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ABSTRACT

Snakes, or active contours, are used extensively in computer vision and image processing applications,

particularly to locate object boundaries. Problems associated with initialization and poor convergence to

boundary concavities, however, have limited their utility. This paper presents a new external force for active

contours, largely solving both problems. This external force, which we callgradient vector flow(GVF), is

computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image.

It differs fundamentally from traditional snake external forces in that it cannot be written as the negative

gradient of a potential function, and the corresponding snake is formulated directly from a force balance

condition rather than a variational formulation. Using several two-dimensional examples and one three-

dimensional example, we show that GVF has a large capture range and is able to move snakes into boundary

concavities.
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1 Introduction

Snakes[1], or active contours, are curves defined within an image domain which can move under the

influence of internal forces coming from within the curve itself and external forces computed from the image

data. The internal and external forces are defined so that thesnake will conform to an object boundary

or other desired features within an image. Snakes are widelyused in many applications, including edge

detection [1], shape modeling [2, 3], segmentation [4, 5], and motion tracking [4, 6].

There are two general types of active contour models in the literature today:parametric active con-

tours [1] and geometric active contours[7, 8]. In this paper, we focus on parametric active contours,

although we expect our results to have applications in geometric active contours as well. Parametric active

contours synthesize parametric curves within an image domain and allow them to move toward desired

features, usually edges. Typically, the curves are drawn toward the edges bypotential forces, which are

defined to be the negative gradient of a potential function. Additional forces, such as pressure forces [9],

together with the potential forces comprise theexternal forces. There are alsointernal forcesdesigned to

hold the curve together (elasticity forces) and to keep it from bending too much (bending forces).

There are two key difficulties with parametric active contour algorithms. First, the initial contour must,

in general, be close to the true boundary or else it will likely converge to the wrong result. Several methods

have been proposed to address this problem including multiresolution methods [10], pressure forces [9],

and distance potentials [11]. The basic idea is to increase the capture rangeof the external force fields

and to guide the contour toward the desired boundary. The second problem is that active contours have

difficulties progressing intoboundary concavities[12, 13]. There is no satisfactory solution to this problem,

although pressure forces [9], control points [12], domain-adaptivity [14], directional attractions [13], and the

use of solenoidal fields [15] have been proposed. However, most of the methods proposed to address these

problems solve only one problem while creating new difficulties. For example, multiresolution methods have

addressed the issue of capture range, but specifying how thesnake should move across different resolutions

remains problematic. Another example is that of pressure forces, which can push an active contour into

boundary concavities, but cannot be too strong or “weak” edges will be overwhelmed [16]. Pressure forces

must also be initialized to push out or push in, a condition that mandates careful initialization.

In this paper, we present a new class of external forces for active contour models which addresses both

problems listed above. These fields, which we callgradient vector flow(GVF) fields, are dense vector
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fields derived from images by minimizing a certain energy functional in a variational framework. The

minimization is achieved by solving a pair of decoupled linear partial differential equations which diffuses

the gradient vectors of a gray-level or binary edge map computed from the image. We call the active

contour that uses the GVF field as its external force aGVF snake. The GVF snake is distinguished from

nearly all previous snake formulations in that its externalforces cannot be written as the negative gradient

of a potential function. Because of this, it cannot be formulated using the standard energy minimization

framework; instead, it is specified directly from a force balance condition.

Particular advantages of the GVF snake over a traditional snake are its insensitivity to initialization

and its ability to move into boundary concavities. As we showin this paper, its initializations can be

inside, outside, or across the object's boundary. Unlike pressure forces, the GVF snake does not need

prior knowledge about whether to shrink or expand towards the boundary. The GVF snake also has a large

capture range, which means that, barring interference fromother objects, it can be initialized far away from

the boundary. This increased capture range is achieved through a diffusion process which does not blur the

edges themselves, so multiresolution methods are not needed. The external force model that is closest in

spirit to GVF is the distance potential forces of Cohen and Cohen [11]. Like GVF, these forces originate

from an edge map of the image and can provide a large capture range. We show, however, that unlike

GVF, distance potential forces cannot move a snake into boundary concavities. We believe that this is a

property of all conservative forces which characterize nearly all snake external forces, and that exploring

non-conservative external forces, such as GVF, is an important direction for future research in active contour

models.

2 Background

2.1 Parametric Snake Model

A traditional snakeis a curvex(s) = [x(s); y(s)], s 2 [0; 1], that moves through the spatial domain of an

image to minimize the energy functionalE = Z 10 12(�jx0(s)j2 + �jx00(s)j2) +Eext(x(s))ds (1)

where� and� are weighting parameters that control the snake's tension and rigidity, respectively, andx0(s)
andx00(s) denote the first and second derivatives ofx(s) with respect tos. The external energy function
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boundaries. Given a gray-level imageI(x; y), viewed as a function of continuous position variables(x; y),
typical external energies designed to lead an active contour toward step edges are [1]:E(1)ext(x; y) = �jrI(x; y)j2 (2)E(2)ext(x; y) = �jr(G�(x; y) � I(x; y))j2 (3)

whereG�(x; y) is a two-dimensional Gaussian function with standard deviation � andr is the gradient

operator. If the image is a line drawing (black on white), then appropriate external energies include [9]:E(3)ext(x; y) = I(x; y) (4)E(4)ext(x; y) = G�(x; y) � I(x; y) (5)

It is easy to see from these definitions that larger�'s will cause the boundaries to become blurry. Such large�'s are often necessary, however, in order to increase the capture range of the active contour.

A snake that minimizesE must satisfy the Euler equation�x00(s)� �x0000(s)�rEext = 0 (6)

This can be viewed as a force balance equationFint + F(p)ext = 0 (7)

whereFint = �x00(s) � �x0000(s) andF(p)ext = �rEext. The internal forceFint discourages stretching and

bending while the external potential forceF(p)ext pulls the snake towards the desired image edges.

To find a solution to (6), the snake is made dynamic by treatingx as function of timet as well ass —

i.e.,x(s; t). Then, the partial derivative ofx with respect tot is then set equal to the left hand side of (6) as

follows xt(s; t) = �x00(s; t)� �x0000(s; t)�rEext (8)

When the solutionx(s; t) stabilizes, the termxt(s; t) vanishes and we achieve a solution of (6). A numerical

solution to (8) can be found by discretizing the equation andsolving the discrete system iteratively (cf. [1]).

We note that most snake implementations use either a parameter which multipliesxt in order to control the

temporal step-size, or a parameter to multiplyrEext which permits separate control of the external force

strength. In this paper, we normalize the external forces sothat the maximum magnitude is equal to one,

and use a unit temporal step-size for all the experiments.
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2.2 Behavior of Traditional Snakes

An example of the behavior of a traditional snake is shown in Fig. 1. Fig. 1a shows a64 � 64-pixel line-

drawing of a U-shaped object (shown in gray) having a boundary concavity at the top. It also shows a

sequence of curves (in black) depicting the iterative progression of a traditional snake (� = 0:6, � = 0:0)

initialized outside the object but within the capture rangeof the potential force field. The potential force

field F(p)ext = �rE(4)ext where� = 1:0 pixel is shown in Fig. 1b. We note that the final solution in Fig. 1a

solves the Euler equations of the snake formulation, but remains split across the concave region.

The reason for the poor convergence of this snake is revealedin Fig. 1c, where a close-up of the external

force field within the boundary concavity is shown. Althoughthe external forces correctly point toward

the object boundary, within the boundary concavity the forces point horizontallyin opposite directions.

Therefore, the active contour is pulled apart toward each ofthe “fingers” of the U-shape, but not made to

progress downward into the concavity. There is no choice of� and� that will correct this problem.

Another key problem with traditional snake formulations, the problem of limited capture range, can

be understood by examining Fig. 1b. In this figure, we see thatthe magnitude of the external forces die

out quite rapidly away from the object boundary. Increasing� in (5) will increase this range, but the

boundary localization will become less accurate and distinct, ultimately obliterating the concavity itself

when� becomes too large.

Cohen and Cohen [11] proposed an external force model that significantly increases the capture range of

a traditional snake. These external forces are the negativegradient of a potential function that is computed

using a Euclidean (or chamfer) distance map. We refer to these forces asdistance potential forcesto

distinguish them from the traditional potential forces defined in Section 2.1. Fig. 2 shows the performance

of a snake using distance potential forces. Fig. 2a shows both the U-shaped object (in gray) and a sequence

of contours (in black) depicting the progression of the snake from its initialization far from the object to its

final configuration. The distance potential forces shown in Fig. 2b have vectors with large magnitudes far

away from the object, explaining why the capture range is large for this external force model.

As shown in Fig. 2a, this snake also fails to converge to the boundary concavity. This can be explained

by inspecting the magnified portion of the distance potential forces shown in Fig. 2c. We see that, like

traditional potential forces, these forces also point horizontally in opposite directions, which pulls the snake

apart but not downward into the boundary concavity. We note that Cohen and Cohen's modification to the

basic distance potential forces, which applies a nonlineartransformation to the distance map [11], does
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not change the direction of the forces, only their magnitudes. Therefore, the problem of convergence to

boundary concavities is not solved by distance potential forces.

2.3 Generalized Force Balance Equations

The snake solutions shown in Figs. 1a and 2a both satisfy the Euler equations (6) for their respective energy

model. Accordingly, the poor final configurations can be attributed to convergence to a local minimum of

the objective function (1). Several researchers have sought solutions to this problem by formulating snakes

directly from a force balance equation in which the standardexternal forceF(p)ext is replaced by a more

general external forceF(g)ext as follows Fint + F(g)ext = 0 (9)

The choice ofF(g)ext can have a profound impact on both the implementation and thebehavior of a snake.

Broadly speaking, the external forcesF(g)ext can be divided into two classes: static and dynamic. Static forces

are those that are computed from the image data, and do not change as the snake progresses. Standard snake

potential forces are static external forces. Dynamic forces are those that change as the snake deforms.

Several types of dynamic external forces have been inventedto try to improve upon the standard snake

potential forces. For example, the forces used in multiresolution snakes [10] and the pressure forces used in

balloons [9] are dynamic external forces. The use of multiresolution schemes and pressure forces, however,

adds complexity to a snake's implementation and unpredictability to its performance. For example, pressure

forces must be initialized to either push out or push in, and may overwhelm weak boundaries if they act too

strongly [16]. Conversely, they may not move into boundary concavities if they are pushing in the wrong

direction or act too weakly.

In this paper, we present a new type ofstatic external force, one that does not change with time or depend

on the position of the snake itself. The underlying mathematical premise for this new force comes from the

Helmholtz theorem (cf. [17]), which states that the most general static vector field can be decomposed

into two components: an irrotational (curl-free) component and a solenoidal (divergence-free) component.1

An external potential force generated from the variationalformulation of a traditional snake must enter

the force balance equation (6) as a static irrotational field, since it is the gradient of a potential function.

Therefore, a more general static fieldF(g)ext can be obtained by allowing the possibility that it comprises

bothan irrotational component and a solenoidal component. Our previous paper [15] explored the idea of

1Irrotational fields are sometimes called conservative fields; they can be represented as the gradient of a scalar potential function.



7

constructing a separate solenoidal field from an image, which was then added to a standard irrotational field.

In the following section, we pursue a more natural approach in which the external force field is designed to

have the desired properties of both a large capture range andthe presence of forces that point into boundary

concavities. The resulting formulation produces externalforce fields that can be expected to have both

irrotational and solenoidal components.

3 Gradient Vector Flow Snake

Our overall approach is to use the force balance condition (7) as a starting point for designing a snake. We

define below a new static external force fieldF(g)ext = v(x; y), which we call thegradient vector flow(GVF)

field. To obtain the corresponding dynamic snake equation, we replace the potential force�rEext in (8)

with v(x; y), yielding xt(s; t) = �x00(s; t)� �x0000(s; t) + v (10)

We call the parametric curve solving the above dynamic equation aGVF snake. It is solved numerically by

discretization and iteration, in identical fashion to the traditional snake.

Although the final configuration of a GVF snake will satisfy the force-balance equation (7), this equation

does not, in general, represent the Euler equations of the energy minimization problem in (1). This is becausev(x; y) will not, in general, be an irrotational field. The loss of this optimality property, however, is well-

compensated by the significantly improved performance of the GVF snake.

3.1 Edge Map

We begin by defining anedge mapf(x; y) derived from the imageI(x; y) having the property that it is

larger near the image edges.2 We can use any gray-level or binary edge map defined in the image processing

literature (cf. [18]); for example, we could usef(x; y) = �E(i)ext(x; y) (11)

wherei = 1, 2, 3, or 4. Three general properties of edge maps are important in the present context. First,

the gradient of an edge maprf has vectors pointing toward the edges, which are normal to the edges at the

edges. Second, these vectors generally have large magnitudes only in the immediate vicinity of the edges.

Third, in homogeneous regions, whereI(x; y) is nearly constant,rf is nearly zero.

2Other features can be sought by redefiningf(x; y) to be larger at the desired features.
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Now consider how these properties affect the behavior of a traditional snake when the gradient of an

edge map is used as an external force. Because of the first property, a snake initialized close to the edge

will converge to a stable configuration near the edge. This isa highly desirable property. Because of the

second property, however, the capture range will be very small, in general. Because of the third property,

homogeneous regions will have no external forces whatsoever. These last two properties are undesirable.

Our approach is to keep the highly desirable property of the gradients near the edges, but to extend the

gradient map farther away from the edges and into homogeneous regions using a computational diffusion

process. As an important benefit, the inherent competition of the diffusion process will also create vectors

that point into boundary concavities.

3.2 Gradient Vector Flow

We define the gradient vector flow field to be the vector fieldv(x; y) = (u(x; y); v(x; y)) that minimizes

the energy functionalE = Z Z �(ux2 + uy2 + vx2 + vy2) + jrf j2jv �rf j2dxdy (12)

This variational formulation follows a standard principle, that of making the result smooth when there is no

data. In particular, we see that whenjrf j is small, the energy is dominated by sum of the squares of the

partial derivatives of the vector field, yielding a slowly-varying field. On the other hand, whenjrf j is large,

the second term dominates the integrand, and is minimized bysettingv = rf . This produces the desired

effect of keepingv nearly equal to the gradient of the edge map when it is large, but forcing the field to

be slowly-varying in homogeneous regions. The parameter� is a regularization parameter governing the

tradeoff between the first term and the second term in the integrand. This parameter should be set according

to the amount of noise present in the image (more noise, increase�).

We note that the smoothing term — the first term within the integrand of (12) — is the same term used

by Horn and Schunck in their classical formulation of optical flow [19]. It has recently been shown that

this term corresponds to an equal penalty on the divergence and curl of the vector field [20]. Therefore, the

vector field resulting from this minimization can be expected to be neither entirely irrotational nor entirely

solenoidal.

Using thecalculus of variations[21], it can be shown that the GVF field can be found by solving the
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following Euler equations �r2u� (u� fx)(fx2 + fy2) = 0 (13a)�r2v � (v � fy)(fx2 + fy2) = 0 (13b)

wherer2 is the Laplacian operator. These equations provide furtherintuition behind the GVF formulation.

We note that in a homogeneous region (whereI(x; y) is constant), the second term in each equation is zero

because the gradient off(x; y) is zero. Therefore, within such a region,u andv are each determined by

Laplace's equation, and the resulting GVF field is interpolated from the region's boundary, reflecting a kind

of competition among the boundary vectors. This explains why GVF yields vectors that point into boundary

concavities.

3.3 Numerical Implementation

Equations (13a) and (13b) can be solved by treatingu andv as functions of time and solvingut(x; y; t) = �r2u(x; y; t)� (u(x; y; t) � fx(x; y))(fx(x; y)2 + fy(x; y)2) (14a)vt(x; y; t) = �r2v(x; y; t)� (v(x; y; t) � fy(x; y))(fx(x; y)2 + fy(x; y)2) (14b)

The steady-state solution of these linear parabolic equations is the desired solution of the Euler equations

(13a) and (13b). Note that these equations are decoupled, and therefore can be solved as separate scalar

partial differential equations inu andv. The equations in (14) are known asgeneralized diffusion equations,

and are known to arise in such diverse fields as heat conduction, reactor physics, and fluid flow [22]. Here,

they have appeared from our description of desirable properties of snake external force fields as represented

in the energy functional of (12).

For convenience, we rewrite Equation (14) as followsut(x; y; t) = �r2u(x; y; t) � b(x; y)u(x; y; t) + c1(x; y) (15a)vt(x; y; t) = �r2v(x; y; t)� b(x; y)v(x; y; t) + c2(x; y) (15b)

where b(x; y) = fx(x; y)2 + fy(x; y)2c1(x; y) = b(x; y)fx(x; y)c2(x; y) = b(x; y)fy(x; y)
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Any digital image gradient operator (cf. [18]) can be used tocalculatefx andfy. In the examples shown

in this paper, we use simple central differences. The coefficientsb(x; y), c1(x; y), andc2(x; y), can then be

computed and fixed for the entire iterative process.

To set up the iterative solution, let the indicesi, j, andn correspond tox, y, andt, respectively, and

let the spacing between pixels be�x and�y and the time step for each iteration be�t. Then the required

partial derivatives can be approximated asut = 1�t(un+1i;j � uni;j)vt = 1�t(vn+1i;j � vni;j)r2u = 1�x�y (ui+1;j + ui;j+1 + ui�1;j + ui;j�1 � 4ui;j)r2v = 1�x�y (vi+1;j + vi;j+1 + vi�1;j + vi;j�1 � 4vi;j)
Substituting these approximations into (15) gives our iterative solution to GVF:un+1i;j = (1� bi;j�t)uni;j + r(uni+1;j + uni;j+1 + uni�1;j + uni;j�1 � 4uni;j) + c1i;j�t (16a)vn+1i;j = (1� bi;j�t)vni;j + r(vni+1;j + vni;j+1 + vni�1;j + vni;j�1 � 4vni;j) + c2i;j�t (16b)

where r = ��t�x�y (17)

Convergence of the above iterative process is guaranteed bya standard result in the theory of numerical

methods (cf. [23]). Provided thatb, c1, andc2 are bounded, (16) is stable whenever the Courant-Friedrichs-

Lewy step-size restrictionr � 1=4 is maintained. Since normally�x, �y, and� are fixed, using the

definition ofr in (17) we find that the following restriction on the time-step �t must be maintained in order

to guarantee convergence of GVF: �t � �x�y4� (18)

The intuition behind this condition is revealing. First, convergence can be made to be faster on coarser

images — i.e., when�x and�y are larger. Second, when� is large and the GVF is expected to be a

smoother field, the convergence rate will be slower (since�t must be kept small).

Our 2-D GVF computations were implemented using MATLAB3 code. For anN = 256 � 256-pixel

image on an SGI Indigo-2, typical computation times are 8 seconds for the traditional potential forces

3Mathworks, Natick MA
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(written in C), 155 seconds for the distance potential forces (Euclidean distance map, written in MATLAB),

and 420 seconds for the GVF forces (written in MATLAB, using
pN iterations). The computation time of

GVF can be substantially reduced by using optimized code in Cor FORTRAN. For example, we have imple-

mented 3-D GVF (see Section 5.2) in C, and computed GVF with 150 iterations on a256 � 256� 60-voxel

image in 31 minutes. Accounting for the size difference and extra dimension, we conclude that written in

C, GVF computation for a 2-D256 � 256-pixel image would take approximately 53 seconds. Algorithm

optimization such as use of the multigrid method should yield further improvements.

4 GVF Fields and Snakes: Demonstrations

This section shows several examples of GVF field computations on simple objects and demonstrates several

key properties of GVF snakes. We used� = 0:6 and� = 0:0 for all snakes and� = 0:2 for GVF. The snakes

were dynamically reparameterized to maintain contour point separation to within 0.5–1.5 pixels (cf. [24]).

All edge maps used in GVF computations were normalized to therange[0; 1].
4.1 Convergence to Boundary Concavity

In our first experiment, we computed the GVF field for the same U-shaped object used in Figs. 1 and 2. The

results are shown in Fig. 3. Comparing the GVF field, shown in Fig. 3b, to the traditional potential force

field of Fig. 1b, reveals several key differences. First, like the distance potential force field (Fig. 2b), the

GVF field has a much larger capture range than traditional potential forces. A second observation, which

can be seen in the closeup of Fig. 3c, is that the GVF vectors within the boundary concavity at the top of the

U-shape have a downward component. This stands in stark contrast to both the traditional potential forces

of Fig. 1c and the distance potential forces of Fig. 2c. Finally, it can be seen from Fig. 3b that the GVF field

behaves in an analogous fashion when viewed from the inside of the object. In particular, the GVF vectors

are pointing upward into the “fingers” of the U shape, which represent concavities from this perspective.

Fig. 3a shows the initialization, progression, and final configuration of a GVF snake. The initialization

is the same as that of Fig. 2a, and the snake parameters are thesame as those in Figs. 1 and 2. Clearly, the

GVF snake has a broad capture range and superior convergenceproperties. The final snake configuration

closely approximates the true boundary, arriving at a sub-pixel interpolation through bilinear interpolation

of the GVF force field.



12

4.2 Streamlines

Streamlines are the paths over which free particles move when placed in an external force field. By looking

at their streamlines, we can examine the capture ranges and motion inducing properties for various snake

external forces. Fig. 4 shows the streamlines of points arranged on a32�32 grid for the traditional potential

forces, distance potential forces, and GVF forces used in the simulations of Figs. 1, 2, and 3.

Several properties can be observed from these figures. First, the capture ranges of the GVF force field

and the distance potential force field are clearly much larger than that of the traditional potential force field.

In fact, both distance potential forces and GVF forces will attract a snake that is initialized on the image

border. Second, it is clear that GVF is the only force providing both a downward force within the boundary

concavity at the top of the U-shape and an upward force withinthe “fingers” of the U-shape. In contrast,

both traditional snake forces and distance potential forces provide only sideways forces in these regions.

Third, the distance potential forces appear to have boundary points that act as regional points of attraction.

In contrast, the GVF forces attract points uniformly towardthe boundary.

4.3 Snake Initialization and Convergence

In this section we present several examples that compare different snake models with the GVF snake,

showing various effects related to initialization, boundary concavities, and subjective contours. The object

under study is the line drawing drawn in gray in both Figs. 5 and 6. This figure may depict, for example, the

boundary of a room having two doors at the top and bottom and two alcoves at the left and right. The open

doors at the top and bottom represent subjective contours that we desire to connect using the snake (cf. [1]).

The snake results shown in Figs. 5b–d all used the initialization shown in Fig. 5a. We first note that for

this initialization, the traditional potential forces were too weak to overpower the snake's internal forces, and

the snake shrank to a point at the center of the figure (result not shown). To try to fix this problem, a balloon

model with outward pressure forces just strong enough to cause the snake to expand into the boundary

concavities was implemented; this result is shown in Fig. 5b. Clearly, the pressure forces also caused the

balloon to bulge outward through the openings at the top and bottom, and therefore the subjective contours

are not reconstructed well.

The snake result obtained using the distance potential force model is shown in Fig. 5c. Clearly, the

capture range is now adequate and the subjective boundariesat the top and bottom are reconstructed well.
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But this snake fails to find the boundary concavities at the left and right, for the same reason that it could

not proceed into the top of the U-shaped object of the previous sections. The GVF snake result, shown

in Fig. 5d, is clearly the best result. It has reconstructed both the subjective boundaries and the boundary

concavities quite well. The slight rounding of corners, which can also be seen in Figs. 5b and 5c, is a

fundamental characteristic of snakes caused by the regularization coefficients� and�.4

The snake results shown in Figs. 6b–d all used the initialization shown in Fig. 6a, which is deliberately

placed across the boundary. In this case, the balloon model cannot be sensibly applied because it is not clear

whether to apply inward or outward pressure forces. Instead, the result of a snake with traditional potential

forces is shown in Fig. 6b. This snake stops at a very undesirable configuration because its only points of

contact with the boundary are normal to it and the remainder of the snake is outside the capture range of the

other parts of the boundary. The snake resulting from distance potential forces is shown in Fig. 6c. This

result shows that although the distance potential force snake possesses an insensitivity to initialization, it is

incapable of progressing into boundary concavities. The GVF snake result, shown in Fig. 6d, is again the

best result. The GVF snake appears to have both an insensitivity to initialization and an ability to progress

into boundary concavities.

5 Gray-level Images and Higher Dimensions

In this section, we describe and demonstrate how GVF can be used in gray-level imagery and in higher

dimensions.

5.1 Gray-level Images

The underlying formulation of GVF is valid for gray-level images as well as binary images. To compute

GVF for gray-level images, the edge-map functionf(x; y) must first be calculated. Two possibilities aref (1)(x; y) = jrI(x; y)j or f (2)(x; y) = jr(G�(x; y) � I(x; y))j, where the latter is more robust in the pres-

ence of noise. Other more complicated noise-removal techniques such as median filtering, morphological

filtering, and anisotropic diffusion could also be used to improve the underlying edge map. Given an edge-

map function and an approximation to its gradient, GVF is computed in the usual way using Equation (16).

Fig. 7a shows a gray-level image of the U-shaped object corrupted by additive white Gaussian noise; the

4The effect is only caused by� in this example since� = 0.
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signal-to-noise ratio is 6 dB. Fig. 7b shows an edge-map computed usingf(x; y) = f (2)(x; y) with � = 1:5
pixels, and Fig. 7c shows the computed GVF field. It is evidentthat the stronger edge-map gradients are

retained while the weaker gradients are smoothed out, exactly as would be predicted by the GVF energy

formulation of (12). Superposed on the original image, Fig.7d shows a sequence of GVF snakes (plotted in

a shade of gray) and the GVF snake result (plotted in white). The result shows an excellent convergence to

the boundary, despite the initialization from far away, theimage noise, and the boundary concavity.

Another demonstration of GVF applied to gray-scale imageryis shown in Fig. 8. Fig. 8a shows a

magnetic resonance image (short-axis section) of the left ventrical of a human heart, and Fig. 8b shows an

edge map computed usingf(x; y) = f (2)(x; y) with � = 2:5. Fig. 8c shows the computed GVF, and Fig. 8d

shows a sequence of GVF snakes (plotted in a shade of gray) andthe GVF snake result (plotted in white),

both overlaid on the original image. Clearly, many details on the endocardial border are captured by the

GVF snake result, including the papillary muscles (the bumps that protrude into the cavity).

5.2 Higher Dimensions

GVF can be easily generalized to higher dimensions. Letf(x) : Rn ! R be an edge map defined inRn.

The GVF field inRn is defined as the vector fieldv(x) : Rn ! Rn which minimizes the energy functionalE = ZRn �jrvj2 + jrf j2 jv �rf j2dx (19)

where the gradient operatorr is applied to each component ofv separately. Using the calculus of variations,

we find that the GVF field must satisfy the Euler equation�r2v � (v �rf)jrf j2 = 0 (20)

wherer2 is also applied to each component of the vector fieldv separately.

A solution to these Euler equations can be found by introducing a time variablet and finding the steady-

state solution of the following linear parabolic partial differential equationvt = �r2v � (v �rf)jrf j2 (21)

wherevt denotes the partial derivative ofv with respect tot. Equation (21) comprisesn decoupled scalar

linear second order parabolic partial differential equations in each element ofv. Therefore, in principle, it

can be solved in parallel. In analogous fashion to the 2-D case, finite differences can be used to approximate

the required derivatives and each scalar equation can be solved iteratively.
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A preliminary experiment using GVF in three dimensions was carried out using the object shown in

Fig. 9a, which was created on a 643 grid, and rendered using an isosurface algorithm. The 3-D GVF field

was computed using a numerical approximation to (21) and� = 0:15. This GVF result on the two planes

shown in Fig. 9b, is shown projected onto these planes in Figs. 9c and d. The same characteristics observed

in 2-D GVF field are apparent here as well.

Next, a deformable surface (cf. [3]) using 3-D GVF was initialized as the sphere shown in Fig. 9e, which

is neither entirely inside nor entirely outside the object.Intermediate results after 10 and 40 iterations of the

deformable surface algorithm are shown in Figs. 9f and g. Thefinal result after 100 iterations is shown in

Fig. 9h. The resulting surface is smoother than the isosurface rendering because of the internal forces in the

deformable surface model.

6 Summary and Conclusion

We have introduced a new external force model for active contours and deformable surfaces, which we

called the gradient vector flow (GVF) field. The field is calculated as a diffusion of the gradient vectors

of a gray-level or binary edge map. We have shown that it allows for flexible initialization of the snake or

deformable surface and encourages convergence to boundaryconcavities.

Further investigations into the nature and uses of GVF are warranted. In particular, a complete char-

acterization of the capture range of the GVF field would help in snake initialization procedures. It would

also help to more fully understand the GVF parameter�, perhaps finding a way to choose it optimally for

a particular image, and to understand the interplay between� and the snake parameters� and�. Finally,

the GVF framework might be useful in defining new connectionsbetween parametric and geometric snakes,

and might form the basis for a new geometric snake.
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(a) (b) (c)

Figure 1: (a) The convergence of a snake using (b) traditional potential forces, (c) shown close-up within
the boundary concavity.

(a) (b) (c)

Figure 2: (a) The convergence of a snake using (b) distance potential forces, (c) shown close-up within the
boundary concavity.
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(a) (b) (c)

Figure 3: (a) The convergence of a snake using (b) GVF external forces, (c) shown close-up within the
boundary concavity.

(a) (b) (c)

Figure 4: Streamlines originating from an array of 32�32 particles in (a) a traditional potential force field,
(b) a distance potential force field, and (c) a GVF force field.
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(a) (b) (c) (d)

Figure 5: (a) An initial curve and snake results from (b) a balloon with an outward pressure, (c) a distance
potential force snake, and (d) a GVF snake.

(a) (b) (c) (d)

Figure 6: (a) An initial curve and snake results from (b) a traditional snake, (c) a distance potential force
snake, and (d) a GVF snake.
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(a) (b)

(c) (d)

Figure 7: (a) A noisy64�64-pixel image of a U-shaped object; (b) the edge mapjr(G��I)j2 with � = 1:5;
(c) the GVF external force field; and (d) convergence of the GVF snake.



22

(a) (b)

(c) (d)

Figure 8: (a) A160 � 160-pixel magnetic resonance image of the left ventrical of a human heart; (b) the
edge mapjr(G� � I)j2 with � = 2:5; (c) the GVF field (shown subsampled by a factor of two); and (d)
convergence of the GVF snake.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: (a) Isosurface of a 3-D object defined on a643 grid; (b) positions of planes A and B on which the 3-D GVF vectors are depicted in (c) and
(d), respectively; (e) the initial configuration of a deformable surface using GVF and its positions after (f) 10, (g) 40,and (h) 100 iterations.


