
Automatic Generation of Sigma-Protocols

Endre Bangerter1, Thomas Briner2, Wilko Henecka3, Stephan Krenn1,
Ahmad-Reza Sadeghi3, and Thomas Schneider3?

1 Bern University of Applied Sciences, Biel-Bienne, Switzerland
{endre.bangerter,stephan.krenn}@bfh.ch

2 Abraxas Informatik AG, Zürich, Switzerland
thomas.briner@gmail.com

3 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
wilko.henecka@rub.de,{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Efficient zero-knowledge proofs of knowledge (ZK-PoK) are
basic building blocks of many practical cryptographic applications such
as identification schemes, group signatures, and secure multi-party com-
putation (SMPC). Currently, first applications that essentially rely on
ZK-PoKs are being deployed in the real world. The most prominent ex-
ample is the Direct Anonymous Attestation (DAA) protocol, which was
adopted by the Trusted Computing Group (TCG) and implemented as
one of the functionalities of the cryptographic chip Trusted Platform
Module (TPM).
Implementing systems using ZK-PoK turns out to be challenging, since
ZK-PoK are significantly more complex than standard crypto primi-
tives (e.g., encryption and signature schemes). As a result, the design-
implementation cycles of ZK-PoK are time-consuming and error-prone.
To overcome this, we present a compiler with corresponding languages
for the automatic generation of sound and efficient ZK-PoK based on
Σ-protocols. The protocol designer using our compiler formulates the
goal of a ZK-PoK proof in a high-level protocol specification language,
which abstracts away unnecessary technicalities from the designer. The
compiler then automatically generates the protocol implementation in
Java code; alternatively, the compiler can output a description of the
protocol in LATEX which can be used for documentation or verification.

Key words: Zero-Knowledge, Protocol Compiler, Language Design

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between
a prover and a verifier, which allows the prover to convince the verifier that
he knows some secret values (proof of knowledge property), without the veri-
fier learning anything about them beyond what was known before the protocol
run (zero-knowledge property). There are fundamental results showing that all
? This work was performed within the FP7 EU project CACE (Computer Aided Cryp-

tography Engineering).

relations in NP have ZK-PoK [29,31,32]. The corresponding protocols are of the-
oretical relevance, but much too inefficient to be used in practical applications.

In contrast to these generic protocols for arbitrary NP statements we con-
centrate on a subset of practically relevant relations that can be proven with
practically efficient protocols. Essentially, all efficient ZK-PoK protocols used in
practice today are based on a class of three move protocols, called Σ-protocols.

Basic Σ-protocols allow to prove knowledge of a secret preimage under a
homomorphism (e.g., a discrete exponentiation or an RSA function). There are
numerous variations of these preimage proofs. For instance, “AND-proofs” allow
to prove simultaneous knowledge of multiple preimages under different homo-
morphisms. Similarly there are “OR-proofs” and proofs to show that different
preimages fulfill a set of linear relations.

ZK-PoK proof techniques based on Σ-protocols play an important role in
applied cryptography. In fact, many practically oriented applications use such
proofs as basic building blocks. Examples herefore include identification schemes
[44], interactive verifiable computation [20], group signatures [16], secure water-
mark detection [1], and efficient secure multiparty computation [34].

While many of these applications typically only exist on a specification level,
a direction of applied research has produced first real-world applications using
ZK-PoKs. One prominent example is the Direct Anonymous Attestation (DAA)
protocol [12], which was adopted by the Trusted Computing Group (TCG) –
an industry consortium of many IT enterprises – as a privacy enhancing mecha-
nism for remote authentication of computing platforms. Another example is the
identity mixer anonymous credential system [17], which was released by IBM
into the Eclipse Higgins project, an open source effort dedicated to developing
software for “user-centric” identity management.

Up to now, the design and implementation of practical ZK-PoK protocols
is done “by hand”. The security proofs of these protocols consist of, loosely
speaking, a handful of standard arguments and tricks which are repeated in
different constellations over and over again. In fact, past experiences, e.g., during
the development of the previous two examples have shown the following:

– Implementation cycles of ZK-PoK are time-consuming and error-prone.
– It is hard to achieve resilience against design modifications, i.e., minor changes

in the protocol specification can result in substantial implementation work.
– Protocols are often designed by cryptographers and implemented by software

engineers. The former typically are not skilled in implementation matters and
the latter have a hard time understanding details and subtleties of ZK-PoK
protocols, which are sometimes rather complex. This can lead to a rupture
between design and implementation, resulting in implementation errors.

Our Contributions. To overcome the mentioned challenges, we have designed
and implemented a language and a corresponding compiler. Given a high-level
ZK-PoK protocol specification in our language, the compiler automatically gen-
erates the implementation of the corresponding Σ-protocol.

The design of the language is inspired by the widely used Camenisch-Stadler
notation [22]. It allows to specify Σ-protocols and compositions (e.g. AND,
OR) thereof, while it abstracts away details that are unnecessary at a protocol
design level. Since the Camenisch-Stadler notation is informal and incomplete,
our language contains additional elements, denoting, e.g., the algebraic setting
in which the proofs are carried out.

ZK-PoK protocol specifications in this language are then translated by the
compiler either into Java or LATEX code. The group operations in the generated
code are expressed in terms of abstract interfaces. This allows users of the code
to plug their preferred libraries or favorite algebraic groups into the protocol
code by implementing our abstract interfaces. The LATEX code can be used for
documenting the protocols and also for verification purposes. To the best of our
knowledge, this is the first compiler suite to support automatic generation of
sound ZK-PoK protocols.

The current version of the compiler allows to generate a large number of
protocols found in the literature, including Pedersen Commitments/Verifiable
Secret Sharing [41], Schnorr Authentication/Signatures [44], proof showing that
a number is the product of two safe primes [20], Electronic Cash [9,24,38], Group
Signatures [19], and Ring Signatures [26]. Also supported are ZK-PoKs of a plain-
text corresponding to a ciphertext or relations between plaintexts under various
asymmetric encryption schemes such as, RSA [43], Paillier [39], or Damg̊ard-
Jurik [28]; these homomorphic encryption schemes are widely used in e-voting
and secure multiparty computation.

The existing theory and collection of ZK-PoK proof techniques using Σ-
protocols is vast, and a satisfactory unified theory underlying these techniques
is missing. In fact, for some of these techniques it is not clear whether and how
they can be combined in a modular way. To design the input language and com-
piler on solid theoretical grounds, we have put together a unified framework
of existing proof techniques. This framework is simple to understand, modular
and encompasses a large number of existing ZK-PoK. The basis of the frame-
work are simple proofs of knowledge of preimages under homomorphisms. For
these basic proofs, we have incorporated the theory by Cramer [25] on special
homomorphisms, which are essentially homomorphisms with a known order co-
domain as well as RSA and Paillier-type of homomorphisms. Our framework
then describes how the basic protocols can be composed to obtain “AND” and
“AND-OR” proofs, and to prove linear relations among preimages.

Related Work. This paper describes ongoing work on the zero-knowledge com-
piler initiated by [15] which focused mainly on the implementation details of the
compiler. The motivation for having a compiler framework for zero-knowledge
protocols was described in [21]. In this paper we describe the underlying theo-
retical framework and how to use the fixed and slightly extended (e.g., native
support of groups Z∗

n) compiler based on a concrete running-example. An earlier
draft of this paper was presented at the poster session of Eurocrypt 2009 [3].

An analysis of Σ-protocols for special homomorphisms can be found in [25],
and the used composition rules are explained in [26]. A first framework for
boolean formulae containing linear relations was done by Brands [10] and ex-
tended in [11] to a larger class of predicates. The idea underlying our proofs for
linear relations is the same as in [23]. A unified theory for exponentiation homo-
morphisms in arbitrary groups has recently been published [18] which we plan
to incorporate into future versions of the compiler. Yet, this does not influence
proofs for special homomorphisms, for which our compiler is currently designed.

In principle, zero-knowledge can be obtained from secure multiparty com-
putation (SMPC) by evaluating the corresponding verification relation securely
[31]. While this allows to prove arbitrary NP statements in zero-knowledge in
communication and computation complexity which is linear in the circuit size,
this approach is limited in practice by the circuit size (today’s implementations
of generic SMPC techniques can evaluate circuits with a few million gates only
[37,34,27]). The Σ-protocols generated by our compiler are much more efficient
but limited to a smaller, yet useful, class of statements that can be proven.

Provably secure protocols for two-party secure function evaluation (SFE)
based on homomorphic encryption [36] respectively circuits [8,37,40] can be gen-
erated automatically. Similar to what our compiler does in the context of ZK-
PoK protocols, these compilers allow to specify the function to be evaluated in
a high-level language and automatically compile this into an executable proto-
col. In order to achieve security against malicious participants, cut-and-choose
techniques together with efficient zero-knowledge proofs are added to prove that
parties behave honestly [33,34]. Recently, highly efficient protocols combining
sub-protocols based on homomorphic encryption with such based on circuits
were proposed. To secure the conversion between both domains against mali-
cious players they make use of efficient ZK-PoK [13]. Our compiler can be used
to generate these ZK-PoK protocols at the interfaces between different protocols.

A specification language at the implementation level of cryptographic primi-
tives is Cryptography Aware Language and Compiler (CAO) [5]. This framework
provides compiler support for efficient and secure implementation of crypto-
graphic primitives resistant against software side-channels [6] and applications
to elliptic curve cryptography [4]. In future versions of our compiler we plan to
automatically generate implementations of our generated protocols also in CAO.

Overall, our compiler for automatic generation of sound ZK-PoK protocols
can be positioned in between the (high-level) compilers for secure computation
[36,37,40] and the (low-level) compilers to automatically generate implementa-
tions of cryptographic primitives [5].

Outline. In §2 we describe the theoretical framework of Σ-protocols underlying
our compiler. In §3 we describe the compiler and its input language. Particularly,
we give a detailed example showing how our compiler can be used to prove
relations among messages encrypted with the Damg̊ard-Jurik [28] cryptosystem.

2 General Framework Description

Our compiler can be used to generate protocols for honest-verifier zero-knowledge
(HVZK) proofs of knowledge of preimages under homomorphisms. These proofs
can be combined arbitrarily using the boolean operators AND and OR, which
allows proving knowledge of certain subsets of preimages. Further, homogeneous
linear relations among the preimages can be proven. In this section we want to
briefly recap the theory underlying the compiler as well as the techniques we’ve
implemented. After giving some basic notation and definitions in §2.1, we will
formally describe the class of proofs for which the compiler produces HVZK
proofs of knowledge in form of Σ-protocols in §2.2 and review the techniques
we implemented together with sufficient conditions guaranteeing soundness in
§2.3. Finally in §2.4 we will conclude by showing how these results can be used
to prove more complex relations among the preimages, such as multiplicative or
polynomial ones.

2.1 Preliminaries

By s ∈R S we denote a uniform random choice of element s from set S. The
cardinality of S is denoted by #S. A mapping φ : G → H from an additive
group (G,+) into a multiplicative group (H, ·) is called homomorphism, iff for
all a, b ∈ G we have φ(a + b) = φ(a) · φ(b). By Im φ we denote the image of φ,
i.e., Im φ = {z ∈ H : ∃w ∈ G : z = φ(w)}, which is a subgroup of H.

Next we briefly recap the notion of zero-knowledge proofs of knowledge, and
that of Σ-protocols which our compiler uses to implement them.

Let R be a binary relation and let (x,w) ∈ R, where w is a witness and x
an element of the associated language LR. Informally, a proof of knowledge with
knowledge error κ for R is a pair of interactive algorithms (P,V), such that every
(potentially dishonest) prover P∗ who on input x can make verifier V accept with
probability more than κ(x), has to know a w′, such that (x,w′) ∈ R; further, V
always accepts for the honest prover P. A formal definition is given in [7].

All protocols generated by our compiler are Σ-protocols. Informally, a Σ-
protocol is a protocol with 3 messages being exchanged: the prover sends a
commitment t to V, who replies with a random challenge c from a predefined
challenge set C. Then P computes a response s, which V uses to decide whether to
accept or to reject the proof. The protocol must satisfy three properties: First, the
verifier always accepts for an honest prover. Second, having two tuples (t, c, s),
(t, c′, s′) with c 6= c′ for which the verifier accepts, it’s possible to efficiently
compute a witness. Finally, the protocol is HVZK. It turns out that from the
form of the protocol and the first two properties, the proof of knowledge property
can be implied. For a more detailled discussion of Σ-protocols see, e.g., [25].

Notation of ZK-PoKs. Using the notation introduced in [22] to denote ZK-
PoKs, a term like

ZPK

[
(ω1, ω2) : x1 = φ1(ω1) ∧ x2 = φ2(ω2) ∧ ω1 = aω2

]

means “proof of knowledge of w1, w2 such that x1 = φ1(w1), x2 = φ2(w2) and
w1 = aw2”. We will stick to the common convention that knowledge of variables
denoted by Greek letters has to be proven, whereas all other quantities are
assumed to be known to both parties, i.e. P and V. Note that this notation
specifies a proof-goal rather than a protocol: it describes what actually has to
be proven, but there may be many differently efficient protocols for the same
proof-goal.

2.2 Proof-Goals supported by our Compiler

The compiler described in §3 can be used to generate implementations for HVZK
proofs of knowledge of preimages under homomorphisms. The proofs can be com-
bined arbitrarily using the boolean operators “AND” and “OR”, which allows
proving knowledge of sets respectively subsets of preimages. Also homogeneous
linear relations among the preimages can be proven.

That is, the class of proof-goals that can be handled by our compiler consists
of all expressions that can be expressed in one of the following two forms:

ZPK

[
(ω1, . . . , ωm) :

∨ ∧
yi = φi(ωi)

)]
(1)

or

ZPK

[
(ω1, . . . , ωm) :

∧
yi = φi(ω1, . . . , ωm) ∧HLR(ω1, . . . , ωm)

]
(2)

Here, HLR(w1, . . . , wm) denotes a system of homogeneous linear relations
among the preimages. That is, it consists of a set of equations of the following
form:

wi =
∑
j>i

aijwj with aij ∈ Z.

We want to make some remarks on the specification on the proof-goals: first,
in (1), the proof-goal does not necessarily have to be given in disjunctive normal
form (DNF), but also as arbitrary monotone boolean formula, i.e. a boolean
formula containing arbitrarily many ∧ and ∨ with predicates of the form yj =
φj(ωj). Second, in (1) as well as in (2), linear relations can also be proven
implicitly : for instance, it’s easy to see that ZPK

[
(ω1, ω2) : y = φ(ω1, ω2)∧ω1 =

2ω2

]
is equivalent to ZPK

[
(ω) : y = φ(2ω, ω)

]
by setting w := w2. Finally, note

that the group wi lies in can decompose into a product of groups. That is, wi

can denote a vector (wi1, . . . , wiki) of elements.

2.3 Implemented Techniques and Soundness Conditions

In this section we briefly describe which techniques we implemented in our com-
piler, and point out when our compiler makes use of them.

AND-proofs. An AND-proof allows to prove knowledge of multiple preimages,
i.e., it is used to prove a semantic goal like (2) without linear relations. Such a
proof can be realized by considering the product homomorphism of the φi, and
proving knowledge of a preimage of this as follows:

– The compiler defines G := G1 × · · · × Gm, and H := H1 × · · · × Hm.
– It sets φ : G → H, φ(w1, .., wm) := (φ1(w1, .., wm), .., φm(w1, .., wm)).
– Further, it defines w := (w1, . . . , wm) and x := (x1, . . . , xm).
– Finally, it performs the following proof: ZPK

[
(ω) : x = φ(ω)

]
.

AND-OR-Proofs. An AND-OR-proof is capable of proving knowledge of
preimages corresponding to one out of a family of given subsets of {x1, . . . , xm}.
That is, it can be used to proof expressions like (1). In this case, the proof goal
is first translated into disjunctive normalform (DNF), and then each conjunctive
term is proved using the technique described before. The OR-proof is then per-
formed using the technique of [26] based on Shamir’s secret sharing scheme [45].

Linear Relations. If linear constraints occur in (2), the compiler uses a tech-
nique which is very similar to that for “AND”-proofs [23]. It is based on the
observation that the set of all elements in G := G1 × · · · × Gm satisfying the
linear constraints in (2) is a subgroup of G. Thus, by denoting this set by Ĝ the
same technique as for AND-proofs can be used with Ĝ instead of G.

We stress that because of the form of the equation system random choices in
Ĝ can be drawn efficiently by forward substitution.

Sufficient conditions to guarantee soundness. It is a well known result that
all Σ-protocols for preimage proofs under homomorphisms with finite domain
are HVZK proofs of knowledge for the challenge set C = {0, 1} [25] . Yet, this
only guarantees a knowledge error of κ = 1/2 and many repetitions are necessary
to reach a sufficiently small knowledge error in most applications.

It turns out that for certain homomorphisms we can obtain much more ef-
ficient proofs, since they allow to obtain a small knowledge error in a single
protocol run. Consider an homomorphism φ, for which a non-zero multiple v of
the order of Im φ is known: then we have that xv = 1 = φ(0) for all x ∈ Im φ. Es-
pecially, if ord(H) is known, one can set v := ord(H). Such homomorphisms are
used in [44]. The authors of [30] use power homomorphisms φ : Z∗

n → Z∗
n, x 7→ xe

where n is an RSA modulus and e ∈ Z. There we have xe = φ(x) for all x. In
both cases it’s feasible to find a preimage of a power of x for each x ∈ Im φ.
This property is caught by the following definition:

Definition 1 (Special Homomorphism [25]). A homomorphism φ is called
special, if there is a probabilistic polynomial time algorithm that on input φ :
G → H and x ∈ Im φ outputs (u, v) ∈ G × Z \ {0}, such that xv = φ(u). For a
fixed φ, the special exponent v being output has to be the same for all x.

Building on this definition, we get the following theorem giving conditions for
the Σ-protocols produced by our compiler to be sound:

Theorem 1. The composition techniques described above result in HVZK proofs
of knowledge with knowledge error 1/#C for (1) or (2), if the following conditions
are satisfied:

– All φi, i = 1, . . . ,m are special, and the special exponent vi of φi satisfies
vi ≤ max(C).

– If the preimage of φj occurs in one of the homogeneous linear relations in
(2), the special exponent of φj is a non-zero multiple of the order of Im φj.

Proof (Sketch). The case of proving knowledge of only one preimage is handled
in, e.g., [2,25], by using Shamir’s trick. By observing that the product of special
homomorphisms is again special with a special exponent equal to the product
of the special exponents of its factors, the correctness of the AND-composition
follows. With a similar argument, the soundness for the case of linear equations
can be inferred [23]. Finally, the proof for proof goals containing ORs can be
found in [26]. ut

2.4 Proving More Complex Relations

Using our compiler even more complex proof goals than pure preimage proofs
(optionally containing homogeneous linear relations) can be realized. On a high
level, all proof goals having an equivalent representation as preimage proofs
containing only homogeneous linear relations can be handled. Yet, this rewriting
has to be manually by the user of our compiler. We thus illustrate on hand of
two practically important classes of relations how this can be done.

Example 1 (Multiplicative Relations modulo ord(Im φ)). To prove knowledge of
the discrete logarithms w1, w2, w3 of x1, x2, x3 in base g, satisfying w1w2 = w3

mod ord(Im φ) one can perform the following “AND”-proof with one implicit
linear relation:

ZPK

[
(ω1, ω2) : x1 = gω1 ∧ x2 = gω2 ∧ x3 = xω2

1

]
.

If P can convince V that he knows such w1, w2, it is clear that he knows the
discrete logarithms of x1 and x2. Further, we can infer the following: x3 =
xw2

1 = (gw1)w2 = gw1w2 . Hence, P knows the discrete logarithm of x3 in base g,
and it is equal to w1w2. That is what had to be proven.

Example 2 (Inhomogeneous Linear Relations). Inhomogeneous linear relations
can easily be homogenized [10] by using the homomorphic property of φ: for
instance, proving knowledge of w1, w2 such that xi = φ(wi), and w1 = w2 + c
for a fixed c ∈ G is equivalent to performing

ZPK

[
(ω) : x1 = φ(ω) ∧ x2 · φ(c)−1 = φ(ω)

]
.

We remark that by combining these two techniques, arbitrary polynomial
relations modulo the order of Im φ among the secret preimages can be proved.
Finally, we note that proving that a certain relation is not satisfied, e.g., that two
discrete logarithms are not equal, requires a little more effort, as no equivalent
representations in form of pure preimage proofs are known for such proof goals.
Thus, the source code of the last round of the verifier has to be edited, and
a simple check for inequality of two values has to be added manually. For a
description of techniques handling such proof goals see, e.g., [11].

In the next section we describe how our current compiler implements the
described general framework and give a practical example.

3 Implementation of our ZK-PoK Compiler

We have implemented a compiler that can automatically generate Σ-protocols
according to the theoretical framework described in §2. The initial version of the
compiler was started in [15,21]. In this work we describe how to use the compiler
with a concrete example.4 The compiler is used as follows (cf. Fig. 1):

– The user formulates the Protocol Specification of the intended Σ-protocol in
our high-level input language. This language abstracts away all implemen-
tation details, e.g., how to combine protocols, operations performed within
algorithms, or messages to be exchanged. It allows to describe all expressions
of the language discussed in §2 and is inspired by the Camenisch-Stadler no-
tation [22], but augmented so that one can actually generate code. This is
impossible directly from the Camenisch-Stadler notation as it does not con-
tain information on the underlying algebraic structures. More details on the
input language will be given later in §3.1.

– Then, the Protocol Compiler automatically transforms this protocol specifi-
cation into the corresponding implementation of the protocol.

– This protocol implementation can be output as JAVA-code which can easily
be incorporated into other applications that use the corresponding ZK-PoK
protocol. Alternatively, a LATEX documentation which shows the detailed
steps (e.g., inputs, algorithms, operations, messages) of the protocol can be
generated. The compiler was designed modularly to be easily extendible with
other back-ends, e.g., to produce C-code for embedded platforms.

3.1 Input Language

Below, we describe the rationale underlying the input language and how to use
it to formulate a proof goal based on the following running example:

Many protocols for secure computation use the semantically-secure, additively-
homomorphic encryption scheme of Paillier [39] which was extended by Damg̊ard

4 The compiler together with a formal syntactic definition of the input language as
EBNF is available at http://zkc.cace-project.eu.

http://zkc.cace-project.eu

12 E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, and T. Schneider

// Declarations
Group Zn, Zm*; // L1
GroupElement g,x_[1..2],rho_[0..3],mu; // L2
Homomorphism phi_[0..3]; // L3
IntegerConstant n; // L4

// Assignments
AssignGroupMember(Zn,mu); // L5
AssignGroupMember(Zm*,{g,x_[1..2],rho_[0..3]}); // L6

// Definitions
DefineHomomorphism(phi_0, (rho_0) |-> (rho_0^n)); // L7
DefineHomomorphism(phi_1, (rho_1) |-> (rho_1^n)); // L8
DefineHomomorphism(phi_2, (mu,rho_2) |-> (g^mu * rho_2^n)); // L9
DefineHomomorphism(phi_3, (mu,rho_3) |-> (g^mu * rho_3^n)); // L10

// Protocol Specification
SpecifyProtocol [// L11

Relation = ([(x_1)=phi_0(rho_0)] || [(x_1*g^(-1))=phi_1(rho_1)]) // L12
|| ([(x_1)=phi_2(mu,rho_2)] && [(x_2)=phi_3(mu,rho_3)]); // L13

Target = LATEX; // L14
] // L15

The LATEX output generated by our compiler is given in App. A.

3.3 Syntax and Semantics of the Input Language

As in the example, all input files are composed of four parts for Declarations, Assignments, Defini-
tions, and Protocol Specification in the given order that are described in the following.

Line comments starting with // can be inserted at any place, statements are terminated with
’;’, and arrays are used as shortcut, e.g., rho_[0..3] is equivalent to rho 0,rho 1,rho 2,rho 3.

Declarations. Each variable must be declared as either Group, GroupElement, Homomorphism,
or IntegerConstant before usage. For convenience, multiple variables separated with ’,’ can be
declared in the same line.

Most relevant groups are already pre-defined in the compiler while abstraction allows users to
add arbitrary groups. Pre-defined finite additive (Zm) resp. multiplicative (Z∗

m) groups modulo
m are defined as uppercase Z followed by a letter for the modulus and an optional * to indicate
the multiplicative group, i.e., Group Zn; declares group (Zn,+) resp. Group Zm*; declares group
(Z∗

m, ∗). In the implementation, the corresponding modulus is given as constructor parameter, e.g.,
m would be set to n2 in the running example when used for Paillier crypto system.

Alternatively, abstract groups like Group (G,+) or Group(H,*) can be declared for which an
abstract class is generated that allows easy integration of arbitrary groups like elliptic curve groups.
The first parameter is the name of the group whereas second parameter denotes whether the group
is written additively (+) or multiplicatively (*).

Other declarations have the form <Type> <VariableName>;, where <Type> is GroupElement,
Homomorphism, or IntegerConstant and <VariableName> has to start with a letter followed by
letters, numbers or underscores (_).

Protocol Compiler

LATEXJAVA

Protocol Specification

Code Documentation

Back-
ends

Fig. 1. Architecture and Example for Protocol Specification in Input Language

and Jurik [28]. Recall, in this scheme encryption is performed as E(m, r) = gm·rn

mod n2 with message m ∈ Zn, randomness r ∈R Z∗
n, and public key n, where n

is a RSA modulus and g := n+1 ∈ Z∗
n2 . This scheme allows to add values under

encryption, i.e., E(a)E(b) = E(a + b), where the operations are performed in
the ciphertext group Z∗

n2 respectively plaintext group Zn. This property allows
to compute linear operations on ciphertexts (crypto-computing) and is used in
many protocols such as [13,14,42] - just to name a few. The security against
honest-but-curious adversaries of such protocols follows from the semantic secu-
rity of the encryption scheme, whereas for security against malicious adversaries
each party usually needs to prove in zero-knowledge that it behaved correctly.

The following example is inspired by the application scenario described above.
It does not correspond to a published protocol but is rather chosen to demon-
strate many features of our compiler. One party proves in ZK that a generated
ciphertext x1 is either an encryption of 0 or 1 (this need arises for example in
oblivious transfer protocols based on Paillier encryption [35]), or it encrypts the
same plaintext µ encrypted as another ciphertext x2 (this could be used to prove
that the encrypted message is consistent with a previous encrypted message).
More formally, this proof goal is written in Camenisch-Stadler notation [22] as

ZPK

[
(µ, ρ0..3) : (x1 = E(0, ρ0) ∨ x1 = E(1, ρ1))

∨(x1 = E(µ, ρ2) ∧ x2 = E(µ, ρ3))
]
.

Plugging in the explicit definitions of the encryption function yields

ZPK

[
(µ, ρ0..3) : (x1 = ρn

0 ∨ x1g
−1 = ρn

1) ∨ (x1 = gµρn
2 ∧ x2 = gµρn

3)
]
. (3)

However, the proof goal given in Camenisch-Stadler notation is not yet ex-
plicit enough for automatic generation of protocols as it is a semi-formal notation

which does not contain the involved algebraic structures which is essential for
the generation. For this, the input language of our compiler requires explicit
Declarations of the involved algebraic objects (groups, elements, homomor-
phisms, constants), Assignments from group elements to the group they live
in, as well as Definitions of homomorphisms which encapsulate functions with
homomorphic properties as described next. In the following we refer to the line
numbers (L...) of the example given in Fig. 1. These line numbers are comments
which are separated with // in our input language.

Declarations (L1-L4): In the beginning the name of each group (L1), group ele-
ment (L2), homomorphism (L3), and integer constant (L4) used in the protocol
must be declared. As in L1, multiple elements can be separated with a comma.
For convenience, multiple elements can be grouped together with array notation,
e.g., in L2 where x_[1..2] is a shortcut for x_1,x_2. The integer constant n in
L4 will later be set to the RSA modulus n in the implementation.

The compiler supports additive groups (Zn,+) defined as Zn as well as mul-
tiplicative groups (Z∗

m, ∗) defined as Zm* (L1). The single letter following the
capital Z is the name of the modulus which must be set to the corresponding
value during runtime. In our example, n would be set to the RSA modulus n,
whereas m would be set to n2. Future versions of the compiler will allow to express
such relations as arbitrary expressions already in the input language.

Assignments (L5-L6): Each group element declared before must be assigned to
a group in this section, i.e. mu to Zn in L5. To assign multiple group elements to
the same group, they can be put in curly braces (L6).

Definitions (L7-L10): As described in §2, efficient Σ-protocols can be generated
to prove knowledge of preimages under homomorphisms. To allow automatic
generation of such Σ-protocols, the user identifies the homomorphisms in the
proof goal in equation (3) and writes it as

ZPK

[
(µ, ρ0..3) : (x1 = φ0(ρ0) ∨ x1g

−1 = φ1(ρ1))

∨(x1 = φ2(µ, ρ2) ∧ x2 = φ3(µ, ρ3))
]
, (4)

where e.g., φ2 : (µ, ρ2) 7→ gµρn
2 . This homomorphism is specified in our input

language (L9), where the first parameter is the name of the homomorphism
phi_2 followed by the list of preimages (mu,rho_2) and finally the mapping
from preimages to images as term g^mu * rho_2^n. The compiler automatically
infers domain and co-domain of the homomorphism from the involved group el-
ements which have been assigned to groups in the Assignments section. Using
this information, the compiler checks that the group operations in the map-
ping are written correctly to avoid errors in the input specification. In additive
groups, + denotes the group-operation, and * the multiplication with a scalar. In
multiplicative groups (as Zm* in the example), * and ^ are handled analogously.

Protocol Specification (L11-L15): After having declared, assigned and defined
all needed components, the protocol to be generated can be specified in the
SpecifyProtocol [...] block (L11-L15):

For this, the relation to be proven - rewritten to use homomorphisms (4) - is
formulated one-to-one in the input language (L12-L13). Boolean compositions
are written as in the C language, i.e., AND composition as && and OR compo-
sition as ||. If this expression is not explicitly given in the disjunctive normal
form (DNF) as in (1) the compiler transforms it automatically into this form.

Finally, a back-end of the compiler is chosen by specifying the output target.
In the example, we chose the LATEX back-end in L14 to automatically generate
the LATEX documentation given in §A from the protocol specification in Fig. 1.

Alternatively, setting the target to JAVA would produce Java source code for
the generated Σ-protocol. The Java code corresponds to the algorithms of the
Σ-protocol for prover and verifier (P1,P2,V) that can easily be integrated into
user applications. Some parameters that can not yet be inferred by the compiler
automatically (like the size of the challenge set) must be chosen by the user
according to the theory described in §2 and provided as constructor arguments.

Yet, this does not cause much effort to the user: for instance, for every x ∈
Im φ2 we have that (0, x) satisfies xn = φ2(0, x), and thus φ2 is special with
special exponent n, cf. Def. 1. The same holds for φ0, φ1, φ3. Hence, the maximum
c+ of the challenge set has only to be chosen smaller than any prime divisor of
n. But as n is an RSA-modulus, all its divisors have some hundred bits, and c+

should have about 80 bits in practical applications. Hence, choosing c+ := 280

satisfies the conditions of Th. 1, and one gets an HVZK proof of knowledge.

Easy Extendability with Further Groups: While the two most common groups
(Zn,+) and (Zm, ∗) are natively supported by our toolbox already, a user can
easily add arbitrary self-defined groups. This allows to easily enhance the tool-
box, e.g., with groups over elliptic curves that allow high performance and are
ideally suited for constraint devices such as embedded systems. To extend the
compiler with such a self-defined group, the user would declare an abstract group
(G,+) as Group (G,+); in the Declarations part of the input language. The
compiler treats this group called G as an additive group which is also output into
the LATEX documentation. The JAVA back-end automatically generates an ab-
stract class for this group which the user can instantiate with the corresponding
implementation of the operations in the intended group.

Future Work. We are currently working on a new version of the compiler which
supports efficient proofs in hidden-order groups and automatic transformation of
the generated Σ-protocols into non-interactive zero-knowledge proofs (NIZK).

References

1. A. Adelsbach, M. Rohe, and A.-R. Sadeghi. Complementing zero-knowledge wa-
termark detection: Proving properties of embedded information without revealing
it. Multimedia Systems, 11(2):143–158, 2005.

2. E. Bangerter. Efficient Zero-Knowledge Proofs of Knowledge for Homomorphisms.
PhD thesis, Ruhr-University Bochum, 2005.

3. E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic
generation of sound zero-knowledge protocols. Cryptology ePrint Archive, Report
2008/471, 2008. Poster session of EUROCRYPT 2009.

4. M. Barbosa, A. Moss, and D. Page. Compiler assisted elliptic curve cryptography.
In Information Security 07, volume 4804 of LNCS, pages 1785–1802. Springer,
2007.

5. M. Barbosa, R. Noad, D. Page, and N.P. Smart. First steps toward a cryptography-
aware language and compiler. Cryptology ePrint Archive, Report 2005/160, 2005.

6. M. Barbosa and D. Page. On the automatic construction of indistinguishable
operations. Cryptology ePrint Archive, Report 2005/174, 2005.

7. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO’92,
volume 740 of LNCS, pages 390–420. Springer, 1993.

8. A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-
party computation. In ACM CCS’08, pages 257–266. ACM, 2008.

9. S. Brands. Untraceable off-line cash in wallet with observers. In CRYPTO’93,
volume 773 of LNCS, pages 302–318. Springer, 1994.

10. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In EUROCRYPT’97, volume 1233 of LNCS, pages 318–333. Springer, 1997.

11. E. Bresson and J. Stern. Proofs of knowledge for non-monotone discrete-log for-
mulae and applications. In ISC’02, pages 272–288. Springer, 2002.

12. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM
CCS’04, pages 132–145. ACM, 2004.

13. J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote
diagnostics. In ACM CCS’07, pages 498–507. ACM, 2007.

14. J. Brickell and V. Shmatikov. Privacy-preserving classifier learning. In Financial
Cryptography and Data Security (FC’09), LNCS. Springer, 2009.

15. T. Briner. Compiler for zero-knowledge proof-of-knowledge protocols. Master’s
thesis, ETH Zurich, 2004.

16. J. Camenisch. Group Signature Schemes and Payment Systems Based on the Dis-
crete Logarithm Problem. PhD thesis, ETH Zurich, Konstanz, 1998.

17. J. Camenisch and E. V. Herreweghen. Design and implementation of the idemix
anonymous credential system. In ACM CCS’02, pages 21–30. ACM, 2002.

18. J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr
proofs. In EUROCRYPT’09, LNCS. Springer, 2009.

19. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO’04, volume 3152 of LNCS, pages 56–72. Springer,
2004.

20. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In EUROCRYPT’99, volume 1592 of LNCS, pages
107–122. Springer, 1999.

21. J. Camenisch, M. Rohe, and A.-R. Sadeghi. Sokrates - a compiler framework for
zero-knowledge protocols. In WEWoRC’05, 2005.

22. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups
(extended abstract). In CRYPTO’97, volume 1294, pages 410–424. Springer, 1997.

23. J. Camenisch and M. Stadler. Proof systems for general statements about discrete
logarithms. Technical Report 260, Institute for Theoretical Computer Science,
ETH Zürich, 1997.

24. A. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. Technical
Report TR-0371-05-98-582, GTE, 1998. Updated version with corrections.

25. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, CWI and University of Amsterdam, 1996.

26. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO’94, volume 839 of LNCS,
pages 174–187. Springer, 1994.

27. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty
computation: Theory and implementation. In PKC’09, volume 5443 of LNCS,
pages 160–179. Springer, 2009.

28. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In PKC’01, LNCS, pages 119–136.
Springer, 2001.

29. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(1):691–729, 1991. Preliminary version in FOCS’86.

30. L. Guillou and J. Quisquater. A practical zero-knowledge protocol fitted to security
microprocessor minimizing both transmission and memory. In EUROCRYPT’88,
volume 330 of LNCS, pages 123–128. Springer, 1988.

31. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In STOC’07, pages 21–30. ACM, 2007.

32. J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In STOC’92, pages 723–732. ACM, 1992.

33. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In EUROCRYPT’07, volume 4515 of LNCS,
pages 52–78. Springer, 2007.

34. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation effi-
ciently with security against malicious adversaries. In SCN’08, volume 5229 of
LNCS, pages 2–20. Springer, 2008.

35. H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.
In ASIACRYPT’03, volume 2894 of LNCS, pages 416–433. Springer, 2003.

36. P. MacKenzie, A. Oprea, and M. K. Reiter. Automatic generation of two-party
computations. In ACM CCS’03, pages 210–219. ACM, 2003.

37. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party
computation system. In USENIX Security’04, 2004.

38. T. Okamoto. An efficient divisible electronic cash scheme. In CRYPTO’95, volume
963 of LNCS, pages 438–451. Springer, 1995.

39. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

40. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-
private functions. In ACNS’09, LNCS. Springer, June 2-5, 2009.

41. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, 1992.

42. Alessandro Piva, Michele Caini, Tiziano Bianchi, Claudio Orlandi, and Mauro
Barni. Enhancing privacy in remote data classification. New Approaches for Secu-
rity, Privacy and Trust in Complex Environments (SEC’08), 2008.

43. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of ACM, 21(2):120–126, 1978.

44. C. Schnorr. Efficient signature generation by smart cards. Journal Of Cryptology,
4(3):161–174, 1991.

45. A. Shamir. How to share a secret. Communications of ACM, 22(11):612–613, 1979.

A Generated Output for Example in Fig. 1

A.1 Protocol Inputs

Homomorphisms defined in Input File
φ0 : Z∗

m → Z∗
m, ρ0 7→ ρ0

n

φ1 : Z∗
m → Z∗

m, ρ1 7→ ρ1
n

φ2 : Zn × Z∗
m → Z∗

m, (µ, ρ2) 7→ gµ · ρ2
n

φ3 : Zn × Z∗
m → Z∗

m, (µ, ρ3) 7→ gµ · ρ3
n

Homomorphisms used in Protocol
φ0, φ1, ψ2 = φ2 × φ3

Common Input
Z∗

m,Zn

Z : c+, n
Z∗

m : g, x1, x2

Preimage Input
Zn : µ
Z∗

m : ρ0, ρ1, ρ2, ρ3

Access Structure(
(ρ0)

)
∨

(
(ρ1)

)
∨

(
(µ, ρ2) ∧ (µ, ρ3)

)
Constraints on Preimages
µφ3 = 1 · µφ2

Relation
φ0 : x1 = ρ0

n

φ1 : x1 · g−1 = ρ1
n

φ2 : x1 = gµ · ρ2
n

φ3 : x2 = gµ · ρ3
n

A.2 Protocol

Round 1, Prover:
if secret ρ0 is known:

r0,0 ∈R Z∗
m

t0,0 := (r0,0
n)

else:
s0,0 ∈R Z∗

m

c0 ∈R [0, c+]
t0,0 := (s0,0

n) · x1
c0

if secret ρ1 is known:
r1,0 ∈R Z∗

m

t1,0 := (r1,0
n)

else:
s1,0 ∈R Z∗

m

c1 ∈R [0, c+]
t1,0 := (s1,0

n) · (x1 · g−1)c1

if secret (µ, ρ2, µ, ρ3) is known:
r2,0 ∈R Zn, r2,1 ∈R Z∗

m, r2,3 ∈R Z∗
m

r2,2 := r2,0 · 1
t2,0 := (gr2,0 · r2,1

n)
t2,1 := (gr2,2 · r2,3

n)
else:

s2,0 ∈R Zn, s2,1 ∈R Z∗
m, s2,3 ∈R Z∗

m, s2,2 := s2,0 · 1
c2 ∈R [0, c+]
t2,0 := (gs2,0 · s2,1

n) · x1
c2

t2,1 := (gs2,2 · s2,3
n) · x2

c2

t0,0, t1,0, t2,0, t2,1

GGA

Round 2, Verifier:
c ∈R [0, c+]

c
DGG

Round 3, Prover:
(c0, c1, c2) := complete(c, {c0, c1, c2})
if secret ρ0 is known:

s0,0 := r0,0 · ((ρ0)
−1)

c0

if secret ρ1 is known:
s1,0 := r1,0 · ((ρ1)

−1)
c1

if secret (µ, ρ2, µ, ρ3) is known:
(s2,0, s2,1) := (r2,0, r2,1) + (−(µ, ρ2)) · c2
(s2,2, s2,3) := (r2,2, r2,3) + (−(µ, ρ3)) · c2

s0,0, s1,0, s2,0, s2,1, s2,2, s2,3, c0, c1, c2
GGA

Round 4, Verifier:
Check whether:

isConsistent(c, {c0, c1, c2})
?= true

s2,2
?= 1 · s2,0

t0,0
?= (s0,0

n) · x1
c0

t1,0
?= (s1,0

n) · (x1 · g−1)c1

t2,0
?= (gs2,0 · s2,1

n) · x1
c2

t2,1
?= (gs2,2 · s2,3

n) · x2
c2

	Automatic Generation of Sigma-Protocols
	Endre Bangerter, Thomas Briner, Wilko Henecka, Stephan Krenn, Ahmad-Reza Sadeghi, and Thomas Schneider
	Introduction
	Our Contributions.
	Related Work.
	Outline.

	General Framework Description
	Preliminaries
	Notation of ZK-PoKs.

	Proof-Goals supported by our Compiler
	Implemented Techniques and Soundness Conditions
	AND-proofs.
	AND-OR-Proofs.
	Linear Relations.
	Sufficient conditions to guarantee soundness.

	Proving More Complex Relations

	Implementation of our ZK-PoK Compiler
	Input Language

	Generated Output for Example in Fig. 1
	Protocol Inputs
	Protocol

