
IJCEM International Journal of Computational Engineering & Management, Vol. 14, October 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

 111

Survey on SQL Injection attacks and their Countermeasures

Nilesh Khochare1, Satish Chalurkar2 ,Santosh Kakade3 and B.B. Meshramm4

1,2,3 Research Scholar, Computer Department, VJTI,

Mumbai, Maharashtra, India
1
nileshkhochare@gmail.com, 2satishchalurkar1@gmail.com,

3
santosh20may@gmail.com

4Professor, Computer Department, VJTI,

Mumbai, Maharashtra, India
4
bbmeshram@vjti.org.in

Abstract
SQL injection is most common methodology employed by a

hacker to exploit vulnerabilities in software applications.

Vulnerabilities are basically weak links in the software that

exposes unauthorized data or information to a user. SQL

injection occurs when the user input is incorrectly filtered for

embedded SQL statements. The technique is powerful enough

not only to expose the information to the user but also modify

and delete the content which could prove disastrous to the

company. There are many ways to prevent SQL attacks such as

using dynamic SQL, using automated SQL test tools, by escaping

user input.

Keywords - SQL injection, Web Application, Static Analysis,

Runtime Monitoring.

1. Introduction

An SQL Injection is one of the most common and most

dangerous security issues. SQL injections are dangerous because

they are a door wide open to hackers to enter your system

through your Web interface and to do whatever they want i.e.

delete tables, modify databases, even get hold of your corporate

network. SQL injection attacks take advantage of code that does

not filter input that is being entered directly into a form.

Susceptible applications are applications that take direct user

input and then generate dynamic SQL that is executed via back-

end code. Many webpages take input from users, such as search

terms, feedback comments or username and password, and use

them to build a SQL query which is passed to the database. If

these inputs are not validated, then attacker can insert SQL

queries and do malicious activities like delete tables, alter tables

etc. SQL injections might be common but, they are also easy to

prevent.

2. SQL Injection Basics

SQL injection is the vulnerability that results when you give an

attacker the ability to influence the Structured Query Language

(SQL) queries that an application passes to a back-end database.

Researchers generally divide injection attacks into three

categories: First order Attacks, Second order Attacks and Lateral

injection.

2.1 First order Attacks.

The first order attacks are basic attacks. It is When UNIONS or

Sub query added to the existing statement.

2.2 Second order Attacks.

In the second order attacks attacker insert the malicious code into

the application but not activated immediately by the application.

There are various attacks classes in the second order attack.

Frequency based Primary Application: Attacks in this class

frequently target the other users of the primary application. For

example, topmost searched items, latest popular article.

Frequency based Secondary Application: This class includes

application that did not initially receive the injected code, but

instead process submission from an application and represent this

material for statistical review. Attacks within this type targets on

the system administrators.

Secondary Support Application: This class includes application

used to internally support primary application. Attacks within

this class typically target internal application users and attack

activation may be accelerated through social engineering vectors.

Cascaded Submission Application: this class includes

application that makes use of multiple client submission within

single processing statement. Attacks within this class typically

utilize SQL code statements to manipulate the search request and

consequently target backend database resources.

mailto:1nileshkhochare@gmail.com
mailto:satishchalurkar1@gmail.com
mailto:3santosh20may@gmail.com
file:///C:/Users/NiL/Desktop/sql/default.aspx.htm
file:///C:/Users/NiL/Desktop/sql/default.aspx.htm

IJCEM International Journal of Computational Engineering & Management, Vol. 14, October 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

112

2.3 Lateral injection

Using Lateral SQL Injection, an attacker can exploit a PL/SQL

procedure that does not even take user input. When a variable

whose data type is date or number is concatenated into the text of

a SQL statement, there still is a risk of injection.

3. Types of SQL Injection attacks

When the attacker finds an input source that can be used to

exploit SQL injection attack vulnerability, there are various types

of SQL injection attacks techniques that they can employ.

3.1 Tautologies.

A SQL tautology is a statement that is always true. Tautology-

based SQL injection attacks are usually used to bypass user

authentication or to retrieve unauthorized data by inserting a

tautology into a conditional statement. A typical SQL tautology

has the form “or <comparison expression>”, where the

comparison expression uses one or more relational operators to

compare operands and generate an always true condition. The

general goal of a tautology-based attack is to inject SQL tokens

that cause the query‟s conditional statement to always evaluate

the true. For example,

Select * from Employee where EmpName = „ ‟ or 1=1 -- „ and

Password= „xxxxx‟.

The “or 1=1” is the most commonly known tautology.

3.2 Piggy-Backed Queries

In the piggy-backed Query attacker tries to append additional

queries to the original query string. On the successful attack the

database receives and executes a query string that contains

multiple distinct queries. In this method the first query is original

whereas the subsequent queries are injected. This attack is very

dangerous; attacker can use it to inject virtually any type of SQL

command. For example,

SELECT info FROM employee WHERE login-„abc‟ AND pin-0;

drop table employee.

Here database treats above query string as two query separated

by „;‟, and executes both. The second sub query is malicious

query and it causes the database to drop the employee table in the

database. There are so many other types of queries such as

inserting new employees in the database.

3.3 Logically Incorrect Queries

This attack takes advantage of the error messages that are

returned by the database for an incorrect query. These database

error messages often contain useful information that allow

attacker to find out the vulnerable parameter in an application

and the database schema. Suppose after inserting a incorrect

query if attacker gets following error message,

“Microsoft OLEDB provider for SQL Server (0×80040E07)Error

converting nvarchar value „CreditCards‟ to a column of data type

int”

Now there are two useful pieces of information in this error

message. First, the attacker come to know that the database in in

SQL server database. Second, attacker comes to know that the

name of the first user-defined table in the database is

“CreditCards”. So by using the same strategy attacker can find

the name and type of each column in the given table.

3.4 Union Query

Union query injection is called as statement injection attack. In

this attack attacker insert additional statement into the original

SQL statement. This attack can be done by inserting either a

UNION query or a statement of the form “;< SQL statement >”

into vulnerable parameter. The output of this attack is that the

database returns a dataset that is the union of the results of the

original query with the results of the injected query. For example,

“Select * from users where UserName=‟ ‟ union select * from

employee –„and Password=‟anypwd‟ ”

The above query becomes the union of two SELECT queries.

Here first query returns a null set because of no matching records

in the table USERS. The second query returns all the data from

the table EMPLOYEE.

3.5 Stored Procedure

In this technique, attacker focuses on the stored procedures

which are present in the database system. Stored procedures run

directly by the database engine. Stored procedure is nothing but a

code and it can be vulnerable as program code. [8] For

authorized/unauthorized user the stored procedure returns

true/false. As an SQLIA, intruder input " , ; SHUTDOWN; - -"

for username or password. Then the stored procedure generates

the following query:

SELECT accounts FROM users WHERE login= 'doe' AND

pass=' '; SHUTDOWN; -- AND pin =

This type of attack works as piggy-back attack. The first original

query is executed and consequently the second query which is

illegitimate is executed and causes database shut down. So, it is

considerable that stored procedures are as vulnerable as web

application code.

3.6 Inference

This type of attack create queries that cause an application or

database to behave differently based on the result of the query.

These attacks allow an attacker to extract data from the database

and detect vulnerable parameter. There are to well-known attack

techniques based on inference: blind-injection and timing

attacks.

IJCEM International Journal of Computational Engineering & Management, Vol. 14, October 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

113

Blind-injection

An attacker performs queries that have a Boolean result. If the

answer is true then the application behaves correctly and if the

answer is false then it cause an error. So attacker can get the

indirect response from database.

Timing attacks

In this attack attacker observe the database delays in the database

response and gather the information. To perform the timing

attack attacker writes the query in the form of an if-then

statement and then uses the WAITFOR keyword in one of the

branch, which causes the database to delay its response by

specified time.

3.7 Alternate Encodings

To avoid the signature and filter based checks the attacker

modify their injection strings called as alternate encoding

technique, such as ASCII, Hexadecimal and Unicode can be used

in conjunction with other techniques to allow an attack and to

escape from various detection methods.

4 SQL injection prevention tools

There are many ways to prevent SQL injection attacks. [6] The

most popular in the source code. There are some approaches for

testing Web applications to identify the presence of SQL

injection vulnerabilities, e.g. using black-box testing

techniques.methods are tainting and tracking of the user input,

analyze the correctness of SQL statement statically; appending

random numbers to SQL statements

4.1 VIPER tool for penetration testing.

[4]According to Angelo Ciampa, Corrado Aaron Visaggio and

Massimiliano Di Penta, they have suggested a tool called Viper

to perform penetration testing of Web applications. This tool

relies on a knowledge base of heuristics that guides the

generation of the SQL queries. This tool first identifies the

hyperlink structure and its input form.

4.2 Attack Injection Methodology.

[7]Joao Antunes,Nuno Neves,Miguel Correia, Paulo Verissimo

and Rui Neves has suggested the attack injection methodology

i.e.AJECT tool which adapts and extends classical fault injection

techniques to look for security vulnerabilities. In this Attack

Injection Tool first the attacks are generated on the target system

to evaluate the system. Means they first build test cases that

would not only exercise all reachable computer instructions but

also try them with every possible instance of input.

4.3 Static analysis And Runtime Monitoring Tool.

[9]William G.J. Halfond and Alessandro Orso has suggested the

tool that detects and prevents SQL injection attacks by

combining static analysis and runtime monitoring. The name of

the tool is AMNESIA (Analysis and Monitoring for NEutralizing

SQL-Injection Attacks). This tool uses both static and runtime

analysis. At static analysis it analyse the web application code

and at runtime this techniques monitors all the dynamically

generated queries.

4.4 Identifying SQL and XSS vulnerability.

 [11]Adam Kie˙zun, Philip J. Guo, Karthick Jayaraman, Michael

D. Ernst has suggested a technique for finding vulnerabilities in

Web Application such as SQL attack and Cross site

scripting(XSS).This technique works on existing code, creates

concrete inputs that expose vulnerabilities and operates before

software is deployed. It analyses application internals to discover

vulnerable code. The tool that identifies the SQL and XSS

vulnerability is known as ARDILLA. It is based on input

generation, taint propagation, and input mutation to find variants

of an execution that exploit vulnerability.

4.5 Obfuscation-based Analysis of SQL Injection

Attacks

[13]Raju Halder and Agostino Cortesi proposes the

obfuscation/deobfuscation based based technique to detect the

presence of possible SQL Injection Attacks (SQLIA) in a query

before submitting it to a DBMS. Now the Obfuscated code is a

source code that has been made difficult for human. [13]In

obfuscation approach the possible attack injection are verified at

atomic formula level and only those atomic formulas which are

tagged as vulnerable, also this approach avoids the root cause of

SQL injection attacks in dynamic query generation .

4.6 SQLInjectionGen SQLIA Detector

[12] MeiJunjin has suggested a tool SQLInjectionGen tool which

combines the static analysis, runtime analysis and automatic

testing. This is an automated test case generation tool to identify

SQL injection vulnerability. According to author the prototype

tool SQLInjectionGen had no false positives and small number

of false negatives.

4.7 SQLrand Practical Protection mechanism

[21] S. W. Boyd and A. D. Keromytis has suggested the practical

protection mechanism for preventing SQL injection attacks

against web server. This tool uses SQL randomized query CGI

application and detect and correct the queries injected into the

code.

4.8 CANDID: Dynamic candidate Evaluations

P. Bisht, P. Madhusudan, and V. N.Venkatakrishnan has

suggested dynamic candidate evaluation approach for automatic

prevention of SQL injection attacks. This tool dynamically

extracts the query structures from every SQL query location

which are intended by the programmer.

IJCEM International Journal of Computational Engineering & Management, Vol. 14, October 2011

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

114

5 Conclusion

SQL injection is most powerful and easiest attack method on the

Web Application. In this paper we have studied many SQL attack

prevention methods proposed by various authors. In this the

VIPER tool performs the penetration testing by using the

standard SQL injections. [6]VIPER tool successfully discovers

the SQL vulnerabilities within the Web Application. Whereas the

ADJECT tool first generate the attack on the target system to

evaluate the system and build the test cases.[7]The AJECT tool

could detect different classes of vulnerabilities in e-mail servers

and assist the developers in their removal by providing the

required test cases. The AMNESIA tool uses both static analysis

and runtime monitoring.[9]AMNESIA is a fully automated tool

for protecting Web applications against SQL injection attacks.

[11]The ARDILLA technique is based on input generation,

dynamic taint propagation, and input mutation to find a variant of

the input that exposes vulnerability. The ARDILLA tool finds

both SQL and XSS vulnerabilities

References

[1] Frank S. Rietta:“Application Layer Intrusion Detection for

SQL Injection”, ACM SE‟06 March 10-12, 2006, Melbourne,
Florida, USA.

[2] Ryan Riley, Xuxian Jiang, and Dongyan Xu:"An
Architectural Approach to Preventing Code Injection
Attacks”, IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-
DECEMBER 2010.

[3] Elias Levy, Iván Arce: “New Threats and Attacks on the
World Wide Web”, PUBLISHED BY THE IEEE
COMPUTER SOCIETY, 1540-7993/06/$20.00 © 2006
IEEE,IEEE SECURITY & PRIVACY.

[4] Angelo Ciampa, Corrado Aaron Visaggio, Massimiliano Di
Penta :”A heuristic-based approach for detecting SQL-
injection vulnerabilities in Web applications”.

[5] Joa˜o Antunes,Nuno Neves, Miguel Correia, Paulo
Verissimo and Rui Neves: “Vulnerability Discovery with
Attack Injection”, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

[6] William G.J. Halfond and Alessandro Orso: “Preventing
SQL Injection Attacks Using AMNESIA”, ICSE‟06, May 20–
28, 2006, Shanghai, China.ACM 1-59593-085-X/06/0005.

[7] Adam Kie˙zun,Philip J. Guo,Karthick Jayaraman,Michael
D. Ernst:“Automatic Creation of SQL Injection and Cross-
Site Scripting AttackS”, ICSE‟09, May 16-24, 2009,
Vancouver, Canada,978-1-4244-3452-7/09/$25.00 © 2009
IEEE.

[8] Atefeh Tajpour, Maslin Masrom, Mohammad Zaman
Heydari, Suhaimi Ibrahim: “SQL Injection Detection and
Prevention Tools Assessment.” 978-1-4244-5540-
9/10/$26.00 ©2010 IEEE

[9] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan: “A
survey on SQL injection: vulnerabilities, attacks, and
prevention techniques”. 2011 IEEE 15th International
Symposium on Consumer Electronics.

[10] Cristian Pinzón, Juan F. De Paz, Javier Bajo, Álvaro
Herrero, Emilio Corchado:“AIIDA-SQL: An Adaptive
Intelligent Intrusion Detector Agent for Detecting SQL

Injection Attacks”. 2010 10th International Conference on
Hybrid Intelligent Systems.

[11] Li Shan, Dong Xiaorui, RaoHong:“An Adaptive Method
Preventing Database from SQL Injection Attacks”. 2010 3rd
International Conference on Advanced Computer Theory and
Engineering (1CACTE).

[12] MeiJunjin: “An approach for SQL injection vulnerability
detection”. 2009 Sixth International Conference on
Information Technology: New Generations.

[13] Raju Halder and Agostino Cortesi, “Obfuscation-based
Analysis of SQL Injection Attacks”. 978-1-4244-7755-
5/10/$26.00 ©2010 IEEE

[14] Jan-Min Chen, Chia-Lun Wu: “An Automated Vulnerability
Scanner for Injection Attack Based on Injection Point”. 978-
1-4244-7640-4/10/$26.00 ©2010 IEEE.

[15] Michelle Ruse, Tanmoy Sarkar, Samik Basu: “Analysis &
Detection of SQL Injection Vulnerabilities via Automatic
Test Case Generation of Programs”. 2010 10th Annual
International Symposium on Applications and the Internet.

[16] Jie Wang, Raphael C.-W. Phan, John N. Whitley and David
J. Parish: “Augmented Attack Tree Modeling of SQL
Injection Attacks”. 978-1-4244-5265-1/10/$26.00 ©2010
IEEE

[17] Atefeh Tajpour, Maslin Massrum, Mohammad Zaman
Heydari:“Comparison of SQL Injection Detection and
Prevention Techniques”. 201O 2nd International Conforence
on Education Technology and Computer (ICETC).

[18] Atefeh Tajpour, Mohammad JorJor zade Shooshtari:
“Evaluation of SQL Injection Detection and Prevention
Techniques”. 2010 Second International Conference on
Computational Intelligence, Communication Systems and
Networks.

[19] NTAGW ABIRA Lambert, KANG Song Lin: “Use of Query
Tokenization to detect and prevent SQL Injection Attacks”.
978-1-4244-5540-9/10/$26.00 ©2010 IEEE.

[20] Xin Wang, Luhua Wang, Gengyu Wei, Dongmei Zhang,
Yixian Yang, “HIDDEN WEB CRAWLING FOR SQL
INJECTION DETECTION”. 978-1-4244-6769-3/10/$26.00
©2010 IEEE.

[21] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing
SQL Injection Attacks. In Proceedings of the 2nd Applied
Cryptography and Network Security Conference, pages 292–
302, June 2004.

[22] P. Bisht, P. Madhusudan, and V.
N.Venkatakrishnan.CANDID:Dynamic Candidate
Evaluations for Automatic Prevention of SQL Injection
Attacks. ACM Trans. Inf. Syst. Secur., 13(2):1–39, 2010.

