
�

�

�

�

�

�

�

�

© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 15 May 2014 doi:10.1093/comjnl/bxu037

An Identity-Based Multi-Proxy
Multi-Signature Scheme Without
Bilinear Pairings and its Variants

Maryam Rajabzadeh Asaar
1,∗

, Mahmoud Salmasizadeh
2

and Willy Susilo
3

1Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
2Electronics Research Institute (Center), Sharif University of Technology, Tehran, Iran

3Centre for Computer and Information Security Research, University of Wollongong, Wollongong, Australia
∗Corresponding author: asaar@ee.sharif.ir

The notions of identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-
signature have been proposed to facilitate public key certificate management of these kinds of
signatures by merely employing signer’s identities in place of the public keys and their certificates.
In the literature, most identity-based multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes are based on bilinear pairings. Without incorporating bilinear pairings,
Tiwari and Padhye proposed an identity-based proxy multi-signature scheme in 2011. Subsequently,
an identity-based multi-proxy multi-signature scheme was proposed by Tiwari et al. in 2012. First, we
review identity-based (multi)-proxy multi-signature schemes without bilinear pairings and show that
unfortunately, they are insecure in their security models. Secondly, we propose an identity-based
multi-proxy multi-signature scheme without bilinear pairings, where identity-based multi-proxy
signature and proxy multi-signature schemes are its special cases. Then, we prove that they are secure
under Rivest, Shamir and Adleman (RSA) assumption in the random oracle model by presenting a
new Forking Lemma. The proposal and its special cases are the first identity-based multi-proxy

signature, proxy multi-signature and multi-proxy multi-signature from RSA assumption.

Keywords: identity-based multi-proxy signature; identity-based proxy multi-signature;
identity-based multi-proxy multi-signature, random oracle model; RSA assumption

Received 4 March 2013; revised 11 February 2014
Handling editor: Dimitrios Tzovaras

1. INTRODUCTION

The notion of proxy signatures for the first time was
introduced by Mambo et al. [1] in 1996. In a proxy signature
scheme, an original signer, Alice, can delegate her signing
right for signing messages to another signer, Bob, called
the proxy signer. Since the notion of proxy signatures
has been introduced, several variants of proxy signatures
have been proposed. These include proxy signatures from
Rivest, Shamir and Adleman (RSA) and integer factorization
problem [2–7], identity-based proxy signature schemes based
on the bilinear pairings [8–15], designated verifier proxy
signatures [16–18], short proxy signatures [19], proxy verifiably
encrypted signatures [20], proxy signature schemes without
random oracles [21], multi-proxy signatures [22–24], proxy

multi-signatures [23], multi-proxy multi-signatures [25, 26],
identity-based multi-proxy signatures [13, 27–29], identity-
based proxy multi-signatures [28, 30–33] and identity-based
multi-proxy multi-signature schemes [28, 34–37]. In this study,
we focus on identity-based multi-proxy signature, proxy multi-
signature and multi-proxy multi-signature schemes.

In a multi-proxy signature scheme, an original signer can
delegate her signing right for signing messages to a group of
n-proxy signers, called the proxy agent, such that only
cooperation of all proxy signers in the proxy group generates
the proxy signatures of roughly the same size as that of standard
proxy signatures on behalf of the original signer instead of
transmitting n individual proxy signatures. This primitive can
be used in a company when the boss of the company is on

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1022 M.R. Asaar et al.

a business trip and some important documents have to be
signed. Hence, the boss delegates her signing capability to every
department manager of the company such that only all managers
jointly can sign important documents on behalf of the boss.
Various multi-proxy signatures [22–24] have been proposed
till now.

In a proxy multi-signature scheme [23], a proxy signer can
generate the signature on behalf of a group of d-original signers,
called original group, such that only the cooperation of all the
original signers in the original group can authorize the proxy
signer to generate a proxy signature of roughly the same size
as that of a standard proxy signature on behalf of the original
group instead of transmittingd individual proxy signatures. This
primitive can be used where a company releases a document
which needs to be signed by different managers of that company.
These managers can authorize an entity, a proxy signer, to
generate proxy multi-signatures on the document when these
managers cannot participate in generating signatures.

Similarly, it is possible to extend the two previous signatures
to multi-proxy multi-signature in which a group of original
signers gives signing delegation to a group of proxy signers
to generate signatures on messages on behalf of the original
signers. However, a verifier still needs the certified public keys
of n + 1 signers in a multi-proxy signature, d + 1 signers in
a proxy multi-signature and n + d signers in a multi-proxy
multi-signature to verify the validity of these signatures. If
these public keys and their certificates are transmitted with
these signatures, it defeats the main purpose of a multi-
proxy signature, proxy multi-signature or multi-proxy multi-
signature, to save bandwidth. On the other hand, these kinds
of schemes in their basic formats require extensive public-
key infrastructure for practical use. In order to save bandwidth
and provide more flexible management of public keys, lots
of identity-based multi-proxy signature schemes [13, 27–
29], identity-based proxy multi-signature schemes [28, 30–33]
and identity-based multi-proxy multi-signature schemes [28,
34–37] have been proposed. The notion of identity-based
cryptography was introduced by Shamir [38], and since the
realization of elliptic curve pairings, there has been a huge
increase in implementations of identity-based signatures. The
majority of identity-based multi-proxy signature, proxy multi-
signature and multi-proxy multi-signature schemes proposed
have relied on pairings. While extensive research has led
to vast improvements in implementation of pairings, their
computational cost is necessarily higher than for more
traditional public key algorithms which use exponentiation
in various groups. Moreover, pairing-based cryptosystems
rely on newer computational assumptions in their security
analysis. There has been a proliferation of pairing-based
assumptions whose difficulty is not widely understood and
whose connection to established assumptions, and to each
other, remains unknown. Therefore, when designing new
identity-based multi-proxy signatures, proxy multi-signatures
and multi-proxy multi-signatures it is desirable to diversify

the computational assumptions and to use widely accepted
assumptions where possible.

Without incorporating bilinear pairings, Tiwari and Padhye
[33] proposed an identity-based proxy multi-signature scheme
in 2011, and an identity-based multi-proxy multi-signature
scheme was proposed by Tiwari et al. [37] in 2012. In this study,
first we show that identity-based proxy multi-signature [33] and
multi-proxy multi-signature [37] are not secure in their security
models. Then, we propose the first identity-based multi-proxy
multi-signature scheme from RSA, without bilinear pairings,
where identity-based multi-proxy signature and proxy multi-
signature schemes are special cases of it. The proposal and
its special cases are the sequential aggregation of Guillou and
Quisquater (GQ) identity-based signature [39] or GQ identity-
based multi-signature with GQ identity-based multi-signature,
which is a different version of identity-based multi-signature
from RSA [40] proposed by Neven and Bellare in the number
of interactions and random oracles. Furthermore, we show that
the scheme is secure under one-wayness of the RSA problem in
the random oracle model [41] by proposing a Forking Lemma
suitable for our construction. We should highlight that the
general Forking Lemma [42] cannot be applied directly into our
scheme since this scheme is the result of sequential aggregation
of two different signatures such that we have two different
types of random oracle responses. Hence, we need to consider
the probability of happening some random responses before the
forking point in the proposed Forking Lemma, and this is the
main difference of our Forking Lemma from previous ones.

The rest of this paper is organized as follows. Section 2
presents the RSA complexity assumption employed as
the signature foundation and the model of identity-based
multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes including their outline and security
properties. Review and security analysis of the identity-
based proxy multi-signature [33] and the multi-proxy multi-
signature [37] without bilinear pairings are given in Section 3.
Our proposed scheme and its formal security proof are presented
in Section 4. The generalization of our security proof is given
in Section 5. Sections 6 and 7 present the concluding remarks
and conclusion, respectively.

2. BACKGROUND

In this section, we review the RSA assumption and then present
the outline and the security properties of identity-based multi-
proxy signature, proxy multi-signature and multi-proxy multi-
signature schemes.

2.1. The RSA assumption

An RSA key generator KGrsa is an algorithm that generates
triplets (N, e, d) such that N is the product of two large primes
p and q and ed = 1 mod ϕ(N), where ϕ(N) = (p−1)(q −1).

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1023

The advantage of B in breaking the one-wayness of RSA related
to KGrsa is defined as

Advow−rsa
KGrsa

(B) = Pr[γ e = y mod N | (N, e, d) ←− KGrsa;
y ←− Z

∗
N ; γ ←− B(N, e, y)]. (1)

We say that B (t ′, ε′)-breaks the one-wayness of RSA with
respect to KGrsa if it runs in time at most t ′ and has advantage
Advow−rsa

KGrsa
(B) ≥ ε′. We say that the RSA function associated to

KGrsa is (t ′, ε′)-one-way if no algorithm B (t ′, ε′)-breaks it.

2.2. Outline of identity-based multi-proxy signature,
proxy multi-signature and multi-proxy
multi-signature schemes

An original signer with identity IDo and a group of proxy
signers with identities 〈IDp1 , . . . , IDpn

〉, a group of original
signers with identities 〈IDo1 , . . . , IDod

〉 and a proxy signer
with identity IDp and a group of original signers with
identities 〈IDo1 , . . . , IDod

〉 and a group of proxy signers with
identities 〈IDp1 , . . . , IDpn

〉 are participants of identity-based
multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes, respectively. Each warrant-based
proxy signature scheme consists of ParaGen, KeyExtract,
StandardSign (MSign), StandardVer (MVer), DelegationGen,
MProxySign (ProxyMSign or MProxyMSign) and MProxyVer
(ProxyMVer or MProxyMVer) as follows. We note that 11
is concatenated to each warrant to differentiate ordinary
signatures from delegations, and also 01 is concatenated to
each message to differentiate proxy signatures from aggregate
signatures.

(i) ParaGen: This algorithm takes as input the system
security parameter l and outputs system’s parameters
Para and the system’s master key (msk, mpk), i.e.
(Para, (msk, mpk)) ← ParaGen(l).

(ii) KeyExtract: This algorithm takes as input the system’s
parameter Para, master public key mpk, master
secret key msk and an identity IDu. Then, it
outputs the corresponding secret key xu, i.e. xu ←
KeyExtract(Para, mpk, msk, IDu).

(iii) StandardSign: This algorithm takes as input the system’s
parameter Para, the master public key mpk, the
signer’s secret key xu and the message m, then,
it outputs the standard signature σu, i.e. σu ←
StandardSign(Para, mpk, m, xu).

(iv) StandardVer: This algorithm takes as input the system’s
parameter Para, the master public key mpk, the
signer’s identity IDu, the message m and the standard
signature σu, then, it outputs 1 if σu is a valid
standard signature of the message m under the
identity IDu and outputs 0 otherwise, i.e. {0, 1} ←
StandardVer(Para, mpk, IDu, m, σu).

(v) MSign: This interactive protocol is run by a group
of signers with identities 〈IDu1 , . . . , IDud

〉 who intend
to sign the same message m, each signer takes as
input the system’s parameter Para, the master public
key mpk, the signer’s secret key, xuj

, 1 ≤ j ≤ d,
the identity set 〈IDu1 , . . . , IDud

〉 of all participated
signers in the protocol and additional inputs Inpco−us
generated by other co-signers, then, it outputs the multi-
signature σu after a number of interactions, i.e. σu ←
MSign(Para, mpk, m, xuj

, 〈IDu1 , . . . , IDud
〉, Inpco−us).

(vi) MVer: This algorithm takes as input the system’s
parameter Para, the master public key mpk, the signers’
identities 〈IDu1 , . . . , IDud

〉, the message m and the
multi-signature σu, then, it outputs 1 if σu is a valid
multi-signature of the message m under the identities
〈IDu1 , . . . , IDud

〉 and outputs 0 otherwise, i.e. {0, 1} ←
MVer(Para, mpk, 〈IDu1 , . . . , IDud

〉, m, σu).
(vii) DelegationGen: This algorithm employs the

StandardSign or MSign algorithm depending on
the type of signature scheme to generate a delega-
tion after some interactions between original signer(s)
and proxy signer(s). In case of having (multi)-proxy
multi-signature, the delegation is a multi-signature
generated by original signers in the original group,
otherwise, it is a standard signature of an original
signer on the warrant. In case of StandardSign algo-
rithm, xu is the secret key of the original signer, xo,
and the message m is warrant (w‖11), while in case of
MSign algorithm xuj

is the secret key of an original
signer xoj

, for 1 ≤ j ≤ d, the message m is warrant
(w‖11) and additional inputs Inpco−os generated by
other co-original signers, where w includes the identity
(identities) of proxy signer(s), the type of the delegated
information and the period of delegation.

(viii) The three following pairs of interactive protocols
(algorithms) and algorithm are MProxySign and
MProxyVer for identity-based multi-proxy signature
scheme, ProxyMSign and ProxyMVer for proxy multi-
signature or MProxyMSign and MProxyMVer for
multi-proxy multi-signature scheme, depending on the
type of signature scheme.

(a) MProxySign: This is an interactive protocol in which
each proxy signer with identity IDpi

, 1 ≤ i ≤ n

takes as input the system’s parameter Para, the
master public key mpk, the proxy signers’ identities
〈IDp1 , . . . , IDpn

〉, original signer’s identity IDo, the
warrant w, the delegation σo, its secret key xpi

, addi-
tional inputs Inpco−ps of other proxy signers in the
proxy agent and the message m to be signed, then,
it outputs the identity-based multi-proxy signature
θ on behalf of the original signer after a number
of interactions with other proxy signers, i.e. θ ←
MProxySign(Para, mpk, IDo, 〈IDp1 , . . . , IDpn

〉, w,
σo, xpi

, Inpco−ps, m‖01).

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1024 M.R. Asaar et al.

(b) MProxyVer: This algorithm takes as input the
system’s parameter Para, the master public key
mpk, the original signer’s identity IDo, the proxy
signers’ identities 〈IDp1 , . . . , IDpn

〉, the warrant
w, the signed message m and the multi-proxy
signature θ , then, it outputs 1 if θ is a valid
identity-based multi-proxy signature of the mes-
sage m and outputs 0 otherwise, i.e. {0, 1} ←
MProxyVer(Para, mpk, IDo, 〈IDp1 , . . . , IDpn

〉, w,

m‖01, θ).
(c) ProxyMSign: This algorithm takes as input the

system’s parameter Para, the master public key
mpk, original signers’ identities 〈IDo1 , . . . , IDod

〉,
proxy signer’s identity IDp, the warrant w, the del-
egation σo, secret key xp of the proxy signer with
identity IDp and the message m to be signed, then,
it outputs the identity-based proxy multi-signature
θ on behalf of the original signers, i.e. θ ←
ProxyMSign(Para, mpk, 〈IDo1 , . . . , IDod

〉, IDp, w,

σo, xp, m‖01).
(d) ProxyMVer: This algorithm takes as input the sys-

tem’s parameter Para, the master public key mpk, the
original signers’ identities 〈IDo1 , . . . , IDod

〉, the
proxy signer’s identity IDp, the warrant w,
the signed message m and the proxy multi-
signature θ , then, it outputs 1 if θ is a valid
identity-based proxy multi-signature of the mes-
sage m and outputs 0 otherwise, i.e. {0, 1} ←
ProxyMVer(Para, mpk, 〈IDo1 , . . . , IDod

〉, IDp, w,

m‖01, θ).
(e) MProxyMSign: This is an interactive protocol

in which each proxy signer with identity IDpi
,

1 ≤ i ≤ n takes as input the system’s param-
eter Para, the master public key mpk, original
signers’ identities 〈IDo1 , . . . , IDod

〉, proxy sign-
ers’ identities 〈IDp1 . . . , IDpn

〉, the warrant w, the
delegation σo, its secret key xpi

, additional inputs
Inpco−ps of other proxy signers in the proxy group
and the message m to be signed, then, it outputs
the identity-based multi-proxy multi-signature
θ on behalf of original signers after a number
of interactions with other proxy signers, i.e. θ ←
MProxyMSign(Para, mpk, 〈IDo1 , . . . , IDod

, IDp1 . . . ,

IDpn
〉, w, σo, xpi

, Inpco−ps, m‖01).
(f) MProxyMVer: This algorithm takes as input the

system’s parameter Para, the master public key mpk,
the original signers’ identities 〈IDo1 , . . . , IDod

〉, the
proxy signers’ identities 〈IDp1 , . . . , IDpn

〉, the war-
rant w, the signed message m and the multi-proxy
multi-signature θ , then, it outputs 1 if θ is a
valid identity-based multi-proxy multi-signature of
the message m and outputs 0 otherwise, i.e. {0, 1} ←
MProxyMVer(Para, mpk, 〈IDo1 , . . . , IDod

, IDp1 , . . . ,

IDpn
〉, w, m‖01, θ).

2.3. Security models of identity-based multi-proxy
signature, proxy multi-signature and multi-proxy
multi-signature schemes

In a warrant-based identity-based multi-proxy signature,
proxy multi-signature and multi-proxy multi-signature, the
delegation is the original signer’s standard signature (original
signers’ multi-signature) on the warrant w which contains
information regarding the proxy agent such as the proxy
agent’s identity (identities), the period of validity, the restriction
on the class of messages for which the warrant is valid.
Therefore, the properties of strong identifiability, strong
undeniability, verifiability and prevention of misuse are
satisfied naturally. Therefore, the signature scheme should be
secure against existential forgery under an adaptive-chosen-
message, an adaptive-chosen warrant and chosen identity
attack.

To have the strongest security notion possible and at the same
time avoid making security proof unnecessarily complicated,
we use single-signer setup, in which each signing oracle
simulates the role of only one honest signer, with only one
honest signer in the security model as it is a folklore and well-
accepted in the literature [13, 29–33, 36, 37]. The adversary A

can choose the identities on which it wants to forge a proxy
signature and can request the secret keys corresponding to
them (corrupted users) except for the honest signer, and also
A can make delegation and proxy signature queries on arbitrary
warrants and messages under arbitrary identities including only
one honest identity.

To achieve existential unforgeability, three types of potential
adversaries are considered. Adversaries of type I which only
have identities of original and proxy signers, adversaries of
type II which have secret keys of all proxy signers in addition
to capabilities of adversaries of type I and adversaries of type
III which have secret keys of all original signers in addition to
identities of original and proxy signers.

Since an identity-based proxy signature scheme secure
against type II (or type III) adversaries is also secure against
type I adversaries we will henceforth only consider type
II and type III adversaries. To have a formal definition
for strong unforgeability, the following game between the
challenger C and the adversary A is considered to be
played [13].

(1) Setup: C runs the ParaGen algorithm with a security
parameter l to obtain system’s parameter para and the
master key (mpk, msk), then it sends (mpk, para) to A.

(2) The adversary A issues a polynomially bounded number
of queries to the following oracles adaptively:

(i) KeyExtract queries: A can ask for the secret key
corresponding to an identity IDu, then C returns
the private key xu with running the KeyExtract
algorithm.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1025

(ii) DelegationGen queries: If the scheme is proxy multi-
signature or multi-proxy multi-signature, this kind of
query is MSign query, otherwise, this kind of query
is StandardSign query.

(a) StandardSign queries: Adversary A can request
the StandardSign algorithm under the identity
IDu on the message m of its choice. Then, C

returns σu ← StandardSign(Para, mpk, m, xu)

to A. Especially, if IDu = IDo, A can choose
m = (w‖11) to attain a delegation σo on a
warrant w.

(b) MSign queries: Adversary A can request
the multi-signature σu of m w.r.t. identities
〈IDu1 , . . . , IDud

〉 to C. In response, C firstly
runs the KeyExtract algorithm to obtain the
secret key, xut

, corresponding to the identity of
the honest signer, IDut

. Next, C runs MSign
protocol to generate a multi-signature σu ←
MSign(Para, mpk, m, xut

, 〈IDu1 , . . . , IDud
〉,

Inpco−us) for 1 ≤ t ≤ d, and returns σu to the
adversary A, where Inpco−us is generated by A

since it is assumed that other signers are cor-
rupted. Especially, if the multi-set of identities
are identities of original signers, A can choose
m = (w‖11), and also plays the role of other
co-original signers to attain a delegation σo on
a warrant w under identities 〈IDo1 , . . . , IDod

〉.
(iii) In case of multi-proxy signature, proxy multi-

signature and multi-proxy multi-signature, we have
items (a), (b) and (c), respectively.

(a) MProxySign queries: Adversary A can request
the multi-proxy signature of (w, m) w.r.t. orig-
inal signer’s identity IDo and proxy signers’
identities 〈IDp1 , . . . , IDpn

〉 including one hon-
est proxy signer, where m and identities of
proxy signers are in the warrant w. In response,
C firstly runs the KeyExtract algorithm to
obtain the secret key, xpt

, corresponding to the
identity of the honest proxy signer with identity
IDpt

. Next, C receives σo from A (A obtains
it from DelegationGen oracle or simulates
it by itself), and runs MProxySign protocol
for the honest proxy signer to generate θ ←
MProxySign(Para, mpk, IDo, 〈IDp1 , . . . , IDpn

〉,
w, σo, xpt

, Inpco−ps, m‖01) after a number of
interactions, where Inpco−ps is generated by A

since it is assumed that other proxy signers are
corrupted. Then C returns θ to the adversary A.

(b) ProxyMSign queries: Adversary A can request
the proxy multi-signature of (w, m) w.r.t.
original signers’ identities 〈IDo1 , . . . , IDod

〉 and
honest proxy signer’s identity IDp, where m

and the proxy signer’s identity are in the

warrant w. In response, C firstly runs the
KeyExtract algorithm to obtain the secret key,
xp, corresponding to the identity of the proxy
signer.

In addition, C receives σo from A

(A obtains it from DelegationGen ora-
cle or simulates it by itself), then, C

generates proxy multi-signature θ ←
ProxyMSign(Para, mpk, 〈IDo1 , . . . , IDod

〉,
IDp, w, σo, xp, m‖01) and returns it to the
adversary A.

(c) MProxyMSign queries: Adversary A can
request the multi-proxy multi-signature of
(w, m) w.r.t. original signers’ identities
〈IDo1 , . . . , IDod

〉 and proxy signers’ identi-
ties 〈IDp1 , . . . , IDpn

〉 including one honest
user, where m and proxy signers’ identi-
ties are in the warrant w. In response, C

firstly runs the KeyExtract algorithm to
obtain the secret key, xpt

, corresponding to
the identity of the honest proxy signer with
identity IDpt

.
In addition, C receives σo from A (A obtains

it from DelegationGen oracle or simulates it by
itself), then, C runs MProxyMSign protocol
for the honest proxy signer to generate θ ←
MProxyMSign(Para, mpk, 〈IDo1 , . . . , IDod

, IDp1

, . . . , IDpn
〉, w, σo, xpt

, Inpco−ps, m‖01), where
Inpco−ps is generated by A since it is assumed
that other proxy signers are corrupted. Then, C

returns θ to the adversary A.

(3) Finally, A outputs a valid identity-based proxy signature
(m∗, w∗, θ∗) w.r.t. original signers’ identities (original
signer’s identity) and proxy signers’ identities (proxy
signer’s identity), and wins the game if the following
conditions hold.

(i) In case of having identity-based multi-proxy signature
scheme:

1. For adversaries of type II, we have

(a) E0: Identity of the original signer in the warrant
w∗ has not been requested to the KeyExtract
algorithm.

(b) E1: The warrant w∗ has not been requested as one
of the DelegationGen queries under the identity
of the original signer.

2. For adversaries of type III, we have

(a) E0: One of the identities of the proxy signers
in the warrant w∗ has not been requested to the
KeyExtract algorithm.

(b) E1: The pair (m∗, w∗) has not been requested
as one of the MProxySign queries under

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1026 M.R. Asaar et al.

the identity set of the proxy signers in the
warrant w∗.

(ii) In case of having identity-based proxy multi-signature
scheme:

1. For adversaries of type II, we have
(a) E0: One of the identities of the original signers

in the warrant w∗ has not been requested to the
KeyExtract algorithm.

(b) E1: The warrant w∗ has not been requested
as one of the DelegationGen queries under the
original signer’s identity set.

2. For adversaries of type III, we have
(a) E0: Identity of the proxy signer in the warrant

w∗ has not been requested to the KeyExtract
algorithm.

(b) E1: The pair (m∗, w∗) has not been requested
as one of the ProxyMSign queries under the
identity of the honest proxy signer in the
warrant w∗.

(iii) In case of having identity-based multi-proxy multi-
signature scheme:

1. For adversaries of type II, we have
(a) E0: One of identities of the original signers in

the warrant w∗ has not been requested to the
KeyExtract algorithm.

(b) E1: The warrant w∗ has not been requested
as one of the DelegationGen queries under the
original signers’ identity set.

2. For adversaries of type III, we have
(a) E0: One of the identities of the proxy signers

in the warrant w∗ has not been requested to the
KeyExtract algorithm.

(b) E1: The pair (m∗, w∗) has not been requested
as one of the MProxyMSign queries under the
identity set of the proxy signers in the warrant w∗.

The formal definition of existential unforgeability for
adversaries of type II is expressed in Definition 1.

Definition 1. An identity-based proxy signature is
(t, qh, qH , qE, qd, ε)-existentially unforgeable against
adaptive-chosen message (chosen warrant) attack and
chosen identity attack if there is no adversary which runs
in time at most t (makes at most qH + qh queries to hash
functions), makes at most qE KeyExtract queries, qd Dele-
gationGen queries can win the aforementioned game with
probability at least ε.

The formal definition of existential unforgeability for
adversaries of type III is expressed in Definition 2.

Definition 2. An identity-based proxy signature is
(t, qh, qH , qE, qs, ε)-existentially unforgeable against

adaptive-chosen message (chosen warrant) attack and
chosen identity attack if there is no adversary which runs
in time at most t (makes at most qH + qh queries to hash
functions), makes at most qE KeyExtract queries and qs

MProxyMSign (MProxySign or ProxyMsign) queries, can win
the aforementioned game with probability at least ε.

3. IDENTITY-BASED (MULTI)-PROXY
MULTI-SIGNATURE SCHEMES WITHOUT
BILINEAR PAIRINGS

In this section, first we review efficient identity-based (multi)-
proxy multi-signature schemes [33, 37] without bilinear
pairings, then, we show that these schemes are not secure in
their security model.

3.1. Overview of Tiwari et al.’s identity-based
multi-proxy multi-signature scheme

In 2012, Tiwari et al. [37] proposed an identity-based multi-
proxy multi-signature without bilinear pairings to improve the
efficiency of these kinds of schemes. This scheme includes a
set of d original signers 〈IDo1 , . . . , IDod

〉, a set of n proxy
signers 〈IDp1 , . . . , IDpn

〉 and a clerk. Their scheme consists of
following algorithms:

(1) Setup: The system parameters are as follows. Let H1 :
{0, 1}∗ × G → Z

∗
α and H2 : {0, 1}∗ → Z

∗
� be random

oracles, where p is an l-bit prime determining tuples
Fp, E/Fp, G, P , where E/Fp denotes an elliptic curve
E over a prime finite field Fp defined by equation
y2 = x3 + ax + b for a and b ∈ Fp and discriminant
� = 4a3 + 27b2 �= 0. Let G be a cyclic additive group
with order α, and P be the generator of G. The key
distribution center chooses x ∈R Z

∗
α and computes the

master public key Ppub = xP . It publishes mpk = Ppub

as the master public key, and keeps the master secret
key msk = x secret. Therefore, public parameters are
Para = {H1, H2, Fp, E/Fp, G, P } and mpk.

(2) KeyExtract: On input master secret key msk = x

and the user identity IDu, the key distribution center
chooses at random ru ∈ Z

∗
α , computes Ru = ruP ,

hu = H1(IDu, Ru) and xu = ru + hux, and sends the
user secret key (xu, Ru) over a secure and authenticated
channel to the user with identity IDu.

(3) DelegationGen: Let w be the warrant to be signed
by all original signers with identities 〈IDo1 , . . . , IDod

〉
who want to delegate their signing right to a group of
proxy signers with the identities 〈IDp1 , . . . , IDpn

〉, the
delegation is ((Koj

, Roj
), (Kpi

, Rpi
), K, σ ), 1 ≤ i ≤ n

and 1 ≤ j ≤ d, which is generated as follows.

(i) For 1 ≤ j ≤ d, the original signer with identity

IDoj
chooses koj

$← Z
∗
α , computes Koj

= koj
P , and

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1027

broadcasts Koj
to d − 1 original signers, n proxy

signers and the clerk C. Similarly, for 1 ≤ i ≤ n, the

proxy signer with identity IDpi
chooses kpi

$← Z
∗
α ,

computes Kpi
= kpi

P , and broadcasts Kpi
to n − 1

proxy signers, d original signers and the clerk C.
(ii) The clerk C and all signers compute K = ∑n

1 Kpi
+∑d

1 Koj
.

(iii) For 1 ≤ i ≤ n, the proxy signer with identity
IDpi

computes σpi
= epi

xpi
+ kpi

, where epi
=

H1(w, Kpi
, K), and broadcast σpi

to the clerk C.
Similarly, for 1 ≤ j ≤ d, the original signer with
identity IDoj

computes σoj
= eoj

xoj
+ koj

, where
eoj

= H1(w, Koj
, K), and broadcast σoj

to the
clerk C.

(iv) The clerk checks if σpi
P = epi

[Rpi
+hpi

Ppub]+Kpi

for 1 ≤ i ≤ n and ifσoj
P = eoj

[Roj
+hoj

Ppub]+Koj

for 1 ≤ j ≤ d . If all of them are valid, the clerk C

computes σ = ∑n
1 σpi

+ ∑d
1 σoj

, and broadcasts
σ to all original and proxy signers. Therefore, the
delegation is ((Koj

, Roj
), (Kpi

, Rpi
), K, σ ), 1 ≤

i ≤ n and 1 ≤ j ≤ d.

(4) MProxyMSign: The proxy agent with iden-
tities 〈IDp1 , . . . , IDpn

〉 can sign a message
m under the warrant w and the delegation
((Koj

, Roj
), (Kpi

, Rpi
), K, σ ), 1 ≤ i ≤ n and

1 ≤ j ≤ d as follows:

(i) For 1 ≤ i ≤ n, the proxy signer with identity

IDpi
chooses ai

$← Z
∗
α , computes Ni = aiP, and

broadcasts Ni to n − 1 proxy signers.
(ii) For 1 ≤ i ≤ n, the proxy signer with identity IDpi

first computes N = ∑n
1 Ni , h = H2(m, N, K),

si = hσ + ai and sends (Ni, si) to the clerk.
(iii) For 1 ≤ i ≤ n, a proxy signer with identity IDpi

sends the delegation ((Koj
, Roj

), (Kpi
, Rpi

), K, σ ),
1 ≤ i ≤ n and 1 ≤ j ≤ d on the warrant w

to the clerk, the clerk first verifies the validity of
the delegation by checking if σP = ∑d

1 eoj
(Roj

+
hoj

Ppub) + K + ∑n
1 epi

(Rpi
+ hpi

Ppub) holds. If
so, it continues; otherwise, it rejects the delegation
((Koj

, Roj
), (Kpi

, Rpi
), K, σ ), 1 ≤ i ≤ n and

1 ≤ j ≤ d .
(iv) The clerk C computes N = ∑n

1 Ni , then checks
if siP = h[∑d

1(eoj
(Roj

+ hoj
Ppub)) + K +∑n

1(epi
(Rpi

+ hpi
Ppub))] + Ni holds for 1 ≤ i ≤

n. When all individual proxy signatures are valid,
the multi-proxy multi-signature can be generated as
θ = ((Koj

, Roj
), (Kpi

, Rpi
), K, σ, N, s), 1 ≤ i ≤ n

and 1 ≤ j ≤ d by computing s = ∑n
1 si .

(5) MProxyMVer: Given identities 〈IDo1 , . . . , IDod
〉 of

original signers and identities 〈IDp1 , . . . , IDpn
〉 of proxy

signers, a warrant w, a message m and a signature θ =

((Koj
, Roj

), (Kpi
, Rpi

), K, σ, N, s), a verifier operates
as follows:

(i) Checks if the message m conforms to the warrant w,
otherwise, it stops.

(ii) Checks if n proxy signers with identities
〈IDp1 , . . . , IDpn

〉 are authorized by original
signers with identities 〈IDo1 , . . . , IDod

〉 in the
warrant w, otherwise, it stops.

(iii) Accepts the multi-proxy multi-signature if and only
if sP = hn[∑d

1(eoj
(Roj

+ hoj
Ppub) + Koj

) +∑n
1(epi

(Rpi
+ hpi

Ppub) + Kpi
)] + N holds, where

eoj
= H1(w, Koj

, K), epi
= H1(w, Kpi

, K),
hoj

= H1(IDoj
, Roj

), hpi
= H1(IDpi

, Rpi
) and

h = H2(m, N, K).

3.2. Security analysis of Tiwari et al.’s identity-based
multi-proxy multi-signature scheme

Tiwari et al.’s scheme is forgeable by original signers, the clerk
or everyone who has a valid delegation. Note that delegations
are public in the scheme. This security drawback is the result
of not employing proxy signers’ secret keys in MProxyMSign
algorithm to generate multi-proxy multi-signatures on different
messages in the warrant w.

The scenario of this attack is as follows. Original signers,
the clerk or an adversary with having a valid delegation
((Koj

, Roj
), (Kpi

, Rpi
), K, σ ), 1 ≤ i ≤ n and 1 ≤

j ≤ d can generate valid multi-proxy multi-signatures on
arbitrary messages in the warrant w. The adversary first
chooses a′ ∈R Z

∗
α , then, computes N ′ = a′P , h′ =

H2(m
′, N ′, K) and s ′ = a′ + nh′σ . The forged signature

is θ ′ = ((Koj
, Roj

), (Kpi
, Rpi

), K, σ, N ′, s ′), 1 ≤ i ≤ n

and 1 ≤ j ≤ d under the warrant w on the message
m′ in the warrant w. Hence, the first two conditions in
the MProxyMVer algorithm are held since the forgery was
performed for the arbitrary message m′ in the warrant w,
and also the valid delegation shows authorization of proxy
signers with identities 〈IDp1 , . . . , IDpn

〉 by original signers
with identities 〈IDo1 , . . . , IDod

〉 in the warrant w. Furthermore,
the verification equation s ′P = (a′ + nh′σ)P = N ′ +
nh′[∑d

1(eoj
(Roj

+hoj
Ppub)+Koj

)+∑n
1(epi

(Rpi
+hpi

Ppub)+
Kpi

)] holds for the forged signature θ ′ since it is generated
according to the scheme, where eoj

= H1(w, Koj
, K), epi

=
H1(w, Kpi

, K), hoj
= H1(IDoj

, Roj
), hpi

= H1(IDpi
, Rpi

)

and h′ = H2(m
′, N ′, K). Note that in the verification equation,

we have σP = ∑d
1(eoj

(Roj
+hoj

Ppub)+Koj
)+∑n

1(epi
(Rpi

+
hpi

Ppub) + Kpi
) since the delegation is valid and was obtained

by the adversary or the clerk, or was generated by the original
signers.

If we consider a condition in MProxyMVer algorithm such
that each verifier checks if N equals the summation of Ni to
prevent from the aforementioned attack, where Ni indicates the
identity of each proxy signer through an authenticated broadcast

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1028 M.R. Asaar et al.

primitive, we cannot make the scheme resistant against this
attack.

With this condition in the verification of each multi-proxy
multi-signature, the clerk can still forge valid signatures on
different messages in the warrant after generation of a valid
multi-proxy multi-signature. Since for this forgery attack, the
clerk needs some components (si, N), 1 ≤ i ≤ n of a
valid multi-proxy multi-signature in addition to the delegation.
After creation of a valid multi-proxy multi-signature, the clerk
knows the tuple (m, N, σ, K, si). Next, the clerk computes
ai = si − σH2(m, N, K) for 1 ≤ i ≤ n. Then, it can generate
valid multi-proxy multi-signatures on arbitrary messages in
the warrant w with computing a = ∑

i ai , N = aP, h′ =
H2(m

′, N, K) and s ′ = a+nh′σ . Hence, the forged signature is
θ ′ = ((Koj

, Roj
), (Kpi

, Rpi
), K, σ, N, s ′). Sine the delegation

is valid, we have σP = ∑d
1(eoj

(Roj
+ hoj

Ppub) + Koj
) +∑n

1(epi
(Rpi

+hpi
Ppub)+Kpi

) and consequently, the verification
equation s ′P = (a + nh′σ)P = N + nh′[∑d

1(eoj
(Roj

+
hoj

Ppub) + Koj
) + ∑n

1(epi
(Rpi

+ hpi
Ppub) + Kpi

)] holds for
the forged signature θ ′, where eoj

= H1(w, Koj
, K), epi

=
H1(w, Kpi

, K), hoj
= H1(IDoj

, Roj
), hpi

= H1(IDpi
, Rpi

)

and h′ = H2(m
′, N, K). Since previous Ni of a valid signature

are used by the clerk to generate a forgery, the new condition
is held. Therefore, with the condition of checking if N in the
signature equals the summation of Ni , where Ni indicates the
identity of each proxy signer through an authenticated broadcast
primitive, the proposed scheme cannot be secure against the
mentioned forgery attack.

3.3. Overview of Tiwari and Padhye’s identity-based
proxy multi-signature scheme

In 2011, Tiwari and Padhye [33] proposed an identity-based
proxy multi-signature without bilinear pairings to improve
efficiency of these kinds of schemes. This scheme includes a set
of d original signers with identities 〈IDo1 , . . . , IDod

〉, a proxy
signer with identity IDp and a clerk. Their scheme consists of
following algorithms:

(1) Setup: The system parameters are as follows. Let H1 :
{0, 1}∗ → Z

∗
α and H2 : {0, 1}∗ × G → Z

∗
� be random

oracles, where p is an l-bit prime determining tuples
Fp, E/Fp, G, P , where E/Fp denotes an elliptic curve
E over a prime finite field Fp defined by equation
y2 = x3 + ax + b for a and b ∈ Fp and discriminant
� = 4a3 + 27b2 �= 0. Let G be a cyclic additive group
with order α, and P be the generator of G. The key
distribution center chooses x ∈R Z

∗
α and computes the

master public key Ppub = xP. It publishes mpk = Ppub

as the master public key, and keeps the master secret
key msk = x secret. Therefore, public parameters are
Para = {H1, H2, Fp, E/Fp, G, P } and mpk.

(2) KeyExtract: On input master secret key msk = x and
an identity IDu, the key distribution center chooses

at random ru ∈ Z
∗
α , computes Ru = ruP , hu =

H1(IDu, Ru) and xu = ru+hux, and sends the user secret
key (xu, Ru) over a secure and authenticated channel to
the user with identity IDu.

(3) DelegationGen: Let w be the warrant to be signed by
all original signers with identities 〈IDo1 , . . . , IDod

〉 who
want to delegate their signing right to a proxy signer
with identity IDp, the delegation is y = {σoj

, Koj
},

1 ≤ j ≤ d which is generated as follows.

(i) For 1 ≤ j ≤ d, the original signer with identity IDoj

chooses koj

$← Z
∗
α , and computes Koj

= koj
P .

(ii) For 1 ≤ j ≤ d, the original signer with identity
IDoj

computes σoj
= eoj

xoj
+ koj

mod α, where
eoj

= H1(w, Koj
, IDp), and sends y = {σoj

, Koj
},

1 ≤ j ≤ d to the proxy signer with identity
IDp.

(4) PKGen: The proxy signer with identity IDp generates
the proxy signing key Dp with computing Dp =∑d

1(σoj
+ xpepj

), where epj
= H1(w, Koj

, IDoj
).

(5) ProxyMSign: The proxy signer with identity IDp can
sign a message m under the warrant w with his secret
key Dp as follows:

(i) The proxy signer with identity IDp chooses b
$← Z

∗
α ,

computes R = bP and h = H2(m, R), and checks if
gcd(b + h, α) = 1 holds. If it does, the proxy signer
continues; otherwise, chooses another b.

(ii) The proxy signer with identity IDp computes s =
(b + h)−1Dp mod α and the resulting signature is
θ = (Roj

, Koj
, Rp, R, s), 1 ≤ j ≤ d.

(6) ProxyMVer: Given the identities 〈IDo1 , . . . , IDod
〉 of

the original signers and identity IDp of the proxy
signer, a warrant w, a message m and a signature θ =
(Roj

, Koj
, Rp, R, s), 1 ≤ j ≤ d, a verifier operates as

follows:

(i) Checks if the message m conforms to the warrant w,
otherwise, it stops.

(ii) Checks if the proxy signer with identity IDp is
authorized by the original signers with identities
〈IDo1 , . . . , IDod

〉 in the warrant w, otherwise, it
stops.

(iii) Accepts the proxy multi-signature if and only
if s(R + hP) = ∑d

1 eoj
(Roj

+ hoj
Ppub) +

K + ∑d
1(epj

(Rp + hpPpub)) holds, where eoj
=

H1(w, Koj
, IDp), epj

= H1(w, Koj
, IDoj

), hoj
=

H1(IDoj
, Roj

), hp = H1(IDp, Rp), K = ∑d
1 Koj

and h = H2(m, R).

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1029

3.4. Security analysis of Tiwari and Padhye’s
identity-based proxy multi-signature scheme

Tiwari and Padhye’s scheme is forgeable in their proposed secu-
rity model [33]. Since in their security model [33], they assumed
that adversaries (original signers) in addition to having access to
the KeyExtract algorithm on input IDu, the DelegationGen algo-
rithm on input (w, IDp, 〈IDo1 , . . . , IDod

〉) and the ProxyMSign
algorithm on input (w, m, IDp, 〈IDo1 , . . . , IDod

〉) have access
to the proxy signing key generation oracle, PKGen, of proxy
signers on input (IDp, y ′, ·) to obtain D′

p, where IDp is proxy
signer’s identity, 〈IDo1 , . . . , IDod

〉 are identities of original sign-
ers, y ′ is a valid delegation, and w and m are the warrant and the
message in the warrant, respectively. Note that outputs of the
KeyExtract, DelegationGen and ProxyMSign algorithm are xu,
y and θ , respectively. They also assumed that for a forged proxy
multi-signature θ ′ under identities IDp and 〈IDo1 , . . . , IDod

〉
including a delegation y, the adversaries (the original signers)
that do not have proxy signer’s long-term secret key xp, are
not allowed to make query to the proxy signing key genera-
tion oracle, PKGen, on input (IDp, y, ·) to obtain Dp, make
KeyExtract query on input IDp to obtain xp and make a Prox-
yMSign query on input (w, m, IDp, 〈IDo1 , . . . , IDod

〉) to attain
θ ′. Note that the delegation y is generated by original signers or
adversaries obtained it with making query to the DelegationGen
oracle.

To forge the proxy multi-signature θ ′ including the delegation
y regarding to adversary’s capabilities in having access to
oracles in their security model, the adversaries (the original
signers) first make a query to the proxy signing key generation
oracle, PKGen, on input (IDp, y ′, ·) to obtain D′

p, where y ′ =
{σ ′

oj
, K ′

oj
}, 1 ≤ j ≤ d is a valid delegation on w′ and y �= y ′.

Next, the adversaries (the original signers) can extract long-
term secret key, xp, of the proxy signer with identity IDp

with computing xp = D′
p − ∑

1≤j≤d σ ′
oj

/
∑

1≤j≤d e′
pj

, where
D′

p is the response of PKGen on input (IDp, y ′, ·) and e′
pj

=
H1(w

′, K ′
oj

, ID′
oj

), 1 ≤ j ≤ d .
Then, the original signers or the adversaries with having

the delegation y and long-term secret key, xp, of the proxy
signer with identity IDp can generate valid identity-based
proxy multi-signatures on different messages in the warrant
as follows. The original signers or the adversaries with the
delegation y = {σoj

, Koj
}, 1 ≤ j ≤ d generate the proxy

signing key with computing Dp = ∑d
1(σoj

+ xpepj
), where

epj
= H1(w, Koj

, IDoj
) for 1 ≤ j ≤ d. Next, they choose

b′ $← Z
∗
α , and compute R′ = b′P and h′ = H2(m

′, R′),
then check if gcd(b′ + h′, α) = 1 holds. If it does, they
continue, otherwise, they choose another b′. Then, they compute
s ′ = (b′ + h′)−1Dp mod α and the resulting signature is θ ′ =
(Roj

, Koj
, Rp, R′, s ′), 1 ≤ j ≤ d which passes the verification

equation since it is generated according to the scheme. Note
that in the proposed forgery attack, the original signers or the
adversaries with the delegation y = {σoj

, Koj
}, 1 ≤ j ≤ d

did not make a query to the proxy signing key generation
oracle, PKGen, on input (IDp, y, ·) to obtain Dp, did not make
KeyExtract query on input IDp to obtain xp, and did not make
a ProxyMSign query on input (w, m, IDp, 〈IDo1 , . . . , IDod

〉) to
attain θ ′.

4. OUR IDENTITY-BASED MULTI-PROXY
SIGNATURE, PROXY MULTI-SIGNATURE AND
MULTI-PROXY MULTI-SIGNATURE SCHEMES

In this section, we present an identity-based multi-proxy multi-
signature scheme based on the GQ identity-based signature
scheme [39]. Since identity-based proxy multi-signature and
multi-proxy signature schemes are special cases of the proposed
scheme such that d = 1 for the former and n = 1 in the latter, we
omit their details. Then, we prove that the identity-based multi-
proxy multi-signature scheme is secure under one-wayness of
RSA in the random oracle model. Similarly, one may show
that its special cases are secure in the random oracle model. To
give some intuition into our schemes, we briefly recall the GQ
scheme [39] here. The key distribution center generates an RSA
module N and exponents (e, d) such that ed = 1 mod ϕ(N).
The master public key is the pair (N, e), while d is the master
secret key. The signature on a message m by identity IDu is a
pair (Ru, su) such that Ru = re

u mod N , where ru is a random
number, and se

u = RuH(IDu)
c mod N , where c = H1(Ru, m).

Functions {H, H1} are random oracles.
Our scheme employs GQ identity-based multi-signature

scheme, which is a different version of identity-based multi-
signature from RSA [40] proposed by Neven and Bellare in
the number of interactions and random oracles, as a building
block such that the delegation is the original signers’ GQ multi-
signature on a warrant and the proxy signature is sequential
aggregation of delegation and proxy agent’s GQ identity-based
multi-signature on a message m.

4.1. Details of identity-based multi-proxy multi-signature
scheme

In this section, we present the details of identity-based multi-
proxy multi-signature scheme. There are n+ d + 1 participants
in the system, a group of original signers with identity set
ÎDo = 〈IDo1 , . . . , IDod

〉, a group of proxy signers with identity
set ÎDp = 〈IDp1 , . . . , IDpn

〉 and a clerk, where d is the number
of original signers in the original signers’ group and n is the
number of proxy signers in the proxy group. Our scheme
consists of seven algorithms as follows.

(1) Setup: The system parameters are as follows. Let l1
and lN ∈ N and let H1 : {0, 1}∗ → {0, 1}l1 , and
H : {0, 1}∗ → Z

∗
N be random oracles, where H

depends on the master public key of the scheme.
Let KGrsa be an RSA key pair generator that outputs
triplets (N, e, d) such that ϕ(N) > 2lN and with

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1030 M.R. Asaar et al.

prime encryption exponent e of length strictly greater
than l1 + 2 logn

2 + logd
2 bits. The key distribution center

runs KGrsa to generate RSA parameters (N, e, d). It
publishes mpk = (N, e) as the master public key, and
keeps the master secret key msk = d secret. Therefore,
public parameters are Para = {H1, H } and mpk.

(2) KeyExtract: On input master secret key msk = d and the
user identity IDu, the key distribution center computes
xu = H(IDu)

d mod N , and sends the user secret key
xu over a secure and authenticated channel to the user
with identity IDu.

(3) MSign: Let m be a message to be signed with signers
whose identity set is ÎDu = 〈IDu1 , . . . , IDud

〉, the
signature σu is generated as follows:

(i) For 1 ≤ j ≤ d , the signer with identity IDuj
chooses

rj
$← Z

∗
N , computes Rj = re

j mod N and broadcasts
Rj to d − 1 signers and the clerk.

(ii) For 1 ≤ j ≤ d , the signer with identity IDuj

computes Ru = ∏d
j=1 Rj and c0 = H1(Ru‖ÎDu‖m),

and computes sj = rj (xuj
)c0 mod N .

(iii) For 1 ≤ j ≤ d, the signer with identity IDuj
sends

(c0, sj ) to the clerk as her partial signature on the
message m.

(iv) The clerk checks if Rj = se
jH(IDuj

)−c0 holds for
1 ≤ j ≤ d.

When all the partial signatures are valid, the
identity-based multi-signature of the message m

w.r.t. identity set ÎDu = 〈IDu1 , . . . , IDud
〉 of signers

is generated as σu = (Ru, su) by computing su =∏d
j=1 sj .

(4) MVer: Given the identity set ÎDu of signers, the message
m and a signature σu = (Ru, su), a verifier checks if
se
u = Ru[∏d

j=1 H(IDuj
)]c0 mod N holds, where c0 =

H1(Ru‖ÎDu‖m).
(5) DelegationGen: Let w be a warrant to be signed by orig-

inal signers with identity set ÎDo = 〈IDo1 , . . . , IDod
〉

who want to delegate their signing right to a proxy agent
with identity set ÎDp = 〈IDp1 , . . . , IDpn

〉, the delega-
tion σo is generated with employing MSign algorithm
on the message m = (w‖11), where the identity set of
signers in the algorithm is identity set ÎDo of original
signers.

(6) MProxyMSign: The proxy agent with identity set ÎDp

can sign a message m under the warrant w with having
a valid delegation σo = (Ro, so) as follows:

(i) For 1 ≤ i ≤ n, the proxy signer with identity IDpi

chooses ri
$← Z

∗
N , computes Ri = re

i mod N , and
broadcasts Ri to n − 1 proxy signers and the clerk.

(ii) For 1 ≤ i ≤ n, the proxy signer with
identity IDpi

computes Rp = ∏n
i=1 Ri , c1 =

H1(Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01), si = ri(xpi
)c1 mod

N and ŝi = siso mod N .
(iii) For 1 ≤ i ≤ n, the proxy signer with identity IDpi

sends (c1, ŝi , Ro) to the clerk as his partial proxy
signature on the message m under the warrant w.

(iv) The clerk checks if Ri = ŝi
e
([H(IDpi

)]c1

Ro[∏d
j=1 H(IDoj

)]c0)−1 holds for 1 ≤ i ≤ n, where

c0 = H1(Ro‖ÎDo‖w‖11).
When all partial proxy signatures are valid, the

identity-based multi-proxy multi-signature of the
message m under the warrant w w.r.t. identity sets
ÎDo for original signers and ÎDp for proxy signers
is generated as θ = (Rp, Ro, sp) by computing
sp = ∏n

i=1 ŝi .

(7) MProxyMVer: Given identity set ÎDo of original signers
and identity set ÎDp of proxy signers, a warrant w, a
message m, and a signature θ = (Rp, Ro, sp), a verifier
operates as follows:

(i) Checks if the message m conforms to the warrant w,
otherwise, it stops.

(ii) Checks if n proxy signers with identity set ÎDp are
authorized by original signers with identity set ÎDo

in the warrant w, otherwise, it stops.
(iii) Accepts the multi-proxy multi-signature if and

only if se
p = Rp[∏n

i=1 H(IDpi
)]c1(Ro[∏d

j=1

H(IDoj
)]c0)n holds, where c1 = H1(Rp‖Ro‖ÎDo

‖ÎDp‖w‖m‖01) and c0 = H1(Ro‖ÎDo‖w‖11).

4.2. Analysis of the proposed schemes

In this section, we verify the correctness and prove existential
unforgeability of the new identity-based multi-proxy multi-
signature scheme in the random oracle model (see [41] for the
background). Note that one may similarly verify the correctness
and prove unforgeability of other schemes, namely proxy multi-
signature and multi-proxy signature schemes, since they are
special cases of the identity-based multi-proxy multi-signature
scheme.

In order to prove unforgeability of the proposed scheme, we
need to show that it is unforgeable against adversaries of types II
and III (as defined in Section 2.3). Since our security proofs are
quite similar in both cases, we have parameterized these proofs
to prevent unnecessary repetitions of arguments. Hence, just for
notational settings, we refer to the adversary as A(1−k)II+kIII in
which the parameter k ∈ {0, 1} makes the difference between
adversaries of types II and III (i.e. notationally we assume that
we have an adversary of type II, AII, when k = 0 and an
adversary of type III, AIII, when k = 1). Note that, the proofs
for different values of k are independent.

In the security proof, it is assumed that there is only one
honest signer, and note that, this does not have any effect on
the generality of our proof. Also, this assumption in different
security models is in coherence with what is usually considered

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1031

in the current literature (e.g. see [13, 29–33, 36, 37] for similar
issues) since security of the general case of having multiple
honest signers follows from the security of the extreme case of
having only one honest signer in a more or less straightforward
way. Although, this fact is not usually explicitly stated in this
literature, to be precise, we have decided to elaborate on the
details of this proof in Section 5.

To prove the security of our proposed scheme, and by
contradiction, assuming an adversary A(1−k)II+kIII, we show
that there is a solver (algorithm B) that can solve a random
instance of the RSA problem with a nonnegligible probability.
To do this, we first show that there exists a simulator called
CA(1−k)II+kIII (see Algorithm 2) that can simulate the signature
scheme without knowing the secret key of the honest signer, and
runs the adversary A(1−k)II+kIII as its sub-routine. In this regard,
we compute the run-time and a lower bound for the success
(returning a useful output (Rp, Ro, sp, ck, c1−k, xo, xp, m, w)

(see Definition 3)) probability of this simulator in terms of
the run-time and success (returning a valid forgery θ =
(Rp, Ro, sp, ck, c1−k) on a message m under the warrant w with
respect to the original signers’ identity set ÎDo and the proxy
signers’ identity set ÎDp) probability of the adversary and the
number of queries to the oracles (see Lemma 1).

At the final stage, we use a forking strategy to solve an
instance (N, e, y) of the RSA problem, using a useful pair
(see Definition 4) of the simulator CA(1−k)II+kIII when the random
string used in both simulations are the same. Hence, we
concentrate on computing a lower bound for the probability
of producing such a useful pair and solving the RSA instance
as the main body of the solver algorithm B (see Lemma 3). We
should highlight that the general Forking Lemma [42] cannot be
applied directly into our scheme since this scheme is the result
of sequential aggregation of two different signatures such that
we have two different types of random oracle responses. Hence,
we need to consider the probability of happening some random
responses before the forking point in the proposed Forking
Lemma, and this is the main difference of our Forking Lemma
from previous ones.

Our main result on the security of the proposed scheme is
summarized in Theorem 1, where the parameter k is used to
code the result for both adversaries of types II and III.

To start let us verify the correctness of the proposed scheme.
Note that, all computations are done modulo N , but we omit
this for simplicity.

se
p =

[
n∏

i=1

ŝi

]e

=
n∏

i=1

⎡⎣re
i xpi

ec1

⎡⎣ d∏
j=1

re
j xoj

ec0

⎤⎦⎤⎦
=

[
n∏

i=1

re
i

] [
n∏

i=1

H(IDpi
)

]c1

×
⎛⎝⎡⎣ d∏

j=1

re
j

⎤⎦ ⎡⎣ d∏
j=1

H(IDoj
)

⎤⎦c0
⎞⎠n

= Rp

[
n∏

i=1

H(IDpi
)

]c1
⎛⎝Ro

⎡⎣ d∏
j=1

H(IDoj
)

⎤⎦c0
⎞⎠n

. (2)

Definition 3. Let k ∈ {0, 1} be a constant and the algo-
rithm CA(1−k)II+kIII return (Rp, Ro, sp, ck, c1−k, xo, xp, m, w)

derived from a valid forgery ((ÎDo, ÎDp, m, w), θ =
(Rp, Ro, sp, ck, c1−k)) produced by an adversary A(1−k)II+kIII

when CA(1−k)II+kIII simulates the signature scheme. The tuple
(Rp, Ro, sp, ck, c1−k, xo, xp, m, w) is a useful output if se

p =
Rp[xe

pyk]c1(Ro[xe
oy

1−k]c0)n holds.

Lemma 1. Let k ∈ {0, 1}, n ≥ 1 and d ≥ 1 be constants
and lN be a security parameter. Assuming the existence of an
adversary, A(1−k)II+kIII, with success probability at least ε and
run-time t, there exists a simulator CA(1−k)II+kIII for the signature
scheme that does not use the secret key of the honest signer, and
produces a useful output (Rp, Ro, sp, ck, c1−k, xo, xp, m, w)

(see Algorithm 2 for the pseudocode and the definitions) such
that,

(a) the success probability of CA(1−k)II+kIII is greater than

ε
def= ε

4qE

− (2(1 − k)q2
d + 2kq2

s

+ ((1 − k)qd + kqs)qH )2−lN ,

(b) the run-time of CA(1−k)II+kIII is less than

τ
def= t + (1qE + 1qh + 2(1 − k)dqd + 2k(n + 1)qs)texp,

where texp is the time of one exponentiation in Z
∗
N, and qH , qh,

qE, qd and qs are the number of queries to the oracles H1, H,

KeyExtract, DelegationGen and MProxyMSign, respectively.

Proof. Assume the existence of an adversary A(1−k)II+kIII on the
public data mpk = (N, e) which runs in time at most t , makes
qH queries to the random oracle H1, qh queries to the random
oracle H , qE queries to the KeyExtract, (1−k)qd queries to the
DelegationGen and kqs queries to the MProxyMSign algorithm
and can win the unforgeability game with probability at least ε.
The algorithm CA(1−k)II+kIII maintains initially empty associative
arrays T1[·] and T [·], and answers A(1−k)II+kIII’s oracle queries
as described below (seeAlgorithm 2 and note that this algorithm
uses the adversary A(1−k)II+kIII and Algorithm 1 as its sub-
routines).

(i) H1(Q) queries: If T1[Q] is defined, then CA(1−k)II+kIII

returns its value, otherwise CA(1−k)II+kIII chooses

T1[Q] $← {0, 1}l1 , and returns T1[Q] to A(1−k)II+kIII.
Note that, in DelegationGen Q = (Ro‖ÎDo‖w‖11) and
in MProxyMSign Q = (Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01).

(ii) H(IDu) queries: We employ Coron’s technique [43] to
obtain a tighter security bound when simulating H . If
T [IDu] = (b, xu, Xu), then CA(1−k)II+kIII returns Xu. If

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1032 M.R. Asaar et al.

this entry is not yet defined, it chooses xu
$← Z

∗
N and

tosses a biased coin b so that b = 0 with probability
β and b = 1 with probability 1 − β. If b = 0, then
CA(1−k)II+kIII sets Xu = xe

u mod N ; if b = 1, it sets
Xu = xe

uy mod N . It stores T [IDu] ← (b, xu, Xu) and
returns Xu to A(1−k)II+kIII. Note that, the value of β is
determined later.

(iii) KeyExtract queries for IDu: The algorithm CA(1−k)II+kIII

looks up T [IDu] = (b, xu, Xu), if this entry is not yet
defined, it performs a query H(IDu). If b = 0, then
CA(1−k)II+kIII returns xu; otherwise, it sets badKE ← true

and aborts the execution of A(1−k)II+kIII and returns ⊥.
(iv) DelegationGen queries for a warrant w w.r.t. the multi-

set ÎDo of original signers including one honest original
signer whose identity is denoted as IDot

: The algorithm
CAII first makes query to H oracle to obtain H(IDoj

) =
Xoj

for 1 ≤ j ≤ d, next, CAII chooses c0
$← {0, 1}l1

and st
$← Z

∗
N , computes Rt ← se

t (Xot
)−c0 mod N ,

and broadcasts the value of Rt of the honest original
signer. The algorithm CAII at the same time receives
Rj , 1 ≤ j �= t ≤ d, of other corrupted original
signers from AII (the adversary plays the role of the
corrupted co-original signers with having their secret
keys in the group of original signers), and computes
Ro = ∏d

j=1 Rj . If T1[Ro‖ÎDo‖w‖11] has already been
defined, thenCAII sets badDG ← true and halts returning
⊥; otherwise, it sets T1[Ro‖ÎDo‖w‖11] ← c0. After
having received sj , 1 ≤ j �= t ≤ d from adversary AII,
CAII checks if Rj = se

jH(IDoj
)−c0 holds for 1 ≤ j �=

t ≤ d. If not, it ends the signing protocol. Otherwise,
it computes so = ∏d

j=1 sj , and returns the signature
σo = (Ro, so, c0) as a delegation to the adversary AII.

(v) MProxyMSign queries for a message m under the war-
rant w w.r.t. proxy signers’ identity set ÎDp including
one honest proxy signer whose identity is denoted
as IDpt

such that m and ÎDp are in the warrant w:
The algorithm CAIII receives σo = (Ro, so, c0) as a
delegation from AIII, which generates it by itself since
it has secret keys of all original signers. Next, if the
delegation is valid, CAIII makes query to the H ora-
cle to obtain H(IDpi

) = Xpi
for 1 ≤ i ≤ n. Then,

CAIII chooses c1
$← {0, 1}l1 and st

$← Z
∗
N , computes

Rt ← (st so)
eX−c1

pt
mod N for the honest proxy signer,

and broadcasts Rt . The algorithm CAIII at the same time
receives Ri , 1 ≤ i �= t ≤ n, of corrupted proxy signers
from AIII, which has their secret keys, and plays the
role of the corrupted co-proxy signers, and computes
Rp = ∏n

i=1 Ri . If T1[Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01]
has already been defined, then, CAIII sets
badMP ← true and halts returning ⊥; otherwise,
it sets T1[Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01] ← c1.
After having received ŝi for corrupted proxy
signers from AIII, CAIII verifies that if Ri =

Algorithm 1. H(IDu) (Global variables (N, e, y)).

Choose xu
$← Z

∗
N and toss a biased coin b (b = 0 with

probability β and b = 1 with probability 1−β) and compute
Xu (i.e. Xu = xe

u mod N for b = 0, Xu = xe
uy mod N for

b = 1 and set T [IDu] ← (b, xu, Xu)

ŝi
e
(H(IDpi

)c1Ro[∏d
j=1 H(IDoj

)]c0)−1 holds for
1 ≤ i �= t ≤ n. If not, it ends the signing protocol.
Otherwise, it computes sp = ∏n

i=1 ŝi , and returns the
signature θ = (Rp, Ro, sp, ck, c1−k) on the message m

under the warrant w w.r.t. ÎDo and ÎDp to the adversary
AIII.

To lower bound the probability that CA(1−k)II+kIII does not
abort at answering to queries of A(1−k)II+kIII, we need to
compute η = Pr[¬badKE]((1 − k) Pr[¬badDG|¬badKE] +
k Pr[¬badMP|¬badKE]), where events badKE, badDG and badMP

indicate that CA(1−k)II+kIII aborts in signature simulation as a
result of any of A(1−k)II+kIII’s KeyExtract, DelegationGen and
MProxyMSign queries, respectively. These probabilities are
computed as follows.

Claim 1. Pr[¬badKE] ≥ βqE .

Proof. Pr[¬badKE] is the probability that CA(1−k)II+kIII does not
abort as a result of A(1−k)II+kIII’s KeyExtract queries. The
algorithm CA(1−k)II+kIII aborts at answering to a KeyExtract query
when badKE is set to true (Algorithm 2, Line 26) which means
that b = 1 for a given identity. The probability of this event
is 1 − β, so the probability that CA(1−k)II+kIII does not abort for
one KeyExtract query is β. Since A(1−k)II+kIII makes at most
qE KeyExtract queries, the probability that CA(1−k)II+kIII does not
abort as a result of qE KeyExtract queries is at least βqE .

Claim 2. Pr[¬badDG|¬badKE] ≥ 1 − qd((qd + qH )2−lN ) −
q2

d 2−lN .

Proof. Events ¬badKE and ¬badDG are independent, so
Pr[¬badDG|¬badKE] = Pr[¬badDG]. The value of Pr[¬badDG]
is the probability that CAII does not abort as a result of
DelegationGen queries. The algorithm CAII aborts at answering
to a DelegationGen query if badDG is set to true (Algorithm 2,
Line 35) which means that there is a conflict in the table T1[·]
for these kinds of queries. The probability of finding a conflict
in T1[·] for one DelegationGen query (w, ÎDo) equals the
probability that (Ro‖ÎDo‖w‖11) generated in a DelegationGen
simulation has been occurred by chance in a previous query
to the oracle H1. Since there are at most qH + qd entries in
the table T1[·] for these kinds of queries and the number of
Ro, uniformly distributed in ZN , is 2lN , the probability of this
event for one DelegationGen query is at most (qd + qH )2−lN .
Hence, the probability of this event for qd queries is at most
qd(qd + qH )2−lN . In addition, this probability includes the

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1033

Algorithm 2. CA(1−k)II+kIII
(N, e, y).

1: Done = 0.
2: (Done, ξ1 = (Question, Oracle), ξ2) ← A(1−k)II+kIII (N, e)

3: while ¬Done do
4: if ξ1 = (Q, H1) and ξ2 = ⊥ then
5: if T1[Q] is defined then
6: return T1[Q]
7: else
8: Set T1[Q] $← {0, 1}l1 and
9: return T1[Q]
10: end if
11: end if
12: if ξ1 = (IDu, H) and ξ2 = ⊥ then
13: if T [IDu] = (b, xu, Xu) is defined then
14: return Xu

15: else
16: Run H(IDu) and
17: return Xu

18: end if
19: end if
20: if ξ1 = (IDu, KeyExtract) and ξ2 = ⊥ then
21: if T [IDu] = (b, xu, Xu) is not defined then
22: Run H(IDu)

23: if b = 0 then
24: return xu

25: else
26: Set badKE ← true and
27: return ⊥
28: end if
29: end if
30: end if
31: if ξ1 = ((w, ÎDo), DelegationGen) and ξ2 = ⊥ then
32: Run H(IDoj

) for 1 ≤ j ≤ d

33: Choose c0
$← {0, 1}l1 , st

$← Z∗
N , compute Rt ← se

t (Xot )
−c0 mod N

(broadcast Rt and receive Rj s for 1 ≤ j �= t ≤ d from AII) and compute

Ro = ∏d
j=1 Rj .

34: if T1[Ro‖ÎDo‖w‖11] has already been defined then
35: Set badDG ← true and
36: return ⊥
37: else
38: Set T1[Ro‖ÎDo‖w‖11] ← c0 and compute so = ∏d

j=1 sj (sj s for
1 ≤ j �= t ≤ d are received from AII and checks their correctness through
relation Rj = se

j H(IDoj
)−c0 ) and

39: return σo = (Ro, so, c0) on w w.r.t. ÎDo

40: end if
41: end if
42: if ξ1 = ((m, σo, ÎDp), MProxyMSign) and ξ2 = ⊥ then
43: Run H(IDpi

) for 1 ≤ i ≤ n

44: Choose c1
$← {0, 1}l1 and st

$← Z∗
N , compute Rt ← (st so)eX

−c1
pt mod N

(broadcast Rt and receive Ri s for 1 ≤ i �= t ≤ n from AIII ) and compute
Rp = ∏n

i=1 Ri .
45: if T1[Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01] has already been defined then
46: Set badMP ← true and
47: return ⊥
48: else
49: Set T1[Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01] ← c1 and compute sp = ∏n

i=1 ŝi
(ŝi s for 1 ≤ i �= t ≤ n are received from AIII and their correctness are
checked through relation Ri = ŝi

e(H(IDpi
)c1 Ro[∏d

j=1 H(IDoj
)]c0 )−1)

for 1 ≤ i �= t ≤ n and
50: return θ = (Rp, Ro, sp, ck, c1−k) on m under w w.r.t. ÎDo and ÎDyp

51: end if
52: end if
53: end while
54: if Done then
55: A(1−k)II+kIII returns (ξ1 = ⊥, ξ2 = ((ÎDo, ÎDp, m, w)), θ =

(Rp, Ro, sp, ck, c1−k))

56: Look up T [IDpi
] for 1 ≤ i ≤ n and T [IDoj

] for 1 ≤ j ≤ d and compute

xo = ∏d
j=1 xoj

and xp = ∏n
i=1 xpi

and

57: return (Rp, Ro, sp, ck, c1−k, xo, xp, m, w)

58: end if

probability that CAII previously used the same randomness Rt ,
uniformly distributed in ZN , in one DelegationGen simulation.
Since there are at most qd DelegationGen simulations, this
probability is at most qd2−lN . Therefore, for qd DelegationGen
queries the probability of this event is at most q2

d 2−lN .

Claim 3. Pr[¬badMP|¬badKE] ≥ 1 − qs((qs + qH )2−lN ) −
q2

s 2−lN .

Proof. Events ¬badKE and ¬badMP are independent, so
Pr[¬badMP|¬badKE] = Pr[¬badMP]. The value of Pr[¬badMP]
is the probability that CAIII does not abort as a result of
MProxyMSign queries. The algorithm CAIII aborts at answering
to an MProxyMSign query if badMP is set to true (Algorithm 2,
Line 46) which means that there is a conflict in table T1[·] for
these kinds of queries. The probability of finding a conflict
in T1[·] for one MProxyMSign query equals the probability
that (Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01) generated in MProxyMSign
simulation has been occurred by chance in a previous query to
the oracle H1. Since there are at most qH + qs entries in the
table T1[·] for these kinds of queries and the number of Rp,
uniformly distributed in ZN , is 2lN , the probability of this event
for one MProxyMSign is at most (qs + qH )2−lN . Hence, the
probability of this event forqs queries is at mostqs(qs+qH )2−lN .
In addition, this probability includes the probability that CAIII

previously used the same randomness Rt , uniformly distributed
in ZN , in one MProxyMSign simulation. Since there are at most
qs MProxyMSign simulations, this probability is at mostqs2−lN .
Therefore, for qs MProxyMSign queries the probability of this
event is at most q2

s 2−lN .

Finally, it is assumed that A(1−k)II+kIII outputs a valid forgery
θ = (Rp, Ro, sp, ck, c1−k) on a message m under a warrant
w w.r.t. original signers’ identity set ÎDo and proxy signers’
identity set ÎDp with probability at least ε in time bound t .
Since the forgery is valid, we have

se
p = Rp

[
n∏

i=1

H(IDpi
)

]c1
⎛⎝Ro

⎡⎣ d∏
j=1

H(IDoj
)

⎤⎦c0
⎞⎠n

, (3)

and AII has not asked the warrant w from DelegationGen
algorithm under original signer’s identity set ÎDo and AIII has
not asked the message m from MProxyMSign algorithm under
proxy signer’s identity set ÎDp. In addition, a valid forgery has
to contain at least one uncorrupted identity. The probability
that A(1−k)II+kIII outputs a valid forgery containing at least one
uncorrupted identity is computed as follows.

Claim 4. The probability that A(1−k)II+kIII outputs a valid
forgery including at least one uncorrupted identity is at least
ε(1 − β).

Proof. It is assumed that A(1−k)II+kIII outputs a valid forgery
with probability at least ε. The probability that a valid forgery

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1034 M.R. Asaar et al.

contains at least one uncorrupted identity is at least 1 − β. The
probability of existence of one honest identity with b = 1 is
1−β, and for adversaries of type II the probability of existence
of at least one uncorrupted identity among d + n identities
is 1 − βd (since AII has secret keys of n proxy signers, we
have at most d uncorrupted identities in the forgery). Since we
have 1 − β ≤ 1 − βd for d ≥ 1, this probability is at least
1−β. Similarly, we have the same claim for AIII. Therefore, the
probability that A(1−k)II+kIII outputs a valid forgery containing
at least one uncorrupted identity is at least ε(1 − β).

Therefore, the probability that CA(1−k)II+kIII returns a useful
output is at least ε(1−β)η ≥ ε(1−β)βqE − ((1−k)qd((2qd +
qH )2−lN ) + kqs(2qs + qH )2−lN ). The value of βqE (1 − β) is
maximized for β = qE/(qE + 1). With substituting the value
of β, we obtain βqE (1−β) = (qE/(qE + 1))qE (1/(qE + 1)) =
(1/qE)(1 − 1/(qE + 1))1+qE . If qE = 0, this value is 1 and
(1 − 1/(qE + 1))1+qE is a monotonically increasing sequence
for qE ≥ 1. Therefore, the lower bound of βqE (1−β) is 1/4qE .

To estimate the required time of CA(1−k)II+kIII in returning
a useful output, the required time tC in which CA(1−k)II+kIII

answers A(1−k)II+kIII’s queries is computed as follows. Since it
is assumed that a (multi-) exponentiation in ZN takes time texp,
while all other operations take zero time, each random oracle or
KeyExtract query takes at most one exponentiation, a delegation
simulation takes 2d exponentiations and a multi-proxy multi-
signature simulation takes 2(n + 1) exponentiations, we
therefore have tC ≤ (1qE+1qh+2(1−k)dqd+2k(n+1)qs)texp.

Finally, CA(1−k)II+kIII performs additional random oracle
queries H(IDu) for identities in the forgery to find T [IDu] =
(b, xu, Xu) for them, computes xo = ∏d

j=1 xoj
and xp =∏n

i=1 xpi
, and returns (Rp, Ro, sp, ck, c1−k, xo, xp, w, m) with

probability at least ε = ε/4qE − (2(1 − k)q2
d + 2kq2

s + ((1 −
k)qd + kqs)qH )2−lN in time bound τ = t + (1qE + 1qh +
2(1 − k)dqd + 2k(n + 1)qs)texp. Substituting the values of
H(IDu) = xe

u for corrupted identities and H(IDu) = xe
uy for

the honest identity in Equation 3, we obtain

se
p = Rp

([
n∏

i=1

(xpi
)e

]
yk

)c1

×
⎛⎝Ro

⎛⎝⎡⎣ d∏
j=1

(xoj
)e

⎤⎦ y1−k

⎞⎠c0
⎞⎠n

.

Since xo = ∏d
j=1 xoj

and xp = ∏n
i=1 xpi

, the above relation
converts to

se
p = Rp[xe

pyk]c1(Ro[xe
oy

1−k]c0)n.

Also, in what follows we will be needing the following
splitting lemma.

Lemma 2 [44]. Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ δ.
For any α < δ, define B = {(x, y) ∈ X × Y | Pry′∈Y [(x, y ′) ∈
A] ≥ δ−α} and B̄ = (X×Y )\B, then the following statements
hold:

(i) Pr[B] ≥ α;
(ii) {∀(x, y) ∈ B, Pry′∈Y [(x, y ′) ∈ A] ≥ δ − α};

(iii) Pr[B|A] ≥ α/δ.

Definition 4. Let k ∈ {0, 1} be a constant. A pair
of useful outputs (Rp, Ro, sp, ck, c1−k, xo, xp, m, w) and
(R′

p, R′
o, s

′
p, c′

k, c
′
1−k, x

′
o, x

′
p, m′, w′) is said to be a useful pair

if Rp = R′
p, Ro = R′

o, sp �= s ′
p, ck �= c′

k , c1−k = c′
1−k , xo = x ′

o,
xp = x ′

p, m = m′ and w = w′ hold.

Definition 5. The probabilistic polynomial time algorithm
CA(1−k)II+kIII at each run proceeds based on a random string ω

and answers ρ
def=(ρ1, . . . , ρqt

) to the queries Qdef=(Q1, . . . , Qqt
)

made to the random oracle H1. A pair of (ω, ρ) is said to
be a successful pair if CA(1−k)II+kIII produces a useful output
(Rp, Ro, sp, ck, c1−k, xo, xp, w, m) based on them.

Lemma 3 (A Forking Lemma). Let k ∈ {0, 1} be a constant,
l1 be a security parameter, H1 be a random oracle and qt be
the total number of queries to H1. It is assumed that CA(1−k)II+kIII

returns a useful output (Rp, Ro, sp, ck, c1−k, xo, xp, m, w) with
probability at least ε in time bound τ . Then, a replay of
CA(1−k)II+kIII with the same random string and a different random
oracle gives a useful pair in time t ′ ≤ 2τ with probability
ε′ ≥ ε2

1(1 − 2−l1)/8qt (qt − 1), where ε1 ≥ (ε − 2−(l1−1)).

Proof. Consider the probabilistic polynomial time Turing
machine CA(1−k)II+kIII with a random string ω, that answers

to the queries Qdef=(Q1, . . . , Qqt
) made to the random oracle

H1, and stores these queries and the corresponding answers

ρ
def=(ρ1, . . . , ρqt

) in the tableT1[·]. For a given queryQ, let index

of Q be defined as Ind(Q)
def= min{i|Qi = Q}. By hypothesis,

for a random choice of (ω, ρ), CA(1−k)II+kIII produces a useful
output (Rp, Ro, sp, ck, c1−k, xo, xp, w, m) with probability at
least ε in time bound τ .

Since H1 is a random oracle, the probability of the event

ck = H1((1 − k)(Ro‖ÎDo‖w‖11)

+ k(Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01))

and

c1−k = H1(k(Ro‖ÎDo‖w‖11)

+ (1 − k)(Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01))

is less than 2−(l1−1), unless they are asked during the attack.
Hence, in what follows it is likely that queries

(1 − k)(Ro‖ÎDo‖w‖11) + k(Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01)

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1035

and

k(Ro‖ÎDo‖w‖11) + (1 − k)(Rp‖Ro‖ÎDo‖ÎDp‖w‖m‖01)

are asked during a successful attack. We assume that i2 and
i1 are indices of these queries, respectively, and if these queries
are never asked, we set i1 = ∞ and i2 = ∞.

We define set ϒ as the set of successful pairs (ω, ρ), ϒ =
{(ω, ρ)| CA(1−k)II+kIII(ω) produces a useful output & (i1, i2) �=
(∞, ∞)}. The lower bound of probability of producing a useful
output is ε1 = Pr[ϒ] ≥ ε − 2−(l1−1).

Since CA(1−k)II+kIII makes query to the random oracle H1 for
Qi1 and Qi2 for a successful pair (ω, ρ) ∈ ϒ , then we define
set ϒi1,i2 as a subset of ϒ in which query Qi1 was made to the
oracle H1 before query Qi2 which means i1 < i2.

This gives us a partition of ϒ in exactly (qt )(qt − 1)/2
classes. Let I be the set consisting of most likely indices (i1, i2),
I = {(i1, i2)| Pr[ϒ ′

i1,i2
|ϒ] ≥ 1

2 (2/(qt )(qt − 1))}. Hence, for
each (i1, i2) ∈ I , ϒi1,i2 is denoted as ϒ ′

i1,i2
, we have Pr[ϒ ′

i1,i2
] =

Pr[ϒ ′
i1,i2

|ϒ] Pr[ϒ] ≥ ε1/(qt )(qt − 1).
With splitting the randomness ρ related to the oracle H1 as

(ρ ′, ck), where ρ ′ denotes answers of all queries to oracle H1

except for query Qi2 , whose answer is denoted as ck (c1−k is
assigned to the response of Qi1 ). We employ splitting lemma,
taking X = (ω, ρ ′), Y = ck , A = ϒ ′

i1,i2
, δ = ε1/(qt )(qt − 1)

and α = ε1/2(qt )(qt − 1). This lemma ensures the existence of
a subset of executions �i1,i2 such that Pr[�i1,i2 |ϒ ′

i1,i2
] ≥ α/δ =

1
2 and for each (ω, ρ) ∈ �i1,i2 , Prc′

k
[(ω, ρ ′, c′

k) ∈ ϒ ′
i1,i2

] ≥
δ − α = ε1/2(qt )(qt − 1).

Since ϒ ′
i1,i2

are disjoint, we have

Pr
(ω,ρ)

[∃(i1, i2) ∈ I s.t. (ω, ρ) ∈ �i1,i2 ∩ ϒ ′
i1,i2

|ϒ]

=
∑

(i1,i2)∈I

Pr[�i1,i2 ∩ ϒ ′
i1,i2

|ϒ]

=
∑

(i1,i2)∈I

Pr[�i1,i2 |ϒ ′
i1,i2

] Pr[ϒ ′
i1,i2

|ϒ]

≥
∑

(i1,i2)∈I Pr[ϒ ′
i1,i2

|ϒ]
2

≥ 1

4
.

Let (ĩ1, ĩ2) denote indices of a successful pair with probability
at least 1

4 , (ĩ1, ĩ2) ∈ I and (ω, ρ ′) ∈ �i1,i2 ∩ ϒ ′
i1,i2

. If B

replays the attack with fixed (ω, ρ ′) and a randomly chosen
c′
k ∈ {0, 1}l1 , it gets another successful pair ((ω, ρ ′), c′

k) such
that ck �= c′

k with probability ε1(1 − 2−l1)/2(qt )(qt − 1).
After two successful executions of CA(1−k)II+kIII , B

obtains ((ω, ρ ′), ck) and ((ω, ρ ′), c′
k), ck �= c′

k which
means that it obtains a useful pair ((Rp, Ro, sp, ck,

c1−k, xo, xp, m, w), (Rp, Ro, s
′
p, c′

k, c1−k, xo, xp, m, w)) in
time t ′ ≤ 2τ with probability ε′ ≥ ε2

1(1 − 2−l1)/8(qt )(qt − 1),
where ε1 ≥ ε−2−(l1−1). Note that since query Qĩ1

was made to
the oracle H1 before query Qĩ2

, we also have c1−k = c′
1−k .

Theorem 1. If the RSA function associated to Kgrsa is (t ′, ε′)-
one-way, then the proposed scheme is (t, qh, qH , qE, (1 −
k)qd, kqs, ε)-secure against the adversary A(1−k)II+kIII for a
constant k ∈ {0, 1} such that

ε′ ≥ ε2
1(1 − 2−l1)

8(kqs + (1 − k)qd + qH )(kqs + (1 − k)qd + qH − 1)
,

t ′ ≤ 2t + 2(1qE + 1qh + 2d(1 − k)qd + 2k(n + 1)qs)texp,

where ε1 ≥ (ε/4qE − 2−(l1−1) − (2(1 − k)q2
d + 2kq2

s + ((1 −
k)qd + kqs)qH )2−lN ), texp, l1 and lN are the time of one
exponentiation in Z

∗
N and two security parameters, respectively.

In addition, qH , qh, qE, qd and qs are the number of queries to
oracles H1,H, KeyExtract, DelegationGen and MProxyMSign,

respectively.

Proof. In the proof, we consider two cases for the forgery
depending on the type of adversaries. In the first case, without
loss of generality it is assumed that there is one honest original
signer (type II adversary plus d − 1 corrupted original signers),
while in the second one there is one honest proxy signer (type III
adversary plus n − 1 corrupted proxy signers). Then, we show
that the algorithm B can solve a random instance of the RSA
problem (N, e, y) such that γ = y1/e mod N .

Case 1. In this case, we consider adversaries of type II
(i.e. k = 0). According to Lemma 1, CAII returns a useful
output (Rp, Ro, sp, c0, c1, xo, xp, m, w) in time bound τ =
t + (1qE + 1qh + 2dqd)texp with probability at least ε =
ε/4qE − (2q2

d + qdqH )2−lN , where xo = ∏d
j=1 xoj

and
xp = ∏n

i=1 xpi
. Then, the algorithm B, the RSA solver,

will produce a useful pair of ((Rp, Ro, sp, c0, c1, xo, xp, m, w)

and (Rp, Ro, s
′
p, c′

0, c1, xo, xp, m, w)) in time t ′ ≤ 2τ with
probability ε′ ≥ ε2

1(1 − 2−l1)/8qt (qt − 1), where ε1 ≥ (ε −
2−(l1−1)) and qt = qd + qH (see Lemma 3). Since a useful pair
contains two useful outputs, we have

Rp = se
p(xe

p)−c1(Ro(x
e
oy)c0)−n

and
Rp = s ′e

p (xe
p)−c1(Ro(x

e
oy)c

′
0)−n.

By dividing the two aforementioned equations, we have(
sp

s ′
p

(xo)
n(c′

0−c0)

)e

= yn(c0−c′
0).

Since c0 �= c′
0 ∈ {0, 1}l1 , and e is a prime of length

strictly greater than l1 + logn
2, we have e > n(c0 − c′

0)

and therefore gcd(e, n(c0 − c′
0)) = 1. Using the extended

Euclidean algorithm, one can find a, b ∈ Z such that ae +
bn(c0 − c′

0) = 1. Hence, we have y = yae+bn(c0−c′
0) mod N =

(ya((sp/s ′
p)(xo)

n(c′
0−c0))b)e mod N . Therefore, B can output

ya((sp/s ′
p)(xo)

n(c′
0−c0))b mod N as the RSA inversion of y in

time t ′ ≤ 2t + 2(1qE + 1qh + 2dqd)texp with probability

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1036 M.R. Asaar et al.

ε′ ≥ ε2
1(1 − 2−l1)/8(qd + qH )(qd + qH − 1), where ε1 ≥

(ε/4qE − 2−(l1−1) − (2q2
d + qdqH )2−lN ). Note that, since AII

has secret keys of all proxy signers, there is no need to make
any query to the MProxyMSign oracle.

Case 2. In this case, we consider adversaries of type III
(i.e. k = 1). According to Lemma 1, CAIII returns a useful
output (Rp, Ro, sp, c0, c1, xo, xp, m, w) in time bound τ =
t + (1qE + 1qh + 2(n + 1)qs)texp with probability at least
ε = ε/4qE − (2q2

s + qsqH )2−lN , where xo = ∏d
j=1 xoj

and xp = ∏n
i=1 xpi

. Then, the algorithm B, the RSA solver,
produces a useful pair of ((Rp, Ro, sp, c0, c1, xo, xp, m, w)

and (Rp, Ro, s
′
p, c0, c

′
1, xo, xp, m, w)) in time t ′ ≤ 2τ with

probability ε′ ≥ ε2
1(1 − 2−l1)/8qt (qt − 1), where ε1 ≥ (ε −

2−(l1−1)) and qt = qs + qH (see Lemma 3).
Since a useful pair contains two useful outputs, we have

Rp = se
p(xe

py)−c1(Ro(x
e
o)

c0)−n

and
Rp = s ′e

p (xe
py)−c′

1(Ro(x
e
o)

c0)−n.

By dividing the two aforementioned equations, we have(
sp

s ′
p

(xp)(c
′
1−c1)

)e

= y(c1−c′
1).

Since c1 �= c′
1 ∈ {0, 1}l1 , and e is a prime of length

strictly greater than l1, we have e > (c1 − c′
1) and

therefore gcd(e, (c1 − c′
1)) = 1. Using the extended Euclidean

algorithm, one can find a, b ∈ Z such that ae + b(c1 −
c′

1) = 1. Hence, we have y = yae+b(c1−c′
1) mod N =

(ya((sp/s ′
p)(xp)(c

′
1−c1))b)e mod N . Therefore, algorithm B can

output ya((sp/s ′
p)(xp)(c

′
1−c1))b mod N as the RSA inversion

of y in time t ′ ≤ 2t + 2(1qE + 1qh + 2(n + 1)qs)texp

with probability ε′ ≥ ε2
1(1 − 2−l1)/8(qs + qH )(qs + qH − 1),

where ε1 ≥ (ε/4qE − 2−(l1−1) − (2q2
s + qsqH )2−lN ). Note that,

since AIII has secret keys of all original signers, there is no need
to make any query to the DelegationGen oracle.

5. SECURITY EXTENSION TO MULTIPLE HONEST
SIGNERS

In general, one may consider two scenarios in the security
analysis of our schemes for the single-signer setup: security
analysis with one honest signer and with multiple honest
signers. At first glance, it seems that the latter is a stronger
security model than the former, however, in what follows we
show that for our schemes both of them are equivalent.

In the security proof with having multiple honest signers,
assuming an adversary A(1−k)II+kIII, with success probability
at least ε and run-time t in returning a forgery containing
knmax + (1 − k)dmax honest signers (1 ≤ dmax ≤ d and
1 ≤ nmax ≤ n), we need to estimate the run-time and a lower
bound for the success probability of a simulator in returning a

useful output in terms of the run-time, the success probability of
the adversary and the number of oracles’queries. Then, using the
forking strategy, there exists an algorithm that can solve the RSA
problem with a non-negligible probability, which is a function
of the number of queries and the simulator’s success probability.

In what follows, we examine if having multiple honest signers
in the forgery has any effect on the number of oracle queries
and the simulator’s run-time.

In the single-signer setup, either one of the oracles
DelegationGen or MProxyMSign simulates the role of one
single honest signer, and the adversary plays the role of other
co-signers. In the second scenario, since other co-signers are
not necessarily assumed to be corrupted, the adversary has to
play the role of other honest signers without knowing their
secret keys. Since the adversary can engage in each of these
oracles with any honest identity that it chooses, the adversary
can interact concurrently by DelegationGen under each honest
original signer’s identity with the same original signers’ identity
set and the warrant to simulate the role of other co-original
signers, or it can interact concurrently by the MProxyMSign
under each honest proxy signer’s identity with the same proxy
signers’ identity set, the warrant and the same message to
simulate the role of other co-proxy signers.

We note that

(i) In both cases (k = 0 or k = 1), communication
of the adversary with oracles (DelegationGen or
MProxyMSign) is simulated in parallel (i.e. concurrent)
time. Since the required time of signature simulation is
the same as that in the first scenario, we have no extra
penalty in the timing of returning a useful output.

(ii) In both cases (k = 0 or k = 1), the result of making
any number of queries to either one of the oracles
DelegationGen or MProxyMSign on the same input
under the identities of honest signers in the input to
return a valid final output (a delegation or a proxy
signature) to the adversary will give rise to at most one
new entry in table T1[·], and consequently in the total
number of queries. Since the number of queries are the
same as those in the first scenario, we will have no extra
penalty in the success probability of returning a useful
output.

(iii) Note that, the effect of having knmax+(1−k)dmax honest
signers is only reflected in a useful output

(Rp, Ro, sp, ck, c1−k, xo, xp, w, m,

(1 − k)dmax + knmax),

and consequently a useful pair

((Rp, Ro, sp, ck, c1−k, xo, xp, m, w,

(1 − k)dmax + knmax),

(Rp, Ro, s
′
p, c′

k, c1−k, xo, xp, m, w,

(1 − k)dmax + knmax)),

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1037

and parameters of the RSA problem (e > l1 +
logn

2 +k lognmax
2 +(1 − k) logdmax

2 ).
It has essentially noting to do with the time and the

success probability of returning a useful pair, since the
simulator’s probability and the total number of queries
in the second scenario are the same as those in the first
scenario, and with the RSA solutions, and one may
verify them as follows.

A useful pair contains two useful outputs, we have

Rp = se
p(xe

pyknmax)−c1(Ro(x
e
oy

(1−k)dmax)c0)−n

and

Rp = s ′e
p (xe

pyknmax)−(kc′
1+(1−k)c1)

× (Ro(x
e
oy

(1−k)dmax)(1−k)c′
0+kc0)−n.

By dividing the two aforementioned equations, we
have(

sp

s ′
p

(xp)((kc′
1+(1−k)c1)−c1)(xo)

n((1−k)c′
0+kc0−c0)

)e

= yknmax(c1−(kc′
1+(1−k)c1))+(1−k)dmaxn(c0−(1−k)c′

0−kc0).

Since kc1 + (1 − k)c0 �= kc′
1 + (1 − k)c0 ∈ {0, 1}l1 ,

and e is a prime of length strictly greater than l1 +
2 logn

2 + logd
2 , nmax ≤ n and dmax ≤ d, we have e >

k2nmax(c1 − c′
1)+ (1 − k)2ndmax(c0 − c′

0) and therefore
gcd(e, k2nmax(c1 − c′

1) + (1 − k)2ndmax(c0 − c′
0)) = 1.

Using the extended Euclidean algorithm, one can find
a, b ∈ Z such that ae + bk2nmax(c1 − c′

1) + b(1 −
k)2ndmax(c0 − c′

0) = 1. Hence, we have

y = yae+bk2nmax(c1−c′
1)+b(1−k)2ndmax(c0−c′

0) mod N

=
⎛⎝ya

(
sp

s′
p

(xp)((kc′
1+(1−k)c1)−c1)(xo)

n((1−k)c′
0+kc0−c0)

)b
⎞⎠e

mod N.

As a consequence, the RSA solutions are
ya((sp/s ′

p)(xo)
n(c′

0−c0))b mod N and ya((sp/s ′
p)

(xp)(c
′
1−c1))b mod N for k = 0 and k = 1, respectively.

6. CONCLUDING REMARKS

In this section, first we discuss about the practicality of the
scheme, and then compare it with existing schemes to show its
efficiency.

Practicality. First, note that in our security proof, the
probability estimates are far from being sharp. Hence, we expect
higher security guarantees in real applications. However, to get
a feeling about our main theorem (Theorem 1), we analyze a
real setup in what follows.

Considering adversaries of type III who can corrupt two users
(i.e. qE = 2 and n = d = 3), the security result becomes
ε′ ≥ ε2(1 − 2−l1)/29(qs + qH )(qs + qH − 1). This result gives
the exact relation between the security of the scheme and
hardness of the RSA problem. This relation helps us choose the
length of the keys to implement the scheme securely w.r.t. the
best known algorithm which solves the RSA problem. The best
way to solve the RSA problem is by factoring and the expected
time to factor an lN -bit integer with Number Field Sieve, NFS,
is O(exp((64lN/9)

1
3 (ln lN )

2
3 )). Consider an attacker that runs

in time t � 246 and makes at most 246 random oracle and
MProxyMSign queries, and can violate unforgeability of the
scheme with probability at least 2−5. According to Theorem 1,
if such an adversary exists, the RSA problem can be solved in
time t ′/ε′ � 2 · 246 · 292 · 29/2−10 = 2158 which contradicts
the best known result for factoring if the length of the RSA
module is at least 212 = 4096 bits (the required time by NFS
is 2167). Therefore, to ensure that there is no adversary against
the scheme with t � 246, ε � 2−5, qH � 246 and qs � 246,
we should take the RSA module around 4096 bits which is a
recommended key length.

Comparison. The comparison for some identity-based
multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes is summarized in Table 1. The com-
parison is in terms of DeleGen-Cost, DeleVer-Cost, PSign-Cost
and PVer-Cost, dominating computational cost in delegation
generation per an original signer, delegation verification per
a verifier, proxy signature generation per a proxy signer and
proxy signature verification per a verifier, respectively. In
Table 1, P , ET , mGT

, mG, E and MPS, PMS and MPMS

TABLE 1. Comparison between our schemes and some existing schemes.

Scheme DeleGen-Cost DeleVer-Cost PSign-Cost PVer-Cost Signature size Hard problem Type of the scheme

Ours 2E 2E 2nE 4E 3Z
∗
N RSA MPS

[13, 29] 2mG 2P + 1mGT
n(4P + 1ET + 2mG) 4P 3G Pairing MPS

Ours 2dE 2E 2E 3E 3Z
∗
N RSA PMS

[32] 4mG + (d − 1) 3P + 1mGT
4mG 3P+ 3G Pairing PMS

(3P + 1mG) +dmG (d + 1)mG

Ours 2dE 2E 2nE 4E 3Z
∗
N RSA MPMS

[36] (1mGT
+ 2P) 3P + 1mGT

(n − 1)(5P + 1ET 5P + 3mGT
3G Pairing MPMS

(d − 1) + 2mG +3mGT
) + 2mG +1ET

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

1038 M.R. Asaar et al.

denote the pairing evaluation, exponentiation in group GT ,
multiplication in GT , scalar multiplication in G, exponentia-
tion in ZN , multi-proxy signature, proxy multi-signature and
multi-proxy multi-signature, respectively. Note that, in com-
parison, it is assumed that other operations take zero time, n

and d are the size of the proxy and original group, respectively,
and also computational cost of the clerk is considered for users
(original and proxy signers).

In Table 1, comparison of our schemes with some
corresponding constructions, the latest provable secure
schemes is given. As shown in Table 1, our identity-based
multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes are more efficient than identity-based
multi-proxy signature schemes [13, 28, 29], identity-based
proxy multi-signature schemes [28, 30–32] and identity-based
multi-proxy multi-signature schemes [28, 34–36], respectively,
since the previous ones rely on elliptic curve pairings which are
relatively expensive to implement (from [40], we know that the
cost of each pairing is roughly that of 6-20 exponentiations).

In addition, our schemes rely on well-understood assumption
(RSA assumption), while previous schemes are based on
recently derived computational assumptions.

Without incorporation bilinear pairings, two identity-based
(multi)-proxy multi-signature schemes [33, 37] were proposed,
while they are not secure in their security models as shown
before, and also they are not efficient in terms of signature size.

7. CONCLUSION

In this paper, we showed that previous identity-based
proxy multi-signature and multi-proxy multi-signature schemes
without bilinear pairings are indeed insecure in their security
models. Then, we presented the first provably secure
identity-based multi-proxy multi-signature schemes from RSA
assumption, without bilinear pairings, where identity-based
multi-proxy signature and proxy multi-signature schemes are
its special cases. To analyze security of our schemes, we proved
a new Forking Lemma since the general Forking Lemma cannot
be applied to them. These schemes are suitable for usage in
resource-constraint devices to improve energy consumption
which is a crucial factor for them.

ACKNOWLEDGEMENTS

The authors would like to appreciate anonymous referees, Prof.
Amir Daneshgar and Dr Reza Reyhanitabar for their valuable
comments on this work.

FUNDING

This research was supported in part by the Office of Vice-
President for Science and Technology, I.R. Iran. W. Susilo is
supported by the ARC Future Fellowship (FT0991397).

REFERENCES

[1] Mambo, M., Usuda, K. and Okamoto, E. (1996) Proxy signatures:
delegation of the power to sign messages. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 79, 1338–1354.

[2] Shao, Z. (2009) Provably secure proxy-protected signature
schemes based on RSA. Comput. Electr. Eng., 35, 497–505.

[3] Shao, Z. (2003) Proxy signature schemes based on factoring. Inf.
Process. Lett., 85, 137–143.

[4] Zhou, Y., Cao, Z. and Lu, R. (2005) Provably secure proxy-
protected signature schemes based on factoring. Appl. Math.
Comput., 164, 83–98.

[5] Park, J.H., Kang, B.G. and Han, J.W. (2005) Cryptanalysis of
Zhou et al.’s proxy-protected signature schemes. Appl. Math.
Comput., 169, 192–197.

[6] Liu, Y.-C., Wen, H.-A., Lin, C.-L. and Hwang, T. (2007)
Proxy-protected signature secure against the undelegated proxy
signature attack. Comput. Electr. Eng., 33, 177–185.

[7] Hu, X., Xu, H. and Si, T. (2010) Analysis and improvement of
proxy-protected signature secure against the undelegated proxy
signature attack. Comput. Inf. Syst., 6, 2997–3002.

[8] Gu, C. and Zhu, Y. (2005) Provable Security of ID-Based Proxy
Signature Schemes. Proc. 3rd Int. Conf. Networking and Mobile
Computing (ICCNMC 2005), Zhangjiajie, China, August 2–4,
pp. 1277–1286. Springer, Berlin.

[9] Zhang, J. and Zou, W. (2007) Another ID-based proxy signature
scheme and its extension. Wuhan Univ. J. Nat. Sci., 12, 33–36.

[10] Wu, W., Mu, Y., Susilo, W., Seberry, J. and Huang, X. (2007)
Identity-Based Proxy Signature from Pairings. Proc. 4th Int.
Conf. Autonomic and Trusted Computing, Hong Kong, China,
July 11–13, pp. 22–31. Springer, Berlin.

[11] Gu, C. and Zhu,Y. (2008) An Efficient ID-Based Proxy Signature
Scheme from Pairings. Proc. 3rd SKLOIS Conf. Information
Security and Cryptology (Inscrypt 2007), Xining, China, August
31–September 5, pp. 40–50. Springer, Berlin.

[12] Ji, H., Wang, Y., Han, W. and Zhao, L. (2009) An Identity-
Based Proxy Signature from Bilinear Pairings. WASE Int. Conf.
Information Engineering (ICIE 2009), Taiyuan, Shanxi, July 10–
11, pp. 14–17. IEEE Xplore, NY.

[13] Cao, F. and Cao, Z. (2009) A secure identity-based multi-proxy
signature scheme. Comput. Electr. Eng., 35, 86–95.

[14] Xu, J., Zhang, Z. and Feng, D. (2005) ID-Based Proxy
Signature Using Bilinear Pairings. Proc. Parallel and Distributed
Processing and Applications-ISPA 2005 Workshops, Nanjing,
China, November 2–5, pp. 359–367. Springer, Berlin.

[15] Shim, K. (2006)An Identity-Based Proxy Signature Scheme from
Pairings. Proc. 8th Int. Conf. Information and Communications
Security (ICICS 2006), Raleigh, NC, USA, December 4–7,
pp. 60–71. Springer, Berlin.

[16] Lu, R. and Cao, Z. (2005) Designated verifier proxy signature
scheme with message recovery. Appl. Math. Comput., 169, 1237–
1246.

[17] Yu, Y., Xu, C., Zhang, X. and Liao, Y. (2009) Designated verifier
proxy signature scheme without random oracles. Comput. Math.
Appl., 57, 1352–1364.

[18] Shim, K.-A. (2011) Short designated verifier proxy signatures.
Comput. Electr. Eng., 37, 180–186.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


�

�

�

�

�

�

�

�

An Identity-Based Multi-Proxy Multi-Signature Scheme and its Variants 1039

[19] Huang, X., Mu, Y., Susilo, W., Zhang, F. and Chen, X. (2005)
A Short Proxy Signature Scheme: Efficient Authentication in the
Ubiquitous World. Proc. Embedded and Ubiquitous Computing–
EUC 2005 Workshops, Nagasaki, Japan, December 6–9, pp. 480–
489. Springer, Berlin.

[20] Zhang, J., Liu, C. and Yang, Y. (2010) An efficient secure proxy
verifiably encrypted signature scheme. J. Netw. Comput. Appl.,
33, 29–34.

[21] Huang, X., Susilo, W., Mu,Y. and Wu, W. (2006) Proxy Signature
Without Random Oracles. Proc. 2nd Int. Conf. Mobile Ad-hoc and
Sensor Networks (MSN 2006), Hong Kong, China, December 13–
15, pp. 473–484. Springer, Berlin.

[22] Hwang, S. and Shi, C. (2000) A Simple Multi-Proxy Signature
Scheme for Electronic Commerce. Proc. 10th National Conf.
Information Security, Hualien, Taiwan, China, March 15–18,
pp. 57–67. Springer, Berlin.

[23] Li, X., Chen, K. and Li, S. (2005) Multi-Proxy Signature and
Proxy Multi-Signature Schemes from Bilinear Pairings. Proc. 5th
Int. Conf. Parallel and Distributed Computing: Applications and
Technologies (PDCAT 2005), Singapore, Singapore, December
8–10, pp. 61–62. Springer, Berlin.

[24] Wang, Q., Cao, Z. and Wang, S. (2005) Formalized Security
Model of Multi-Proxy Signature Schemes. Proc. 5th Int. Conf.
Computer and Information Technology (CIT 2005), Shanghai,
China, September 21–23, pp. 668–672. IEEE Xplore, NY.

[25] Hwang, S.-J. and Chen, C.-C. (2004) New multi-proxy multi-
signature schemes. Appl. Math. Comput., 147, 57–67.

[26] Guo, L. and Wang, G. (2007) Insider attacks on multi-proxy
multi-signature schemes. Comput. Electr. Eng., 33, 88–93.

[27] Chen, X., Zhang, F. and Kim, K. (2003) ID-Based Multi-
Proxy Signature and Blind Multisignature from Bilinear Pairings.
Proc. 6th Int. Conf. Korea Institute on Information Security
and Cryptology (KIISC 2003), Seoul, Korea, November 27–28,
pp. 11–19. Springer, Berlin.

[28] Li, X. and Chen, K. (2005) ID-based multi-proxy signature, proxy
multi-signature and multi-proxy multi-signature schemes from
bilinear pairings. Appl. Math. Comput., 169, 437–450.

[29] Xiong, H., Hu, J., Chen, Z. and Li, F. (2011) On the security of
an identity based multi-proxy signature scheme. Comput. Electr.
Eng., 37, 129–135.

[30] Wang, Q. and Cao, Z. (2007) Identity based proxy multi-
signature. J. Syst. Softw., 80, 1023–1029.

[31] Cao, F. and Cao, Z. (2009) A secure identity-based proxy multi-
signature scheme. Inf. Sci., 179, 292–302.

[32] Shao, Z. (2009) Improvement of identity-based proxy multi-
signature scheme. J. Syst. Softw., 82, 794–800.

[33] Tiwari, N. and Padhye, S. (2011) An ID-Based Proxy Multi
Signature Scheme Without Bilinear Pairings. Proc. 1st Int. Conf.

Security Aspects in Information Technology (InfoSecHiComNet
2011), Haldia, India, October 19–22, pp. 83–92. Springer,
Berlin.

[34] Guo, S., Cao, Z. and Lu, R. (2006) An Efficient ID-
Based Multi-Proxy Multi-Signature Scheme. Proc. 1st Int.
Multi-Symp. Computer and Computational Sciences (IMSCCS
2006), Hangzhou, China, June 20–24, pp. 81–88. IEEE
Xplore, NY.

[35] Sahu, R. and Padhye, S. (2010) An ID-Based Multi-Proxy
Multi-Signature Scheme. Proc. Int. Conf. Computer and
Communication Technology (ICCCT 2010), Allahabad, Uttar
Pradesh, September 17–19, pp. 60–63. IEEE Xplore, NY.

[36] Sahu, R.A. and Padhye, S. (2011) Efficient ID-based multi-proxy
multi-signature scheme based on CDHP. J. Appl. Math. Inf., 5,
275–282.

[37] Tiwari, N., Padhye, S. and He, D. (2013) Efficient ID-based
multiproxy multisignature without bilinear maps in ROM. Ann.
Telecommun. Ann. des Télécommun., 68, 231–237.

[38] Shamir, A. (1985) Identity-Based Cryptosystems and Signature
Schemes. Proc. 4th Annual Int. Cryptology Conf. Advances in
Cryptology-CRYPTO 1984, Santa Barbara, CA, USA, August
19–22, pp. 47–53. Springer, Berlin.

[39] Guillou, L. and Quisquater, J. (1990) A Paradoxical Identity-
Based Signature Scheme Resulting from Zero-Knowledge. Proc.
8th Annual Int. Cryptology Conf. Advances in Cryptology-
CRYPTO 1988, Santa Barbara, CA, USA,August 21–25, pp. 216–
231. Springer, Berlin.

[40] Bellare, M. and Neven, G. (2006) Identity-Based Multi-
Signatures from RSA. Proc. 7th Cryptographers’ Track at the
RSA Conf. Topics in Cryptology (Topics in Cryptology–CT-RSA
2007), San Francisco, CA, USA, February 5–9, pp. 145–162.
Springer, Berlin.

[41] Bellare, M. and Rogaway, P. (1993) Random Oracles are
Practical: A Paradigm for Designing Efficient Protocols. Proc.
1st ACM Conf. Computer and Communications Security (CCS
1993), Fairfax, VA, USA, November 2012, pp. 62–73. ACM,
New York, NY.

[42] Bellare, M. and Neven, G. (2006) Multi-Signatures in the Plain
Public-Key Model and a General Forking Lemma. Proc. 13th
ACM Conf. Computer and Communications Security (CCS 2006),
Alexandria, VA, USA, October 30– November 3, pp. 390–399.
ACM, New York, NY.

[43] Coron, J. (2000) On the Exact Security of Full Domain Hash.
Proc. 20th Annual Int. Cryptology Conf. Advances in Cryptology-
CRYPTO 2000, Santa Barbara, CA, USA,August 20–24, pp. 229–
235. Springer, Berlin.

[44] Pointcheval, D. and Stern, J. (2000) Security arguments for digital
signatures and blind signatures. J. Cryptol., 13, 361–396.

Section D: Security in Computer Systems and Networks

The Computer Journal, Vol. 58 No. 4, 2015

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Background
	2.1 The RSA assumption
	2.2 Outline of identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes
	2.3 Security models of identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes

	3 Identity-Based (multi)-Proxy Multi-Signature Schemes without Bilinear Pairings
	3.1 Overview of Tiwari et al.'s identity-based multi-proxy multi-signature scheme
	3.2 Security analysis of Tiwari et al.'s identity-based multi-proxy multi-signature scheme
	3.3 Overview of Tiwari and Padhye's identity-based proxy multi-signature scheme
	3.4 Security analysis of Tiwari and Padhye's identity-based proxy multi-signature scheme

	4 Our Identity-Based Multi-Proxy Signature, Proxy Multi-Signature and Multi-Proxy Multi-Signature Schemes
	4.1 Details of identity-based multi-proxy multi-signature scheme
	4.2 Analysis of the proposed schemes

	5 Security Extension to Multiple Honest Signers
	6 Concluding remarks
	7 Conclusion

