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Abstract

In geostatistics, it is common to model spatially distributed phenomena through an under-
lying stationary and isotropic spatial process. However, these assumptions are often untenable
in practice because of the influence of local effects in the correlation structure. Therefore, it
has been of prolonged interest in the literature to provide flexible and effective ways to model
non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we
might envision that the correlation structure would be highly dependent on local characteristics
of the domain of study, namely the latitude, longitude and altitude of the observation sites,
as well as other locally defined covariate information. In this work, we provide a flexible and
computationally feasible way for allowing the correlation structure of the underlying processes
to depend on local covariate information. We discuss the properties of the induced covariance
functions and discuss methods to assess its dependence on local covariate information by means
of a simulation study and the analysis of data observed at ozone-monitoring stations in the
Southeast United States.
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A class of covariate-dependent spatiotemporal covariance

functions

1 Introduction

The advance of technology has allowed for the storage and analysis of complex datasets. In partic-

ular, environmental phenomena are usually observed at fixed locations over a region of interest at

several time points. The literature on modeling spatio-temporal processes has been experiencing

a significant growth in the recent years. The main objective of this research is to define flexible

and realistic spatiotemporal covariance structures, since predictions for unobserved locations and

future time points are highly-dependent on the covariance structure of the process. An important

challenge is to specify a flexible covariance structure, while retaining model simplicity.

In this paper we are concerned with modeling ozone levels observed in the Southeast USA.

We explore models for ozone which allow the covariance structure to be non-separable and non-

stationary. Many spatiotemporal models have been proposed for ambient ozone data for various

purposes. Guttorp et al. (1994) and Meiring et al. (1998) generate predictions using independent

spatial deformation models for each time period to evaluate deterministic models. Carroll et al.

(1997) combine ozone predictions with population data to calculate exposure indices. Huerta et al.

(2004) and Dou et al. (2010) use a dynamic linear model to perform short-term forecasting over a

small region, while Sahu et al. (2007) use a dynamic linear model to predict temporal summaries

of ozone and examine meteorologically-adjusted trends over space. Gilleland and Nychka (2005)

seek a method for drawing attainment boundaries. McMillan et al. (2005) present a mixture

model that allows heavy-ozone-production and normal regimes; the probability of each depends on
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atmospheric pressure. Berrocal et al. (2010) combine deterministic model output with observations

via a computationally efficient hierarchical Bayesian approach. Nail et al. (2010) explicitly model

ozone chemistry and transport with additional goals of decomposition into global background,

local creation, and regional transport components, and of long-term prediction under hypothetical

emission controls.

A challenging aspect of modeling ozone is its complex relationship with meteorology. Most

tropospheric ozone is not emitted directly, but rather it is formed from a complex series of photo-

chemical reactions of the primary precursors: nitrogen oxides (NOx), volatile organic compounds

(VOCs), and to a smaller extent other pollutants. Since the reactions that form ozone are driven

by sunlight, ambient concentrations are highest in hot and sunny conditions. Because of this com-

plicated relationship with meteorology, it is natural to wonder whether meteorological variables

affect not only the mean concentration, but also its variance and spatio-temporal correlation. Of

the studies mentioned, Guttorp et al. (1994), Meiring et al. (1998), Huang and Hsu (2004), and

Nail et al. (2010) model the dependence of the covariance on covariates in some form. Guttorp

et al. (1994) and Meiring et al. (1998) allow the spatial covariance to vary by hour of the day.

Huang and Hsu (2004) and Nail et al. (2010) model the transport of ozone using wind speed and

direction.

We present a class of spatio-temporal covariance functions that allow the meteorological covari-

ates to affect the covariance function (Schmidt et al., 2010; Schmidt and Rodŕıguez, 2010). This

produces a non-stationary covariance, since the correlation between pairs of points separated by the

same distance may have different covariance depending on local meteorological conditions. There

are many models for non-stationary spatial covariance functions, for example, Higdon et al. (1999),

Fuentes (2002), Schmidt and O’Hagan (2003), and Paciorek and Schervish (2006), to mention just
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a few. On the other hand, Cressie and Huang (1999), Gneiting (2002), and Stein (2005) present

examples of non-separable stationary covariance functions for space-time processes. Although these

models provide flexible covariance structures they usually have many parameters, which may be

challenging to estimate.

Schmidt et al. (2010), Schmidt and Rodŕıguez (2010), and Cooley et al. (2007) use a covariance

model that defines the distance between two observations not only in terms of the spatial distance,

but also distance in covariate space. In this paper we provide a more flexible covariance model

that allows not only the distance between covariates, but also the covariate values themselves to

affect the spatial covariance. For example, the spatial covariance is allowed to be different for a

pair of observations with same temperature on a cold day than for a pair of observations with same

temperature on a warm day. Following Fuentes (2002), we model spatial process at location s, µ(s),

as a linear combination of stationary processes with different covariances,

µ(s) =
M∑

j=1

wj(s)θj(s), (1)

where wj(s) are the weights and θj are independent zero-mean Gaussian processes with covariance

Kj . Fuentes (2002) models the weights as kernel functions of space centered at pre-defined knots

φj so that Kj represents the local covariance for sites near φj . In contrast, we specify the weights

in terms of spatial covariates, so that Kj represents the covariance under environmental conditions

described by the covariates.

The paper proceeds as follows. Section 2 introduces the model and Section 3 discusses its

properties. Model-fitting issues and computational details are discussed in Sections 4 and 5, re-

spectively. In Section 6, we present a brief simulation study to illustrate the effectiveness of the
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proposed model. We analyze ozone data in Section 7. We find that the spatial correlation is

stronger on windy days, and that temporal correlation depends on temperature and cloud cover.

Section 8 concludes.

2 Covariate-dependent covariance functions

Let y(s, t) be the observation taken at spatial location s ∈ R2 and time t ∈ R. The response

is modeled as a function of p covariates x(s, t) = [x1(s, t), ..., xp(s, t)]T where x1(s, t) = 1 for the

intercept. We assume that

y(s, t) = x(s, t)T β + µ(s, t) + ε(s, t), (2)

where β is the p-vector of regression coefficients, µ(s, t) is a spatiotemporal effect, and ε(s, t) iid∼

N(0, σ2) is pure error.

The spatiotemporal process µ is taken to be a Gaussian process with mean zero and covariance

that may depend on (perhaps a subset of) the covariates, x. As described in Section 1, we model

µ as a linear combination of stationary processes,

µ(s, t) =
M∑

j=1

wj [x(s, t)]θj(s, t), (3)

where the θj are independent Gaussian processes with mean zero and covariance Kj and wj [x(s, t)]

is the weight on process j. The motivation for this model is that different environmental condi-

tions, described by the covariates, may favor different covariance functions. The weight wj [x(s, t)]

determines the spatiotemporal locations where the covariance function Kj is the most relevant.
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Integrating over the latent processes θj , the covariance becomes

Cov
[
µ(s, t), µ(s′, t′)|x]

=
M∑

j=1

wj [x(s, t)]wj [x(s′, t′)]Kj(s− s′, t− t′). (4)

With M = 1, only the variance of the process depends on the covariates, and the correlation,

Kj(s− s′, t− t′)/Kj(0, 0), is stationary. With M > 1, both the variance and the correlation depend

on the covariates. This covariance is clearly positive definite as long as the Kj are positive definite.

To see this, for any (s1, t1), ..., (sn, tn), denote the covariance matrix of [µ(s1, t1), ..., µ(sn, tn)]T as

Σ. Then for any a ∈ Rn with a 6= 0,

aT Σa = aT




M∑

j=1

WjSjWj


a =

M∑

j=1

aT WjSjWja =
M∑

j=1

ãT Sj ã > 0, (5)

where Σ =
∑M

j=1 WjSjWj , Wj is diagonal with diagonal elements wj [x(si, ti)], the (l, k) element of

Sj is Kj(sl − sk, tl − tk), and ã = Wja 6= 0.

As an illustration of the flexible spatial patterns allowed by our specification, Figure 1 plots

the spatial covariance for two simple examples. In both cases we assume a one-dimensional spatial

grid with s ∈ R, a single covariate x(s), and that the spatial correlation is high in areas with

large x(s). Both examples have M = 2, logit(w2(s)) = x(s), w1(s) = 1 − w2(s), K1(s − s′) =

exp(−|s − s′|/0.02), and K2(s − s′) = exp(−|s − s′|/0.50). Figure 1 shows the covariance for

x(s) = s2 and x(s) = sin(4πs). For the quadratic covariate, the second term has higher spatial

correlation and the weight on the second process is high for locations with large x(s), therefore

the spatial correlation is stronger for s near -1 and 1 where x(s) is high. The spatial covariance

is not a monotonic function of spatial distance for the periodic covariate. This may be reasonable
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if, say, x(s) is elevation and a site with high elevation shares more common features with other

high-elevation sites than nearby low-elevation sites.

Figure 1: Covariance functions for a one-dimensional spatial process with M = 2, logit(w2(s)) =
x(s), w1(s) = 1− w2(s), K1(s− s′) = exp(−|s− s′|/0.02), and K2(s− s′) = exp(−|s− s′|/0.50).
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(a) x(s) = s2 (b) x(s) = sin(4πs)

This covariance model has interesting connections with other commonly-used spatial models.

For example, if we consider purely spatial data, as mentioned in Section 1, taking the weights to be

kernel functions of the spatial location alone, i.e., wj [x(s)] = wj(s), gives the nonstationary spatial

model of Fuentes (2002). By modeling the weights as functions of the covariates, it may be possible

to explain non-stationarity with fewer terms giving a more concise and interpretable model. Also,

with M = p and wj [x(s)] = xj(s) for j = 1, ..., p, we obtain the spatially-varying coefficient model of

Gelfand et al. (2003). In this model θj(s) represents the effect of the jth covariate at location s. The

motivation for the spatially-varying coefficients model is to study local effects of covariates on the

mean response. In contrast, our objective is to model the covariance. For example, in a situation

with p = 20 covariates it may be sufficient to describe the spatial covariance using M = 2 stationary
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processes where conditions that favor the two covariance functions are described by weights w1 and

w2 that depend on all p covariates. Therefore, to provide an adequate description of the covariance,

we assume the weights are random functions of unknown parameters that describe environmental

conditions (see Section 4) rather than taking the weights to be the covariates themselves. Finally,

setting the weights wj to be constant in time and the latent processes θj to be constant over space

gives the spatial dynamic factor model of Lopes et al. (2008). Our model differs from this approach

since our weights (loadings) are functions of spatial covariates rather than purely stochastic spatial

processes.

3 Properties of the covariance model

In this section, we discuss some properties of the proposed model in (3) and the spatiotemporal

covariance function. For example, it is clear that even if the individual covariances Kj are separable,

stationary, and isotropic, the resulting covariance (4) is in general non-separable, non-stationary,

and anisotropic. Below we discuss other properties of the covariance model.

3.1 Monotonicity of the spatial covariance function

As shown in Figure 1, the covariance function can be a non-monotonic function of spatial distance,

even if the underlying covariances Kj are decreasing. Intuitively, this occurs only if the spatial

variability of the covariates is large relative to the spatial range of the covariance functions Kj .

More formally, assuming s ∈ R and the wj and each component of x are differentiable. Then for
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any h > 0

∂Cov(µ(s), µ(s + h)|x)
∂h

=
M∑

j=1

wj(x[s])wj(x[s + h])Kj(h)
[
w′j(x[s + h])
wj(x[s + h])

+
K ′

j(h)
Kj(h)

]
. (6)

Therefore, if the weights wj(x[s]) are positive, a sufficient but not necessary condition for a mono-

tonic covariance is that w′j(x[s + h])/wj(x[s + h]) + K ′
j(h)/Kj(h) < 0 for all j. The ratios

w′j(x[s])/wj(x[s]) and −K ′
j(h)/Kj(h) can be interpreted as the elasticity of the weight function

and covariance function, respectively. This condition makes the initial statement more precise, in

that (6) is negative if the elasticity of the weight function is less than the elasticity of the spatial

covariance.

In the special case of a powered-exponential covariance model Kj(s, s + h) = τ2
j exp(−ρjh

κj )

and exponential weights wj(x) = exp(xT αj), where αj is a vector of coefficients, (6) becomes

∂Cov(µ(s), µ(s + h)|x)
∂h

=
M∑

j=1

wj(x[s])wj(x[s + h])Kj(h)
[
∆x(s + h)T αj − κjρjh

κj−1
]
. (7)

where ∆x(s + h) denotes the vector of derivatives of x(s + h) with respect to h. The covariance is

decreasing in h if ∆x(s+h)αj < κjρjh
κj−1 for all j and h. This shows that it is possible to allow the

spatial covariance to depend on covariates but retain monotonicity by restricting the parameters

αj , κj , and ρj based on bounds the covariate process derivatives.

3.2 Smoothness properties of the spatial process

The smoothness properties of a Gaussian process are often quantified in terms of the mean squared

continuity of its derivatives. For many spatial processes, including the non-stationary model of

Fuentes (2002), the smoothness of their process realizations is well-studied (see Banerjee and
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Gelfand, 2003; Banerjee et al., 2003). However, our model postulates a more general dependence

of the covariance on spatial covariates. Hence, in this section we explore the effect of that depen-

dence on the smoothness properties of the realizations. For notational convenience, we assume a

one-dimensional spatial process with s ∈ R; the results naturally extend to more general direction

derivatives by taking s = uT s for any unit vector u. We start by assuming the covariates x are

fixed; this assumption will be later relaxed.

Following the arguments of Banerjee and Gelfand (2003), we say that the kth derivative (with

respect to s) of the process µ (if it exists) is mean square continuous at s if

lim
h→0

E
[
µ(k)(s)− µ(k)(s + h)|x

]2
= 0. (8)

For k = 0, we can substitute (3) in (8) and get

lim
h→0

E [µ(s)− µ(s + h)|x]2 =
M∑

j=1

lim
h→0

Kj(0)(wj [x(s + h)]− wj [x(s)])2 (9)

+
M∑

j=1

lim
h→0

2wj [x(s)]wj [x(s + h)](Kj(0)−Kj(h)),

which shows that µ is mean square continuous if each latent process is mean square continuous

(limh→0 Kj(h) = Kj(0)) and the weights are smooth enough to satisfy limh→0(wj [x(s + h)] −

wj [x(s)])2 = 0 for all j, e.g., they are continuous functions of the continuous spatial covariates.

In some settings, it may be reasonable to consider x to be a random process. We extend the

discussion of Banerjee and Gelfand (2003) to the case when the weights are functions of stochastic

covariates. In this case, to study the smoothness of µ requires considering variability in both the

latent θj as well as the covariates x. The covariates enter the covariance model only through the
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stochastic weights Wj(s) = wj [x(s)]. Taking the expectation with respect to both θj and Wj(s)

gives

lim
h→0

E [µ(s)− µ(s + h)]2 =
M∑

j=1

lim
h→0

Kj(0)EWj [Wj(s)−Wj(s + h)]2 (10)

+ 2
M∑

j=1

lim
h→0

(Kj(0)−Kj(h))EWj [Wj(s)Wj(s + h)].

Therefore, under stochastic covariates, the process µ is mean square continuous if and only if the

latent processes θj and the weight processes Wj are both mean square continuous. It is well known

from probability theory that the weight function Wj is mean-square continuous, for example, if

it is bounded and the covariate processes are almost surely continuous. Mean square continuity

also follows when wj is Lipschitz continuous of order 1 and the covariate processes are mean square

continuous. For example, the logistic weights wj(x) = exp(xT αj)/[1+exp(xT αj)] are both bounded

and Lipschitz continuous of order 1, whereas exponential weights wj(x) = exp(xT αj) are not.

These results naturally extend from mean squared continuity to mean square differentiability,

and higher-order derivatives. Since µ(s) is the sum of stochastic processes Zj(s) = Wj(s)θj(s),

then µ(k)(s) =
∑M

j=1 Z
(k)
j (s). In particular, for k = 1 the derivative process at s is

µ(1)(s) =
M∑

j=1

θ
(1)
j (s)Wj(s) + θj(s)W

(1)
j (s). (11)

So the process µ is mean square differentiable if both Wj(s) and θj(s) are mean square differentiable.

Conditions analogous to those outlined above for mean square continuity will assure that the weights

are mean square differentiable. More precisely, if the covariate processes x1(s), . . . , xp(s) are mean

square differentiable and the function wj(·) is Lipschitz continuous of order 1, then the resulting
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process Wj(s) is mean square differentiable, and so is µ(s).

3.3 Span of the covariance function

The covariance (4) is quite flexible. For example, consider a partition of covariate space with N

partitions, A1, ..., AN . Now, with a slight abuse of notation, letting M = N2 the covariance (4)

can be written

Cov
[
µ(s, t), µ(s′, t′)|x]

=
N∑

j=1

N∑

l=1

wjl[x(s, t)]wjl[x(s′, t′)]Kjl(s− s′, t− t′), (12)

where Kjl(s − s′, t − t′) = Klj(s − s′, t − t′). If wjl(x) = a[I(x ∈ Aj) + I(x ∈ Al)]/
√

2 for terms

with j 6= l and wjj(x) = bI(x ∈ Aj), then

Cov
[
µ(s, t), µ(s′, t)|x]

=





a2Kkk′(s− s′, t− t′), k 6= k′

b2Kkk(s− s′, t− t′) + a2
∑

l 6=k Kkl(s− s′, t− t′), k = k′
(13)

where x(s, t) ∈ Ak and x(s′, t′) = Ak′ . If b2 >> a2

Cov
[
µ(s, t), µ(s′, t′)|x] ≈





a2Kkk′(s− s′, t− t′), k 6= k′

b2Kkk(s− s′, t− t′), k = k′
(14)

Therefore, the model can essentially have a separate spatiotemporal covariance function for pairs

of observations with each combination of covariates. Letting N → ∞ gives an arbitrarily flexible

covariance model. Although of limited practical applications, the previous arguments show how

the covariate-dependent weights can be used to describe specific spatial behaviors depending on

the values assumed by the covariates.
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4 Priors and model-fitting

In this section we describe a convenient specification of the model. For notational convenience,

we assume that at each time point observations are taken at spatial locations s1, ..., sN ∈ R2. We

assume an autoregressive spatiotemporal model for the latent processes θj ,

θj(s, t) = γjθj(s, t− 1) + ej(s, t) (15)

where γj ∈ (0, 1) controls the temporal correlation and ejt = [ej(s1, t), ..., ej(sN , t)] are independent

(over j and t) spatial processes with mean zero and spatial covariance Ks
j . The spatial covariances

are taken to be the Matérn spatial covariance

Ks
j (||hs||) =

τ2
j

2νj−1Γ(νj)

(
2ν

1/2
j ||hs||

ρj

)νj

Kνj

(
2ν

1/2
j ||hs||

ρj

)
, (16)

where K is the modified Bessel function. The Matérn has three parameters: τ2
j is the variance, ρj

controls the spatial range, and νj controls the smoothness. The Matérn has several popular special

cases, including the exponential Ks
j (||hs||) = τ2

j exp(−||hs||/ρj) with νj = 1/2 and the Gaussian

Ks
j (||hs||) = τ2

j exp(−||hs||2/ρ2
j ) with νj = ∞.

In (4) there is confounding between the scale of the weights wj and covariances Kj , since

multiplying the weights by constant c > 0 and dividing the standard deviation of Kj by c give the

same covariance. Therefore, for identification purposes we restrict the weights for each observation

sum to one,
∑M

j=1 wj [x(s2, t2)] = 1. Although there are other possibilities, we assume the weights
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have the multinomial logistic form

wj [x(s, t)] =
exp

(
x(s, t)T αj

)
∑M

l=1 exp (x(s, t)T αl)
, (17)

where α1, ..., αM are vectors of regression coefficients that control the effects of the covariates on the

covariance. For these weights setting M = 1 gives w1[x(s, t)] = 1 and the model is stationary with

covariance K1. The choice of logistic weights also ensures mean square continuity of the process

realizations, as outlined in Section 3. For identification purposes, we fix α1 = 0 as is customary in

logistic regression.

The effect of an individual covariate on the covariance in (4) is rather obscure. A simple way

to summarize the effect of the kth covariate in terms of the posterior of the ratio of the covariance

of two observations with xk = 1 compared to the covariance of two observations with xk = 0,

assuming all other covariates are fixed at zero. That is,

∆k(hs, ht) =

∑M
j=1

exp(αj1+αjk)∑M
l=1 exp(αl1+αlk)

Kj(hs, ht)
∑M

j=1
exp(αj1)∑M
l=1 exp(αl1)

Kj(hs, ht)
(18)

where αjk is the kth element of αj and Kj(hs, ht) = Ks
j (||hs||)γ|ht|

j , with Ks
j as in (16). We also

inspect the ratio of correlations ∆̃k(hs, ht) = ∆k(hs, ht)/∆k(0, 0). We consider a covariate to have

a significant effect on the variance if the posterior interval for ∆k(0, 0) excludes one. Similarly, we

consider a covariate to have a significant effect on the spatial (temporal) correlation if the posterior

interval for ∆̃k(hs, 0) (∆̃k(0, ht)) excludes one.

Finally, we discuss how to select the number of terms, M . One approach would be to model

M as unknown and average over model space using reversible jump MCMC. Lopes et al. (2008)
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and Salazar et al. (2009) use reversible jump MCMC to select the number of factors in a latent

spatial factor model. However, this approach is likely to pose computational challenges for large

spatiotemporal data sets. Therefore, we select the number of terms using the deviance information

criteria (DIC; Spiegelhalter et al. (2002)) and assume M is fixed in the final analysis. DIC is

defined as

DIC = D̄ + pD

where D̄ is the posterior mean of the deviance, pD = D̄− D̂ is the effective number of parameters,

and D̂ is the deviance evaluated at the posterior mean of the parameters in the likelihood, (2). The

model’s fit is measured by D̄, while the model’s complexity is captured by pD. We prefer models

with small DIC.

5 Computational details

We perform MCMC sampling using R (http://www.r-project.org/), although it would be straight-

forward to code the model using WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/). We use

Gibbs sampling to update θjt = [θj(s1, t), ..., θj(sN , t)], β, σ2, and γj , which have conjugate full

conditionals. Metropolis sampling using a Gaussian candidate distribution is used to update αjk,

ρj and νj . We tune the Metropolis candidate distribution of give acceptance probability around

0.4. R code is available from the first author upon request.

Convergence is monitored using trace plots and autocorrelation plots for several representative

parameters. We note that monitoring convergence is challenging for this model since the labels of

the latent terms may switch during MCMC sampling. For example, exchanging α1, ρ1, ν1 and γ1

with α2, ρ2, ν2 and γ2 does not affect the covariance in (4). Therefore, rather than monitoring
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convergence for these parameters individually, we monitor convergence of the covariance (4) at

several lags and of the spatiotemporal effect µ(s, t) for several spatiotemporal locations. For the

simulation study in Section 6, we generate 10,000 samples and discard the first 2,000 samples as

burn-in. For the ozone data analysis in Section 7 we generate 50,000 samples and discard the first

10,000 samples as burn-in.

6 Simulation study

In this section we conduct a simulation study to compare our model with competing approaches.

We generate all data from (2). Data are generated for 5 time points. For simplicity the data are

independent over time (γj = 0). The data are generated on a 15× 15 square grid covering [0, 1]2;

200 of the sites are analyzed as the training set, and 25 randomly-selected sites are withheld as the

test set (125 total observations). Each data design has a single covariate which, for comparison

with the convolution approach described below, is constant over time. We consider two cases for

the covariate as functions of the first spatial coordinate:

• Linear: xi = 2s1i − 1

• Periodic: xi = sin(10πs1i).

We set β = 0 and σ = 0.1 and use either M = 1 or M = 2. We generate data using two spatial

covariances:

• Exponential: τ1 = τ2 = 1, ν1 = ν2 = 0.5, ρ1 = 0.02, and ρ2 = 0.25

• Matérn: τ1 = τ2 = 1, ν1 = ν2 = 10, ρ1 = 0.01, and ρ2 = 0.03.

For the M = 2 case we take the weights to be logit(w1(xi)) = −1 + 2xi and w2(xi) = 1− w1(xi).
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We compare our model with the kernel-convolution approach of Higdon et al. (1999). This

model allows for non-stationarity, but does not explicitly model non-stationarity as a function of

the spatial covariates. The kernel convolution model is

µ(s, t) =
R∑

k=1

wk(||s− ψk||)θkt, (19)

where θkt
iid∼ N(0, τ2), wk is a kernel function, and ψk ∈ R2 are fixed spatial knots. We pick the

kernel function to approximate the Matérn covariance with a spatially-varying range, i.e.,

wk(u) =
γ(ν + 1)1/2νν/4+1/4|u|ν/2−1/2

π1/2Γ(ν/2 + 1/2)Γ(ν)1/2ρ
ν/2+1/2
k

Kν/2+1/2

(
2ν1/2|u|

ρk

)
. (20)

We take log(ρk) to be Gaussian with mean ρ̄ and Cov(log(ρk), log(ρl)) = δ2 exp (−||ψk − ψl||/η).

For priors we assume τ−2, δ, η ∼ Gamma(0.1,0.1) and ρ̄ ∼ N(0,102). The knots ψk are taken to be

the 15× 15 grid of locations for the data points (testing and training sites). Convergence was slow

assuming the smoothness parameter ν was unknown, therefore it was fixed at the true value for

this, and all other, models.

We fit our model with M = 1 and M = 2. The model with M = 1 is a stationary Matérn

covariance, the model with M = 2 is the non-stationary model with covariance depending on the

covariate. For priors we use β, αjk
iid∼ N(0,102), σ−2, τ−2

j
iid∼ Gamma(0.1,0.1), and ρj ∼ Unif(0,2).

We generate S = 25 data sets from each design. We compare the three models using mean

squared error for the µ(s, t), separately for the training and testing observations, as well as coverage

probabilities of the 90% posterior predictive intervals for µ(s, t) for the training observations. The

results are reported in Table 1.
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Table 1: Simulation study results. Values reported as the mean (standard error) over the S = 25
data sets. The three models fit to each data set are the stationary model (“Stationary”), covariate
dependent covariance model (“CDC”), and the non-stationary kernel convolution model (“Kernel
Con.”).

(a) MSE for the training observations

True M x model Cov model Stationary CDC Kernel Con.
1 Linear Expo 0.102 (0.001) 0.102 (0.001) 0.100 (0.001)
1 Linear Matérn 0.118 (0.005) 0.107 (0.003) 0.149 (0.006)
2 Linear Expo 0.501 (0.010) 0.106 (0.002) 0.124 (0.002)
2 Linear Matérn 0.172 (0.007) 0.087 (0.001) 0.091 (0.001)
2 Periodic Expo 0.698 (0.018) 0.106 (0.002) 0.682 (0.014)
2 Periodic Matérn 0.101 (0.001) 0.087 (0.001) 0.105 (0.003)

(b) MSE for the testing observations

True M x model Cov model Stationary CDC Kernel Con.
1 Linear Expo 0.495 (0.007) 0.494 (0.007) 0.506 (0.008)
1 Linear Matérn 0.638 (0.007) 0.638 (0.007) 0.642 (0.008)
2 Linear Expo 0.753 (0.013) 0.721 (0.013) 0.765 (0.013)
2 Linear Matérn 0.437 (0.012) 0.424 (0.013) 0.433 (0.012)
2 Periodic Expo 0.835 (0.012) 0.738 (0.011) 0.835 (0.013)
2 Periodic Matérn 0.620 (0.015) 0.469 (0.015) 0.727 (0.023)

(c) Coverage probabilities of 90% intervals for the testing observations

True M x model Cov model Stationary CDC Kernel Con.
1 Linear Expo 0.89 (0.01) 0.89 (0.01) 0.91 (0.01)
1 Linear Matérn 0.89 (0.01) 0.90 (0.01) 0.88 (0.01)
2 Linear Expo 0.68 (0.01) 0.88 (0.01) 0.86 (0.01)
2 Linear Matérn 0.83 (0.01) 0.92 (0.01) 0.85 (0.01)
2 Periodic Expo 0.51 (0.02) 0.89 (0.01) 0.52 (0.02)
2 Periodic Matérn 0.91 (0.01) 0.91 (0.01) 0.78 (0.01)
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When the data are generated from the stationary model with M = 1 the three models per-

form similarly, showing that the nonstationary models can reduce to the stationary model when

appropriate. In the nonstationary case with M = 2 and a linear covariate, the stationary model

has large mean squared error and coverage probability below the nominal level. In this case, the

kernel convolution model performs well. Although the kernel convolution model does not directly

use the covariate in covariance, it assumes that the spatial range varies smoothly over space and

thus is able to approximate the nonstationary spatial covariance induced by the smoothly-varying

covariate. In contrast, for the more complicated periodic covariate the kernel convolution model is

not able to capture the nonstationarity and has high mean squared error and low coverage, similar

to the stationary model. In this case, incorporating the covariate into the spatial covariance gives

a dramatic improvement in mean squared error.

7 Data analysis

As an illustration of how our proposed spatiotemporal covariance model can be fit to real data,

we analyze maximum daily ozone data in the Southeast US. The data were obtained from the

US EPA’s Air Explorer Data Base (http://www.epa.gov/airexplorer/index.htm). The primary

ozone standard says that the three-year average of the annual fourth-highest daily maximum 8-

hour average concentration (EPA, 2004, p.3) must fall beneath 75 parts per billion. Our response

variable is thus the maximum of the 8-hour rolling averages of ozone (ppb) in a given day. The data

are plotted in Figure 2. We analyze data for the 31 days in August, 2005 for 79 monitoring stations

in North Carolina, South Carolina, and Georgia (9/2440<1% missing). To justify a Gaussian model

we use a square root transformation of the raw data.
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We obtained daily average temperature and daily maximum wind speed from the NCDC’s

Global Summary of the Day Data Base, and daily average cloud cover from the NCDC’s National

Solar Radiation Data Base. Meteorological and ozone data are not observed at the same locations.

Therefore we imputed meteorological variables at the ozone locations using spatial Kriging. Spatial

imputation was performed using SAS version 9.1 and the MIXED procedure with spatial exponential

covariance function, separately for each day and each variable. We treat these predictors as fixed.

Li, Tang, and Lin (2009) discuss the implications of ignoring uncertainty in spatial predictors.

Temperature and cloud cover are fairly smooth across space and thus have small interpolation errors,

however there is more uncertainty in the wind speed interpolation. Accounting for uncertainty in

the predictors using a spatial model for the meteorological variables warrants further consideration.

Figure 2: Plots of square root ozone (pbb). Panel (a) plots the average for each station (the stations
are marked with points) and Panel (b) gives trace plots for each station (Day 1 is August 1, 2005).
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We transform the spatial locations to a two-dimensional surface using the Mercator projection,

and then scale them to the unit square. We include as predictors in the mean, x(s, t)T β, temper-
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ature, wind speed, cloud cover, log elevation, longitude, latitude, day of the year, and indicators

of whether the station is in an urban or rural location (suburban is the baseline). All variables

are standardized to have mean zero and variance one. We also include all two-way interactions

between the three meteorological variables and quadratic effects for the meteorological variables.

The covariance is modeled as a function of temperature, wind speed, and cloud cover.

We begin studying the data by analyzing the variogram. The spatial variogram is defined as

γ(h) = E
(
[r(s)− r(s + hu)]2

)
, where r(s) is the residual after accounting for the mean trend and

u is a unit vector. This is often estimated as the sample mean squared difference between all pairs

of observations in a bin Dh, i.e.,

γ̂(h) =
1
|Dh|

∑

(s,s′)∈Dh

[r(s)− r(s′)]2 (21)

where Dh is the set of pairs of points on the same day with ||s− s′|| ∈ (h− ε, h + ε) and |Dh| is the

cardinality of Dh. To explore the effects on covariates on the spatial covariance, we compute the

variogram separately for different combinations of covariates. We estimate the variogram for pairs

of observations with similar average covariates,

γ̂(h, x̄j) =
1

|Dhx̄j
|

∑

(s,s′)∈Dhx̄j

[r(s)− r(s′)]2 (22)

where Dhx̄j is the set of pairs of observations on the same day with ||s− s′|| ∈ (h− ε1, h + ε1) and

[xj(s) + xj(s′)]/2 ∈ (x̄j − ε2, x̄j + ε2).

Figure 3 plots the sample variogram with 25 bins of standardized spatial distances separately

for pairs of observations with covariate mean, [xj(s) − xj(s′)]/2, in three bins defined by the 25th
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Figure 3: Sample variogram for the ozone data, plotted for different values of wind speed (left) and
cloud cover (right). The thick curves are the exponential variogram 0.15 + 0.9[1− exp(−h/.07)].
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and 75th percentiles of the covariate. There is evidence that the spatial covariance depends on

the covariates. The variogram is high for pairs of observations with low wind speed and low cloud

cover, especially at moderate spatial lag near 0.2. For all combinations of covariates considered,

the variogram resembles an exponential variogram, therefore we assume νj = 0.5 for all analyses.

We note that this does not imply that the non-stationary covariance is exponential, but rather a

mixture of exponentials.

We use the same priors as in Section 6, except now that we are accounting for temporal corre-

lation we also assume γj in (15) has prior γj ∼ Unif(0,1). We fit the model with M varying from

M = 1 to M = 6. DIC (pD) was 2573 (1079), 1997 (1413), 1328 (1681), 1253 (1691), 952 (1780),

and 1098 (1737) for M = 1 to M = 6. The results are similar for M = 3 to M = 6; we present

results with M = 5 since this value minimized DIC.

Table 2 and Figure 4 summarize the covariate effects on the mean and spatiotemporal corre-

lation. As expected, the strongest mean effects are those for temperature and cloud cover. There
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Table 2: Summary of the CDC model with M = 5 components. “Sample” gives the sample mean
(sd) for the predictors. The remaining columns gives the posterior means (95% intervals) from for
the mean effects βk, the relative spatial correlation at lag 0.2 (∆̃k(0.2, 0)), and the relative temporal
correlation at lag 3 (∆̃k(0, 3)). βk, ∆̃k(0.2, 0), and ∆̃k(0, 3) are scaled to represent the effect of a
one standard deviation increase in the predictor.

Sample βk ∆̃k(0.2, 0) ∆̃k(0, 3)
Temperature (F) 78.2 (3.64) 0.31 ( 0.19, 0.42) 0.97 (0.89, 1.03) 0.85 (0.72, 0.94)
Wind speed (m/s) 9.42 (2.48) 0.00 ( -0.07, 0.05) 1.07 (1.02, 1.12) 1.02 (0.97, 1.07)
Cloud cover (%) 0.46 (0.23) -0.18 ( -0.28, -0.09) 1.01 (0.94, 1.07) 0.91 (0.81, 0.99)
Log elevation (ft) 4.77 (1.75) 0.08 ( 0.02, 0.14) – –
Urban 0.08 (0.27) 0.00 ( -0.04, 0.05) – –
Rural 0.58 (0.49) -0.02 ( -0.07, 0.02) – –
Day 16.0 (9.09) -0.03 ( -0.05, -0.02) – –
Longitude 0.43 (0.25) -0.26 ( -0.48, -0.05) – –
Latitude 0.67 (0.23) 0.55 ( 0.32, 0.86) – –
Temp2 - -0.05 ( -0.11, 0.00) – –
WS2 - 0.01 ( 0.00, 0.02) – –
CC2 - -0.02 ( -0.07, 0.03) – –
Temp x WS - -0.03 ( -0.07, 0.01) – –
Temp x CC - 0.00 ( -0.06, 0.08) – –
WS x CC - 0.02 ( -0.02, 0.06) – –

are also significant effects for elevation, day, longitude, latitude, squared temperature, and squared

wind speed. As suggested by Figure 3, spatial correlation is higher for days with high wind speed.

It may be that in windy conditions more ozone is transported from location to location. Tempera-

ture and cloud cover do not appear to affect the spatial correlation for these data. However, there

is evidence of weaker temporal correlation on hot and cloudy days.

Figure 5 plots the posterior mean of the spatial correlation for two sites on August 3 for the

stationary model with M = 1 and the non-stationary model with M = 5. The first site on the

Georgia/South Carolina border (Figure 5d) has stronger correlation with sites to its southwest than

its northeast for the non-stationary model. This is due to the strong winds to the southwest (Figure

5b). The second site in western North Carolina (Figure 5f) also has stronger correlation with sites
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Figure 4: Posterior mean (thick) and 95% intervals (thin) of the spatiotemporal correlation (4) for
various combinations of the covariates. “Baseline” assumes that all covariates are zero (the mean
after standardization) for both observations. The other plots assume that all covariates are zero
with the exception of one covariate, which equals one standard deviation unit above the mean. The
spatial correlation is plotted as a function of spatial distance hs with temporal distance ht = 0,
and vice versa.
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to its southwest for the non-stationary model due to the moderate winds and low temperature to

the southwest.

8 Discussion

In this paper we present a class of spatiotemporal covariance functions that allows the covariance

to depend on environmental conditions described by known covariates. Our simulation study shows

that using covariates to explain non-stationarity can be more efficient than other commonly-used

non-stationary models. For the Southeastern US ozone data, we find that spatial covariance is

higher in the presence of high wind, and temporal correlation is higher in cool and sunny conditions.
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Our analysis of the effect of covariates on the spatiotemporal covariance is limited because we

only analyzed data for one month. Exploratory analyses using variograms for data throughout the

year suggest that temperature also affects spatial covariance, but this is not apparent in the current

analysis that only used days in August. We also included other variables, such as elevation and

urban/rural indicators in the covariance model but these parameters had large posterior variance

which led to slow MCMC convergence. Longer temporal coverage may allow these covariates to be

included in the covariance model.

Finally, our covariance model assumes that all nonstationarity can be explained by the spatial

covariates. However, in some cases a more flexible model would be useful. One approach would be

to add pure functions of space and time as covariates in the covariance to capture non-stationarity.

An even more flexible model would take the weights to be Gaussian processes, possibly with means

that depend on the covariates, to allow the weights to vary smoothly through the spatial domain

while still making use of the covariate information.
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Figure 5: Data and spatial covariance estimate for August 3, 2005 for stationary (M = 1) and
non-stationary (M = 5) models. Panels (a) and (b) plot the observed temperature and wind speed.
The remaining panels plot the posterior mean of the correlation between the point marked with a
dot and the remaining sites.
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