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Abstract—We consider the problem of correlated data gather-
ing in sensor networks with multiple sink nodes. The problem
has two objectives. First, we would like to find a rate allocation
on the correlated sensor nodes such that the data gathered by
the sink nodes can reproduce the field of observation. Second,
we would like to find a transmission structure on the network
graph such that the total transmission energy consumed by the
network is minimized. The existing solutions to this problem are
impractical for deployment because they have not considered all
of the following factors: 1) distributed implementation; 2) capacity
and interference associated with the shared medium; and
3) realistic data correlation model. In this paper, we propose a new
distributed framework to achieve minimum energy data gathering
while considering these three factors. Based on a localized version
of Slepian–Wolf coding, the problem is modeled as an optimization
formulation with a distributed solution. The formulation is first
relaxed with Lagrangian dualization and then solved with the sub-
gradient algorithm. The algorithm is amenable to fully distributed
implementations, which corresponds to the decentralized nature of
sensor networks. To evaluate its effectiveness, we have conducted
extensive simulations under a variety of network environments.
The results indicate that the algorithm supports asynchronous
network settings, sink mobility, and duty schedules.

Index Terms—Correlated data gathering, data aggregation, dis-
tributed algorithm, mathematical optimization, wireless sensor
networks.

I. INTRODUCTION

R ECENT technological advances have enabled the produc-
tion of low-cost sensor nodes. These sensor nodes are

small in size and equipped with limited sensing, processing, and
transmission capabilities. They can be deployed in large num-
bers to construct a sensor network with the ability of distributed
wireless sensing. The collaborative effort of these sensor nodes
can achieve significant improvement over traditional sensors
due to their improved accuracy and ease of deployment. In
practice, the sensor nodes are densely deployed in an ad hoc
fashion over the area of interest. After their deployment, the
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sensor nodes collect data from their surroundings, encode the
data, and transmit them to the sink nodes via wireless channels.
In addition to collecting data, the intermediate sensor nodes
can be used as relays for other sensors distant from the sink
nodes. Sink nodes are specialized nodes that are responsible
for gathering collected data and serve as gateways between the
sensor network and the wired or wireless backbone network.

Many applications for sensor networks such as target track-
ing [1] and habitat monitoring [2] involve monitoring a remote
or hostile field. The sensor nodes are assumed to be inaccessible
after deployment for such applications, and thus, their batteries
are irreplaceable. Moreover, due to the small size of sensor
nodes, they carry limited battery power. Thus, energy is a scarce
resource that must be conserved to the extent possible in sensor
networks.

A. Problem Description and Design Goals

In this context, the first objective of the correlated data-
gathering problem is to find a rate allocation on the sensor
nodes such that the aggregated data collected by the sink nodes
can be decoded to reproduce the field of observation. The rate
allocation assigns each sensor node an encoding rate, which is
equivalent to its data transmission rate. If the data collected
by the sensor nodes are statistically independent, then the
rate allocation can be trivially determined—each sensor node
can transmit at its data collection rate. However, the sensor
nodes are densely deployed in sensor networks. Nearby sensor
nodes have overlapping sensing ranges, and their collected
data are either redundant or correlated. This data correlation
can be exploited to reduce the amount of data transmitted
in the network, which results in energy savings. To achieve
minimum energy data gathering, the optimal rate allocation
should minimize the encoding rates while ensuring the rates are
sufficient to represent all the independent data generated by the
sensor nodes.

The second objective of the correlated data-gathering prob-
lem is to find a transmission structure on the network graph such
that the total energy consumed in transporting the collected
data from the sensor nodes to the sink nodes is minimized. If
the network has unconstrained bandwidth capacity, then this
objective can be simply achieved—each sensor node can trans-
mit its collected data via the minimum energy path. However,
in any practical network, there are capacity limitations on the
transmission medium and interference among the competing
signals. In wireline networks, there is a time-dependent con-
tention, where two signals compete with each other if they
both arrived at the receiver at the same time. The effect of
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interference in wireline networks is well studied, but they
are not applicable in the context of sensor networks. As a
variation of wireless ad hoc networks, sensor networks have
the unique characteristic of location-dependent contention in
addition to time-dependent contention. Signals will compete
with each other if multiple sensor nodes in the nearby vicinity
simultaneously access the wireless shared medium. To derive
feasible solutions, the capacity and interference associated with
the shared medium must be considered when constructing the
optimal transmission structure.

It is shown in [3] that if the bandwidth capacity of the
network is unconstrained, the two problem objectives can be
independently achieved in two steps. First, according to the cor-
relation model, the optimal rate allocation can be determined.
Then the optimal transmission structure can be constructed by
combining the minimum energy paths of the sensor nodes.
However, when capacity constraints exist, the problem becomes
complicated because the two objectives are dependent. Given a
transmission structure, if the rate allocation is modified, then
some of the links selected by the transmission structure may
become congested due to the increased traffic flows. To alleviate
this congestion, the transmission structure has to be adjusted.
On the other hand, there are different coding schemes that
exploit data correlation in the literature. They can be generally
divided into two categories, i.e., distributed source coding and
joint entropy coding with explicit communication. In practice,
the coding schemes from both categories determine the rate al-
location based on a given transmission structure. Consequently,
the decision on the rate allocation affects the decision on the
transmission structure, and vice versa. One of the highlights
of this paper is to take this dependence into account and
design an algorithm that jointly optimizes the rate allocation
and the transmission structure while satisfying the capacity
constraints.

In addition to the problem objectives, we have included
several design goals when constructing the framework. The
ultimate purpose of this paper is to create a solution to the cor-
related data-gathering problem that is practical for deployment.
More importantly, the framework should be compatible, which
allows other energy-saving mechanisms to be built on top of
the framework to further extend the lifetime of data-gathering
sensor networks.

• Multisink support: To facilitate efficient data gathering, it
is envisioned that future sensor networks will consist of
multiple sink nodes. By providing multisink support, the
framework becomes feasible for deployment in large-scale
sensor networks.

• Distributed solutions: With centralized solutions, the par-
ticipating nodes need to repeatedly transmit detailed status
information across the network to a central computation
node. Although centralized approaches can generate re-
sults closer to the global optimum, they are generally not
feasible in energy-constrained sensor networks.

• Asynchronous network settings: Due to the ad hoc in-
frastructure of sensor networks, it is expensive in terms of
communication overhead to synchronize the nodes. If the
framework is applicable in asynchronous network settings,

it can avoid the scaling limitation posed by synchronous
solutions.

• Sink mobility: Because of its multihop nature, the appear-
ance of energy holes in static sensor networks seems un-
avoidable. Sensor nodes positioned around the sink nodes
deplete their energy faster because they are frequently
acting as relays. A natural way to counter energy holes is
to introduce sink mobility, where sink nodes move within
the network as they gather data from the sensor nodes.

• Duty schedules: To achieve maximum network lifetime,
load balancing among the sensor nodes must be enforced.
This can be accomplished with the introduction of duty
schedules, where sensor nodes switch their operating sta-
tus (on/off) to control and match their energy consump-
tion rates. However, duty schedules give rise to network
dynamics, since the sensor nodes may join and leave the
network at run time.

B. Main Contributions

Data gathering with correlated sources in sensor networks
and resource allocation with capacity constraints in wireless
links were separately studied in the past literature. The main
contribution of this paper is to propose a solution to the data-
gathering problem that simultaneously considers both topics.
The proposed solution copes with the dependence that exists
between the two problem objectives as it jointly optimizes
the rate allocation and the transmission structure. Furthermore,
the optimization formulation is specifically designed to have a
distributed solution.

Since the aim of the problem is to minimize energy consump-
tion, it is a natural decision to employ optimization techniques.
We model the problem as an exponential-constraint linear op-
timization formulation. According to the protocol model [4]
of packet transmission in wireless networks, the formulation
considers the capacity limitation of the network and the effect
of location-dependent contention. As a result, our solution is
guaranteed to be supported by the wireless shared medium.
Since the exponential-constraint linear formulations are gener-
ally difficult to solve, we relax the formulation to become linear
by adapting a localized version of Slepian–Wolf coding. Based
on Lagrangian dualization, we utilize a price-based resource
allocation strategy and solve the formulation with the subgradi-
ent algorithm. The price signals are communicated among the
sensor nodes to reflect the congestion status of the network.
The subgradient algorithm is amenable to distributed imple-
mentations, which makes it feasible for practical deployment.
Moreover, we conduct extensive simulations to validate that our
solution supports asynchronous network settings, sink mobility,
and duty schedules. To the best of our knowledge, no previous
works have addressed the correlated data-gathering problem
considering all of the factors above.

C. Paper Organization

The remainder of this paper is organized as follows: In
Section II, we present the exponential-constraint linear opti-
mization formulation for the correlated data-gathering problem.
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In Section III, we describe the localized Slepian–Wolf coding
scheme and present the linear formulation. In Section IV, we
construct an efficient distributed algorithm to solve the formula-
tion with Lagrangian dualization and the subgradient algorithm.
In Section V, we discuss implementation issues related to the
algorithm. Numerical results from simulations are presented in
Section VI. Finally, we discuss related work in Section VII and
conclude this paper in Section VIII.

II. PROBLEM FORMULATION

A. Network Model and Assumptions

The wireless sensor network is modeled as a directed graph
G = (V,E), where V is the set of nodes, and E is the set of
directed wireless links. SN denotes the set of sensor nodes, and
SK denotes the set of sink nodes. Then, V = SN ∪ SK . The
rate allocation assigns each sensor node i ∈ SN with Ri, which
refers to a nonnegative data transmission rate. All the sensor
nodes have a fixed transmission range rtx. Let dij denote the
distance between node i and node j. A directed link (i, j) ∈ E
exists if dij ≤ rtx. Each link is associated with a weight eij =
d2

ij , which refers to the energy consumed per unit flow on link
(i, j). All the links are assumed to be symmetrical, where eij =
eji. Moreover, fij represents the flow rate of link (i, j). Here,
the rate vector [Ri]∀i∈SN

and the flow vector [fij ]∀(i,j)∈E are
the variables that can be adjusted to minimize the optimization
objective.

There are various models for sensor networks. In this paper,
we mainly focus on a sensor network environment where we
have the following.

• A spatial data correlation model [5] is assumed, where the
sensor nodes can achieve various amounts of data aggre-
gation based on their distance of separation. In contrast,
a perfect data correlation model is assumed in [6]–[8],
where intermediate sensor nodes can aggregate any num-
ber of incoming packets into a single packet. Although the
perfect data correlation model can represent higher energy
savings, it is generally not practical in most application
scenarios.

• The transmission power is automatically managed by the
sensor nodes. During a transmission, the sensor nodes
have the ability to adjust their transmission power de-
pending on the distance of transmission. Consequently, the
energy consumed per unit flow on a link is a function of
its distance. Moreover, the transmission power is assumed
to be allocated in a specific way such that the capacity of
the wireless shared medium is constant across the entire
network. Power allocation is out of the scope of this paper
and is left as a future research direction.

• Depending on the application of the sensor network, its
data delivery model can be continuous, event driven, or
query driven [9]. We have assumed a continuous data
delivery model for illustration, where the sensor nodes
periodically sense their surroundings and always have
data to transmit in each round of communication. In the
event-driven or query-driven delivery model, the data are
transmitted to the sink nodes when the sensor node detects
an event or receives a query. We emphasize that since our

proposed solution supports duty schedules, it can be easily
extended to accommodate these data delivery models.

• The objective of the correlated data-gathering problem
is to minimize the total transmission energy consumed
by the network. While this objective does not guarantee
to maximize the lifetime of each individual sensor node,
it can achieve a better energy efficiency, thus extending
the network lifetime. In this paper, the sensor networks
are assumed to have a high density of sensor nodes.
This implies that the failure of an individual sensor node
(possibility due to energy exhaustion) will not have a
critical impact on the coverage or connectivity of the
network. Moreover, our solution can be combined with
load-balancing mechanisms to achieve fairness in energy
consumption.

B. Data Correlation Model

Since the sensor nodes are usually continuous and not dis-
crete sources, the theoretical tool to analyze the problem is
the rate distortion theory [10], [11]. Let S be a vector of n
samples of the measured random field returned by n sensor
nodes. Let Ŝ be a representation of S and d(S, Ŝ) be a distortion
measure. With the mean square error as the distortion measure
d(S, Ŝ) = ‖S − Ŝ‖2 and with the constraint

E
(
‖S − Ŝ‖2

)
< D (1)

a Gaussian source is the worst case and needs the most bits
to be represented compared with other sources [10]. For the
purpose of illustration, we let S be a spatially correlated random
Gaussian vector ∼ N(µ,Σ). In this case, the rate distortion
function of S is

R(Σ,D) =
N∑

n=1

1
2

log
λn

Dn
(2)

where λ1 ≥ λ2 · · · ≥ λN are the ordered eigenvalues of the
correlation matrix Σ

Dn = min(K,λn) (3)

and K is chosen such that

N∑
n=1

Dn = D. (4)

This is known as “reverse water filling” [11]. To formulate
the optimization problem, we need to express the data corre-
lations between the sensor nodes with a mathematical model.
In sensor networks, sensor nodes generate data by detecting
their surroundings; hence, it is a reasonable assumption that the
data correlation between two nodes (node i and node j) can be
expressed as a function of their spatial distance dij . Particularly,

we let Σij = W d2
ij , where W is a correlation parameter that

represents the amount of correlation between spatial samples.
W should be less than 1 such that Σ is a semi-positive definite
matrix. Given any subset of nodes X and the distortion per node
d, we can construct its correlation matrix ΣX and calculate
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its rate distortion function R(ΣX , d · |X|). We believe that
Σij = W d2

ij is a practical model. Since W is always less than 1,
the data correlation between two nodes exponentially decreases
with increasing spatial distance. Moreover, our optimization
framework can be applied with other data correlation models.
Provided that the data correlation decreases with increasing
spatial distance, the result of this paper should not be affected.

Depending on the application of the sensor network, its
data source can be either continuous or discrete. Since the
sources are continuous for most applications, we assume in
this paper that the data generated by the sensor nodes can be
represented by continuous random variables. For continuous
random variables, their entropies are not significant as they
always approach infinity. It is widely known that we can apply
the rate distortion theory to find the minimum number of bits
to represent continuous random variables given a distortion
threshold. Recalling that entropy defines the minimum number
of bits to represent a random variable, we can approximate the
entropy of a continuous source with its rate distortion function
H(X) ≈ R(ΣX , d · |X|).

Throughout this paper, the notation H(X) is used to repre-
sent the entropy of the data generated by a set of sensor nodes
X . Hence, while X represents a set of sensor nodes, it also
stands for a random variable representing the data generated
by X . This double representation of X applies whenever the
notation H(X) is used.

C. Optimization Objective

Given a rate allocation and a transmission structure, the flow
rate on each wireless link, which is denoted by fij , can be
determined, and the transmission energy consumed on each
link is equal to eij · fij . The objective of our optimization
is to minimize the total transmission energy consumed in the
network, i.e.,

Minimize
∑

(i,j)∈E

eij · fij . (5)

In addition to transmission energy, the objective can be mod-
ified to optimize other metrics of interest with the structure
[link cost] × [data size]. A similar optimization objective can
be found in [3].

D. Flow Conservation Constraints

For each sensor node i ∈ SN , the total outgoing traffic flows
must equal to the sum of the incoming traffic flows and the
nonnegative data transmission rate allocated to node Ri, i.e.,

∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = Ri ∀i ∈ SN . (6)

These constraints enforce lossless transmission, which implies
that no data packet will be discarded by any intermediate sensor
node. In this paper, the sensor nodes utilize Slepian–Wolf cod-
ing to exploit data correlation. As a result, all the data packets
generated by the sensor nodes contain independent data, and
they must be received by the sink nodes.

E. Channel Contention Constraints

To generate solutions that are supported by the wireless
shared medium, we introduce channel contention constraints
in our formulation. The purpose of these constraints is to
model the location-dependent contention that exists among the
competing data flows. To accomplish this task, we need to
identify when a transmission is successfully received by its
intended recipient. In the literature, there exists two models
for packet transmission in wireless networks [4]. They are
generally referred to as the protocol model and the physical
model, and they are presented as follows.

• Protocol Model: This model determines if a packet trans-
mission is successful by considering the spatial location
of the nodes. A packet transmission from node i to j is
successful if, for all node k with dkj < (1 + 	)dij , node
k is not transmitting. The quantity 	 > 0 specifies a guard
zone. In this paper, the interference range is assumed to be
identical to the transmission range. Thus, 	 = 0.

• Physical Model: This model is related to the physical layer
and considers the signal power received at the receiver
node. A packet transmission from node i to node j is suc-
cessful if the signal-to-interference ratio (SIR) is greater
than a threshold SIRij ≥ SIRthresh.

In this paper, we focus on the protocol model of packet
transmission. Based on the protocol model, any link originating
from node k will interfere with link (i, j) if dkj < (1 + 	)dij .
Utilizing this model, we derive Ψij for each link (i, j) ∈ E as
the cluster of links that cannot transmit as long as link (i, j)
is active. Here, the notation of cluster is treated as a basic
resource unit as compared to individual links in traditional
wireline networks. In wireline networks, data flows compete
for the capacity of individual links. However, in the case of
sensor networks, the capacity of a wireless link is interre-
lated with other wireless links in its vicinity. Consequently,
data flows compete for the capacity of individual clusters,
which is equivalent to the capacity of the wireless shared
medium. A flow vector [fij ]∀(i,j)∈E is supported by the wireless
shared medium if the following channel contention constraints
hold [12]:

fij +
∑

(p,q)∈Ψij

fpq ≤ C ∀(i, j) ∈ E (7)

where C is defined as the maximum rate supported by the
wireless shared medium.

Note that in the equation above, fij and any instances of
fpq are not necessarily same-time flows. To illustrate this, let
link (i, j) and link (p, q) be two interfering links. If fij and
fpq are both 10 kb/s, and the capacity of the shared medium is
20 kb/s, then the shared medium can support both fij and fpq by
transmitting the data in different time frames. Within a second,
the shared medium can transmit at 20 kb/s on link (i, j) for
0.5 s and at 20 kb/s on link (p, q) for the other 0.5 s. In sum-
mary, (7) states that the combined flow rates of the interfering
links cannot exceed the capacity of the shared medium, and it
does not imply that the interfering links are generating same-
time flows.
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In practice, there are various methods that can be employed
to construct the clusters [13]. For instance, if each node is
provided with its own location information, in coordinates or
in relation to the other nodes, then the clusters can be formed
by considering the protocol model. An alternative is for a
node to form local topology knowledge based on overheard
transmissions in its surroundings. The exact method used to
construct the clusters is beyond the scope of this paper.

In addition to the protocol model of packet transmission,
the channel contention constraints can be simply tailored to
adapt a particular Media Access Control (MAC) protocol by
adjusting the derivation of the clusters Ψij . For instance, in an
IEEE 802.11 MAC protocol based network, if link (i, j) is ac-
tive, then Ψij should include all links that are originating from
node k that satisfies dkj < (1 + 	)dij or dki < (1 + 	)dij .
The sending node i is also required to be free of interference
since it needs to receive the link layer acknowledgments from
the receiving node j.

F. Rate Admissibility Constraints

Due to data correlation, the data collected by nearby sensor
nodes are often redundant. Since transmitting redundant data
across the network consumes unnecessary energy and decreases
the useful throughput of the network, it is desirable to elim-
inate all redundancy. In the literature, there are many coding
schemes that can be employed to exploit the data correlation.
They can be generally divided into two categories, which are
distributed source coding and joint entropy coding with explicit
communication [3]. For coding with explicit communication,
the sensor nodes aggregate their data with the side information
received from other nodes. In this scenario, it is shown that the
optimal rate allocation can be simply determined since it only
relies on the side information, but building the optimal trans-
mission structure becomes NP-hard. In contrast, distributed
source coding allows each sensor node to generate independent
data packets assuming that the sensors have knowledge of
the global correlation structure. Although distributed source
coding requires increased coding complexity and knowledge
of the correlation structure, it is theoretically the most effi-
cient coding scheme. It can achieve maximum energy savings
for a lossless transmission since no redundant data are ever
transmitted. Moreover, it can be implemented in distributed
asynchronous network environments. Therefore, we employ
distributed source coding to solve the correlated data-gathering
problem.

We employ Slepian–Wolf coding as introduced in [14],
which is a fundamental research study in distributed source
coding. The Slepian–Wolf region specifies the minimum en-
coding rates that the sensor nodes must meet to transmit all
independent data to the sink nodes. It is satisfied when every
subset of sensor nodes encodes their collected data at a total rate
exceeding their joint entropy. In mathematical terms, we have

∑
i∈Y

Ri ≥ H(Y|YC), Y ⊆ SN (8)

where YC is the complement of Y, YC = SN − Y.

G. Exponential-Constraint Linear Programming Formulation

Combining the optimization objective with the introduced
constraints, the correlated data-gathering problem can be mod-
eled as an optimization problem, i.e.,

Minimize
∑

(i,j)∈E

eij · fij (9)

Subject to :∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = Ri ∀i ∈ SN (10)

fij +
∑

(p,q)∈Ψij

fpq ≤ C ∀(i, j) ∈ E (11)

∑
i∈Y

Ri ≥ H(Y|YC), Y ⊆ SN (12)

fij ≥ 0 ∀(i, j) ∈ E (13)

Ri ≥ 0 ∀i ∈ SN . (14)

Since the rate admissibility constraints grow at an exponential
rate in relation to the number of nodes, this is an exponential-
constraint optimization formulation. In the following sections,
we introduce a linear reformulation of this problem through
localized Slepian–Wolf coding and further propose a price-
based framework to provide a solution that is distributed among
the individual sensor nodes.

III. LOCALIZED SLEPIAN–WOLF CODING

The exponential-constraint linear optimization formulations
are generally difficult to solve; hence, it is desirable to reduce
the number of constraints from the formulation. Moreover,
the rate admissibility constraints require each sensor node to
have knowledge of the global correlation structure. This poses
limitation on the scalability of our solution. In this paper, we
adopt an approximated version of Slepian–Wolf coding from
[15] to relax the rate admissibility constraints such that only
the local correlation information is required at each sensor
node. The approximation gives a definition for a neighborhood.
For each sensor node, its neighborhood contains other sensors
that are located in its surroundings. When a sensor node is
determining its data transmission rate, it considers its data
correlation with other sensors in its neighborhood instead of
the entire network. Based on the spatial data correlation model,
it is natural to assume that the sensors that are not in the
neighborhood contribute very little or nothing in reducing the
transmission rates. With a sufficient neighborhood size, this
approximation should have a performance comparable to the
global Slepian–Wolf coding. In this paper, we include the one-
hop neighbors of the sensor nodes in their neighborhoods.

Extending from the approximation, we present a local-
ized Slepian–Wolf coding scheme in Table I. This coding
scheme supports sensor networks with multiple sinks, and
it is amenable to distributed implementation. The localized
Slepian–Wolf coding scheme specifies that each sensor node i
should encode its data at a rate equal to the conditioned entropy.
The conditioning is performed only on Ni, which is a subset
of sensors within the neighborhood of sensor i that are closer
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TABLE I
LOCALIZED SLEPIAN–WOLF CODING

to sensor i’s destination sink node than sensor i itself. Instead
of the global correlation structure, the sensor nodes using this
coding scheme are only required to have knowledge of the
correlation structure within their neighborhood. As a result, the
localized Slepian–Wolf coding scheme overcomes the scalabil-
ity limitation imposed by global Slepian–Wolf coding.

The performance of the localized Slepian–Wolf coding
scheme depends on the transmission structure. The sensor
nodes must realize their destination sink nodes before they
can determine their achievable data transmission rates. If the
capacity of the network is unconstrained, then the sensor nodes
can simply determine their destination sink nodes based on
relative spatial information. The sink node that is located closest
to the sensor will be chosen as its destination sink node.
However, when capacity constraints exist, a sensor node may
not be able to transmit its collected data to its closest sink
node due to data congestion. To avoid data congestion, our
solution allows the sensor nodes to switch their destination
sink nodes during run time. Hence, the transmission structure
is dynamic as it is adjusted according to the rate allocation
and the data congestion experienced by the wireless links.
On the other hand, to accommodate the dynamic transmission
structure, the localized Slepian–Wolf coding scheme dynami-
cally determines the appropriate rate allocation during run time.
Consequently, our solution jointly optimizes the rate allocation
and the transmission structure, which are dependent upon each
other. We believe that this approach will provide substantial
improvements over the traditional approaches in solving the
correlated data-gathering problem.

It is now possible to model the correlated data-gathering
problem as a linear programming formulation. The rate admis-
sibility constraints are relaxed, but the Slepian–Wolf region is
still satisfied. The sensor nodes are required to transmit at the
conditioned entropy specified by the localized Slepian–Wolf
coding scheme. The linear programming formulation, which is
also denoted as the primal problem, is expressed as follows:

Minimize
∑

(i,j)∈E

eij · fij (15)

Subject to :
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni) ∀i ∈ SN (16)

fij +
∑

(p,q)∈Ψij

fpq ≤ C ∀(i, j) ∈ E (17)

fij ≥ 0 ∀(i, j) ∈ E. (18)

IV. DISTRIBUTED SOLUTION: A
PRICE-BASED FRAMEWORK

Many algorithms have been proposed in the past literature
to solve linear optimization formulations, such as simplex,
ellipsoid, and interior point methods. These algorithms are
efficient in the sense that they can solve a large instance of
optimization formulations in a few seconds. However, they have
the disadvantage of being inherently centralized, which implies
that they are not applicable for distributed implementations. In
this section, we present our distributed solution to the proposed
linear optimization formulation. The formulation is relaxed
with Lagrangian dualization and then solved with the sub-
gradient algorithm. In addition, we discuss the asynchronous
network model that is utilized in this paper.

A. Lagrangian Dualization

With the localized Slepian–Wolf coding scheme, we are able
to determine the optimal rate allocation. Our next step toward
solving the linear programming formulation is to obtain the
optimal transmission structure given the rate allocation. This
part of the problem resembles a resource allocation problem,
where the goal is to allocate the limited capacity of the wire-
less shared medium to the data flows originating from sensor
nodes.

In the literature, Kelly et al. [18] and Low and Lapsley [19]
have shown that the price-based resource allocation strategy is
an efficient means to arbitrate resource allocation in wireline
networks. With price-based strategy, the prices are computed
as signals to indicate the relation between the supplies and
demands of a resource. In these works, each wireless link is
treated as a basic resource unit. A shadow price is associated
with each wireless link to reflect the relation between the
traffic load of the link and its bandwidth capacity. Based on
the notation of maximal cliques, Xue et al. [20] extend the
price-based resource allocation framework to respect the unique
characteristic of location-dependent contention in wireless
ad hoc networks.

In this paper, the notation of clusters as defined in Section II
is utilized as the basic resource unit. Each cluster is associated
with a shadow price, and the signals compete for the capacity
of the clusters. The transmission structure is determined in
response to the price signals such that the aggregated price
paid by the data flows is minimized. It is shown from pre-
vious works that at equilibrium, such a price-based resource
allocation strategy can achieve a global optimum, which leads
to the optimal utilization of the resource. To solve the linear
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programming formulation with a price-based strategy, we first
relax the channel contention constraints (7) with Lagrangian
dualization and obtain the Lagrangian dual problem as

Maximize LS(β), Subject to: β ≥ 0. (19)

By associating price signals or Lagrangian multipliers βij

with the channel contention constraints, the Lagrangian dual
problem is evaluated via the Lagrangian subproblem LS(β) as

Minimize

∑
(i,j)∈E

eij · fij + βij ·


fij +

∑
(p,q)∈Ψij

fpq − C


 (20)

Subject to :
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni) ∀i ∈ SN (21)

fij ≥ 0 ∀(i, j) ∈ E. (22)

Here, we introduce a new notation Φij as the set of clusters
that link (i, j) belongs to. Recall that Ψpq refers to the cluster
of links that cannot transmit when link (p, q) is active. For any
link (i, j) that interferes with link (p, q), link (i, j) belongs to
the cluster of link (p, q). Thus, for any link (i, j) and (p, q),
(p, q) ∈ Φij if and only if (i, j) ∈ Ψpq. Then the Lagrangian
subproblem can be remodeled using this notation as

Minimize

∑
(i,j)∈E

fij


eij + βij +

∑
(p,q)∈Φij

βpq


 − βijC (23)

Subject to:
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni) ∀i ∈ SN (24)

fij ≥ 0 ∀(i, j) ∈ E. (25)

The objective function of the remodeled Lagrangian subprob-
lem specifies that the weight of each link is equal to the sum
of its energy and capacity cost. Moreover, the capacity cost is
equal to its Lagrangian multiplier of the link plus the sum of
the Lagrangian multipliers in Φij . This is intuitive since when
link (i, j) is active, any link in the set Φij cannot transmit due
to interference. Thus, the actual cost for accessing link (i, j)
should equal to the total cost for accessing link (i, j) and all the
links in Φij .

Since the capacity constraints are relaxed, we observe that
the solution of the remodeled Lagrangian subproblem requires
each sensor node to transmit its data along the shortest path
that leads to its nearest sink node. As a result, the Lagrangian
subproblem can be solved with any distributed shortest path
algorithm, such as the well-known Bellman–Ford approach.
Recall from the localized Slepian–Wolf coding scheme that a

sensor node will coencode with another sensor node only if
they have identical nearest sink node. Consequently, for any
solution generated by the Lagrangian subproblem, data flows
due to sensor nodes that have coencoded with each other will
be absorbed by an identical sink node.

B. Subgradient Algorithm

We now describe the subgradient algorithm, which is an
efficient iterative algorithm to solve the Lagrangian dual prob-
lem. The algorithm starts with a set of initial nonnegative
Lagrangian multipliers βij [0]. Since the Lagrangian multipliers
are price signals that reflect the congestion status of the clusters,
a possible choice for the initial Lagrangian multipliers can be
zeroes, assuming there is no data congestion in the network. In
this case, the initial shortest paths chosen by the sensor nodes
will be the minimum energy paths without any adjustments on
the link weights.

During each iteration k, given current Lagrangian multiplier
values βij [k], we solve the Lagrangian subproblem by finding
the shortest path from each sensor node to its nearest sink node,
where the weight of each link is equal to the sum of its energy
cost, its Lagrangian multiplier, and the Lagrangian multipliers
of the clusters to which this link belongs. Using the new primal
values fij [k] obtained from the Lagrangian subproblem, we
update the Lagrangian multipliers by

βij [k + 1]

= max


0, βij [k] + θ[k]


fij [k] +

∑
(p,q)∈Ψij

fpq[k] − C







(26)

where θ is a prescribed sequence of step sizes. The equation
above states that the Lagrangian multipliers vary depending
on the value of (fij +

∑
(p,q)∈Ψij

fpq − C), which represents
the amount of capacity violation within a cluster. When the
violation of a cluster is positive, there are data flows traveling
in the cluster that are not supported by the wireless shared
medium. The Lagrangian multiplier for the cluster then in-
creases according to the amount of violation to reflect the
congestion. Conversely, when the violation for a cluster is
negative, there is free bandwidth in the cluster that is not
utilized by the data flows. Therefore, the Lagrangian multiplier
for the cluster decreases to attract more data flows to occupy
the free bandwidth.

The selection of step sizes plays an important role in the
subgradient algorithm. If the step sizes are too small, then the
algorithm has a slow convergence speed. If the step sizes are
too large, then βij may oscillate around the optimal solution
and fail to converge. The convergence is guaranteed when θ
satisfied the following conditions [21], regardless of the values
of the initial Lagrangian multipliers:

θ[k] ≥ 0, lim
k→∞

θ[k] = 0, and
∞∑

k=1

θ[k] = ∞. (27)
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TABLE II
OPTIMIZATION PHASE

C. Distributed Algorithm

Based on the localized Slepian–Wolf coding scheme and the
subgradient algorithm, we construct our distributed algorithm
to solve the correlated data-gathering problem. Each cluster and
wireless link is treated as an entity capable of processing, stor-
ing, and communicating information. In practice, each cluster
and wireless link (i, j) is delegated to its sender node i, and all
computations related to (i, j) will be executed on node i. The
algorithm is summarized in Table II. In this algorithm, the price
signals or the Lagrangian multipliers reflect the congestion
status of the network. In addition, they act as a link of communi-
cation between the two problem objectives. When the algorithm
converges, the generated solution will jointly optimize the rate
allocation and the transmission structure.

Referring to Table II, the optimization algorithm requires the
following control packets to be transmitted in each iteration.

1) Each cluster needs to have knowledge of the flow rates
for all links within the cluster.

2) Each link needs to have knowledge of the prices for all
clusters that are inherent to it.

3) Each sensor node needs to know, for the other sensor
nodes within its neighborhood, the identities and their
distances to their corresponding destination sink nodes.

Since the control packets introduced above are light weighted
(with either rate/price/identity/distance information), and they
are only communicated between local neighborhoods, the
overhead introduced by these control packets should not be
significant.

We now give an illustrative example to demonstrate the
convergence of the distributed algorithm. Fig. 1 illustrates a
random sensor network with 90 sensors and ten sinks, which
are represented by asterisks and circles, respectively. All the
nodes have a transmission range of 30 m, and the wireless links
are represented by dotted lines. The distributed algorithm is

Fig. 1. Random topology with 100 nodes.

executed for 500 iterations. The solid lines represent the links
chosen by the obtained transmission structure. The thickness
of each solid line indicates the amount of aggregated data
traveling on the link, while the sensor nodes transmit accord-
ing to the obtained rate allocation. Evidently, the distributed
algorithm minimizes the energy consumption by exploiting
data correlation. The sensor nodes that are distant from their
corresponding sinks are assigned with lower transmission rates.
For the duration of the experiment, the distributed algorithm
generates a sequence of solutions. The total energy consumed
by these solutions is recorded in Fig. 2. We observe from the
figure that after an initial spike, the algorithm rapidly converges
toward the optimal value within the first 50 iterations.
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Fig. 2. Convergence behavior of the distributed algorithm.

D. Asynchronous Network Model

Until now, we have assumed a synchronous implementation
for the iterative subgradient algorithm. In this case, the local
clocks on the nodes are synchronized such that all of the
nodes will simultaneously execute an iteration of the algorithm
at every time instance (t = 1, 2, 3, . . .). A bounded commu-
nication delay is assumed where price and rate updates will
arrive at their destinations before the next time instance. As
a result, each node is able to execute the algorithm based
on the most recent price and rate information. However, in
realistic ad hoc network environments, it is expensive in terms
of communication overhead to synchronize local clocks across
the entire network.

In asynchronous network environments, nodes with different
computation speeds will execute the iterative algorithm at vary-
ing paces. Consequently, the nodes may not always have the
most recent price or rate information due to delayed or out-of-
order updates. To accommodate these asynchronous updates,
we introduce the partial asynchronism model that will be
assumed in the practical implementation of our algorithm. The
partial asynchronism model makes the following assumption.

There exists a positive integer B such that, for every cluster
and wireless link (i, j), the time between consecutive updates is
bounded by B for both price and rate updates, and the one-way
communication delays between any two nodes are at most B
time instances.

The partial asynchronism model is first discussed in [17].
Later, it is adopted by Low and Lapsley [19] in wireline
networks and Xue et al. [20] in wireless networks. In [20],
a technique is proposed to improve the price-based resource
allocation strategy to accommodate the partial asynchronous
model. At time instance t, instead of the most recent informa-
tion, a node may only received a sequence of recent updates.
The concept of this technique is for the nodes to estimate
the most recent price and rate information by computing the
average of the sequence received from time t − B to t. To
improve the accuracy of the estimation, a moving average can
be utilized with a heavier weight assigned to the more recent
updates. From their work, it is shown that such a strategy will

converge the fastest when all the weight is assigned to the most
recently received update. Moreover, with a sufficiently small
step size θ, the strategy will converge to the global optimum
in asynchronous network environments. Since our optimization
formulation is solved with a price-based strategy, it is natural
for us to adapt this technique. In our implementation, each
node estimates the price and rate information based on the
most recently received update. In Section VI, we validate
via simulations that our algorithm converges in asynchronous
network environments.

V. IMPLEMENTATION ISSUES

The subgradient algorithm provides an efficient tool in ob-
taining a lower bound on linear programming formulations
(such as our primal problem) via solutions to the Lagrangian
dual problem. However, it has the disadvantage that an optimal
solution or even a feasible solution to the primal problem may
not be found. With such a subgradient optimization approach,
methods such as primal penalty functions and tangential ap-
proximation schemes have been proposed for directly obtain-
ing the primal solutions. These methods are not suitable for
our purpose because they either require the optimization to
be conducted in the joint primal-dual space or introduce a
significant additional computation overhead. In this section, we
propose two implementations of our distributed algorithm that
are aiming to overcome this problem. Moreover, we discuss
how the distributed algorithm can be extended to handle net-
work dynamics.

A. Implementation I: Primal Recovery

In [22], Sherali and Choi introduce a primal recovery al-
gorithm. The algorithm directly recovers the primal solutions
from the solutions to the Lagrangian dual problem generated by
the subgradient algorithm. We adapt this algorithm in our first
implementation. The primal recovery algorithm restricts the
step size strategy and specifies that the primal solutions should
equal to the convex combination of the solutions generated by
the Lagrangian subproblem. At iteration k of the subgradient
algorithm, we compose a primal solution f ∗

ij [k] via

f ∗
ij [k] =

k∑
m=1

λk
mfij [m] (28)

where θ[k]’s are the step sizes, and λk
m’s are the convex combi-

nation weights given by

θ[k] =
a

b + ck
∀k, λk

m =
1
k

∀m = 1, . . . , k ∀k

(29)

where a, b, and c are positive constants. This step size strategy
also satisfies condition (27); hence, the convergence of the
subgradient algorithm is guaranteed. In the kth iteration, we can
calculate the adjusted flow vector f ∗

ij [k] by

f ∗
ij [k] =

k − 1
k

f ∗
ij [k − 1] +

1
k

fij [k]. (30)
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TABLE III
STATISTICS ON CAPACITY VIOLATION IN BITS

It is proven in [22] that when the conditions in (29) are met, any
accumulation point of the sequence f ∗

ij [k] generated via (28) is
feasible to the primal problem.

Although the primal recovery algorithm guarantees to gener-
ate feasible primal solutions, it has a major disadvantage. Since
the generated primal solution depends on the previous solu-
tions, the network must remain static. Any dynamics introduced
to the network such as sink mobility and duty schedules may
introduce obsolete links during the execution of the distributed
algorithm. If any one of the previous solutions contains the
obsolete links, then the generated primal solution becomes in-
valid. To accommodate these dynamics, we propose a heuristic
approach in our second implementation.

B. Implementation II: Capacity Reservation

Recall that the subgradient algorithm provides quick lower
bounds to linear programming formulations. In the context of
this paper, as the subgradient algorithm converges, it generates
a sequence of rate allocations and transmission structures as
solutions to the Lagrangian dual problem. However, some of
these solutions often violate the channel contention constraints,
which are imposed by the primal problem but relaxed in the
dual problem. To analyze this behavior, we conduct a simula-
tion study on sensor networks with 90 sensors and ten sinks.
The capacity of the wireless shared medium is set to 150 bits.
The distributed algorithm is executed for 1000 iterations on
50 random topologies. For each random topology, we record
the amount of capacity violation induced by the last solution
generated by the algorithm, and the statistics is presented in
Table III.

Evidently, the subgradient algorithm generates tight lower
bounds since the mean capacity violation is only a small frac-
tion of the capacity offered by the shared medium. Based on this
behavior, we observe that with high probability, the distributed
algorithm can generate primal feasible solutions by reserving
a suitable amount of capacity in advance. To reserve capacity,
the distributed algorithm can be executed with the knowledge
that the shared medium can only support a fraction (e.g., 90%)
of its actual capacity. Although this implementation does not
guarantee primal feasible solutions, it does not introduce any
additional computational complexity into the algorithm.

C. Handling Network Dynamics

With energy-saving mechanisms such as sink mobility and
duty schedules, the topology of a sensor network is inherently
dynamic. Wireless links maybe added or removed from the
topology. Moreover, since the energy cost of a wireless link is
a function of its distance, it can vary with the node movement.
One of the main design goals for the distributed algorithm is to
be compatible with these mechanisms and variations to achieve

higher energy savings. To this end, we propose an extension to
the algorithm for handling network dynamics.

In the distributed algorithm, each wireless link is treated as
two separate entities, i.e., a link and a cluster. For each wireless
link (i, j), its sender node maintains two lists, i.e., Ψij and Φij .
The first list Ψij contains the identities and rates of the links
that belong to cluster (i, j). In addition, the second list Φij

contains the identities and prices of the clusters to which link
(i, j) belongs. To handle network dynamics, these lists must be
updated as the topology changes.

We assume that the nodes are able to retrieve up-to-date
topology information within their transmission range. At the
beginning of each iteration, each participating node initiates
the distributed algorithm by determining if it has new, obsolete,
or modified links originating from itself. Afterwards, the nodes
execute the maintenance phase given in Table IV. Finally, the
nodes complete the iteration by executing the price and rate
updates given in Table II. The purpose of the maintenance phase
is to update the lists for the wireless links. It introduces several
light-weighted control packets, and they are exchanged between
the nodes and their local neighborhoods.

VI. PERFORMANCE EVALUATION

A. Simulation Environments

With the C++ programming language, we have implemented
the proposed distributed algorithm for solving the correlated
data-gathering problem. Our implementation includes both the
optimization phase and the maintenance phase presented in
Tables II and IV. The data packets, control packets, and update
packets are communicated between the participating nodes with
a round-robin scheduling algorithm. In practice, we expect that
the data packets can be scheduled with a weighted fair queueing
algorithm [23]. As a result, the sensors can achieve guaranteed
data transmission rates specified by the rate allocation.

In this section, we evaluate both implementations proposed
in Section V with extensive experimental results. The ex-
periments are conducted on a high-performance cluster with
50 dual-processor servers. Unless stated, the experiments are
performed on the random topology with 100 nodes presented
in Fig. 1. The transmission range and the interference range
are set to 30 m. The capacity of the wireless shared medium is
set to 150 bits. The correlation parameter W and the per node
distortion d is set to 0.99 and 0.01, respectively.

We study the distributed algorithm in three different simula-
tion environments. In the independent environment, we neglect
the effect of data correlation by substituting the localized
Slepian–Wolf coding scheme with an independent coding
scheme. In the synchronous environment, the participating
nodes simultaneously execute an iteration of the algorithm at
every time instance. The asynchronous environment is based on
the partial asynchronism model, which assumes the existence of
an integer B that bounds the time between consecutive updates.
To implement this environment, each sensor node maintains a
timer with a random integer value between 0 and B. The timer
decreases itself by 1 at every time instance. When the timer
reaches 0, the sensor node executes an iteration of the algorithm
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TABLE IV
MAINTENANCE PHASE

Fig. 3. Convergence speed in static networks. For each experiment, the horizontal bars indicate one standard deviation below and above the mean.

before resetting the timer. For experiments involving network
dynamics, we make a conservative estimation that the sensor
network is capable of executing two iterations of the algorithm
per second. This implies that the duration of a time instance is
equal to half of a second.

B. Convergence Speed

In our first study, we observe the convergence speed of the
algorithm with different numbers of participating nodes. To
this end, we generate five random sensor fields ranging from
100 to 500 nodes in increments of 100 nodes with 10% of the
nodes randomly chosen as sink nodes. The sensor field with
100 nodes has an area of 100 m × 100 m. We maintain a con-
stant node density by scaling the area of the other sensor fields.
This eliminates the effect caused by varying node density and
allows us to focus on the scalability of our algorithm. To attain
convergence, we let the algorithm run for 500 iterations, and
the optimum is taken as the minimum total energy consumption
achieved. For each experiment, the algorithm is executed in the
synchronous simulation environment on ten random topologies.

For both implementations, we plot the mean number of itera-
tions required to achieve 90% and 99% optimality in Fig. 3. The
horizontal bars indicate one standard deviation below and above
each mean. Supposing that the numbers approximately follow a
Gaussian distribution given by the Central Limit Theorem, each
interval includes about 70% of the observations.

The figure reveals that the convergence behaviors of the two
implementations are different. On average, the primal recovery
algorithm increases the convergence time by 50%, but the
standard deviations on the convergence time are smaller when
compared with the capacity reservation scheme. This is an
expected result since the primal recovery algorithm generates
a solution by averaging all the previous solutions obtained in
the subgradient algorithm. In contrast, the capacity reservation
scheme always utilizes the most current solution obtained in
the subgradient algorithm. As a result, it has a shorter conver-
gence time, but it is also heavily influenced by the fluctuations
introduced by the subgradient algorithm, which leads to larger
deviations. These convergence behaviors can be verified in
Fig. 4, where we plot the sequences of solutions generated by
the two implementations.
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Fig. 4. Convergence behavior in asynchronous network settings.

In general, we observe that the time needed to achieve 99%
optimality remains almost the same for networks with 200 to
500 nodes. Moreover, we notice that the algorithm can achieve
90% optimality in less than half of the time needed to achieve
99% optimality. Recall that for both implementations, the so-
lution generated in each iteration is primal feasible. Therefore,
when it is not necessary to achieve the true optimum, we can
obtain a near-optimal solution in a much shorter time. These
results exhibit the excellent scalability of our algorithm as the
network size increases.

C. Impact of Asynchronous Network Settings

With the asynchronous simulation environment, we evalu-
ate the convergence behavior of the distributed algorithm in
asynchronous network settings. The algorithm is executed for
500 iterations with different time bounds B = 1, 5, 10, 25. For
both implementations, the total energy consumption attained
at each iteration is recorded in Fig. 4. In all the experiments,
the algorithm converges toward an identical optimal solution.
This result indicates that our algorithm is able to achieve
convergence in asynchronous network settings. Moreover, we
conclude that the convergence speed of the algorithm is associ-
ated with the time bound B since a longer convergence time is
required when B is large.

D. Effect of Data Correlation

We investigate the effect of data correlation by comparing the
synchronous simulation environment against the independent

Fig. 5. Localized Slepian–Wolf coding versus independent coding. IC: inde-
pendent coding, I1: implementation I, and I2: implementation II.

simulation environment. For each simulation environment, we
execute the algorithm under three per node distortion values
d = 0.001, 0.01, and 0.1. As the correlation parameter W
varies from 0.9 to 0.9999, the minimum total energy con-
sumption achieved by the different simulation environments is
recorded in Fig. 5. Intuitively, the energy consumed at high
correlation (W = 0.9999) is much lower compared with the
energy consumed at low correlation (W = 0.9). Overall, the
two implementations achieve similar results, and the localized
Slepian–Wolf coding scheme outperforms the independent cod-
ing scheme in all the experiments. These results imply that
although the proposed algorithm utilizes only local information,
it can achieve significant energy savings for a wide range of data
correlation and distortion levels.

E. Adaptation to Sink Mobility

In this section, we study the impact of sink mobility over ran-
dom networks. Our aim is to seek the mobility threshold such
that the algorithm is not fast enough to remain at convergence.
Based on the random topology with 100 nodes, we introduce
sink mobility by simultaneously moving the ten sink nodes.
With periods of 50 and 100 s, the sink nodes move and remain
static between alternating periods. For each mobile period, the
sink nodes move in random directions with a specified average
speed. The algorithm is executed in the synchronous simulation
environment for 500 s. Fig. 6 plots the convergence behavior of
the algorithm for the different scenarios. From this figure, we
observe that the algorithm can achieve new convergence after
the network topology is modified. The results indicate that the
algorithm converges sufficiently well when the sink nodes move
at 0.1 m/s without pause. When the node speed increases to
0.5 and 1 m/s, there are larger fluctuations in the attained total
energy consumptions. A further increase in node speed may
result in insufficient convergence time. In addition, we observe
that the algorithm rapidly achieves and stays in convergence
once the topology remains static. Obviously, the algorithm can
support higher node speeds when the pause time increases.
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Fig. 6. Experiments with varying sink speeds and pause times.

Fig. 7. Two-state Markov chain.

F. Adaptation to Duty Schedules

To extend the network lifetime, it is essential to establish
the load balancing between sensor nodes with mechanisms
such as duty schedules. In our final study, we are interested in
examining the dynamic behavior of the distributed algorithm
triggered by sensor joins and departures. We model the duty
schedules as a two-state Markov chain, as shown in Fig. 7. The
state transition probabilities α and β are adjusted to emulate
different duty schedules. The experiments are performed in the
synchronous simulation environment for 300 s. In the first 100 s,
all the sensor nodes remain active. Afterwards, the sensors

switch their operating status based on the introduced duty
schedules.

The results of the experiments are summarized in Figs. 8
and 9. In Fig. 8, we adjust the summation of α and β with a
fixed transition ratio α/β of 5. The summation represents the
frequency of state transitions experienced by the network. Note
that the summation cannot be greater than 2 since each of the
transition probabilities cannot exceed 1. We observe that as the
frequency of state transitions increases, the topology of the net-
work changes more rapidly, which leads to larger fluctuations
in the attained total energy consumptions. Fig. 9 illustrates the
performance of the algorithm under different transition ratios
with a fixed summation of 0.01. We have avoided combinations
of transition ratio and summation that may lead to network
partition. For example, if the transition ratio is less than 1,
then the active sensor nodes are more likely to shut themselves
off than inactive sensor nodes turning themselves on. As the
number of inactive sensor nodes increases, a partition in the
sensor network would eventually occur. Moreover, we notice
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Fig. 8. Experiments with varying amount of state transitions.

Fig. 9. Experiments with different transition ratios.

that with a higher transition ratio, the network consumes more
energy since more sensor nodes are active.

VII. RELATED WORK

The problem of energy-efficient routing in sensor networks
has been investigated with mathematical optimization tech-
niques in research studies including [24]–[27]. Chang and
Tassiulas [24] have formulated a flow-based linear program-
ming formulation to maximize the network lifetime. In [25],
the optimization model minimizes the energy consumption and
takes into account the channel contention constraints associated
with the wireless shared medium. Ordonez and Krishnamachari
[26] propose another optimization formulation to maximize the
raw data arriving at the sink nodes subject to flow, fairness,

energy, and capacity constraints. Johansson et al. [27] study the
simultaneous routing and power allocation problem in wireless
data networks using optimization techniques. In [26] and [27],
the optimization problems utilize the physical model [4] of
packet transmission in wireless networks to model the channel
contention constraints. However, the resulting channel con-
tention constraints are nonconvex, which can lead to extremely
difficult optimization problems. In this paper, we represent the
channel contention as linear constraints based on the protocol
model [4]. More importantly, although all of the above existing
works generally save energy, they do not consider the additional
energy savings that can be achieved by exploiting the data
correlation among the sensor nodes.

The data aggregation was introduced by Krishnamachari et al.
[28] as an essential paradigm for wireless routing in sensor net-
works. The concept is to exploit the data correlation among the
sensor nodes by eliminating redundancy. Consequently, there
are fewer transmissions in the network, which thus save energy.
In [7], Kalpakis et al. have formulated the maximum-lifetime
data-gathering problem as a linear programming formulation
by taking data aggregation into consideration and presented
a polynomial-time algorithm to solve the problem. Although
this optimization framework yields satisfactory performance,
it makes the simplistic assumption of perfect data correlation,
where intermediate sensor nodes can aggregate any number of
incoming packets into a single packet. A perfect data correla-
tion can also be found in [6], which analyzes the performance
of data-centric routing schemes with in-network aggregation.
In [8], Goel and Estrin consider the joint treatment of data
aggregation and transmission structure. The problem of data
gathering is addressed by using concave nondecreasing cost
functions to model the aggregation function utilized by the
intermediate nodes. However, it also makes the assumption
of perfect data correlation. The aggregation performance of a
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node only depends on the number of nodes providing incoming
data, regardless of the correlation structure. The assumption of
perfect data correlation is not made in this paper since it is not
applicable in most application scenarios.

While this paper exploits the data correlation with
Slepian–Wolf coding, there are alternative approaches to take
advantage of the correlation structure. In [3] and [29], the
correlated data-gathering problem is considered with single-
input coding schemes. With single-input coding, the data com-
pression ratio at an intermediate node only depends on the
side information provided by one other node. Cristescu et al.
[3] prove that this optimization problem is NP-hard even in a
simplified network setting, where the data compression ratio at
the nodes does not depend on the quantity of side information
but only on its availability. Since single-input coding schemes
only consider data correlation among pairs of nodes, they will
not perform as well as source coding schemes, which consider
the joint data correlation of multiple nodes.

The multi-input coding schemes are often employed by rout-
ing schemes embedded with data aggregation, such as directed
diffusion [30], LEACH [31], and PEGASIS [32]. Directed
diffusion is a routing driven algorithm that emphasizes source
compression at each individual node, and data aggregation
opportunistically occurs when the routes intersect. In the model
of LEACH, the nodes are chosen as cluster heads, which are
then responsible for aggregating all the data generated in their
corresponding cluster into a single packet. Instead of clusters,
the PEGASIS algorithm finds chains of nodes, and the head
node of each chain aggregates data from other nodes in the
chain. Although the multi-input coding schemes can exploit
data correlation among multiple nodes, they require the par-
ticipating nodes to explicitly communicate with each other.
In contrast, the Slepian–Wolf coding schemes do not require
any explicit communication; hence, they can be applied in
asynchronous network settings where no timing assumptions
are made. In addition, these routing schemes do not incorporate
the effect of wireless interference in their design.

Other closely related works are the ones involving
Slepian–Wolf source coding. In [33], Barros and Servetto in-
troduce the sensor reach-back problem, which requires one
of the nodes in the network to receive enough information to
reproduce the entire field of observation. The Slepian–Wolf
coding is employed to meet the above requirement. This paper
inspires us to apply Slepian–Wolf coding in the correlated
data-gathering problem; hence, the sink nodes will be able to
receive all independent data from the sensor nodes. In [15],
Cristescu et al. address the correlated data-gathering problem
with Slepian–Wolf coding. However, since their formulation
does not consider the capacity and interference associated with
the wireless channels, their solution may not be supported by
the shared medium.

VIII. CONCLUSION

With the ability of distributed wireless sensing, the sensor
networks can be applied to a vast number of applications.
However, before we can recognize the full potential of sensor
networks, the problem of correlated data gathering must be

solved under realistic assumptions. We conclude this paper with
the belief that our proposed framework is an efficient means
to accomplish this task. In this paper, we have shown that in
the presence of capacity constraints, finding the optimal rate
allocation and finding the optimal transmission structure are
two dependent problems. By jointly optimizing both problems,
our approach minimizes the total transmission energy con-
sumed by the network. Furthermore, it exploits data correlation
among the sensor nodes and accounts for the effect of location-
dependent contention in the wireless channels. To ensure
scalability, our algorithm is amenable to distributed implemen-
tations, is applicable in asynchronous network settings, and
provides support for multisink sensor networks. To the best of
our knowledge, there does not exist any previous work that has
simultaneously considered the correlated data-gathering prob-
lem with data aggregation and wireless channel interference,
especially when a price-based strategy is employed to obtain a
distributed algorithm to solve the problem.
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