
1Connectionist Symbol Processing: Dead or Alive?ContributorsD. S. Blank, M.S. Cohen, M. Coltheart, J. Diederich, B.M. Garner, R.W. Gayler,C.L. Giles, L. Goldfarb, M. Hadeishi, B. Hazlehurst, M. J. Healy, J. Henderson,N. G. Jani, D. S. Levine, S. Lucas, T. Plate, G. Reeke, D. Roth,L. Shastri, J. Sougne, R. Sun, W. Tabor, B. B. Thompson, S. WermterEditors Arun Jagota, Tony Plate, Lokendra Shastri, Ron SunProducers Arun Jagota, Nigel Du�y PrefaceIn August 1998 Dave Touretzky asked on the connectionists e-mailing list, \Is connectionist symbol pro-cessing dead?" This query lead to an interesting discussion and exchange of ideas. We thought it might beuseful to capture this exchange in an article. We solicited contributions, and this collective article is theresult.Contributions were solicited by a public call on the connectionists e-mailing list. All contributions receivedwere subjected to two to three informal reviews. Almost all were accepted with varying degrees of revision.Given the number and variety of contributions, the articles cover a wide, though by no means complete,range of the work in the �eld.The pieces in this article are of varying nature: position summaries, individual research summaries,historical accounts, discussion of controversial issues, etc. We have not attempted to connect the variouspieces together, or to organize them within a coherent framework. Despite this, we think, the reader will�nd this collection useful.The Radical Alternative to Hybrid SystemsDouglas S. BlankUniversity of Arkansas, Fayetteville, USA, dblank@comp.uark.eduImplementing symbol processing in networks was a good �rst step in solving many problems that plaguedsymbolic systems. Tony Plate's HRR as applied to analogy is a great example [147]. Using connectionistrepresentations and methodologies, an expensive symbolic similarity estimation process was eliminated inthe analogy-making MAC/FAC system [60].Unfortunately, the entire MAC/FAC hybrid model (like many such models) has a fatal aw that preventsit from leading to an autonomous, exible, creative, intelligent (analogy-making) machine: the overall systemorganization is still rigidly \symbolic". Their method requires that analogies be encoded as symbols andstructures, which leaves no room for perception or context e�ects during the analogy making process (for adetailed description of this problem, see Hofstadter [86]). For these reasons, implementing Gentner's rigidframework completely in a neural network (or even real neurons) won't help.Plate's hybrid solution, like most hybrid systems, solved many problems of the MAC/FAC purely-symbolic system. No doubt, hybrid systems are better than their symbolic relatives. However, whereversymbols and structures remain, we seem to be faced with other problems of brittleness and rigidity.0Neural Computing Surveys 2, 1-40, 1999, http ://www.icsi.berkeley.edu/~ jagota/NCS



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 2I believe that in order to tackle the big unsolved AI and cognitive science problems (like making analogies),we, as modelers, will have to face a radical idea: we will no longer understand how our models solve a problemexactly. I mean that, for many complex problems, systems that solve them won't be able to be broken downinto symbols and modules, and, therefore, there may not be a description of the solution more abstract thanthe actual solution itself.This is a radical view that many researchers would argue against. Istvan S. N. Berkeley sums up thisopposition in the Connectionists mailing list:\It seems to me that there is something fundamentally wrong about the proposal here. AsMcCloskey [130] has argued, unless we can develop an understanding of how network models(or any kind of model for that matter) go about solving problems, they will not have any usefulimpact upon cognitive theorizing. Whilst this may not be a problem for those who wish touse networks merely as a technology, it surely must be a concern to those who wish to deploynetworks in the furtherment of cognitive science. If we follow [Blank's suggestion] then evensuccessful attempts at modelling will be theoretically sterile, as we will be creating nothing morethan `black boxes'."It is true: if we follow this radical view, we will end up creating \black boxes" or, more radically, the\Big Black Box" solution. However, it is not true that we will be left with a \theoretically sterile" scienceof cognition. Instead of \theories" that explain \how it works" at a �ne level, we will have explanations of\how it developed" at a coarse level. Such a theory would look very di�erent from, say, Marr's theory ofvision [127].Many researchers have been focusing on such explanations by attempting to solve high-level problems viaa purely connectionist framework. Some high-level systems that come to mind include Elman's developmentalmodels, Meeden's planning system, and my own connectionist analogy-making system [43, 133, 20]. Ratherthan focusing on some assumed-necessary symbolically-based process (say, variable binding) these modelslook at a bigger goal: modeling a complex behavior.My analogical model does not assume that analogies are correspondences made via searching throughsymbolic structures. Rather, a network is trained to recognize similar parts of images or sets of relations.The goal of the project was to see how far we can currently model a seemingly symbolic high-level behaviorwithout resorting to the traditional symbolic assumptions.Of course, many systems cannot be \black boxes". Military systems, or modules that interface with othersubsystems may need to harness the explanative power and structure of symbolic systems. But the generalcognitive scientist seeking the most intelligent, autonomous arti�cial agents possible need not be constrainedin such a way. For us, there is the radical alternative.Therefore, building and manipulating structured representations or binding variables via networks shouldnot be our goal. Neither should creating a model such that we can understand its inner workings. Rather,we should focus on the techniques that allow a system to self-organize such that it can solve the biggerproblems. Much of the research on \learning to learn" is, I believe, related to this issue.Connectionist symbol processing has no doubt created more robust symbolic systems; connectionism hasshown that it can be used as an engineering tool to create more exible, less brittle symbolic processing.However, for me, \connectionist symbol processing" was just a very useful stage I went through as a cognitivescientist. Now I see that networks can do the equivalent of processing symbols, and not have anything todo with symbols. In addition, I learned that I can let go of the notion that I will understand exactly how anetwork does it.



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 3Connectionism, Commerce and CognitionMax ColtheartMacquarie University, Sydney, Australia, max@currawong.bhs.mq.edu.auThere are at least four distinct spheres of endeavour in which one could seek evidence of successes inconnectionist symbol processing. Because great success in any one of these spheres by no means guaranteesany success at all in the others, we need to examine each separately.The �rst of these spheres is the commercial. Connectionist networks have been applied to many problemsof commercial interest - handwriting recognition, voice recognition, predicting the stock market - and itwould be of interest to survey such applications to assess the degree to which they have been commerciallysuccessful.The second domain is the formal theory of neural networks, which I take to be a branch of mathematics.This is concerned with proving theorems dealing with such matters as the particular types of symbol-processing problems which particular learning algorithms can or cannot learn. I don't think anyone woulddispute the claim that we know far more about such matters now than we did twenty years ago.Neither of these two domains of applicability of connectionism has anything to do with symbol-processingas it is carried out by living organisms, of course; however, the other two domains I discuss are concernedwith this.The third domain is the brain. Connectionist networks are often referred to as neural networks of course,and much connectionist research results in statements about brain function. What have we learned abouthow the brain processes symbols by doing connectionism instead of, for example, doing single-cell recordingor psychopharmacology? This is far from clear, in my opinion, because much work of this kind argues inthe following way: we know that the brain is a neural network, and the formal theory of neural networkstells us a great deal about what neural nets can and cannot do, and how they do what they do; thereforeconnectionism tells us a great deal about what the brain can and cannot do, and how it does what it does.Of course, the word "neural" in "the brain is a neural network" and the word "neural" in "the formal theoryof neural networks" refer to quite di�erent things. Nevertheless, one comes across arguments that do seemto take this form - for example, arguments to the e�ect that since formal neural networks are susceptibleto catastrophic interference, the brain needs some way of avoiding such this problem, and that means thatconnectionism tells us what the hippocampus is for. This doesn't follow, because it doesn't follow thatcatastrophic interference must be a problem for the brain if it is a problem for formal neural networks.Which brings us to the �nal domain, the mind - the functional or information-processing level of explana-tion of symbol processing.A major contribution that springs to mind here is the Interactive Activation Model(IAM) of letter and word recognition [129]. It o�ered an excellent quantitative account of a body of datafrom studies of word and letter perception; and it remains inuential, since two contemporary computationalmodels of word recognition [35, 67] are directly derived from the IAM model. Why, then, in the extensivediscussion of connectionist symbol processing did no one o�er the IAM as an example of a success in this�eld? This can't be because the IAM doesn't have anything to do with symbol processing, since lettersand words are, obviously, symbols. So is the IAM not regarded as a connectionist model? It is hard tosee why it doesn't qualify here, since the model consists of three layers of units which communicate witheach other via excitatory and inhibitory connections. However,I suggest that this kind of model is regardedas nonconnectionist because of two of its properties. The �rst is that it uses local rather than distributedrepresentation. The second is that its connection strengths are hardwired by the modellers, not learned viasome learning algorithm. If I am right about this, then I conclude that our debate about connectionism andsymbol processing has really been a debate about whether symbol processing can be done well by systemsthat use distributed representations and by systems that are trained by one of the usual learning algorithms(which sounds like two debates rather than one).



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 4Connectionist Symbol Processing: Is There an E�cient Mapping ofFeedforward Networks To a Set of Rules?Joachim DiederichQueensland University of Technology, Australia, joachim@moon.�t.qut.edu.auDave Touretzky asked about the current state of connectionist symbol processing in light of the fact \thatwe did not have good techniques for dealing with structured information in distributed form, or for doingtasks that require variable binding." Consequently, a number of contributors (e.g. Feldman, Shastri, Plateand others) have focused on rule-based or symbolic processing in neural networks. Rule-extraction fromtrained neural networks is a side-issue in this context. The objective is to e�ciently map a neural networkto a set of (minimal rules); the neural network as such is not used for rule-based processing. However, if it ispossible to map a feedforward NN to a rule-set in polynomial time, then this is relevant for the current debate.For instance, it would shed new light on discussions such as the learning of the past-tense of English verbsand to what degree rule-based behavior emerges from feedforward networks. Since the underlying processingmechanism cannot be observed but must be inferred from empirical data for most cognitive tasks, knowledgeof an e�cient mapping of a feedforward network to a set of rules that closely approximate the behavior ofthe network is relevant. It not only touches the question of the appropriate level of abstraction for cognitivemodeling but it makes certain questions (Is the underlying mechanism NN or rule-based?) almost impossibleto answer. If the brain or any other computational system can e�ciently map one representation (a neuralnetwork) into another (a set of rules), then it is close to impossible to infer the correct representation fromempirical data.Over the last years, the principal capabilities and limitations of the most important rule-extraction fromNN techniques have been studied analytically (with respect to the computational complexity) and experi-mentally. Furthermore, rule-extraction from NN techniques have been compared with inductive inferencemethods (again, theoretically and by experiment). Noisy and incomplete data sets have been used for bench-marks in order to determine the suitability of these algorithms for real-world applications. The following isa brief summary of some relevant results:TheoryGolea [66] showed that extracting the minimum DNF expression from a trained feedforward net is hard inthe worst case. Furthermore, Golea [66] showed that the Craven & Shavlik [37] algorithm is not polynomialin the worst case. A promising approach is extracting the best rule, within a given class of rules, from singleperceptrons. However, extracting the best N-of-M rule from a single-layer network is again hard. Maire [123]presents a method to unify rules extracted by use of the N-of-M technique. Independently, he shows thatdeciding whether a perceptron is symmetric with respect to two variables is NP-complete.More recently Maire [124] introduced an algorithm for inverting the function realised by a feedforwardnetwork based on the inversion of the vector-valued functions computed by each individual layer. Thisnew rule-extraction algorithm backpropagates regions from the output to the input layer. These regionsare �nite unions of polyhedra; applied over the input space they approximate to a user- de�ned level ofaccuracy the true reciprocal image of constraints on the outputs (similar to Validity Interval Analysis). Acore problem of the rule-extraction task is thereby solved. The method can be applied to all feedforwardnetworks independent of input-output representations.Empirical studiesA number of rule-extraction from trained neural networks techniques have been compared by use of thestandard benchmark data sets. In addition, rule-extraction from neural network techniques have beencompared with symbolic machine learning methods. Good results have been reported for decompositionaltechnique wrt. rule-quality. Results are generally poorer for pedagogical, learning-based techniques [8].



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 5Symbols, Symbolic Processing and Neural NetworksB. M. GarnerRMIT, Melbourne, Australia, bmg@cs.rmit.edu.auThis contribution poses questions in an attempt to clarify the issues involved in symbolic processing andhypotheses are made as to the answers of these questions. These questions being, what is \symbol", whatis \symbolic processing", and where does symbolic processing occur within the brain? Currently availabletraining algorithms will train neural networks as sets of constraints and it is seen that this is consistent withthe de�nition of symbol proposed here. The proposed de�nition of symbol is `symbol is something that takesits meaning from those symbols \around" it'. Also when the right preprocessing on input data is done, evenvery complex problems can be learnt easily.The De�nition of symbolWhen looking at symbols they are always de�ned in terms of relationships to other symbols, and that symbolsdo not occur by themselves. Often symbols are imbedded into other symbols, and can be used and reusedand take their meaning only within the context they are found in. So perhaps the best de�nition of symbolis that `symbol is something that takes its meaning from those symbols \around" it'. Perhaps there arebetter de�nitions because this one is self-referential. However, this idea of symbol is close to that proposedby structural linguistics (de Saussure [38], Leach [112], Levi-Strauss [113]).While there may be some debate over a connectionist de�nition of what a symbol is, there needs tobe some de�nition. Finding an adequate de�nition may not be easy as there is much debate from manydisciplines, so it may be best to propose something and see how useful it is.Symbolic ProcessingSymbolic processing is where the symbols are either learnt so that they can be recalled at another time,or classi�ed as having previously been learnt. This is referred to as learning/classi�cation process in thiscontribution.Two training algorithms for feedforward neural networks were published by Garner [56, 57], wherethe network was said to be trained to a symbolic solution because numeric values for the weights and thethresholds are not found. The network is trained into sets of constraints for each 'neuron' in the hidden andoutput layers. The constraints show that the weights and the thresholds are in relationship to each other ateach 'neuron' [55]. This relationship is comparative, hence each weight or threshold takes its meaning fromthe weights in the neuron is belongs to. The proposed de�nition of symbol supports the results of availabletraining algorithms [56, 57].The constraints can be seen to de�ne logic relationships within the neuron, then together with the otherneurons in the trained network, form larger logic relationships. So after the network has been trained tolearn a problem, it is possible to see how the network is structured to learn the symbols that the network isbeing trained to recognise.Symbolic Input and OutputBefore symbolic processing can take place within the network of neurons, the input has to be transformedinto a form suitable for processing.Input is presented to the brain in the form of sense data via the nervous system. This input can be viewedas a symbol. What is meant by this, is that the sensation of that which is being touched, for instance, isencoded and presented to the brain via nerve endings, and that sensation is the symbol, as it representsthe object being touched. A similar process is occurring for all the senses the symbol encoding transformsthe sensation to a format suitable for the brain to be classi�ed or learnt; another example is the visualalphanumeric symbol 'a' which is distinct from the audible alphanumeric symbol 'a' have to somehow be



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 6translated into the same abstract symbol. Hence, the input is encoded and transformed into an abstractformat that allows the information to be learnt and compared with other symbols.This problem of transforming data to a format suitable to be learnt by an ANN is familiar to people whohave trained a number of them. Even di�cult problems such as the twin spiral problem can be learnt withone hidden layer if the input space is very well understood and abstracted appropriately for learning.It would seem that some similar transformation, as in symbol input, takes place after classi�cation/learningor symbolic processing for the purposes of thought, communication, action, and so on.ConclusionsThis has been an attempt clarifying the issues involved in symbolic processing, if connectionism is to seriouslyaddress this problem. It has been proposed that there are several mechanisms occurring, a number of verygood transformation processes, and probably one very general learning process that will learn practicallyanything in a binary format.Holographic Networks are Hiking the Foothills of AnalogyRoss W. GaylerUniversity of Melbourne, Australia, r.gayler@psych.unimelb.edu.auDave Touretzky asked whether connectionist symbol processing is dead. In expanding on this question hemade the following observations: (i) \The problems of structured representations and variable binding haveremained unsolved.", (ii) \The last really signi�cant work in the area was Tony Plate's holographic reducedrepresentations", and (iii) \No one is trying to build distributed connectionist reasoning systems any more,like the connectionist production system I built."With respect to the �rst observation, I am not sure which problems Dave is referring to, but the funda-mental problem of whether structured representations and variable binding are possible in a connectionistsystem was answered in the a�rmative by Paul Smolensky [179]. His tensor product binding method al-lows arbitrary vectors to be bound to other vectors, implementing variable/value bindings and recursivelycomposed structures. The method deals with fully distributed representations of bindings and handles localrepresentations as special cases.If the vectors being composed are chosen randomly they may be interpreted as symbols, in that they aree�ectively discrete because of the distribution of similarities of randomly chosen high-dimensional vectors.However, where the vectors to be composed are not chosen randomly the resultant similarity structurebetween the token vectors may carried over into the recursively composed structures, generalising them tocontinuous structures.Smolensky's work covered both the mathematical structure of the representations and the operations thatcould be carried out on them. These operations included holistic transformations of recursive structuresand multiple superposed structures. Thus, these structures may be transformed in a single step withoutsequentially unpacking them.The beauty of tensor product binding compared to more typically connectionist techniques for producingstructured representations (e.g. RAAM, Pollack [153]) is that iterative weight learning is not required. Thebinding properties arise directly from the architecture rather than an optimisation algorithm. New bindingsmay be constructed in a single time step and used immediately. This makes practical the creation and useof ephemeral cognitive structures.I agree with Dave's second observation on the signi�cance of Tony Plate's contribution. The majorpractical problems with Smolensky's tensor product binding are that the required vector dimension increasesexponentially with the nesting depth of the structure to be represented and signi�cant book-keeping isrequired to track the ordering of dimensions. Tony Plate overcame these problems with Holographic ReducedRepresentations (1994) [148]. HRRs can be viewed as compressed tensor products. They provide similar



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 7representational capabilities to tensor product binding, but have the remarkable practical advantage that acompositional structure occupies only as much representational space as an individual constituent. (Pollack'sRAAM provides the same space saving, but at the cost of weight learning.)To the best of my knowledge there are only a few people working actively with HRRs or closely relatedsystems: Tony Plate, Pentti Kanerva, Ross Gayler, and Chris Eliasmith. Plate and Eliasmith work withHRRs. Kanerva's spatter-coding and Gayler's multiplicative binding are very closely related to each otherand are members of the compressed tensor product family (as are HRRs). The apparently low rate ofprogress in this area is at least partly due to the low number of active researchers. However, I believe thearea has gone (relatively) quiet because the research has moved into a qualitatively di�erent phase. Thework of Smolensky and Plate demonstrated that practical, connectionist, recursive structures are feasible.Now the focus has shifted to how these methods may be used to implement cognitive operations.\No one is trying to build distributed connectionist reasoning systems any more, like the connectionistproduction system Touretzky and Hinton [200] built". This work was an important demonstration of tech-nical capability and an implementation of a well understood symbolic architecture. The researchers workingwith the compressed tensor product family are attempting to develop connectionist architectures that takeadvantage of the unique strengths of the representations to implement cognitive operations. By de�nition,they are not seeking to implement known symbolic architectures. Thus, they have taken on the slow anddi�cult task of simultaneously developing novel models of cognitive processes and implementing them innovel ways.Plate, Kanerva, and Gayler were all present at the Analogy'98 workshop in So�a [58, 59, 98, 150]. Theybelieve that analogy is central to human thought and that analogical mapping may be more easily imple-mented with compressed tensor product techniques than classical symbolic techniques because systematicsubstitution of terms is e�ectively a primitive operation in their systems. Eliasmith has worked on a dis-tributed model of analogical mapping, reimplementing the Holyoak and Thagard [87] ACME model usingHRRs . Accounts of Eliasmith's work are available from http://ascc.artsci.wustl.edu/~ celiasmi.Returning to Touretzky's original question, this particular branch of connectionist symbol processing isnot dead. It is in the early phase of striking out in a new direction.Symbolic Methods in Neural NetworksC. Lee GilesNEC Research Institute, USA, giles@research.nj.nec.comWhat is often not realized is that symbolic methods, especially automata, and neural networks sharea long history. The �rst work on neural networks and automata (actually sequential machines - automataimplementations), was that of McCulloch and Pitts [131]. Surprisingly, it has also been referenced as the�rst paper on �nite-state automata (FSA) [88], on Arti�cial Intelligence (Boden), and on recurrent neuralnetworks (RNNs) [62]. In addition, the recurrent network (with instantaneous feedback) in the secondpart of this paper was then reinterpreted by Kleene [101] as a FSA in \Representation of Events in NerveNets and Finite Automata", published in the edited book \Automata Studies" by Shannon and McCarthy.Sometimes this paper is cited as the �rst article on �nite state machines [143]. Minsky [134] discussessymbolic computation in the form of automata with neural networks both in his dissertation and in hisbook \Computation: Finite and In�nite Machines" which has a chapter on \Neural Networks: AutomataMade up of Parts." All of the early work referenced above assumes that the neuron's activation function ishard-thresholded, not a \soft" sigmoid.All of the early work on automata and neural networks was concerned with automata synthesis, i.e.how automata are built or designed into neural networks. Because most automata when implemented as asequential machine requires feedback, the neural networks were necessarily recurrent ones (for an exceptionsee Clouse [25]). It's important to note that the early work (with the exception of Minsky) did not oftenmake a clear distinction between automata (directed, labeled, acyclic graphs [sometimes with stacks and



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 8tapes]) and sequential machines (logic and feedback delays) and was mostly concerned with FSA. There waslittle interest with the exception of Minsky in moving up the automata hierarchy to pushdown automataand Turing Machines.One important area in which symbolic methods have recently been used in neural networks is that ofrepresentation, i.e. theoretically what computational structures neural networks are provably equivalent ornot equivalent to. (The earliest recent work in the area seems to be Pollack [151].) Not surprisingly, all neuralnetwork architectures do not have the same computational power. Siegelmann [177, 176] proves that somerecurrent network architectures are at least Turing equivalent while Frasconi [49] shows the computationallimitations of a local RNN architecture. Giles [61] and Kremer [104] show that certain growing methodscan be computationally limited. There has also been speci�c work on automata representation in neuralnetworks, see for example, Casey [23] (convergence of FSA extraction), Omlin et al [138] (also a comparisonof the complexity of many encoding methods and an extension of work by Alon [7]), Frasconi [50] (radial basisfunctions), Maass [122] (spiked neurons). This type of work is continuing in other computation structures,examples being graphs and tree grammars (Frasconi et al [51], Sperduti [187]) and is important for broadeningthe scope and power of neural computing systems.\The Tragedy" of Connectionist Symbol ProcessingLev GoldfarbUniversity of New Brunswick, Canada, goldfarb@unb.caAbout 8-9 years ago, soon after the birth of the connectionists mailing list, there was a discussionsomewhat related to the present one (about the state of connectionist symbol processing). I recall stating, inessence, that the \connectionist symbol processing" destroys most of the class information contained in thesymbolic training set, if the symbolic representation{and therefore the corresponding \symbolic operations"{are to be taken seriously. This point appears to be not an obvious one. Why?I believe that the situation is mainly explained by the fact that in mathematics the concept of symbolicrepresentation has not yet been addressed, simply because no classical application areas have lead to it.Probably as a result, one \forgets" that the connectionist representation space{the vector space over thereals{by its very de�nition (via the two operations, vector addition and scalar multiplication) allows one \tosee" only the compositions of the two mentioned operations and practically no \symbolic operations", e.g.various deletion, insertion and substitution operations on strings.From a formal point of view, it is important to keep in mind that each of the latter \symbolic operations"is a multivalued function de�ned on the set of strings over a �nite alphabet (e.g. a may occur in many placesin the same string).In other words, if, for example, we encode the strings over a �nite alphabet by vectors in a �nite-dimensional vector space over the reals and try to recover any original symbolic \operation", e.g. \insertionof abcacc", using only the operations of the vector space or even, additionally, any �xed in advance �niteset of non-linear functions, we see that without \cheating", i.e. without looking \back" at the symbolicoperation itself, this is impossible.The relevance of the last observation becomes more clear when, by analogy with the numeric case, onebegins to view the inductive learning process in a symbolic environment as that of discovering the optimal(w.r.t. the training set) symbolic distance measure, where these distance measures are now de�ned via thedynamically updated set of weighted symbolic operations [64].In such a \symbolic" framework, in contrast to the classical numeric framework, the discovered operationsof weight 0, i.e. those corresponding to the some \important class features", induce on the symbolic spacetopology that is quite di�erent from the unique topology of the �nite-dimensional vector space.In fact, it turns out that in a sense the symbolic representational bias is substantially more general thanthe numeric bias. Put di�erently, for practical purposes, the normed vector space is a very special case ofthe more general \symbolic space".



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 9It should be pointed out that the basic \computer science" concept of abstract data type, or ADT, alsostrongly suggests to view the \di�erences" between the structured objects in term of the corresponding setof operations.Some idea about the advantages of the \symbolic spaces" over the classical numeric spaces can, perhaps,be gleaned by comparing the known \numeric" solutions of the generalized parity problem, the problemquite notorious within the connectionist community, with the following, \symbolic", solution (the learningalgorithm is omitted). THE PARITY CLASS PROBLEMThe alphabet: A = fa; bg.Input set S (i.e. the input space without the distance function):The set of strings over A.The parity class C: The set of strings with an even number of b's.Example of a positive training set C+:aababbbaabbaabaabaaaababaabbaaaaaaaaaaaaaaabbabbbbaaaaababaaaSolution to the parity problem, i.e. inductive (parity) class representation:One element from C+, e.g. aaa, plus the following 3 weighted operations (note that the sum of theweights is 1) deletion/insertion of a (weight 0)deletion/insertion of b (weight 1)deletion/insertion of bb (weight 0)This means, in particular, that the distance function D between any two strings from the input set S isnow de�ned as the shortest weighted path (generated by the above 3 operations) between these strings. Theclass is now de�ned as the set of all strings in the space (S;D) whose distance from aaa is 0.On Connectionist Symbol Processing and the Question of A NaturalRepresentational OntologyMitsuharu HadeishiOpen Mind Research, mitsu@openmind.comSome people claim that the fact that the input space to a connectionist or connectionist-style architecturecan be represented as an n-tuple of values (which can be naturally interpreted as a Euclidean vector space)by itself provides su�cient evidence to shed signi�cant doubt on the ability of connectionist architectures todevelop or learn to deal with symbolic representations or symbolic problems. This is questionable for a varietyof reasons, most notably because the input space may be mapped through what amounts to an arbitrarydi�erentiable function approximator (i.e , a connectionist or connectionist-style architecture) [54, 89] whichallow these kinds of systems to construct new models [154] and distort the original metric arbitrarily to biasit in favor of particular learning tasks [16, 17]. The learning process depends on the entire architecture of



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 10the network and the de�nition of the whole algorithm. In other words, the metric structure of the inputspace considered on its own does not need to be a signi�cant factor when it comes to evaluating whetheror not connectionism is capable of symbolic processing|in any case, one cannot evaluate the potentiale�cacy of the learning algorithm on the basis of just this. In addition, though �xed-dimensional, �xed-precision representations cannot handle arbitrarily recursive structures (with the point raised by Tony Platethat allowing bags of multiple �xed-dimensional, �xed-precision vector space representations such as hisHolographic Reduced Representations [148, 145] can encode arbitrarily nested structure, and others havenoted �xed-dimensional, in�nite-precision vectors can be used in the same way, for example Jordan Pollack'sRAAMs [152]), this does not prevent you from using sequential-in-time representations, for example, inconjunction with recurrent networks (which can emulate any Turing machine in theory [177]).While using symbolic representations can certainly lead to faster solutions to symbolic problems [164], itis not clear that this is the most general way to approach all problems. In other words, the representationand the bias imposed by a given representation can lead to enhancements in the e�ciency of a learningalgorithm for a given problem domain, but a symbolic or any other speci�c representation is not necessarilyan e�cient representation for every problem domain|in fact, it seems obvious that this is not the case.In addition, one can conceive of connectionist and neural architectures which use both distributed andsymbolic representations [212, 213]. Perhaps metaphorical reasoning requires this sort of exibility (forexample, attempting to understand poetic expressions).In general, the notion that there is a single preferred ontology for all representational problems is a highlysuspect one. While it is clear that symbolic ontologies (for example) have power (particularly due to theirability to be recursively recombined [148, 145, 152]), nevertheless they evolved over a very long time [128].To say they are best a priori seems contradictory, since symbolic forms of representation have obviouslynot always existed and many other representations have also been used and are still being used, and thereis no particular reason to think any speci�c representation is the \only" or \best" natural representationfor all problems [82, 83]. While it is a seductive goal to try to �nd one ideal representation/ontology, thefact is that in nature, you can think of representations as stable basis elements used by feedback systems[14, 15] (i.e., during the interaction between an organism and its environment, stable patterns can evolvenaturally|whatever works|as the organism interacts with its environment, or the organism attempts toregulate its own processes, these representations may be symbolic or not, as needed [137]). To speak of asingle \best" representation is to ignore this fundamental aspect of what a representation is and to treatobservations as though they were being carried out by some disembodied abstract entity that exists outside ofa physical system or feedback loop: but there is no abstract \observation" or \observer", only the workingsof a physical system [48]. Since there is no abstract entity called \an observation" being \made" by adisembodied \observer object", you have to look at the whole system (including both observer and observed)in order to interpret the representation (i.e., the information in the signal) whether the representation issymbolic, distributed, temporal, spatial, local, or something else. To be more concrete: a symbol on a pageor an activation level of a neuron is meaningless in and of itself; it is only meaningful in the context of thesystem of which it is a part, and thus it is the properties of the whole system which determine the naturalbiases (and thus the bases) and generate the natural representation for the system.Connectionist Research On The Problem Of Symbols: An Opportunity ToRecast How Symbols Work By Reconsidering The Boundaries Of CognitiveSystemsBrian HazlehurstUniversity of California, San Diego, USA, briahn@shn.netIn a recent response to David Touretsky's inquiry about the state of the art in connectionist symbolprocessing, Doug Blank raises some good points about cognition and how we should study it.One I agree with is:



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 11Building and manipulating structured representations or binding variables via networks shouldnot be our goals.One I am neutral about is:Neither should creating a model such that we can understand its inner workings [be one ofour goals].Another I agree with is:Rather, we should focus on the techniques that allow a system to self-organize such that itcan solve The Bigger Problems.However, it is precisely awareness of The Bigger Problems that have focused people's attention on symbolsand human abilities in processing symbols. I share the views expressed above, but also believe that the\problem of symbols" is core to The Bigger Problems. So what is a way around this apparent paradox?One way is to recognize that \connectionist research on the problem of symbols" is not the same thingas \connectionist symbol processing". The latter type of research often casts the problem as one of mim-icking the computational properties of symbols in a direct way: value-binding, compositional structure,systematicity, etc.However, while each of these properties must hold at some level of description, and for some stage ofdevelopment of the cognitive system, they need not apply at every level of description of that system norfor all time that the system exists. That is, these properties need not be atomic primitives of the system forthem to play the roles that they do in the system.For instance the properties of compositionality and systematicity so often used to describe natural lan-guage, are often taken as basic primitives of human language. De�ning the system in this way leads us tobuild these properties into the primitives of our computational framework for modelling the phenomena {witness the Language of Thought model [47] which underlies the symbolic framework. (The framework, inturn, receives credit for being an \inspectable innner workings" methodology. A nice convenience perhaps,but certainly nature is not in the business of creating methodological conveniences.)One real contribution of connectionism has been the introduction of a modelling framework which doesn'trequire us to make this commitment to building observed properties of the cognitive system into the primitivesof the framework. By taking more seriously the micro-level structure and processing, we also have had anopportunity to reconstruct the appropriate boundaries of the cognitive system. In order to account for theproperties of symbols and symbol-processing, I believe, this means considering the interactions among peopleand the environments they co-habit in performing cognitive work. In so reconstituting the boundary of thecognitive system, the required properties of symbols may well emerge from, rather than be primitives of,individual brains.To return to the example of natural language, the challenge is to determine how agents who share aworld and a set of tasks which must get accomplished in that world can employ a communication mediumto facilitate the job. Furthermore, we wish to address the important question: can the medium support thecomplex properties found in natural language? Can such an arrangement, exhibiting the powers of symbolprocessing, exist without symbol systems being enscripted in the wetware?Research addressing these questions is a line of work that Edwin Hutchins and I have pursued in col-laboration for several years [93, 94, 74] . Our models entail demonstrations which answer these particularquestions in the a�rmative. For instance, we have shown how sharing of lexical items need not preceed thetask of communication if the full cognitive system (vocal/gesture plus perception plus social commitment) isrecognized and modelled. We have also demonstrated that a compositional communication system is readilyachieved by agents which must negotiate the formation of the system, while individual verbalizers of innerorganization fail to create compositional systems. This robust result follows from the fact that individualcreators' verbalizations (in our simulations) never have to do any communicative work, and thus never getexploited in production of higher order structure { such as a grammar which serves to encourage expectedconstructions.



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 12This work has a�nities to other connectionist work in language acquisition [24] and symbol-grounding [72,73, 36] , and is informed by a line of philosophical thinking about lanuguage which stems from Wittegen-stein [105, 19, 45]. Our work has its roots in Cognitive Anthropology, where the organization of behavior iswhat needs to be explained and the basic data are the tra�c in material exchanges (including language andgesture) which evoke and create meanings. However, given the broad array of documented ways in whichorganized behavior comes about through cultural processes, we pay attention (as do all anthropologists) tothe inter-personal and historical aspects of cognitive systems.To summarize, I agree with Doug Blank that connectionism needs to go beyond the framing of theagenda which has been inherited from symbolic theorizing and modelling. However, I also believe that crucialissues of The Big Problems will continue to be derived from the nature of symbols and symbol processing.My solution for how to meet both of these (seemingly at-odds) requirements lies with understanding thatsymbol processing is signi�cantly informed by the domains of person-environment, person-person and across-generation phenomena.Formal Semantic Model for Neural NetworksMichael J. HealyThe Boeing Company, University of Washington, USA, michael.j.healy@boeing.comUnderstanding the semantic issues involved in symbolic processing with neural networks requires a math-ematical approach, to disambiguate the terminology and understand the relationship between symbols, con-nectionist processing, and data. Rule extraction is one example of an active literature involving symbolicprocessing with neural networks. This work is mostly empirical, with formal modeling considered only infre-quently (see [9] for an overview of the �eld and the issues most often addressed). A mathematical model forthe semantics of symbolic processing with neural networks requires more than a stated symbolic representa-tion of connectionist processing and connection weight memories: It requires an explicit semantic model aswell. In such a model, the "universe" of things the symbolic concepts are about receives as much attentionas the concepts themselves.For example, if the concepts are descriptions of airplane part assemblies (fuselage, right engine, landinggear, landing gear strut, landing gear hydraulic uid line, ...), then there are di�erent examples of eachconcept|say, for a Boeing 747 or Airbus 320. An example can be represented in the mathematical modelas a "point" in a space of airplane assemblies. Each point is associated with a set of concepts, representingwhat is known about that point.A mathematical modeling e�ort in progress[75] has resulted in a statement about some important logicalproperties of rule bases in general and rule extraction with neural networks and other machine learningsystems in particular. The main �nding in this e�ort to date is that a sound and complete rule base|onein which the rules are actually valid for all the data and which has all the rules|has the semantics of acontinuous function between topological spaces. The concepts of each space are associated with the opensets, and the things the concepts are about (such as the airplane assemblies in the example) are the points.The reference previously given discusses this, with some explanation. A more extensive development will beavailable in a forthcoming paper[76].The mathematical semantic model referred to here is based upon geometric logic and its semantics.The initial version of the semantics is expressed in terms of point-set topology. This is the simple version;geometric logic is really a categorical logic, and category theory has a much greater expressive power.Geometric logic is very strict in what it takes to assert a statement. It is meant to represent observationalstatements, ones whose positive instances can be observed. Topology is the mathematical study of \nearness";the connection with logic is that an instance of the \universe of discouse" satis�es a collection of logicalstatements that are related through logical inference; conversely, the instances of related statements satisfy a\similarity" or \nearness" relationship. Continuous functions between di�erent universes (or sub-universes,called domains) preserve these similarity relationships. Continuity is really the mathematical way of saying



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 13"similar things map to similar things".In terms of the previous example, in which airplane parts are points in a space, an important kindof similarity arises. To exemplify, one point might represent a left-side landing gear strut for a 320, butthat might be all that is known about it. Alternatively, more could be known: It could be known that itcomes from a particular airplane, \tail number such-and-such" (the airplane's unique ID is called its tailnumber). There is a partial order (a mathematical relation) in which a point representing an arbitraryairplane assembly is "less than" a point representing an arbitrary strut, which in turn is "less than" a pointrepresenting a 320 strut, and this in turn is "less than" a strut for any particular tail numbered 320. Thisorder relation de�nes a specialization hierarchy: The higher you go in the order, the more specialized thepoints are|the more information they contain. Conversely, lower points in the hierarchy represent higherpoints that are similar in that they share some set of concepts.The "universe" containing the points as elements is a topological space, and the lattice of open sets(ordered by set inclusion) of the topological space corresponds to the specialization order (which goes inthe opposite direction). The logical entailment relation for the concepts corresponds directly to the subsetrelation. So, for example, the concept "landing gear strut" entails the concept "airplane assembly". Cor-respondingly, the set of all landing gear struts is a subset of the set of all airplane assemblies. Continuousfunctions preserve the ordering of points and the ordering of open sets as well.This mathematical model relates directly to the work being done in rule extraction, even with the manydi�erent approaches and neural network models in use. The claim is that it supports the intuition that manyresearchers in the �eld seem to have about the instances of neural processing as rule instances. Anotheraspect of the model is that it begins to address semiotic issues|the relationship of sign-systems (e.g.,symbol-systems) to semantics. Finally, the topological model is consistent with probabilistic modeling and,apparently, fuzzy logic.Language Learning and Processing with Temporal Synchrony Variable BindingJamie HendersonUniversity of Exeter, UK, J.B.Henderson@exeter.ac.ukNatural language, and particularly syntax, has traditionally been a bastion of symbolic processing. Inrecent years statistical methods have usurped some aspects of the symbolic approach, but one aspect whichhas not been successfully challenged is the use of structured representations. Thus, it still seems that theregularities in natural language can only be captured by dividing a sentence into discrete constituents andexpressing generalizations in terms of these constituents. This poses a challenge to connectionism, but byusing Temporal Synchrony Variable Binding (TSVB), we can represent both these constituents and thesegeneralizations in a connectionist network.TSVB is the method of using the synchrony of activation pulses to represent entities. This proposal wasoriginally made on biological grounds ([205] and see [144]), and has also been justi�ed on computationalgrounds [171]. A crucial characteristic of TSVB is that a single �xed set of link weights can be appliedto multiple dynamically created entities. This characteristic allows a network's representation of syntacticregularities to capture generalizations across syntactic constituents [79]. While the class of generalizationsthat TSVB can capture is more constrained than the total set typically used in linguistic theories, theyare su�cient to express the generalizations required for syntactic parsing, and these constraints even makesigni�cant linguistic predictions ([77], [78], [80]).One advantage of connectionist representations over symbolic ones is that the ability to represent gen-eralizations leads naturally to an ability to learn generalizations. For TSVB and syntactic parsing, thispotential has been realized by extending the Simple Recurrent Network (SRN) architecture [43] with TSVB,producing an architecture we call Simple Synchrony Networks (SSNs) ([110], [81]). This architecture inheritsfrom SRNs the ability to learn generalizations across positions in the input sequence. In addition, SSNs cannot only represent syntactic constituency in their outputs, but they can learn generalizations across syn-



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 14tactic constituents. This generalization ability has been demonstrated through toy grammar experiments[109], and through the application of SSNs to learning broad coverage syntactic parsing from a corpus ofnaturally occurring text ([81], [110]). The success of these initial experiments bodes well for the future ofthis architecture, both within natural language processing and for a wide range of other complex domains.A Connectionist Theory of Learning Proportional Analogies and the Nature ofAssociations Among ConceptsNilendu G. Jani, Daniel S. LevineUniversity of Texas, Arlington, USA, nilendu jani@yahoo.com,b344dsl@utarlg.uta.eduA connectionist neural network has been developed that can simulate the learning of some simple pro-portional analogies. These analogies include, for example, a) red square: red circle :: yellow square: ????;b) apple: red :: banana:????; c) a:b:: s: ????.Underlying the development of our analogy network is a theory for how the brain learns that pairs ofconcepts are associated in a particular manner. Traditional Hebbian learning of associations is necessary forthis process but not su�cient. This is because Hebbian learning simply says, for example, that the concepts\apple" and \red" have been associated. It does not tell us the nature of the relationship that has beenlearned between \apple" and \red." The types of context-dependent interlevel connections in our networksuggest a nonlocal type of learning that in some manner involves association among more than two nodesor neurons at once. Such connections have been called synaptic triads [40] and related to potential cellresponses in the prefrontal cortex.Some additional types of connections are suggested by the problem of modeling analogies. These typesof connections have not yet been veri�ed by brain imaging, but our work suggests that they may occur and,possibly, be made and broken quickly in the course of working memory encoding. For example, we include inour network various types of working memory connections that bear some kinship to what have been calleddi�erential Hebbian connections [102, 103]. In these connections, one can learn mappings between conceptssuch as \keep red the same"; \change red to yellow"; \turn o� red"; \turn on yellow," et cetera. Also, weinclude a kind of weight transport (distantly analogous to what occurs in backpropagation networks) so that,for example, \red to red" can be transported to a di�erent instance of color, such as \yellow to yellow." (Infuture modi�cations, we may also include transport \upward" and \downward" in the network to simulateproperty generalization and inheritance.)Once a particular type of conceptual mapping has been learned between \apple" and \red" in our net-work, for example, this mapping can be applied to the concept of \banana" to generate \yellow." Thenetwork instantiation we are developing, based on common connectionist \building blocks" such as associa-tive learning, competition, and adaptive resonance (see, e.g., [69, 115]), along with additional principlessuggested by analogy data, is a step toward a theory of interactions among several brain areas to developand learn meaningful relationships between concepts. This network is designed for a problem domain thatis based on analogies among either relatively low-level, mundane percepts or abstract categories of suchlow-level percepts. Hence, at this stage it does not capture the type of high-level semantic analogies dealtwith by the models of Hummel and Holyoak [91] and Plate [149] nor the analogical ambiguities obtainedfrom detailed relationships among letters by the COPYCAT model of Mitchell [135]. We believe that thegeneral conception of our model may subsequently be extendable to such high-level or ambiguous problemdomains. However, we �rst wished to capture proportional analogies among low-level concepts and perceptsby means of connectionist architectures that followed some biologically realistic principles of organization.Grammar-based Neural NetsSimon Lucas



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 15University of Essex, UK, sml@essex.ac.ukI would suggest that most recurrent neural net architectures are not fundamentally more `neural' thanhidden Markov models - we can think of an HMM as a neural net with second-order weights and linearactivation functions.HMMs are, of course, very much alive and kicking, and routinely successfully applied to problems in speechand OCR for example. It might be argued that the HMMs tend to employ less distributed representationsthan RNNs, but even if this is true, is it of practical signi�cance?There has been some interesting work exploring the links between HMMs and RNNs [22, 18].Also related to the discussion is the Syntactic Neural Network (SNN) - an architecture I developed in myPhD thesis [120, 118].The SNN is a modular architecture that is able to parse and (in some cases) infer context-free (andtherefore also regular, linear etc.) grammars.The architecture is composed of Local Inference Machines (LIMs) that rewrite pairs of symbols. Theseare then arranged in a matrix parser formation [219] to handle general context-free grammars - or we canalter the SNN macro-structure (i.e. the way in which individual LIMs are connected together) in order tospeci�cally deal with simpler classes of grammar such as regular, strictly-hierarchical or linear. The LIMremains unchanged.In my thesis I only developed a local learning rule for the strictly-hierarchical grammar, which was aspecialisation of the inside/outside algorithm [11] for training stochastic context-free grammars.By constructing the LIMs from forward-backward modules [119] however, any SNN that you constructautomatically has an associated training algorithm. How well this works in practice has to be tested empir-ically. I've already proven this to work for regular grammars, and work is currently in progress to test otherimportant cases.What SNNs, Alpha-Nets and IOHMMs have in common is their explicit grammatical interpretation.Having trained the `neural net', one can directly extract an equivalent grammar. This can be seen asadvantageous from a practical engineering viewpoint, but also perhaps, makes these systems a bit lessseductive from a connectionist viewpoint - one of the attractions of conventional RNNs has been theirtheoretical universal computing power - though in practice I'm not aware of any convincing demonstrationsof them learning anything beyond regular languages (I would be happy to stand corrected on this point).Representation, Reasoning and Learning with Distributed RepresentationsTony PlateBios Group LP, USA, tplate@ibm.netWork on higher-level connectionist processing has made steady progress over the last decade. Severalsolutions to some of di�cult representational problems have been developed, and researchers are starting tobuild more complex systems.There are three main problems concerning representation: binding, recursive structure, and learning.Interesting techniques have been developed for solving all of these problems individually. However, no onehas yet built a connectionist system which can solve all of these problems at once and learn underlyingrecursive structure from a raw input data stream.Binding and StructureThere are two broad families of solutions to the problems of binding and representing recursive structure:static conjunctive codes [84, 179, 145] , and binding by temporal synchrony [171, 91]. Both are promising andpresently have di�erent strengths: conjunctive codes such as Holographic Reduced Representations (HRRs)cope with recursive structure in a more uniform fashion, while systems based on temporal synchrony haveexhibited more advanced processing (e.g., LISA). I'll restrict my comments mainly to conjunctive codes.



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 16Regarding the problems of binding and structure in static distributed representations, Mitsu Hadeishiexpressed a claim that used to be widely held:\An input space which consists of a �xed number of dimensions cannot handle recursivecombinations"A number of people have shown that it is possible to represent arbitrarily nested concepts in space with a�xed number of dimensions. Furthermore, the resulting representations have interesting and useful propertiesnot shared by their symbolic counterparts. Very briey, the way one can do this is by using vector-spaceoperations for addition and multiplication to implement the conceptual operations of forming collections andbinding concepts. For example, one can build a distributed representation for a shape con�guration#33 of\circle above triangle" as:con�g33 = vertical + circle + triangle + ontop*circle + below*trianglewhere each symbol here is a vector. By using an appropriate multiplication operation (in my HRRs [145]I used circular, or wrapped, convolution), the reduced representation of the compositional concept (e.g.,con�g33) has the same dimension as its components, and can readily be used as a component in otherhigher-level relations. Decoding is accomplished easily using inverse operations. Large recursive structurescan be chunked into smaller parts so that arbitrary precision in vectors is not required. To do this requiressome additional machinery: an auto-associative clean-up memory in which all chunks and sub-chunks can bestored. Quite a few people have devised representational schemes based on some form of conjunctive coding(though few have used chunking), e.g., Smolensky's Tensor Products [179], Pollack's (1990) RAAMs [153],Sperduti's (1994) LRAAMs [186], Kanerva's (1996) Binary Spatter Codes [97], and Gayler's (1998) Braidoperator [58]. Another related scheme that uses distributed representations and tensor product bindings(but not role-�ller bindings) is Halford, Wilson and Philips' STAR model [71].Some of the useful properties of HRRs and these types of conjunctive representations in general are asfollows:1. The reduced, distributed representation (e.g., con�g33) functions like a pointer, but is more than amere pointer in that information about it contents is available directly without having to \follow" the\pointer." This makes it possible to do some types processing without having to unpack the structures.2. The vector-space similarity of representations (i.e., the dot-product) reects both super�cial and struc-tural similarity of structures.3. There are fast, approximate, vector-space techniques for doing \structural" computations like �ndingcorresponding objects in two analogies, or doing structural transformations.4. HRRs and binary spatter codes are fully distributed in the sense usefully de�ned by Bryan Thompson:\the equi-presence of the encoding of an entity or compositional relation among all elements of therepresentation." In HRRs everything is represented over all of the units. Suppose one has a vectorX which represents a certain structure. Then just the �rst half of X will also represent that wholestructure, though it will be noisier.5. HRRs scale well to representing large numbers of entities and relations. The vector dimensionalityrequired is high { in the hundreds to thousands of elements. But, HRRs have an interesting scalingproperty { toy problems involving a just a couple dozen relations might require a dimensionality of1000, but the dimensionality doesn't need to increase much (to 2 or 4 thousand) to handle problemsinvolving tens of thousands of relations.The way these distributed representations work almost always involves superimposing vectors whichrepresent di�erent concepts, e.g., di�erent role �ller bindings (in HRRs) or di�erent propositions (in STAR,Halford et al [71]). In this respect, the following point made by Jerry Feldman may seem puzzling:



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 17\Parallel Distributed Processing is a contradiction in terms. To the extent that representinga concept involves all of the units in a system, only one concept can be active at a time."However, while this claim is true as it stands, it is often not applicable in connectionist systems. Thisis because distributed representations are usually have a high level of redundancy: all of the units may beinvolved in representing a concept, but none are essential. Thus, one can easily represent more than oneconcept at a time in most distributed representation schemes. Part of the beauty of distributed representa-tions is the soft limit on the number of concepts that can be represented at once. This limit depends on thedimensionality of the system, the redundancy in representations, the similarity structure of the concepts,and so forth. And of course one can also have di�erent modules within a system. But, the important pointhere is that even within a single PDP module, one can still represent (and process) multiple concepts atonce.LearningEven if one has a way of constructing distributed representations of complex structures by systematic com-position of lower level concepts, one still needs to be able to develop good distributed representations forthe lower level concepts. These representations should reect the similarity: similar concepts should berepresented by similar vectors. One method for learning such representations is Latent Semantic Analysis(LSA) [39] , also known as Latent Semantic Indexing (LSI). LSA is a method for taking a large corpus of textand constructing vector representations for words in such a way that similar words are represented by similarvectors. LSA works by representing a word by its context (harkenning back to a comment made by Firth(1957): \You shall know a word by the company it keeps"), and then reducing the dimensionality of thecontext using singular value decomposition (SVD). (For those familiar with principal component analysis,the reduction is essentially the same as PCA.) The vectors constructed by LSA can be of any size, but itseems that moderately high dimensions work best: 100 to 300 elements. It turns out that one can do all sortsof surprising things with these vectors. One can construct vectors which represent documents and queries bymerely summing the vectors for their words and then do information retrieval by �nding the document witha vector most similar to the vector for the query. This automatically gets around the problem of synonyms,since synonyms tend to have similar vectors. One can do the same thing with multiple-choice tests, byforming vectors for the question and each potential answer, and choosing the answer with the most similarvector to the question. Landauer et al [108] describe a system built along these lines can pass �rst-yearpsychology exams and TOEFL tests. It is intriguing that all of these results are achieved by treating textsas unordered bags of words { there are no complex reasoning operations involved. LSA could provide anexcellent source of representations for use in a more complex connectionist systems (using connectionist ina very broad sense here). One attractive property of LSA is that it is fast enough that it can be used onmany tens of thousands of documents to derive vectors for many thousands of words. This is exiting becauseit could allow one to start building connectionist systems which deal with full-range vocabularies and largevaried task sets (as in info. retrieval and related tasks), and which do more interesting processing than justforming the bag-of-words content of a document a la vanilla-LSA.Processing: Complex ReasoningAs mentioned by Ross Gayler and others, analogy processing is a very promising area for the application ofconnectionist ideas. There are a few reasons for analogy being interesting: it appears to be widespread inhuman cognition, structural relationships are important to the task, no explicit variables need be involved,and rule-based reasoning can be seen as a very specialized version of the task. One very interesting model ofanalogical processing with (partially) distributed representations is Hummel and Holyoak's LISA model [91].This model uses distributed representations for roles and �llers, binding them together with temporal syn-chrony, and achieves quite impressive results. Similar models based on static conjunctive binding codes havenot yet been demonstrated, though powerful primitive operations for manipulating structures and �ndingcorresponding objects have been identi�ed [146].



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 18The Input Space Is The Real WorldGeorge ReekeThe Rockefeller University, USA, reeke@lobimo.rockefeller.eduMitsu Hadeishi wrote:\The point I am making is simply that after one has transformed the input space, two pointswhich begin `close together' (not in�nitesimally close, but just close) may end up far apart andvice versa. The mapping can be degenerate, singular, etc. Why is the metric on the initial space,then, so important, after all these transformations? Distance measured in the input space mayhave very little correlation with distance in the output space."I can't help stepping in with the following observation. The reason that distance in the input spaceis so important is that the input space is the real world. It is generally (not always, of course) useful forbiological organisms to make similar responses to similar situations{this is what we call \generalization".For this reason, whatever kind of representation is used, it probably should not distort the real-world metrictoo much. It is perhaps too easy when thinking in terms of mathematical abstractions to forget what thepurpose of all these transformations might be.Mitsu Hadeishi replied:\Quite true, which is why I mentioned `not in�nitesimally close' since clearly the transfor-mations need to be stable (for the most part) over small variations in the input (i.e., not havediscontinuous variations). However, it can be useful for the transformations to have `relativelysharp' boundaries, i.e., so as to be able to discriminate categories (consider a network whoseoutput is deciding whether a letter presented to it is `A' or `B'|usually you would want theoutput to be varying relatively sharply between the categories.)"The idea that relatively sharp boundaries should be introduced by input space transformations as a meansof discriminating categories, and thus of de�ning symbols, is, in my opinion, at the heart of a fundamentalproblem with the symbol-processing approach to cognition. (This is an issue for any symbol-processingapproach, not just for connectionist symbol processing, of course.) We do indeed need symbols to performcertain higher functions that involve logic, but I do not think we use them for ordinary perceptual catego-rization or even to de�ne natural language categories. In abstract symbol systems, the boundaries betweensymbols are set in advance or at any rate remain �xed during any one set of transactions. In human cognitivesystems, the boundaries can change according to context and can even be di�erent in two consecutive sen-tences that use the same terms. There is only minimal confusion because the world is right there to act as areference to disambiguate the categories via linkages detectable in perceptual mappings. This is what makesit possible for a small set of words to cover the enormously varied set of microscopically di�erent situationsthat arise in the real world. It is what enables generalization to work across even rather distant categorieswithout inducing confusion in other circumstances where the boundaries need to be di�erent. This is nota property of the kind of mathematical transformations that Mitsu and others in this discussion have beentalking about. I claim that the kind of �xed symbols needed for logical reasoning can be built \on top" ofexible perceptual categories tied to the ever-changing real world, but it is not possible to build the exibleperceptual categories \on top" of �xed abstract symbols, because the glue of the distance metric in the realworld is lost in an abstract symbol system.Gerald Edelman some time ago introduced the term \zoomability" to refer to the property by whichneural representations of the world contain at any time numerous links at multiple scales to other chunksof the world [41]. He and I have discussed in several places [156, 42, 157] why we believe that perceptualmappings must possess this and related properties in order to support human categorization, language, andreasoning.



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 19Learning and Reasoning with Connectionist RepresentationsDan RothUniversity of Illinois, Urbana-Champaign, USA, danr@cs.uiuc.eduLearning and reasoning have been long recognized as fundamental phenomena of intelligence. Muchprogress has been made in understanding them from a computational perspective. Unfortunately, the theoriesthat have emerged for the two are somewhat disparate. If one wants to develop computational modelsthat account for the exibility, adaptability and speed of reasoning, a central consideration is how theknowledge is acquired and how this process, of interaction with its environment, inuences the performanceof the reasoning system. Developing a unifying theory for the Learning and Reasoning phenomena, webelieve, is currently the central theoretical question we face if we want to make signi�cant progress towardsunderstanding how the brain or a man-made machine perform knowledge intensive inferences.An attempt to cast research in this direction as the study of symbolic processes using connectionist rep-resentations is, we believe, misguided. It focuses the research on presenting traditionally studied knowledgerepresentations and inference problems using a connectionist architecture, neglecting that (1) this by itselfdoes not resolve the intractability of reasoning with these representations and (2) the fact that connectionistrepresentations are not inherently more robust than other equivalent representations; non-brittleness is avirtue of the way representations are acquired. On the learning side, it emphasizes an unnatural separationof learning algorithms (all function approximation algorithms) to \symbolic" and \non-symbolic".Our work in this direction has concentrated on developing the theoretical basis within which to addresssome of the obstacles and on developing an experimental paradigm within which realistic experiments (interms of scale and resources) can be performed to validate the theoretical basis. In particular, we havedeveloped a connectionist architecture and algorithmic tools that have already shown superior results onsome large-scale, real-world inference problems in the natural language domain.The formal framework developed to address such questions is the learning to reason (L2R) approach {an integrated theory of learning, knowledge representation and reasoning. Within L2R it is shown [100]that through interaction with the world, the system truly gains additional reasoning power over what ispossible in the traditional setting, where the inference problem is studied independently of the knowledgeacquisition stage. In particular, cases are presented where learning to reason is feasible but either reasoningfrom a given representation or learning these representations do not have e�cient solutions. A suggestionof how to use L2R within a connectionist architecture is developed in [161]. The speci�c implementationused there utilizes a model-based approach to reasoning [99] and yields a network that can support instan-taneous deduction and abduction, in cases that are intractable using other knowledge representations. Thisis achieved by interpreting the connectionist architecture as encoding examples acquired via interaction withthe environment, and allows for the integration of the inference and learning processes.This framework is being studied within Valiant's Neuroidal paradigm [203], a computational modelthat is intended to be consistent with the gross biological constraints we currently understand. This is aprogrammable model which makes minimal assumptions about the computing elements. It is composed oftwo types of units: circuit units and image units with the intention that a network of circuit units will formthe long term memory of the system while image units can be thought of as the working memory of thesystem [204]. It is equipped with on-line learning mechanisms and a decision support mechanism.Our experimental system, SNOW, is inuenced by the Neuroidal model, and has already been shown toperform remarkably well on several real-world natural language inferences tasks such as context sensitiveword correction (Spell), part-of-speech tagging (POS) and prepositional phrase attachment [65, 163, 106].The SNOW (Sparse Network of Winnows) architecture is a network of threshold gates utilizing the Winnow[117] learning algorithm as an update rule. The system consists of a very large number of items whichcorrespond to high-level concepts, for which humans have words, as well as lower-level predicates from whichthe high-level ones are composed. Lower-level predicates encode aspects of the current state of the world,and are input to the architecture from the outside. The high-level concepts are learned as functions of



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 20the lower-level predicates. When learning from text, for example, complex features of pre-de�ned form(e.g., conjunctions of primitive features that appear in close proximity) that are observed in the text areallocated nodes in the network, and learning is done in terms of these complex features. This allows one tolearn higher-than-linear representations using a learning algorithm that learns linear functions. This processbecomes feasible computationally due to modest dependence of the algorithm used on the dimensionality ofthe domain. Learning in SNOW [162] proceeds in an on-line fashion, where every example (input sentence) istreated autonomously by (possibly) many target subnetwork. For example, in Spell, target nodes representmembers of the confusion sets (e.g. fdesert ; dessertg); in POS, target nodes correspond to di�erent pos tags.An example may be treated as a positive one for a few of the nodes and negative to others. At decision timegiven an input sentence which activates a subset of the input nodes, the information propagates through allthe subnetworks and a learned decision support mechanism takes a�ect. Winnow, a local, mistake drivenon-line learning algorithm, is used at each target node to learn its dependence on other nodes. Its key featureis that the number of examples it requires to learn the target node grows linearly with the number of relevantattributes and only logarithmically with the total number of attributes { allowing for a large feature set.The system uses large text corpora to e�ciently learn a network architecture consisting of hundreds ofthousands of features. The learned network is able to create a useful level of knowledge and successfully per-form several inference tasks. In this way, the system already addresses a few of the important computationalissues that arise in learning to perform large-scale language inferences. Studying the interaction betweensubnetworks and devising binding mechanisms as part of a concrete implementation of the image units aresome of the issues that are currently under investigation.Understanding how the brain can perform knowledge intensive inferences such as language understanding,high level vision and planning and behave robustly when presented with previously unseen situations, is oneof the great intellectual problems of our time. We have argued that the key to make progress in this directionis to develop uni�ed theories of learning and reasoning, and reported on some theoretical progress in thisdirection. As important is the development of an experimental paradigm, so that progress can be measuredusing large scale experiments, with a methodology that is common in other sciences. We have presented theSNOW system as an example for a successful system, capable of performing large real-world inferences.SHRUTI { A Neurally Motivated Model of Rapid Relational ProcessingLokendra Shastri 1International Computer Science Institute, Berkeley, California, shastri@icsi.berkeley.eduIn order to understand language, a hearer must draw inferences to establish referential and causal coher-ence, generate expectations, and recognize speaker's intent. Yet we can understand language at the rate ofseveral hundred words per minute. This suggests that we are capable of performing a wide range of inferencesrapidly, spontaneously and without conscious e�ort { as though such inferences are a reex response of ourcognitive apparatus. In view of this, such reasoning may be described as reexive reasoning [171].This remarkable human ability poses a central challenge for cognitive science and computational neu-roscience: How can a system of simple and slow neuron-like elements represent a large body of systematicknowledge and perform a wide range of inferences with such speed?In 1989, V. Ajjanagadde and L. Shastri proposed a structured connectionist2 model shruti [1], whichattempted to address this challenge and demonstrated how a network of slow neuron-like elements could en-code a large body of structured knowledge including speci�c as well an instantiation independent knowledge,and perform a variety of inferences within a few hundred milliseconds [5][170][6][165][171]. D.R. Mani madeseveral important contributions to the model [126] and also implemented the �rst shruti simulator.1Research on shruti has been supported by: NSF grants SBR-9720398 and IRI 88-05465, ONR grant N00014-93-1-1149,DoD grant MDA904-96-C-1156, ARO grants DAA29-84-9-0027 and DAAL03-89-C-0031, DFG grant Schr 275/7-1, ICSI generalfunds, and subcontracts from Cognitive Technologies Inc. under ONR grant N00014-95-C-0182 and ARI contract DASW01-97-C-0038. Work on the CM-5 version of Shruti was supported by NSF Infrastructure Grant CDA-8722788.2For an overview of the structured connectionist approach and its merits see [46][166]



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 21shruti suggested that the encoding of relational information (frames, predicates, etc.) is mediated byneural circuits composed of focal clusters and the dynamic representation and communication of relationalinstances involves the transient propagation of rhythmic activity across these clusters. A role-entity bindingis represented within this rhythmic activity by the synchronous �ring of appropriate cells. Systematicmappings | and other rule-like knowledge | are encoded by high-e�cacy links that enable the propagationof rhythmic activity across focal clusters, and a fact in long-term memory is a temporal pattern matchercircuit that �res when the static bindings it encodes match the dynamic bindings encoded in the rhythmicactivity propagating through the neural circuitry.shruti showed that reexive reasoning can be the spontaneous and natural outcome of a neurally plausi-ble system. In shruti there is no separate interpreter or inference mechanism that manipulates and rewritessymbols. The network encoding of commonsense knowledge is a vivid model of the agent's environment andwhen the nodes in this model are activated to reect a given state of a�airs in the environment, the modelspontaneously simulates the behavior of the external world and in doing so �nds coherent explanations andmakes predictions [171].shruti also identi�ed a number of constraints on the representation and processing of relational knowl-edge and predicted the capacity of the dynamic memory underlying reexive reasoning. On the basis ofneurophysiological data pertaining to occurrence of synchronous activity in the  band, shruti lead to theprediction that a large number of facts can be active simultaneously and a large number of rules can �re inparallel during an episode of reexive reasoning. However, the number of distinct entities participating asrole-�llers in this activity must remain very small (� 7).The possible role of synchronous activity in dynamic neural representations had been suggested by otherresearchers (e.g., Malsburg [206]), but shruti provided a detailed account of how synchronous activationcan be harnessed to solve problems in the representation and processing of high-level (symbolic) conceptualknowledge. Several other models that use synchrony to solve the dynamic binding problem have since beenproposed (e.g., [92][91]) and there has emerged a rich body of neurophysiological evidence suggesting thatsynchronous activity might indeed play an important role in neural information processing (e.g., [178][202]).The relevance of shruti extends beyond reasoning to other forms of rapid processing of relational in-formation. For example, J. Henderson [77] has shown that constraints predicted by shruti explain severalproperties of language processing including garden path e�ects and our limited ability to deal with center-embedding.Over the past several years, shruti has been augmented in a number of ways [168] in collaborative workbetween Shastri, his students, and others. These enhancements enable shruti to:1. Encode negated facts and rules and deal with inconsistent beliefs (see [172])2. Seek coherent explanations for observations3. Encode soft/evidential rules and facts (with D.J. Grannes and C. Wendelken)4. Represent types and instances, and the subtype and supertype relations in an e�ective manner andsupport limited forms of quanti�cation [169]5. Instantiate entities dynamically during reasoning (with D.J. Grannes and J. Hobbs)6. Represent multiple-consequent rules (with D.J. Grannes and C. Wendelken)7. Exhibit priming e�ects (with D.J. Grannes, B. Thompson, and C. Wendelken)8. Support context-sensitive uni�cation of entities (with B. Thompson and C. Wendelken)9. Tune network weights and rule-strengths via supervised learning (with D.J. Grannes, B. Thompson,and C. Wendelken)10. Realize control and coordination mechanisms required for encoding parameterized schemas and reactiveplans (see [173]).



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 22The above enhancements have been incorporated into the shruti simulator by D.J. Grannes and C.Wendelken. In ongoing work, with M.S. Cohen, B. Thompson, and C. Wendelken, the author is augmentingshruti to integrate the propagation of belief with the propagation of utility. This integration would allowshruti's sense of utility to direct its search for answers and explanations. In addition to the developmentsmentioned above, V. Ajjanagadde has worked on the problem of abductive reasoning and pursued an alternateset of representational mechanisms [3][4].Applicationsshruti (circa 1993) has been mapped onto the CM-5 by D.R. Mani [125]. The resulting system can encodeknowledge bases with over 500,000 (randomly generated) rules and facts, and yet respond to a range ofqueries requiring derivations of depth �ve in under 250 milliseconds. Even queries with derivation depths ofeight are answered in well under a second. The mapping of shruti onto a network/cluster of workstationsis currently under investigation.The shruti model meshes with the NTL project at ICSI [2] on language acquisition and provides con-nectionist solutions for several representational and computational issues arising in the project. We are alsoengaged in the integration of shruti and its reexive capabilities with a metacognitive (reective) com-ponent in collaboration with B. Thompson and M.S. Cohen. The reective component is responsible fordirecting the focus of attention, making and testing assumptions, identifying and responding to conictinginterpretations and/or goals, locating unreliable conclusions, and managing risk (see [32] and B. Thompsonand M.S. Cohen in this issue).INFERNET:A Model of Deductive ReasoningJacques SougneUniversity of Li�ege, Belgium, J.Sougne@ulg.ac.beINFERNET is a model of deductive reasoning. It uses a distributed network of spiking nodes. Variablebinding is achieved by temporal synchrony. While it is not a new technique (see Grossberg & Somers [70];Hummel & Holyoak [91]; Lisman & Idiart [116]; Luck & Vogel [121], Usher & Donnelly [202]; Shastri &Ajjanagadde [171]), the use of distributed representation, and the way it solves the problem of multipleinstantiation is new.INFERNET is able to deal with conditional reasoning (material implication) including negated condi-tional [182, 180]. Here are the 16 forms:A �B, A; A �B, :A; A �B, B; A �B, :BA �:B, A; A �:B, :A; A �:B, :B; A �:B, B:A �B, :A; :A �B, A; :A �B, B; :A �B, :B:A �:B, :A; :A �:B, A; :A �:B, :B; :A �:B, BThe INFERNET simulator performance �t human data which are sensitive to negation and especially todouble negations. This e�ect of negation is often referred as negative conclusion bias in the psychologicalliterature.INFERNET has also been applied on problem requiring multiple instantiations (Sougne [183, 184, 181];Sougne & French [185]). In INFERNET, multiple instantiation is achieved by using the neurobiologicalphenomena of period doubling. Nodes pertaining to a doubly instantiated concept will sustain two oscillation.This means that these nodes will be able to synchronize with two di�erent set of nodes. This method putsconstraints on the treatment of multiple instantiation. The INFERNET simulator performance seems to �thuman data for problems requiring multiple instantiation like:Mark loves Helen and Helen loves John. Who is jealous of whom?



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 23Due to distributed representation, INFERNET is sensitive to similarity of the concepts used in deductivetasks which are con�rmed by empirical evidences [184, 185]). There is also an interesting e�ect of noise [184].When white noise is added in the system (and if it is not too important) the performance of the system isimproved. This phenomenon is known as Stochastic resonance (Levin & Miller [114]).Localist Connectionist Models For Symbolic ProcessingRon SunThe University of Alabama, USA, rsun@cs.ua.eduThere has been a variety of work in developing localist connectionist models for symbolic processing,as pointed out by messages posted on the connectionist mailing list by, e.g., Jerry Feldman and LokendraShastri. Although it has been discussed somewhat, a more detailed list of work in this area is still needed.The work in this �eld spans a large spectrum of application areas in AI and cognitive science. Thus, it seemsto be reasonable and useful to summarize the work in terms of these areas.� Reasoning, which includes work on commonsense reasoning, logic reasoning, case-based reasoning,reasoning based on schemas (frames), and so on. In terms of commonsense reasoning, we have thefollowing work: Lange and Dyer [111], Shastri and Ajjanagadde [171], Sun [191], and Barnden [12].These existing models take di�erent approaches: Shastri and Ajjanagadde [171] and Sun [190] tooka logic approach, while Barnden and Srinivas [13] took a case-based reasoning approach. Lange andDyer [111] used reasoning based on given frames that contain world knowledge encoded in localistconnectionist networks. Lacher et al [107] implemented MYCIN type reasoning with con�dence factorsfor expert system applications.� Natural Language Processing, including both syntactic and semantic processing. There are manymodels, including the following pieces of work: Henderson [77], Bookman [21], Regier [158], Wermteret al [216] and Bailey et al [10].� Learning of Symbolic Knowledge, based on �rst learning in neural networks and then extracting sym-bolic knowledge. Such work can be justi�ed as follows: In many instances, extraction of knowledgefrom neural networks is better than learning symbolic knowledge directly using symbolic algorithms,in algorithmic/computational or cognitive modeling terms. There are voluminous publications on this.For example, the most important pieces of work are Fu [53], Giles and Omlin [63], and Towell andShavlik [201]. Some of these models involve somewhat distributed representation, but that's not thepoint. The point is that localist models can be trained and symbolic knowledge can be extracted fromit. See also Sun et al [194] for a model in which neural networks and extracted symbolic rules worktogether to produce synergistic results.� Recognition and Recall, including a variety of models such as Jacobs and Grainer [95, 96], Page andNorris [139], and the now classic McClelland and Rumelhart [129].� Memory, which is an area where many models are being developed and applied by the psychology andcognitive science communities. See Hintzman [85] for a review.� Skill Learning, including Sun and Peterson [195] and Sun et al [194], as well as some on-going projectsthat I am personally aware of (but, unfortunately, have no publications yet).A question that naturally arises is: why should we use connectionist models (especially localist ones) forsymbol processing, instead of symbolic models? There are so many di�erent reasons. I cannot even begin toenumerate all the rationales for using localist models for symbolic processing discussed in these afore-citedpieces of work. These reasons may include:



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 241. Localist connectionist models are an apt description framework for a variety of cognitive processing.(See Grainger & Jacobs [68] for further information.)2. The inherent processing characteristics of connectionist models (such as similarity-based processing,which can also be explored in localist models) make them suitable for cognitive processing.3. Learning processes can naturally be applied to localist models (as opposed to learning LISP code), suchas gradient descent, EM, etc. (As has been pointed out by many recently, localist models share manyfeatures with Bayesian networks. This actually has been recognized very early on, see for example,Sun [188, 189], in which a localist network is de�ned from a collection of hidden Markov models, andthe Baum-Welch algorithm was used in learning.)Finally, here are two more more bibliographical notes.1. Sun and Bookman [193] contains a detailed annotated bibliography on high-level connectionist modelsthat covers all the important work up to 1993.2. In addition, see also the recently published edited collection, Sun and Alexandre [192], for furtherinformation.In sum, the �eld of connectionist symbolic processing is alive and well, especially localist approaches,which have been reviewed here. Progresses are being made steadily, albeit slowly. There are reasons toexpect further signi�cant progress to be made, given all the afore-mentioned reasons for such models.Stefan WermterHybrid Neural Symbolic Agent Architectures based on Neuroscience ConstraintsUniversity of Sunderland, Sunderland, UK, stefan.wermter@sunderland.ac.ukAdaptive symbolic and neural agents have received a lot of interest for di�erent tasks, for instancespeech/language integration and image/text integration [159, 155, 132, 216, 44, 220]. Hybrid neural symbolicmethods have been shown to be able to reach a level where they can actually be further developed in real-worldscenarios. A combination of symbolic and neural agents is possible in various hybrid processing architectures,which contain both symbolic and neural agents appropriate according to a speci�c task, e.g. integratingspeech, text and images.From the perspective of knowledge engineering, hybrid symbolic/neural agents are advantageous sincedi�erent mutually complementary properties can be combined. Symbolic agents have advantages with re-spect to easy interpretation, explicit control, fast initial coding, dynamic variable binding and knowledgeabstraction. On the other hand, neural agents show advantages for gradual analog plausibility, learning,robust fault-tolerant processing, and generalization to similar input. Since these advantages are mutuallycomplementary, a hybrid symbolic neural architecture can be useful from the perspective of knowledgeengineering if di�erent processing strategies have to be supported.A loosely coupled hybrid architecture has separate symbolic and neural agents. The control ow is se-quential in the sense that processing has to be �nished in one agent before the next agent can begin. Onlyone agent is active at any time, and the communication between agents is unidirectional. An example archi-tecture where the division of symbolic and neural work is loosely coupled has been described in a model forstructural parsing within the SCAN framework [212]. A tightly coupled hybrid architecture contains separatesymbolic and neural agents, and control and communication are via common internal data structures ineach agent. The main di�erence between loosely and tightly coupled hybrid architectures is common datastructures which allow a bidirectional exchange of knowledge between two or more agents.In an integrated hybrid architecture there is no discernible external di�erence between symbolic andneural agents, since the agents have the same interface and they are embedded in the same architecture.



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 25The control ow may be parallel and the communication between symbolic and neural agents is via messages.Communication may be bidirectional between many agents, although not all possible communication channelshave to be used. One example of an integrated hybrid architecture was developed for exploring integratedhybrid processing for spontaneous spoken language analysis [214, 217, 215].SCREEN is an integrated architecture since it does not crucially rely on a single neural or symbolicagent. Rather, there are many neural agents, but also some symbolic agents. They have a common interfaceand they can communicate with each other in many directions. From an agent-external point of view itdoes not matter whether the internal processing within an agent is neural or symbolic. This architecturetherefore exploits a full integration of symbolic and neural processing at the agent level. Furthermore, theagents can run in parallel and produce an analysis in an incremental manner. While integrated hybridarchitectures provide the current state of the art for neural symbolic interaction [217], there is still a staticway of communication between a static number of agents. We are working towards a new di�erent class ofhybrid dynamic architectures which can be used for di�erent multimodal scenarios.However, for building more sophisticated intelligent computational agents in the long run, principlesfrom cognitive neuroscience also have to be considered for building neural architectures which are basedmore on the brain functions. For instance using whole-brain fMRI, it seems possible that activation patternsof distributed regions in the brain serve as associative memory during visual-verbal, episodic declarativememory tasks. Such encoding and retrieval experiments could be evidence for the impact of medial parietalregions in storage and recall of declarative memory. Principles of neuroscience and brain function could havean important inuence on building complexer well-grounded neural network systems, in particular for areaslike associative memory storage and retrieval, intelligent navigation, speech/language processing, or vision.However, besides the integration of neuroscience constraints into arti�cial neural networks it will also beimportant to understand the symbolic interpretation of neural networks at higher cognitive levels since thehuman real neural networks are capable of dealing with symbolic processes.Recursive Computation in a Bounded Metric SpaceWhitney TaborUniversity of Connecticut, USA, tabor@cs.cornell.eduTony Plate's inspiring work on Holographic Reduced Representations (HRRs) [148, 145] breaks newground by providing a mathematically well-grounded method of encoding tree-structured objects in �xed-width vectors. Following related work by Smolensky on tensor-product representations [179], Plate's analysisof the saturation properties of the codes helps provide new insight into the representational di�erencesbetween standard symbolic computers and connectionist networks. But the saturation analysis speaks interms of typical properties of HRR vectors and does not give explicit insight into the geometric propertiesof particular encodings.A related line of work [196, 136] focuses on designing the geometry of speci�c trajectories of metricspace computers, including many connectionist networks. One essential idea (proposed in embryonic formin Pollack [151, 152], Siegelmann and Sonntag [175], Wiles and Elman [218], Rodriguez, Wiles, and Elman,to appear [160]) is to use fractals to organize recursive computations in a bounded metric space. CrisMoore [136] provides the �rst substantial development of this idea, relating it to the traditional practiceof classifying machines based on their computational power. He shows, for example, that every contextfree language can be recognized by some \dynamical recognizer" that moves around on an elaborated, one-dimensional Cantor Set. I have described a similar method which operates on high-dimensional Cantor setsand thus leads to an especially natural implementation in neural hardware [196, 197].This approach sheds some new light on the relationship between conventional and connectionist compu-tation by showing how we can use the structured entities recognized by traditional computational theory(e.g., particular context free grammars) as bearing points in navigating the larger set [136, 174] of comput-ing devices embodied in many analog computers. A useful future project would be to to use this kind of



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 26computational/geometric perspective to interpret HRRs and related outer product representations.Naturalistic Decision Making and Models of Computational Intelligence 3Bryan B. Thompson, Marvin S. CohenCognitive Technologies, Inc., USA, fbryan,mcoheng@cog-tech.comWe are working with an cognitive model of the acquisition and use of decision-making skills. It isa naturalistic approach, which begins with the way experienced, e�ective decision makers actually makedecisions in real-world tasks [28],[27],[26]. The model is based on interviews with 14 tactical Naval o�cers [34]and 33 U.S. Army command sta� [29]. We have found (as have others in expert-novice research) that theseo�cers use methods that combine pattern recognition with strategies for e�ectively facilitating recognition,verifying its results, and constructing more adequate models when recognition fails. From this foundation, wehave developed an adaptive model of decision making that integrates recognition and metacognitive processes.Such metacognitive processes, once acquired, may also support more rapid (reexive) explanation-basedlearning of domain knowledge. We call this the Recognition / Metacognition (R/M) model [27],[34],[33].This research combines (i) a theory of human decision making, the R/M model; (ii) empirical researchtesting that model and its training implications in several domains, including tactical Navy, Army battle�eldand commercial aviation decision making [31],[33],[30],[52]; (iii) research on connectionist architectures formodel-based reinforcement learning [198],[209],[210],[211]; and (iv) development of a connectionist model forrapid recognition-based domain reasoning (Shruti, [171],[167], which is described by Shastri elsewhere inthis survey).We are currently engaged in computational modeling of reexive (recognitional) and reective (metacog-nitive) behaviors. To this end, we have used a structured connectionist model of inferential long-termmemory, with good results. The reexive system is based on the Shruti model proposed by Shastri andAjjanagadde [171],[167]. Working with Shastri, we have extended the model to incorporate supervised learn-ing, priming, and other features. We are currently working on an integration of belief and utility within thismodel. The resulting network will be able to not only reexively construct interpretations of evidence fromits environment, but will be able to reexively plan and execute responses at multiple levels of abstractionas well.This reexive system, implemented with Shruti, is coupled to a metacognitive system, which is re-sponsible for directing the focus of attention, making and testing assumptions, identifying and respondingto conicting interpretations of evidence and/or goals, locating unreliable conclusions, and managing risk.In essence, the metacognitive system is a meta-controller that learns behaviors which manipulate the con-text under which recognitional processing occurs. While the recognitional system uses a causal model ofthe world, the metacognitive system represents the evidence-conclusion relationships, or arguments [199],that have been instantiated in the world model during recognitional processing. That is, it has a secondorder causal representation of patterns of activation in the world model. According to Pennington andHastie [142],[141] and others (e.g., Pearl, [140]), decision makers use causal representations when data arevoluminous, complex, and interdependent. It is no surprise that causal models are suggested at both therecognitional and metacognitive level of analysis.The signi�cance of this research lies in what it can tell us about the structure and dynamics of humanlong-term memory (LTM). There is strong cognitive evidence for distinct recognitional and metacognitiveprocesses. In addition, there is independent evidence concerning the computational complexity of reexiveinference, as well as limits on biologically plausible computation, that constrain viable models of humancognition. Such limits on recognitional resources necessitate adaptive attention shifting behaviors, which ex-tend the scope of reexive inference. Complex metacognitive skills are developed from these simple attentionshifting mechanisms. Such skills provide for reasoning explicitly about uncertainty. They are used to identify3This work has been supported by the O�ce of Navy Research (N00014-95-C-0182) and by the Army Research Institute(DASW01-97-C-0038)



Neural Computing Surveys 2, 1{40, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 27incomplete arguments, unreliable assumptions, and conicting goals or evidence, and then reframe the recog-nitional problem by changing assumptions and/or the focus of attention. When stakes and time warrantmore than reexive behavior, real decision-makers use such skills to evaluate and improve interpretationsand plans.By combining a reexive reasoner with attention shifting mechanisms, we identify systems capable ofassembling larger, coherent interpretations and plans, and of reasoning explicitly about uncertainty, ratherthan simply aggregating alternative explanations. Research and experiments with the computational model,and a wealth of empirical decision-making studies [29],[34], suggest that the development of an executiveattention function, such as the proposed metacognitive system, may be necessary for, and integral to, thedevelopment of structured, inferential LTM. Further, these data suggest that skilled LTM, that is, expertise,is developed through the application of such an executive attention function.For instance, in an incident described in an interview with a tactical Navy o�cer, a Libyan gunboatturned toward a U.S. Navy cruiser in Libyan-claimed waters, and increased its speed. This stereotypicalattack pattern suggested to the o�cer that the crew of the gunboat had hostile intentions. The Captain,however, shifted his attention from the kinematic cues that had convinced the junior o�cer, and as a resultidenti�ed a series of problems in the junior o�cer's assessment. First, the Captain identi�ed gaps in theargument for hostile intent, i.e., there was no account of how the gunboat detected own ship, why own shipwas selected as a target, and why the gunboat was selected as an attack platform. As it turned out, thegunboat was not thought to have the capability to localize the cruiser at the distance at which it had turnedtoward own ship. Moreover, the gunboat already had passed closely to another U.S. ship that would havebeen a more accessible and equally lucrative target. Finally, the gunboat itself was not an e�ective platformagainst a cruiser. These considerations conicted with the original assessment of hostile intent. The Captainproceeded to consider and evaluate assumptions that might explain the discrepant evidence (e.g., that thegunboat had found own ship as a target of opportunity). He also attempted to construct and evaluatea plausible story on the assumption that the gunboat did not have hostile intent. Finally, he carefullyestimated the time available before the risk from the gunboat would become unacceptable, and spent thattime examining possible explanations for the presence and behavior of the gunboat, alternatively identifyingand testing assumptions. One of the distinguishing traits of expertise is how such knowledge becomesconnected such that relevant evidence is automatically integrated and uncertainties identi�ed. (E.g., Both(a) \The gunboat lacked the means to localize the cruiser", and (b) \It was an ine�ective threat" providearguments against hostile-intent).Taken together, such research and data reveal new computational forms for cognitive systems. In currentresearch, we are developing a new method for Approximate Dynamic Programming, termed causal-HDP.Dynamic programming is one of the few methods available for optimizing behavior over time in stochasticenvironments. Approximate solutions to Dynamic Programming, such as Heuristic Dynamic Programming(HDP, Werbos [208],[209]) and Q-Learning (Watkins, [207]), have received a great deal of attention bothin neuro-control systems, known as Adaptive Critics, and in genetic algorithms. The basic expression ofdynamic programming is the Bellman equation [90], by which the expected future utility of present state,and an optimal policy function (behavior), may be computed, e.g.:J�(R(t)) = Maxu(t)hU(t) + J�(R(t+ 1))i (1)where J� is the cumulative expected future value, u(t) is a vector of actions at time t, where the anglebrackets denote the expected value, U is a utility function, and R(t) is the internal state of the reasoningagent at time t. Methods such as Q-Learning, while widely used, are unable to exploit a world model. Thisrather severe limitation is overcome by model-based adaptive control methods, such as HDP.Existing methods estimate the Bellman equation by incrementally \backing-up" estimates of future re-wards (from t+1 to time t) to revise an evaluation function. The evaluation function takes shape as theagent repeatedly re-visits states, and is used to revise a policy function that implements the behavior ofthe agent. The policy function probabilistically chooses actions that maximize expected value given thecurrent estimate provided by the evaluation function. As a result, the evaluation function updates slowlyand behavioral changes lag even further behind. Existing methods can easily \crystallize" on an evaluation
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