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ABSTRACT

Snakes, or active contours, are used extensively in compisien and image processing applications,
particularly to locate object boundaries. Problems assediwith initialization and poor convergence to
boundary concavities, however, have limited their utilithis paper presents a new external force for active
contours, largely solving both problems. This externat&mwhich we callyradient vector flo(GVF), is
computed as a diffusion of the gradient vectors of a gragtev binary edge map derived from the image.
It differs fundamentally from traditional snake externatdes in that it cannot be written as the negative
gradient of a potential function, and the correspondingkena formulated directly from a force balance
condition rather than a variational formulation. Using esa two-dimensional examples and one three-
dimensional example, we show that GVF has a large captugerand is able to move snakes into boundary

concavities.
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1 Introduction

Snaked1], or active contours are curves defined within an image domain which can move ruiiae
influence of internal forces coming from within the curveslfsand external forces computed from the image
data. The internal and external forces are defined so thadrthke will conform to an object boundary
or other desired features within an image. Snakes are wigkayl in many applications, including edge
detection [1], shape modeling [2, 3], segmentation [4, BY, anotion tracking [4, 6].

There are two general types of active contour models in tieealure today:parametric active con-
tours [1] and geometric active contourf/, 8]. In this paper, we focus on parametric active contours
although we expect our results to have applications in géderective contours as well. Parametric active
contours synthesize parametric curves within an image dowuad allow them to move toward desired
features, usually edges. Typically, the curves are drawmi the edges bpotential forces which are
defined to be the negative gradient of a potential functioddiional forces, such as pressure forces [9],
together with the potential forces comprise thdernal forces There are alsinternal forcesdesigned to
hold the curve together (elasticity forces) and to keepitfbending too much (bending forces).

There are two key difficulties with parametric active comtalgorithms. First, the initial contour must,
in general, be close to the true boundary or else it will fikebnverge to the wrong result. Several methods
have been proposed to address this problem including mestiiution methods [10], pressure forces [9],
and distance potentials [11]. The basic idea is to increlaseapture rangeof the external force fields
and to guide the contour toward the desired boundary. Thenseproblem is that active contours have
difficulties progressing intboundary concavitiefl2, 13]. There is no satisfactory solution to this problem,
although pressure forces [9], control points [12], domadtaptivity [14], directional attractions [13], and the
use of solenoidal fields [15] have been proposed. Howevest nfdhe methods proposed to address these
problems solve only one problem while creating new diffieslt For example, multiresolution methods have
addressed the issue of capture range, but specifying hosntide should move across different resolutions
remains problematic. Another example is that of pressureefy which can push an active contour into
boundary concavities, but cannot be too strong or “weak’esdgill be overwhelmed [16]. Pressure forces
must also be initialized to push out or push in, a conditiat thandates careful initialization.

In this paper, we present a new class of external forces toreacontour models which addresses both

problems listed above. These fields, which we gadidient vector flon(GVF) fields, are dense vector



fields derived from images by minimizing a certain energyctional in a variational framework. The
minimization is achieved by solving a pair of decoupled dinpartial differential equations which diffuses
the gradient vectors of a gray-level or binary edge map caetpfrom the image. We call the active
contour that uses the GVF field as its external for@®8\& snake The GVF snake is distinguished from
nearly all previous snake formulations in that its extefloates cannot be written as the negative gradient
of a potential function. Because of this, it cannot be fomted using the standard energy minimization
framework; instead, it is specified directly from a forcedrale condition.

Particular advantages of the GVF snake over a traditionakesrare its insensitivity to initialization
and its ability to move into boundary concavities. As we shiowhis paper, its initializations can be
inside, outside, or across the object's boundary. Unlilessare forces, the GVF shake does not need
prior knowledge about whether to shrink or expand towar@shibundary. The GVF snake also has a large
capture range, which means that, barring interference fsthrar objects, it can be initialized far away from
the boundary. This increased capture range is achievedghra diffusion process which does not blur the
edges themselves, so multiresolution methods are not deddes external force model that is closest in
spirit to GVF is the distance potential forces of Cohen antié&@0[11]. Like GVF, these forces originate
from an edge map of the image and can provide a large captage.raWe show, however, that unlike
GVF, distance potential forces cannot move a snake into demynconcavities. We believe that this is a
property of all conservative forces which characterizeriyeall snake external forces, and that exploring
non-conservative external forces, such as GVF, is an irmpbdirection for future research in active contour

models.

2 Background

2.1 Parametric Snake M odd

A traditional snakeis a curvex(s) = [z(s),y(s)], s € [0, 1], that moves through the spatial domain of an

image to minimize the energy functional

1
B = [ Slalx/(5)? + A" (9)) + ot (x(s))ds @

wherea andg are weighting parameters that control the snake's tensiomigidity, respectively, and’(s)

andx”(s) denote the first and second derivativesx¢§) with respect tos. The external energy function



E.: is derived from the image so that it takes on its smaller \@alaiethe features of interest, such as
boundaries. Given a gray-level imadgr, y), viewed as a function of continuous position variablesy),

typical external energies designed to lead an active combatard step edges are [1]:

EQ)(w,y) = —|VI(z,y) 2)
EX(z,y) = —|V(G,(x,y)* I(z,y)) ©)

whereG,(z,y) is a two-dimensional Gaussian function with standard diewiac andV is the gradient

operator. If the image is a line drawing (black on white) nla@propriate external energies include [9]:

EQ(w,y) = I(z,y) 4)
EN@y) = Golo,y)«I(z,y) 5)

It is easy to see from these definitions that larg'erwill cause the boundaries to become blurry. Such large
o's are often necessary, however, in order to increase ttiareaqange of the active contour.

A shake that minimize®& must satisfy the Euler equation
ax(s) — x""(5) = VEex =0 (6)
This can be viewed as a force balance equation

Fi +FP) =0 (7)

e

whereF;,; = ax’(s) — 8x""(s) anngQ = —VEe. The internal force;,,; discourages stretching and
bending while the external potential forﬁéﬂl pulls the snake towards the desired image edges.

To find a solution to (6), the snake is made dynamic by treatiag function of time as well ass —
i.e.,x(s,t). Then, the partial derivative of with respect ta is then set equal to the left hand side of (6) as
follows

xi(s,t) = ax”(s,t) — Bx""(s,t) — V Eexy (8)

When the solutiorx(s, t) stabilizes, the term, (s, t) vanishes and we achieve a solution of (6). A numerical
solution to (8) can be found by discretizing the equation swiding the discrete system iteratively (cf. [1]).
We note that most snake implementations use either a pagamieich multipliesx, in order to control the
temporal step-size, or a parameter to multiplyz..; which permits separate control of the external force
strength. In this paper, we normalize the external forcethabthe maximum magnitude is equal to one,

and use a unit temporal step-size for all the experiments.



2.2 Behavior of Traditional Snakes

An example of the behavior of a traditional snake is shownig E. Fig. 1a shows é4 x 64-pixel line-
drawing of a U-shaped object (shown in gray) having a boyndancavity at the top. It also shows a
sequence of curves (in black) depicting the iterative megion of a traditional snake: (= 0.6, 5 = 0.0)
initialized outside the object but within the capture ramdehe potential force field. The potential force
field Fé‘;{ = —VEEEQ whereo = 1.0 pixel is shown in Fig. 1b. We note that the final solution in.Fig
solves the Euler equations of the snake formulation, buainesnsplit across the concave region.

The reason for the poor convergence of this snake is revaaled. 1c, where a close-up of the external
force field within the boundary concavity is shown. Althouthte external forces correctly point toward
the object boundary, within the boundary concavity the dsrpoint horizontallyin opposite directions
Therefore, the active contour is pulled apart toward eactheffingers” of the U-shape, but not made to
progress downward into the concavity. There is no choice ahds that will correct this problem.

Another key problem with traditional snake formulationse tproblem of limited capture range, can
be understood by examining Fig. 1b. In this figure, we seetti@mmagnitude of the external forces die
out quite rapidly away from the object boundary. Increasingn (5) will increase this range, but the
boundary localization will become less accurate and distinltimately obliterating the concavity itself
wheno becomes too large.

Cohen and Cohen [11] proposed an external force model @paifisantly increases the capture range of
a traditional snake. These external forces are the negatadient of a potential function that is computed
using a Euclidean (or chamfer) distance map. We refer toetlieses adistance potential forceso
distinguish them from the traditional potential forces dedl in Section 2.1. Fig. 2 shows the performance
of a snake using distance potential forces. Fig. 2a showsthetU-shaped object (in gray) and a sequence
of contours (in black) depicting the progression of the snfam its initialization far from the object to its
final configuration. The distance potential forces shownim Eb have vectors with large magnitudes far
away from the object, explaining why the capture range gddor this external force model.

As shown in Fig. 2a, this shake also fails to converge to thenbdary concavity. This can be explained
by inspecting the magnified portion of the distance potémtices shown in Fig. 2c. We see that, like
traditional potential forces, these forces also pointzmnrtally in opposite directions, which pulls the snake
apart but not downward into the boundary concavity. We nlat¢ €ohen and Cohen's modification to the

basic distance potential forces, which applies a nonlinearsformation to the distance map [11], does



not change the direction of the forces, only their magnisud€herefore, the problem of convergence to

boundary concavities is not solved by distance potentiakefa

2.3 Generalized Force Balance Equations

The snhake solutions shown in Figs. 1la and 2a both satisfyuler BEquations (6) for their respective energy
model. Accordingly, the poor final configurations can beilaited to convergence to a local minimum of
the objective function (1). Several researchers have s@gajitions to this problem by formulating snakes
directly from a force balance equation in which the standaxtbrnal forcngi is replaced by a more
general external forcB'®) as follows

ext

Fi +F® =0 (9)

ext T

The choice off®)

ext

can have a profound impact on both the implementation ante¢havior of a snake.
Broadly speaking, the external forcﬁg can be divided into two classes: static and dynamic. Statees

are those that are computed from the image data, and do nogelas the snake progresses. Standard snake
potential forces are static external forces. Dynamic ferme those that change as the snake deforms.

Several types of dynamic external forces have been inveanteg to improve upon the standard snake
potential forces. For example, the forces used in multitg®mm snakes [10] and the pressure forces used in
balloons [9] are dynamic external forces. The use of mditihetion schemes and pressure forces, however,
adds complexity to a snake's implementation and unprddiityeto its performance. For example, pressure
forces must be initialized to either push out or push in, aag wverwhelm weak boundaries if they act too
strongly [16]. Conversely, they may not move into boundasyaavities if they are pushing in the wrong
direction or act too weakly.

In this paper, we present a new typestdtic external forceone that does not change with time or depend
on the position of the snake itself. The underlying mathé&abpremise for this new force comes from the
Helmholtz theorem (cf. [17]), which states that the mostegahstatic vector field can be decomposed
into two components: an irrotational (curl-free) compadrand a solenoidal (divergence-free) comporient.
An external potential force generated from the variaticioamulation of a traditional snake must enter
the force balance equation (6) as a static irrotational figilace it is the gradient of a potential function.
Therefore, a more general static fi i{ can be obtained by allowing the possibility that it compise

bothan irrotational component and a solenoidal component. @wiqus paper [15] explored the idea of

Yrrotational fields are sometimes called conservative $igltey can be represented as the gradient of a scalar @btemiition.



constructing a separate solenoidal field from an image, wivigs then added to a standard irrotational field.
In the following section, we pursue a more natural approachtich the external force field is designed to

have the desired properties of both a large capture rangthamtesence of forces that point into boundary
concavities. The resulting formulation produces exteffoate fields that can be expected to have both

irrotational and solenoidal components.

3 Gradient Vector Flow Snake

Our overall approach is to use the force balance conditipmga starting point for designing a snake. We
define below a new static external force fiﬂﬁf}t = v(z,y), which we call thegradient vector floW(GVF)
field. To obtain the corresponding dynamic snake equati@replace the potential forceV Ee in (8)
with v(z,y), yielding

x4(s,t) = ax"(s,t) — px""(s,t) + v (10)

We call the parametric curve solving the above dynamic éguiaGVF snake It is solved numerically by
discretization and iteration, in identical fashion to theditional snake.

Although the final configuration of a GVF snake will satisfe lorce-balance equation (7), this equation
does not, in general, represent the Euler equations of grggminimization problem in (1). This is because
v(z,y) will not, in general, be an irrotational field. The loss ofsthuptimality property, however, is well-

compensated by the significantly improved performance ®GNF snake.

3.1 EdgeMap

We begin by defining aedge mapf (z,y) derived from the imagd(x,y) having the property that it is
larger near the image edg@$Ve can use any gray-level or binary edge map defined in thedmpaxgessing

literature (cf. [18]); for example, we could use

f(a,y) = —EBY (,y) (12)

wherei = 1, 2, 3, or 4. Three general properties of edge maps are imgdrtdhe present context. First,
the gradient of an edge map/ has vectors pointing toward the edges, which are normaedyes at the
edges. Second, these vectors generally have large magmituidly in the immediate vicinity of the edges.

Third, in homogeneous regions, whdier, y) is nearly constanty f is nearly zero.

20Other features can be sought by redefinjitg, y) to be larger at the desired features.



Now consider how these properties affect the behavior oaditional snake when the gradient of an
edge map is used as an external force. Because of the firgrprop snake initialized close to the edge
will converge to a stable configuration near the edge. Thaligghly desirable property. Because of the
second property, however, the capture range will be venjllsmageneral. Because of the third property,
homogeneous regions will have no external forces whatsodleese last two properties are undesirable.
Our approach is to keep the highly desirable property of ttaglignts near the edges, but to extend the
gradient map farther away from the edges and into homoganesgiions using a computational diffusion
process. As an important benefit, the inherent competitidhendiffusion process will also create vectors

that point into boundary concavities.

3.2 Gradient Vector Flow

We define the gradient vector flow field to be the vector feld, y) = (u(z,y),v(z,y)) that minimizes

the energy functional
&= //u(ux2 +uy? +v,° +v,?) + |V v — Vf|*dzdy (12)

This variational formulation follows a standard principtbat of making the result smooth when there is no
data. In particular, we see that whevif| is small, the energy is dominated by sum of the squares of the
partial derivatives of the vector field, yielding a slowlgrying field. On the other hand, whé¥i f| is large,

the second term dominates the integrand, and is minimizesetingv = V f. This produces the desired
effect of keepingv nearly equal to the gradient of the edge map when it is largefdicing the field to

be slowly-varying in homogeneous regions. The parametisra regularization parameter governing the
tradeoff between the first term and the second term in thgiiatel. This parameter should be set according
to the amount of noise present in the image (more noise,asefs.

We note that the smoothing term — the first term within thegraed of (12) — is the same term used
by Horn and Schunck in their classical formulation of ogtitew [19]. It has recently been shown that
this term corresponds to an equal penalty on the divergemdewar| of the vector field [20]. Therefore, the
vector field resulting from this minimization can be expécte be neither entirely irrotational nor entirely
solenoidal.

Using thecalculus of variationg21], it can be shown that the GVF field can be found by solvimg t



following Euler equations

NV2U —(u— fa:)(fz2 + fy2) =0 (13a)

uV2 — (v — f)(fa* + f,%) = 0 (13b)

whereV? is the Laplacian operator. These equations provide fuitieition behind the GVF formulation.
We note that in a homogeneous region (WhEre, y) is constant), the second term in each equation is zero
because the gradient ¢fx, y) is zero. Therefore, within such a regiom,andv are each determined by
Laplace's equation, and the resulting GVF field is interqgaldrom the region's boundary, reflecting a kind
of competition among the boundary vectors. This explaing GWF yields vectors that point into boundary

concavities.

3.3 Numerical Implementation

Equations (13a) and (13b) can be solved by treatilmgdv as functions of time and solving

Ut(xvyvt) = HVQU(xvyvt) - (u(w,y,t) - fa:(x7y))(fa:($7y)2 + fl/(xuy)Q) (143.)

'Ut(xvyvt) = MVQU(I,y,t) - ('U(*Tvyvt) - fy(x,y))(fw(:r,y)Q + fl/(xuy)Q) (14b)

The steady-state solution of these linear parabolic egpsiis the desired solution of the Euler equations
(13a) and (13b). Note that these equations are decouplédtharefore can be solved as separate scalar
partial differential equations in andv. The equations in (14) are knowng@esneralized diffusion equations
and are known to arise in such diverse fields as heat conducgactor physics, and fluid flow [22]. Here,
they have appeared from our description of desirable ptigseof snake external force fields as represented
in the energy functional of (12).

For convenience, we rewrite Equation (14) as follows

ut(xvyvt) = ,uV2u(:v, Y, t) - b(w,y)u(w,y,t) + cl (iE, y) (153.)
Ut(xvyvt) = ,uVQ’U(.’Ly,t) - b(.’E,y)’U(LC, Y, t) + CQ(xu y) (15b)
where
b(.’E,y) = fz(xvy)Q + fy(xuy)Q
c(z,y) = bz, y)fulz,y)

(32(-71,?/) - b(’l’,',y)fy(’ll‘,y)
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Any digital image gradient operator (cf. [18]) can be useddtrulatef, and f,. In the examples shown
in this paper, we use simple central differences. The caeffisb(z,y), ¢! (z,y), andc?(z, y), can then be
computed and fixed for the entire iterative process.

To set up the iterative solution, let the indickg, andn correspond tar, y, andt, respectively, and
let the spacing between pixels Be: and Ay and the time step for each iteration be. Then the required

partial derivatives can be approximated as

1
— n+1 n
uy = E(um - “i,j)
— 1 ( n+l  n )
vy = E ,Ui,j ,Uiyj
9 1
Viu = 7AII:AU (“i-l-l,j F U1 F U1 F U1 — 4ui7j)
9 1
Vi = m(UZLF]J + Vi, j+1 + Vi—1,j + Vi j—1 — 4’()277)

Substituting these approximations into (15) gives ouaniiee solution to GVF:

u?jl = (1= bijAt)u; +r(uiyq ; +ug o +uig g +ui; g —4du;) + c},jAt (16a)
7)2;4 = (1 — br,’JAt)U;fJ + 7“('()?_*_17]' + 7),23'_;’_1 + 7),?710' + 7)2]'*1 — 47):5)) + C,,Q’JAt (16b)
where
pAL
r = 17
AzAy (27

Convergence of the above iterative process is guaranteadstandard result in the theory of numerical
methods (cf. [23]). Provided that ¢!, andc? are bounded, (16) is stable whenever the Courant-Friegdrich
Lewy step-size restrictiom < 1/4 is maintained. Since normallz, Ay, andp are fixed, using the
definition ofr in (17) we find that the following restriction on the time{st&¢ must be maintained in order

to guarantee convergence of GVF:

< AzAy

At
S T

(18)

The intuition behind this condition is revealing. First,ngergence can be made to be faster on coarser
images — i.e., whem\z and Ay are larger. Second, whemis large and the GVF is expected to be a
smoother field, the convergence rate will be slower (sifi¢enust be kept small).

Our 2-D GVF computations were implemented using MATLABode. For anV = 256 x 256-pixel

image on an SGI Indigo-2, typical computation times are &ids for the traditional potential forces

3Mathworks, Natick MA
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(written in C), 155 seconds for the distance potential fer@uclidean distance map, written in MATLAB),
and 420 seconds for the GVF forces (written in MATLAB, usivi@V iterations). The computation time of
GVF can be substantially reduced by using optimized codednFDRTRAN. For example, we have imple-
mented 3-D GVF (see Section 5.2) in C, and computed GVF withitEBations on 256 x 256 x 60-voxel

image in 31 minutes. Accounting for the size difference axtdaedimension, we conclude that written in
C, GVF computation for a 2-256 x 256-pixel image would take approximately 53 seconds. Alganith

optimization such as use of the multigrid method shoulddyfetther improvements.

4 GVF Fiddsand Snakes: Demonstrations

This section shows several examples of GVF field computatonsimple objects and demonstrates several
key properties of GVF snakes. We used- 0.6 andg = 0.0 for all snakes ang = 0.2 for GVF. The snakes
were dynamically reparameterized to maintain contour f{pe@paration to within 0.5-1.5 pixels (cf. [24]).

All edge maps used in GVF computations were normalized toahge[0, 1].

4.1 Convergenceto Boundary Concavity

In our first experiment, we computed the GVF field for the sarshdped object used in Figs. 1 and 2. The
results are shown in Fig. 3. Comparing the GVF field, showni@n 8b, to the traditional potential force
field of Fig. 1b, reveals several key differences. Firste like distance potential force field (Fig. 2b), the
GVF field has a much larger capture range than traditionami@l forces. A second observation, which
can be seen in the closeup of Fig. 3c, is that the GVF vectahsmthe boundary concavity at the top of the
U-shape have a downward component. This stands in starkasbmd both the traditional potential forces
of Fig. 1c and the distance potential forces of Fig. 2c. Bnilcan be seen from Fig. 3b that the GVF field
behaves in an analogous fashion when viewed from the in$itee@bject. In particular, the GVF vectors
are pointing upward into the “fingers” of the U shape, whicbresent concavities from this perspective.
Fig. 3a shows the initialization, progression, and finalfigamation of a GVF snake. The initialization
is the same as that of Fig. 2a, and the snake parameters aantieeas those in Figs. 1 and 2. Clearly, the
GVF snhake has a broad capture range and superior convergenperties. The final snake configuration
closely approximates the true boundary, arriving at a subkinterpolation through bilinear interpolation

of the GVF force field.
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4.2 Streamlines

Streamlines are the paths over which free particles movenplaxed in an external force field. By looking
at their streamlines, we can examine the capture ranges atidminducing properties for various snake
external forces. Fig. 4 shows the streamlines of pointsygad on 82 x 32 grid for the traditional potential
forces, distance potential forces, and GVF forces usedeasitnulations of Figs. 1, 2, and 3.

Several properties can be observed from these figures, thiestapture ranges of the GVF force field
and the distance potential force field are clearly much tatiggn that of the traditional potential force field.
In fact, both distance potential forces and GVF forces willa@t a snake that is initialized on the image
border. Second, it is clear that GVF is the only force prawipboth a downward force within the boundary
concavity at the top of the U-shape and an upward force withén‘fingers” of the U-shape. In contrast,
both traditional snake forces and distance potential Bmevide only sideways forces in these regions.
Third, the distance potential forces appear to have boyraints that act as regional points of attraction.

In contrast, the GVF forces attract points uniformly towthrd boundary.

4.3 Snakelnitialization and Convergence

In this section we present several examples that compaferatit snake models with the GVF snake,
showing various effects related to initialization, bourydeoncavities, and subjective contours. The object
under study is the line drawing drawn in gray in both Figs. 8 &nThis figure may depict, for example, the
boundary of a room having two doors at the top and bottom andateoves at the left and right. The open
doors at the top and bottom represent subjective contoatswé desire to connect using the snake (cf. [1]).

The snake results shown in Figs. 5b—d all used the initiddizashown in Fig. 5a. We first note that for
this initialization, the traditional potential forces veeino weak to overpower the snake's internal forces, and
the snake shrank to a point at the center of the figure (restikhrown). To try to fix this problem, a balloon
model with outward pressure forces just strong enough teedlie snake to expand into the boundary
concavities was implemented; this result is shown in Fig. Glearly, the pressure forces also caused the
balloon to bulge outward through the openings at the top atiwim, and therefore the subjective contours
are not reconstructed well.

The snake result obtained using the distance potentiak foradel is shown in Fig. 5¢. Clearly, the

capture range is now adequate and the subjective bounddribe top and bottom are reconstructed well.
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But this snake fails to find the boundary concavities at tifiealed right, for the same reason that it could
not proceed into the top of the U-shaped object of the previections. The GVF snake result, shown
in Fig. 5d, is clearly the best result. It has reconstructeth bhe subjective boundaries and the boundary
concavities quite well. The slight rounding of corners, @thcan also be seen in Figs. 5b and 5c, is a
fundamental characteristic of snakes caused by the rézatian coefficientsy and3.*

The snake results shown in Figs. 6b—d all used the initiddimashown in Fig. 6a, which is deliberately
placed across the boundary. In this case, the balloon madabt be sensibly applied because it is not clear
whether to apply inward or outward pressure forces. Instdadresult of a snake with traditional potential
forces is shown in Fig. 6b. This snake stops at a very und#sionfiguration because its only points of
contact with the boundary are normal to it and the remainéldreosnake is outside the capture range of the
other parts of the boundary. The snake resulting from distgpotential forces is shown in Fig. 6¢. This
result shows that although the distance potential forckespassesses an insensitivity to initialization, it is
incapable of progressing into boundary concavities. Thd-GKake result, shown in Fig. 6d, is again the

into boundary concavities.

5 Gray-level Imagesand Higher Dimensions

In this section, we describe and demonstrate how GVF can && insgray-level imagery and in higher

dimensions.

5.1 Gray-level Images

The underlying formulation of GVF is valid for gray-level ages as well as binary images. To compute
GVF for gray-level images, the edge-map functipfx, y) must first be calculated. Two possibilities are
fO(z,y) = [VI(z,y)| or fO(z,y) = |V(Ge(z,y) * I(z,y))|, where the latter is more robust in the pres-
ence of noise. Other more complicated noise-removal teclesi such as median filtering, morphological
filtering, and anisotropic diffusion could also be used tpiave the underlying edge map. Given an edge-
map function and an approximation to its gradient, GVF is poted in the usual way using Equation (16).

Fig. 7a shows a gray-level image of the U-shaped object pterduby additive white Gaussian noise; the

“The effect is only caused hy in this example sincg = 0.
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signal-to-noise ratio is 6 dB. Fig. 7b shows an edge-map coedpusingf (z,y) = £ (z,y) witho = 1.5
pixels, and Fig. 7c shows the computed GVF field. It is evidbat the stronger edge-map gradients are
retained while the weaker gradients are smoothed out, lgxastwould be predicted by the GVF energy
formulation of (12). Superposed on the original image, Fijshows a sequence of GVF snakes (plotted in
a shade of gray) and the GVF snake result (plotted in whithg fEsult shows an excellent convergence to
the boundary, despite the initialization from far away, itth@ge noise, and the boundary concavity.
Another demonstration of GVF applied to gray-scale imagserghown in Fig. 8. Fig. 8a shows a
magnetic resonance image (short-axis section) of the égftrical of a human heart, and Fig. 8b shows an
edge map computed usirfgz, y) = ) (z, y) with o = 2.5. Fig. 8¢ shows the computed GVF, and Fig. 8d
shows a sequence of GVF snakes (plotted in a shade of grayhar@VF snake result (plotted in white),
both overlaid on the original image. Clearly, many detaitstioe endocardial border are captured by the

GVF snake result, including the papillary muscles (the bsitigat protrude into the cavity).

5.2 Higher Dimensions

GVF can be easily generalized to higher dimensions. fi(&}) : R” — R be an edge map defined Rf".

The GVF field inR" is defined as the vector field x) : R” — R"™ which minimizes the energy functional
&= [ uVvE VI - Vi Pdx (19)
JR"

where the gradient operat®f is applied to each componentwfeparately. Using the calculus of variations,

we find that the GVF field must satisfy the Euler equation
pVv — (v = Vf)Vf* =0 (20)

whereV? is also applied to each component of the vector fiekkparately.
A solution to these Euler equations can be found by intratyeitime variable and finding the steady-

state solution of the following linear parabolic partiaffeiential equation
vi=pViv — (v~ V)|V (21)

wherev; denotes the partial derivative efwith respect ta. Equation (21) comprises decoupled scalar
linear second order parabolic partial differential eqoiasiin each element &f. Therefore, in principle, it
can be solved in parallel. In analogous fashion to the 2-B,datite differences can be used to approximate

the required derivatives and each scalar equation can bedsiératively.
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A preliminary experiment using GVF in three dimensions wagied out using the object shown in
Fig. 9a, which was created on a%dgrid, and rendered using an isosurface algorithm. The 3-0F G&ld
was computed using a numerical approximation to (21)ard 0.15. This GVF result on the two planes
shown in Fig. 9b, is shown projected onto these planes in Bogand d. The same characteristics observed
in 2-D GVF field are apparent here as well.

Next, a deformable surface (cf. [3]) using 3-D GVF was ititiad as the sphere shown in Fig. 9e, which
is neither entirely inside nor entirely outside the objéntermediate results after 10 and 40 iterations of the
deformable surface algorithm are shown in Figs. 9f and g. firtee result after 100 iterations is shown in
Fig. 9h. The resulting surface is smoother than the isosenfandering because of the internal forces in the

deformable surface model.

6 Summary and Conclusion

We have introduced a new external force model for active axast and deformable surfaces, which we
called the gradient vector flow (GVF) field. The field is calteld as a diffusion of the gradient vectors
of a gray-level or binary edge map. We have shown that it &léw flexible initialization of the snake or
deformable surface and encourages convergence to boucmiacgvities.

Further investigations into the nature and uses of GVF amanted. In particular, a complete char-
acterization of the capture range of the GVF field would halgnake initialization procedures. It would
also help to more fully understand the GVF parameteperhaps finding a way to choose it optimally for
a particular image, and to understand the interplay betweend the snake parametersand 5. Finally,
the GVF framework might be useful in defining new connectibesveen parametric and geometric snakes,

and might form the basis for a new geometric snake.
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Figure 3: (a) The convergence of a snake using (b) GVF extéonees, (c) shown close-up within the
boundary concavity.

Ly
F 2
— %%..:
R . . {
O
,//ﬁﬁ/ @

ARRS

=
=

(@)

Figure 4: Streamlines originating from an array of<32 particles in (a) a traditional potential force field,
(b) a distance potential force field, and (c) a GVF force field.
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Figure 5: (a) An initial curve and snake results from (b) ddzal with an outward pressure, (c) a distance
potential force snake, and (d) a GVF snake.
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Figure 6: (a) An initial curve and snake results from (b) aitienal snake, (c) a distance potential force
snake, and (d) a GVF snake.
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Figure 7: (a) A noisy4 x 64-pixel image of a U-shaped object; (b) the edge MafG,  I)|? with o = 1.5;
(c) the GVF external force field; and (d) convergence of theFGWake.
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(c) (d)

Figure 8: (a) A160 x 160-pixel magnetic resonance image of the left ventrical of enan heart; (b) the
edge magV (G, * I)|? with ¢ = 2.5; (c) the GVF field (shown subsampled by a factor of two); and (d
convergence of the GVF snake.
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