim sizes. See, for example, Grandell (1991).

In addition, if α = 0 and Wn = 0, then R1 = R and β1 = β. Thus, the upper

bounds in Theorems 3.1 and 3.2 are reduced to βe−Ru, which yields an improvement on

the Lundberg upper bound since 0 ≤ β ≤ 1. For further refinements of the Lundberg

upper bound in different applied probability models, see Grandell (1997), Willmot (1996),

Willmot and Lin (2001), and references therein.

4 Ruin in the compound binomial risk model with

interest

In this section, we consider a discrete-time risk model and assume that a discrete time

stochastic process {Ut, t = 1, 2, · · ·} satisfies

Ut = u+ t−
Nt
∑

i=1

Pi, t = 0, 1, 2, · · · , (4.1)
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where U0 = u ≥ 0, {Nt, t = 1, 2, · · ·} is a binomial process with ENt = tq and 0 < q < 1,

and {Pt, t = 1, 2, · · · , } is a sequence of i.i.d. positive random variables and is independent

of the binomial process {Nt, t = 1, 2, · · ·}. This model is called a compound binomial risk

model. It is a discrete time analogue of the continuous time compound Poisson risk

model and can be used as an approximation to the continuous time compound Poisson

risk model.

It is assumed in the compound binomial risk model that in each time period (t, t +

1], t = 0, 1, 2, · · · , the probability of a claim is q and the probability of no clam is 1−q. The

occurrences of a claim in different time periods are independent events, and the premiums

for each time period are one. The amount of the ith claim is Pi. Thus, the surplus of an

insurance company at time t with the initial surplus u is given by (4.1). In addition, the

positive loading condition holds, i.e. qEP1 < 1.

The ruin probability in the compound binomial risk model has been studied by Cheng

et al (2000), DeVylder and Marceau (1996), and references therein. However, these studies

have not considered the effects of interest and the timing of the payment on the surplus

process {Ut, t = 1, 2, · · ·}. In this section, we modify the compound binomial risk model

to adopt such effects and give the upper bounds for the ruin probability in the modified

compound binomial risk model as the applications of the results in Section 3.

Let {εt, t = 1, 2, · · ·} be a sequence of i.i.d. Bernoulli random variables with Pr{ε1 =

1} = 1 − Pr{ε1 = 0} = q, and assume that {εt, t = 1, 2, · · ·} are independent of {Pt, t =

1, 2, · · ·}. Thus, the surplus process {Ut, t = 0, 1, 2, · · ·} in the compound binomial risk

model has the same distribution as the process {U ∗t , t = 0, 1, 2, · · ·} defined by

U∗t = u+
t
∑

k=1

(1− Yk), t = 0, 1, 2, · · · , (4.2)

where U ∗0 = u and Yk = εkPk, k = 1, 2, · · · . Therefore, the ruin probability in the surplus

process {Ut, t = 0, 1, 2, · · ·} equals the ruin probability in the surplus process {U ∗t , t =

0, 1, 2, · · ·}, i.e.

Pr{Ut < 0, for some t = 1, 2, · · ·} = Pr{U ∗t < 0, for some t = 1, 2, · · ·}, (4.3)

which is the ruin probability in the compound binomial risk model and has been considered

by the above references.
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Assume that the insurer would receive interest on its surplus during each time period

and the rate of interest during the nth time period is In satisfying (1.8). Suppose that

the premiums are paid at the beginning of each period and the claims are paid at the end

of each period. Denote the ruin probability in the compound binomial risk model with

a rate model (1.8), the initial surplus u, the initial rate i0 by ψ(u, i0). Thus, R1 in (3.1)

satisfies

1 = Ee−R1(1+W1−ε1P1) = e−R1Ee−R1W1E(eR1ε1P1)

= e−R1Ee−R1W1E(E(eR1ε1P1|ε1))

= e−R1Ee−R1W1(qEeR1P1 + 1− q).

Therefore, Theorems 3.1 gives that if κ1 > 0 be a constant satisfying

qEeκ1P1 + 1− q =
eκ1

Ee−κ1W1

,

then

ψ(u, i0) ≤ (qEeκ1P1 + 1− q)Ee−κ1(u+1)(1+αi0+W1), u ≥ 0. (4.4)

Similarly, using Theorem 3.2, we can obtain the upper bound for the ruin probability

in the compound binomial risk model when the premiums are paid at the end of each

period with a dependent rates of interest in (1.8).

Acknowledgements

I am grateful to the anonymous referee for his/her constructive comments, which have

improved the presentation of the paper.

References

[1] Asmussen, S. (2000) Ruin probabilities. World Scientific, Singapore.

[2] Cai, J. (2002) Discrete time risk models under rates of interest. Probability in the

Engineering and Informational Sciences. 16, 309-324.

16



[3] Cao, J. and Wang, Y. (1991) The NBUC and NWUC classes of life distributions. J.

Appl. Prob. 28, 473-479.

[4] Cheng, S., Gerber, H.U., and Shiu, E.S.W. (2000) Discounted probabilities and ruin

theory in the compound binomial model. Insurance: Math. Econom. 26, 239-250.

[5] DeVylder, F.E. and Marceau, E. (1996) Classical numerical ruin probabilities. Scand.

Actuarial J. 109-123.

[6] Grandell, J. (1991) Aspects of Risk Theory. Spring-Verlag, New York.

[7] Grandell, J. (1997) Mixed Poisson Processes. Chapman and Hall, London.

[8] Kellison, S. (1991) The Theory of Interest, 2nd Edition. IRWIN, Boston.

[9] Rolski, T., Schmidli, V., Schmidt, V., and Teugels, J. L. (1999) Stochastic Processes

for Insurance and Finance. John Wiley, Chichester.

[10] Ross, S. (1996) Stochastic Processes, 2nd edition. John Wiley, New York.

[11] Sundt, B. and Teugels, J. L. (1995) Ruin estimates under interest force. Insurance:

Math. Econom. 16, 7-22.

[12] Sundt, B. and Teugels, J. L. (1997) The adjustment function in ruin estimates under

interest force. Insurance: Math. Econom. 19, 85-94.

[13] Willmot, G.E. (1996) A non-exponential generalization of an inequality arising in

queueing and insurance risk. J. of Appl. Prob. 33, 176-183.

[14] Willmot, G.E. and Lin, X.S. (2001) Lundberg Approximations for Compound Distri-

butions with Insurance Applications. Springer-Verlag, New York.

[15] Yang, H. (1999) Non-exponential bounds for ruin probability with interest effect

included. Scand. Actuarial J. 1, 66-79.

17


