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Abstract:-We present a simple microscopic model for the clonal expansion of the immune system. We consider the virgin T
lymphocytes moving in a network (the lymphatic system) through which they may reach some preferred areas (lymphoidal
tissues or organs). The relevant process we describe is the recognition of an antigen and the transition of a virgin T lymphocyte
into a memory or effector T cell, belonging to the clonal species related to the antigen. The growth of the clone is counter-
balanced by other mechanisms such as apoptosis and attrition so that a quasi equilibrium state (homeostasis) is reached. We
propose a microscopic version of a previously developed phenomenological model based on populations of lymphocytes and
antigens. The antigens and the memory T cells lymphocytes belong to repertoires whose interaction strength is known as cross-
reactivity. The lymphocytes are modeled as a gas of automatamoving randomly in a network. The results of the simulations
are compared with the mean field computation based on population dynamics.
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1 Introduction

We propose a preliminary version of a microscopic model
for the clonal expansion of T lymphocytes in the immune
system (IS). The goal is to introduce the basic ideas un-
derlying the behaviour of the clonotipic IS such as pattern
recognition, degeneracy and cross reactivity, learning and
memory [1] jointly with a description of the environment
from the topological and dynamical viewpoint, taking into
account its random fluctuations.
To this end we introduce two populations of Von Neumann
automata [2] moving and interacting in a network, that we
may identify with the lymphatic system with the addition of
some organs like the thymus, spleen etc. The automata cor-
respond to the antigens and the T lymphocytes, which are
split into subgroups belonging to a repertoire. At the begin-
ning the T lymphocytes are identical and called virgin; the
change occurs when they meet an antigen (their receptors
interact with a peptidic chain belonging to an antigen, ex-
posed by a APC cell) and after this imprinting they become
memory cells and form a clone. This is a sort of learning
process since the memory cell is capable, at later times, of
recognizing antigens with the same or a very similar molec-
ular structure and to activate defense strategies.
Agent based models have been developed in information
science to describe complex systems of biological (ant
nests, swarms) or artificial (airports) origin. Our agent-like
elementary unit is a Von Neumann automaton (VNA), en-
dowed with sensors, actuators, a central processing unit,
a software with evolutionary properties and possibly self
replicating capabilities. The implementation of a VNA is
a nontrivial task, but presently we are interested only in a
few properties which allow to mimic the interaction of vir-
gin T lymphocytes with antigens and the transition to the
memory state.
We simplify the problem assuming a 2D geometry and
choosing a square lattice with periodic boundary condi-
tions. No specific organ, except for the thymus, which pro-

duces the virgin T lymphocytes, is inserted, but we may
consider a superimposed super-lattice whose nodes play the
role of lymph nodes. The rules of the game are simple and
we describe first the case of a single species of antigensA
and the corresponding memory cloneM which grows due
to the imprinting of virgin T lymphocytesV . The antigens
enter the system at a well defined location and propagate
by a random walk throughout the system which is topolog-
ically aT

2 torus. As a consequence, in the absence of inter-
actions, they diffuse, reaching a uniform distribution after
the input (acute antigenic stimulus) is over. If we take into
account their self reproducing capability, then the uniform
density will grow exponentially to reach a given asymp-
totic limit. For instance we may assume that each node of
the elementary lattice can host one antigen and one lym-
phocyte at most at any time: this rule limits the moves in
our lattice. If the antigen is represented by a VNA then the
move at each step will not be decided simply by assigning
a probability to reach the nearest unoccupied lattice points,
but on the basis of the inspection of the half plane whose
normal is given by the last move. The second population
we introduce are the virgin T lymphocytes, which are pro-
duced continuously at a specific site where the thymus is
located and move randomly on the network being eventu-
ally attracted by the lymph nodes. The interaction between
an antigen and a virgin T lymphocyte is based on a pattern
recognition process effected by the T cell receptors which
are sterically complementary to the molecular structures of
the antigen, separated by the proteasoma and exhibited by
the APC (antigen presenting cells). We drastically simplify
this process assuming that when the antigenA and the vir-
gin T lymphocyteV have a contact there is an imprinting
which changes the T lymphocyte into a memory cellM .
The number of different antigens and of the corresponding
memory clones is very high, moreover the correspondence
is not 1 to 1. A memory T cell specific for a given anti-
gen is capable of recognizing other antigens with a lower
efficiency (cross reactivity). As a consequence if we order



the antigens on a string so that the distance is related to the
structural difference, the affinity between a memory cell
i and an antigenj will decrease with the distance|i − j|N
[1,9] (whereN is the length of the string defining the reper-
toire and the distance is taken moduloN ). An important
issue for the T-A dynamics is homeostasis: this term refers
to the quasi equilibrium states through which the system
constantly moves. Indeed a living system though work-
ing permanently out of the thermodynamical equilibrium,
which is unavoidable to develop ordered structures, tends
nevertheless to avoid strong deviations. When some per-
turbation occurs like a massive input of antigens, the sys-
tem actively reacts but, after a transient during which some
rearrangements occur, it tends to reach a new equilibrium,
either monotonically or performing oscillations of decreas-
ing amplitude. In a phenomenological model previously
developed we have considered the response of the IS to a
single species of antigens occurring in two distinct ways:
the acute antigenic load, acting with high intensity for a
short period of time, and the chronic antigenic stress acting
with low average intensity and rapid fluctuations on long
time intervals. The chronic antigenic stress, provided by
the environment (viruses, bacteria, alien molecules) and by
the self (mutated cells), plays an important role of perma-
nent stimulus. We have considered two models: the first
one describing the virgin into memory conversion in pres-
ence of antigenic noise, which showed a decrease of theV
cell compartment with a time increasing spread [3,4,5,6].
A second model was proposed to describe the expansion
of a memory clone in presence of acute and chronic anti-
genic stimuli [7]. The antigens stimulate not only theV
to M conversion and consequent clone expansion, but also
the clone contraction by apoptosis of theM cells, a phe-
nomenon recently discovered and known as heterologous
immunity. Since the clone size appears to be quantized
the model was based on a system of two first order equa-
tions for the logarithm of the clone sizex = log c and its
time derivativev = dx/dt. The model included a periodic
landscape potential, a counteracting action to variation of
the clone size (attrition), and both acute and chronic anti-
genic load. This model, whose mechanical analogue is a
damped pendulum subject to a strong impulsive force and
to a weak fluctuating one, successfully describes the recov-
ery of the homeostatic equilibrium after an acute antigenic
load, with damped oscillations as observed in experiments
with mice [8]. This type of recovery has not an obvious
microscopic counterpart, unlikely the usual exponential re-
covery we shall consider here, and to which the standard
mathematical models refer.

2 The microscopic prey-predator model

In order to build a microscopic model for the evolution of
a cytotoxic memory T cell clone under an antigenic stimu-
lus, we consider the following simple prey-predator model.
In this system we introduce an “environment” with a con-
stant number of omnivore predators. These predators have

a defined lifetime, but we for simplicity assume that when
a predator dies, a new one enters the system. At the start-
ing time a given number of preys enters the environment.
When a predator meets a prey, the prey is eaten, and the
predator retains the memory of this event through the rest of
its life and becomes more efficient in predation. We denote
with A the preys,V the unexperienced predators andM the
experienced predators whose overall number we assume to
remain constant. In this model we don’t have any kind of
reproduction mechanism, and there’s no way to pass infor-
mation to the “new generations” of predators: the memory
is lost when the predator dies.
The purpose of this simple model is to understand how the
proliferation of memory T cells can arise from the mech-
anism of casual meetings with antigens. For this reason
we refer to the predators as “T cells” and to the preys as
“antigens”; the unexperienced predators are the virgin T
cells, the experienced predators are the antigen experienced
(memory plus effector) T cells. At the present stage we
don’t claim to provide an accurate description of the im-
mune system. At every time stepti each object moves one
step on the lattice in a random direction, obeying an ex-
clusion principle: at every lattice site we cannot have more
than one element of the populationA, and no more than
one element of the populationsV or M . Every object has
a mean lifetimeτ , which means that at each time step it
has a probabilityp = 1

τ
to be removed from our lattice (to

“die”). We impose a conservation rule

V (t) + M(t) = T (1)

When a preyA and an unexperienced or experienced preda-
torV orM meet at given timeti on a lattice site, the preyA
is removed. If the predator is unexperiencedV , it changes
its state and becomes experiencedM . Since this is a prey-
predator system, the mean field equations for the popula-
tions are given by Lotka-Volterra type of equations pro-
vided that these populations are sufficiently large and the
space-time steps sufficiently small. The mean field equa-
tions read

Ȧ = c1 A − c2 A(V + q M) Ṁ = −c3M + c4AV

V + M = T (2)

whereq ≥ 1 takes into account the increased ability in pre-
dation due to the first experience.
In order to simplify the analytic solution we chooseq = 1
so thatV +q M is replaced by the constant valueT and we
obtain a skew system which is immediately integrated

A(t) = A0e
−αt α = c2T − c1 > 0 (3)

with A0 = A(0). SubstitutingV = T −M into the second
equation we obtain
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Figure 1 Comparison of the microscopic prey-predator
model (rhombi and circles) with the mean field theory (con-
tinuous line). The rhombi correspond to the population of
preys obtained from the original microscopic model, the
circles to the same population obtained after a random re-
distribution of predators at every time step. The initial val-
ues areA0 = 500, M0 = 200, pA = pM = 10−4, N =
160 × 120

Ṁ = −c3M + c4A0e
−αt(T − M) )4)

whose solution reads

M(t) = M0 + exp

(
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c4A0
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)

×

×
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0

dt′ c4A0Te−αt′ exp

(

c3t
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c4A0

k
e−αt′

)

whereM0 = M(0).
In the first realization of our microscopic model we don’t
consider any reproduction mechanism. Coefficientc1 is
negative and together withc3 describes the removal proba-
bilities pA andpM of preys and predators (a negative value
of c1 doesn’t change the nature of the system, since we
needc2T − c1 > 0). As expected, studying the evolu-
tion of a population of antigens in absence of T cells, we
see that the result of the microscopic model is in excellent
agreement with the mean field solution (3). The chosen
parameters areT = 0 and c1 = −pA . The statistical
fluctuations are small since the initial population is large
A(0) = 1.92 × 104 and the removal probability is very
smallPA = 10−3 so that the solution of the discrete time
mapA(i+1) = A(i)−pAA(i) is very close to the solution
(3) of the differential equation.
Assuming random and uniform distribution of the popu-
lations of preys and predators, the number of events in
which a prey meets a predator isAT

N
(whereN is the to-

tal number of sites), and the number of events in which
an antigen meets an unexperienced predator isAV

N
so that

c2 = c4 = 1

N
. Using these values the microscopic model

produces results in agreement with the mean field theory
only for short times (we have a perfect agreement with the
discrete time map on the first time step).
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Figure 2 Comparison of the results of the microscopic
model for the populationM (circles, rhombi and crosses)
with the mean field theory (continuous line), wherec2 =
0.4
N

is taken from the best-fit.

For greater times we see that the evolution of the model is
slower than expected, which means that the events in which
preys and predators interact are fewer than expected (see
figure 1). This follows from the hypothesis that the popula-
tions of preys and predators are uniformly distributed over
the lattice. Even though the initial distribution is uniform,
after few time steps the predators, eating nearby preys, tend
to be surrounded by a region poor of preys. The chance
to interact is therefore reduced. (As we’ll see later, this
behaviour is dominant in this model as we assumed that
predators, regardless of their state, are “perfect killers”:
they remove with probability 1 a prey at every encounter.)
To test this interpretation we have modified the microscopic
model by randomly redistributing the predators at every
time step: with this change the results of the simulation
are in a excellent agreement with the solutions of the mean
field equations, see figure 1.

In the original model we have computed an effective inter-
action coefficientc2 eff which takes into account the lo-
cal rarefaction of preys after predation, by a bestfitA(0) −
c2 eff t to the linear decay oflog A(t). Replacingc2 andc4

in equation (2) withc2 eff a good agreement of the micro-
scopic model with the mean field equations is recovered for
the population of experienced predators, see figure 2.

3 The Immune system microscopic model

In the present version of the microscopic model we con-
sider three populations: the antigensA, the virgin and
memoryT lymphocytesV, M . Every cell (V, M, A)
moves randomly on a lattice withN sites with limit of oc-
cupancy of one antigen plus one lymphocyte per site. Mi-
croscopically we give a probability of conversion ofV into
M when the encounter with an antigen occurs on a lattice
site. In a previous work [3,5] the virginT cells decrease
mainly due conversion, the proliferation and apoptosis be-
ing comparable; the antigen experiencedT cells increase



by the same amount so that the total numberV + M re-
mains constant. The equations read

V̇ = −α V − β M Ṁ = α V + β M (5)

where the first term describes the conversion fromV to M
due to primary antigenic stimulus, the second term takes
into account the contribution due to antigenic restimula-
tion. The second coefficient, being much smaller than the
first one, will be neglected here. Moreover the decrease
of the population of antigens is due to the interaction with
the antigen experienced populationM . The coefficients
α, β depend on the antigen load and in the previous model,
which referred to a long time period, an average value was
considered. Referring to a shorter time period following an
acute stimulus the dependence ofα on the antigenic load
cannot be neglected. The mean field equations that we pro-
pose read

Ȧ = c1A − c2AM V̇ = −α(A)V V + M = T
(6)

We choose
α = c4 A − c3 (7)

so that it is positive as soon as the antigens are above a
thresholdAc = c3/c4. In the absence of antigens it is rea-
sonable that−α = c3 > 0. Sincec3 is a small term this
means that the virgin cells slowly expand because the pro-
duction (by thymus) overcomes the apoptosis, whereas the
antigen experienced cells decrease at the same rate. The
coefficientc3 being small on the considered time interval
T ≪ 1/c3 the growth is approximately linear. Inserting
into equations (6) we obtain

Ȧ = c1A − c2A (T − V ) V̇ = c3 V − c4AV (8)

The previous equations can be recast in the canonical
Lotka-Volterra form

Ȧ = −c′1A + c2AV V̇ = c3 V − c4AV (9)

wherec′1 = c2 T −c1 is assumed to be positive. In this case
we observe that there is an equilibrium state

Ac =
c3

c4

Vc =
c′1
c2

(10)

Linearizing the equations around the equilibrium we verify
that there is a center so that the equilibrium is stable.

dV

dt
= −

c4c
′

1

c2

(A − Ac)
dA

dt
=

c2c3

c4

(V − Vc)

(11)
Both V, A oscillate periodically around the equilibrium
with a periodτc = 2π/ω with ω2 = c′1c3. The mean field
equations describing the response of the immune system to
an acute antigenic stimulus according to this model can be
summarized as
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Figure 3 Comparison of the results of the microscopic
model for the immune system (V stars,M circles andA
rhombi) with the mean field theory (dotted line forA, dash
line for M , and continuous line forV ). The initial val-
ues and parameters of the model areV0 = 3000, M0 =
0, A0 = 0, F (t) = 50 for t < 100, c3 = 10−3, c1 =
10−2, p2 = p4 = 0.1,

V̇ = c3V − c4V A Ṁ = −c3V + c4V A

Ȧ = c1A − c2AM + f(t) (12)

where we choosef(t) = A∗/ǫ for 0 ≤ t ≤ ǫ andf(t) = 0
for t > ǫ.
In the microscopic model we have described the prolifer-
ation mechanism in the following nonlocal way: at each
time step the virgin lymphocytes and antigens have a given
probability to duplicate (c3 andc1): the new object is cre-
ated in a random position of the lattice. While in the pre-
vious prey-predator model predators become experienced
and preys are eliminated every time they meet a predator
at the same lattice site, we now introduce a given proba-
bility for these events to happen (we will call these prob-
abilities p4 and p2 referring to their obvious connection
with coefficientsc4 and c2). The results of this micro-
scopic model have been compared with the numerical solu-
tion of the mean field equations (11) (we used coefficients
c4 = p4

N
, c2 = p2

N
) see figure 3. For an overall population

of T lymphocytesT = 3000 the equilibrium values are
Ac = 100, Vc = 2000 and the period of small oscillation
around the equilibrium isτc ∼ 1250. As a consequence
they cannot be appreciated because of the discrete nature
of the simulation which leads to extinction of the antigens
sinceAc is very close to zero.
The good agreement with the mean field theory indicates
that for the values of the parameters and the time scale used
in these simulations the assumption of random distribution
of the populations is a good one. This is due to the pres-
ence of the “antigen elimination probability”p2. The lower
is the value of this probability, the better is the hypothesis
of random distribution of populations. (This approximation
is also a good one when we have an high value ofc1 and
c3, since in this model the reproduction mechanism, not
present in the prey-predator model, mixes the populations).
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Figure 4 Comparison of the results of immune system
microscopic model (dots) with the mean field theory (con-
tinuous line) for the populationA. The parameters of the
model arec1 = c3 = 10−2, p2 = p4 = 0.1, and the initial
values are close to the equilibriumAc = Vc = 4 × 103 so
that periodic oscillations of the populations are observed.

Furthermore, the distribution of antigens has to be consid-
ered absolutely random at least while the sourcef(t) is
switched on, since in our microscopic model this term cre-
ates antigens in random positions. We have considered a
different set of parameters (c1 = 0.01, p2 = 0.1, c3 =
0.01, p4 = 0.1, T = 8000) so thatAc = Vc = 4000 on a
lattice of size200×200. In this case the period isτc ∼ 630
but the amplitude of the oscillations is large as shown by
figure 4. The agreement of the simulation with mean field
theory is good concerning the period of the oscillations,
whereas the amplitude varies in rather regular way and de-
creases by increasing the number of lattice points while
keeping the average population density constant. As a con-
sequence we claim that this behaviour is due to the discrete
and probabilistic nature of the simulation.

4 Conclusions

We have presented a preliminary version of a microscopic
model of the clonotipic immune system to describe the in-
teraction of the virgin T lymphocytes with the antigens and
their conversion into memory and effector T cells. The
model refers to a rather short time scale, a few times the
period of an acute stimulus, to describe the evolution of
these populations on the basis of local interaction rules.
This model inherits some features of two mesoscopic mod-
els [3,5] previously developed to describe the memory con-
version and the clonal expansion, but neglects the chronic
antigenic stress relevant on long time scales. The motion
on the network is random with a local rule: when a T lym-
phocyte and antigen A meet, the antigen is removed with a
given probaility and, if T is virgin lymphocyte , it is con-
verted into a memory lymphocyte M. The mean field the-
ory leads to Lotka-Volterra like equations, where the coef-
ficients are specified by the local probabilities. A renor-
malization is needed when the local density fluctuations
become important, unless a random redistribution is im-

posed. The comparison between the microscopic model
and the mean field theory is excellent within the statisti-
cal errors. The decrease of the antigens after the impulse
and the increase of the memory clone is exponential as ex-
pected, however oscillations around an equilibrium of cen-
ter type are possible. Damped oscillations of the clonal
size, which are suggested by some experiments [8], require
additional damping mechanisms such as attrition [7], which
might be included. The model will be developed along two
distinct lines. First a repertoire will be introduced with a
cross reactivity matrix for the A-M interactions; the topol-
ogy of the network will be modified to resemble the lym-
phatic system and a subnetwork of main nodes (lymphatic
nodes and organs), where most of the interactions take
place, will be included. The experience gained with the
simulator of mobility MOBILIS [10] will be exploited, by
establishing correspondences between the lymphatic and
urban networks, lymph nodes and chronotopoi, social and
immunonological repertoires. The second objective is to
replace the random walkers having simple interaction and
proliferation-extinction rules with true Von-Neumann au-
tomata endowed with sensors and cognitive capabilities:
the latter allow environment oriented displacements, pat-
tern recognition and to simulate the memory mechanisms
on which the clonotipic immune response is based. The au-
tomata describing the lymphocytes and the antigens will be
first developed and tested on regular lattices to compare the
average properties with some mean field approximations.
On the other side the simple random walkers described in
the present note will be moved on a complex network (self
similar or scale free) in order to compare the results of the
simulation with the mesoscopic equations which allow to
describe anomalous diffusion phenomena. The last step,
further in the future, will be to move the automata on a
complex network. The difficulty of the last step is not only
to develop a simulator but also to find the theoretical tools
to interpret the virtual experiments. A population of Von
Neumann automata moving on a complex network is a pro-
totype of complex system, suitable to describe the immune
system or the urban mobility, but its theoretical understand-
ing is still in its early infancy.
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