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Abstract. We introduce and study the notion of “classical prime
dimension” of modules as a new generalization of the notion of
“classical Krull dimension” of commutative rings to modules over
arbitrary rings.

1. Introduction

The classical Krull dimension of a ring R, denoted by dim(R), was
originally defined to be the supremum of the lengths of all chains of prime
ideals in R. Then, in order to distinguish among rings with infinite
classical Krull dimension, Krause [12] introduced a refinement of the
definition allowing infinite ordinal values (see also [9]). The importance
of the classical Krull dimension is that it has provided an invariant with
certain good features and with the property that it distinguishes between
a prime ring R and a prime factor R/P . In particular, classical Krull
dimension provides a basis for proofs via transfinite induction.
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150 Behboodi and Shojaee

Throughout, all rings are associative rings with identity, and all mod-
ules are unital left modules. The symbol ⊆ denotes containment and
⊂ proper containment for sets. If N is a submodule (resp. proper sub-
module) of M, we write N ≤ M (resp. N < M). We denote the left
annihilator of a factor module M/N of M by (N : M). We call M
faithful if (0 : M) = 0. Also, we denote the set of all prime (two-sided)
ideals of R by Spec(R).

A proper submodule P of M is called a classical prime submodule of M
if, for all ideals A,B ⊆ R and every submodule N ≤ M , ABN ⊆ P , then
either AN ⊆ P or BN ⊆ P . This notion of classical prime submodule
has been extensively studied by the first author in [2,3] (see also, [4,6],
in which the notion of “weakly prime submodule” is investigated). Also,
a proper submodule P of M is called a semiprime submodule of M if, for
every ideal A ⊆ R and every submodule N ≤ M , A2N ⊆ P , then AN ⊆
P . An R-module M is called a classical prime (resp. semiprime) module
if (0) < M is a classical prime (resp. semiprime) submodule. It is clear
that for a submodule P < M , M/P is classical prime (resp., semiprime)
if and only if P is a classical prime (resp. semiprime) submodule of
M . One can easily see that a two-sided ideal I of any ring R is a
prime (resp. semiprime) ideal if and only if it is a classical prime (resp.
semiprime) submodule of M = R. Therefore, in case M = R, where R
is any commutative ring, classical prime (resp. semiprime) submodules
coincide with prime (resp. semiprime) ideals.

Let M be an R-module and let N1 and N2 be submodules of M .
Then, we say that N1 is strongly properly contained in N2, and we
write N1 ⊂s N2, if N1 ⊂ N2 and (N1 : M) ⊂ (N2 : M). Also, we
say that N1 is strongly contained in N2, and we write N1 ⊆s N2 if
N1 ⊂s N2 or N1 = N2. Clearly, ⊆s is an order relation, called strong
containment, on the set of all submodules of M . In particular, the chain
N1 ⊆s N2 ⊆s N3 ⊆s · · · of submodules of M is called a strong ascending
chain of submodules. Also, an R-module M is said to satisfy virtually
ascending chain condition on submodules (or virtually acc) if for every
strong chain N1 ⊆s N2 ⊆s N3 ⊆s · · · of submodules of M , there is an
integer n such that Ni = Nn, for all i ≥ n (see [1] for more details on
virtual chain conditions of modules).

We recall that a proper submodule P of M is called a prime sub-
module of M if, for every ideal A ⊆ R and every submodule N ≤ M ,
AN ⊆ P , then either N ⊆ P or AM ⊆ P . This notion of prime submod-
ule was first introduced and systematically studied in [8] and recently
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On chains of classical prime submodules 151

it has received a good deal of attention from several authors; see for
example, [1,5,13-15]. We denote the set of all prime submodules of M
by Spec(RM).

There is already a generalization of the classical Krull dimension of
rings to modules via prime submodules. In fact, the notion of classical
Krull dimension of a left R-module M , denoted by cl.k.dim(M), was
introduced in [1], as supremum of the lengths of all strong chains of
prime submodules of M (see [1, Section 3] for definition of cl.k.dim(M)
and more details).

A submodule P of M is called virtually maximal classical prime if P
is a classical prime submodule of M and there is no prime submodule
Q of M such that P ⊂s Q (see Definition 3.1 for various maximality of
submodules). For example, every proper submodule of a homogeneous
semisimple module is virtually maximal classical prime. Also, (0) < Q
as Z-submodule is virtually maximal classical prime.

Here, we study the classical prime dimension of a module, defined
to be the length of the longest strong chain of classical prime submod-
ules. In fact, we denote the set of all classical prime submodules of M
by cl.Spec(RM), and then we define, by transfinite induction, sets Xα

of classical prime submodules of M . To start, let X−1 be the empty
set. Next, consider an ordinal α ≥ 0; if Xβ has been defined for all
ordinals β < α, then let Xα be the set of those classical prime submod-
ules P in M such that all classical prime submodules strongly prop-
erly containing P belong to

⋃
β<α Xβ. In particular, X0 is the set

of virtually maximal classical prime submodules of M . One obtains
an ascending chain X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xα · · · of subsets of
cl.Spec(RM). If some Xγ contains all classical prime submodules of M ,
then we say that cl.p.dim(M) exists, and we set cl.p.dim(M)-the clas-
sical prime dimension of M to be equal to the smallest such γ. We
write “cl.p.dim(M) = γ” as an abbreviation for the statement that
cl.p.dim(M) exists and equals γ (we note that cl.p.dim(M) may be −1;
see Section 4).

In Section 2, we show that cl.p.dim(M) exists if and only if M has
virtual acc on classical prime submodules. Also, if R is a ring for
which dim(R) exists, then for each R-module M , cl.p.dim(M) exists
and cl.k.dim(M) ≤ cl.p.dim(M) ≤ dim(R). In particular, if M is a free
R-module or R is commutative and M is a faithful finitely generated
R-module, then cl.p.dim(M) exists if and only if cl.k.dim(M) exists, if
and only if dim(R) exists and, cl.p.dim(M) =cl.k.dim(M) = dim(R),
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in case one of them exists. In Section 3, we study modules of classical
prime dimension 0. In particular, it is shown that over any commutative
ring, all co-semisimple modules, as well as all Artinian modules with a
classical prime submodule, lie in the class of modules of classical prime
dimension zero. In Section 4, we study modules of classical prime di-
mension −1. Finally, in Section 5 we characterize left bounded prime
left Goldie rings (or PI-rings) over which, classical prime dimension and
the classical Krull dimension of any module coincide.

2. Some properties of classical prime dimension

We begin this section with the following proposition which shows that
the classical prime dimension of a ring R as an R-module coincides with
its usual classical Krull dimension of R.

Proposition 2.1. For any ring R, the following statements are equiva-
lent:

(1) dim(R) exists.
(2) cl.k.dim(RR) exists.
(3) cl.p.dim(RR) exists.

Moreover, if one of the three exists, then

dim(R) = cl.k.dim(RR) = cl.p.dim(RR).

Proof. (1) ⇔ (2). This follows from [1, Proposition 2.3].
(1) ⇔ (3). Define the sets Xγ of classical prime left ideals as in the
definition of classical prime dimension. It is clear that Spec(R) ⊆
cl.Spec(RR). If P is a classical prime left ideal of R, then P = (P : R)
is a prime (two-sided) ideal of R such that P ⊆ P and P 6⊂s P . It
follows that every minimal classical prime left ideal of R is a minimal
prime (two-sided) ideal of R. Therefore, if for each ordinal γ, we de-
fine X̄γ := {P ∈ Xγ | P is an ideal of R}, then Spec(R) = X̄γ if
and only if X̄γ contains all minimal prime (left) ideals of R, if and only
if cl.Spec(RR) = Xγ . Thus, cl.p.dim(RR) exists if and only if dim(R)
exists and cl.p.dim(RR)=dim(R). �

Let M be an R-module. In [1, Theorem 3.11], it was shown that
cl.k.dim(M) exists if and only if M satisfies virtual acc on prime sub-
modules. Here, by the same method we generalize this fact for classical
prime dimension of modules.
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Lemma 2.2. Let M be an R-module such that cl.p.dim(M) exists.
Then, for any submodule N of M , cl.p.dim(M/N) exists and is not
larger than cl.p.dim(M).

Proof. Let cl.p.dim(M) exist and N ⊆ P be submodules of M . Clearly,
P/N is a classical prime submodule of M/N if and only if P is a classical
prime submodule of M . Thus, cl.p.dim(M/N) exists and is not larger
than cl.p.dim(M). �

Lemma 2.3. Let M be an R-module for which cl.p.dim(M) exists. If
N and K are classical prime submodules of M such that N ⊂s K, then

cl.p.dim(M/K) < cl.p.dim(M/N).

Proof. Immediate from Lemma 2.2. �

Theorem 2.4. Let M be an an R-module. Then, cl.p.dim(M) exists if
and only if M satisfies virtually acc on classical prime submodules.

Proof. (⇒). Let cl.p.dim(M) = γ, where γ is an ordinal number. If
P1 ⊂s P2 ⊂s P3 ⊂s · · · is a strong assenting chain of classical prime
submodules of M , then by lemmas 2.2 and 2.3, we have

· · · < cl.p.dim(M/P3) < cl.p.dim(M/P2) < cl.p.dim(M/P1) ≤ γ,

which is impossible. Therefore, M has virtually acc on classical prime
submodules.
(⇐). Define the sets Xγ of classical prime submodules as in the definition
of classical prime dimension. Since there is a bound for the cardinalities
of these sets (e.g., 2card(M)), the transfinite chain X−1 ⊆ X0 ⊆ X1 ⊆ · · ·
cannot be properly increasing forever. Hence, there exists an ordinal γ
such that Xγ = Xγ+1. If cl.p.dim(M) dose not exist, then Xγ dose not
contain all the classical prime submodules of M . Using the virtual acc
on classical prime submodules, there is a classical prime submodule P
of M virtually maximal with respect to the property P 6∈ Xγ . Hence,
all classical prime submodules strongly properly containing P lie in Xγ .
But then P ∈ Xγ+1 = Xγ , which is a contradiction. �

Corollary 2.5. Let M be an R-module for which cl.p.dim(M) exists.
Then, cl.k.dim(M) also exists and cl.k.dim(M) ≤ cl.p.dim(M).

Proof. Immediate from Theorem 2.4, [1, Theorem 3.11] and the fact
that every prime submodule of M is a classical prime submodule. �
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The following example shows that, in general, the inequality in Corol-
lary 2.5 is not an equality.

Example 2.6. Let R = Z and M = Zp⊕Q, where p is a prime number.
One can easily see that the zero submodule of M is a classical prime
submodule, but it is not a prime submodule. Moreover, cl.Spec(RM) =
{(0), Zp ⊕ (0), (0)⊕Q} and Spec(RM) = {Zp ⊕ (0), (0)⊕Q}. It follows
that cl.p.dim(M) = 1 and cl.k.dim(M) = 0.

Theorem 2.7. Let R be a ring for which dim(R) exists. Then for each
R-module M , cl.p.dim(M) exists and

cl.k.dim(M) ≤ cl.p.dim(M) ≤ dim(R).

Proof. Let dim(R) exist. Then, by [9, Exercise 14.A(b)], R satisfies the
acc on prime ideals. It follows that for each R-module M , cl.Spec(RM)
satisfies the virtually acc. Thus, by Theorem 2.4, cl.p.dim(M) exists.
Now, we define the sets Xγ of classical prime submodules as in the
definition of classical prime dimension. Also, we define,

Yγ := {P ∈ Spec(R) | P = (P : M), for some P ∈ Xγ}.

It is clear that if Xα ⊂ Xβ, then Yα ⊂ Yβ . It follows that cl.p.dim(M)
exist and cl.p.dim(M) ≤ dim(R). Also, by Corollary 2.5, cl.k.dim(M) ≤
cl.p.dim(M). �

Let R be any ring. In [1, Proposition 3.8], it was shown that for each
free R-module F , cl.k.dim(F ) exists if and only if dim(R) exists and also,
if one of them exists, then cl.k.dim(F ) =dim(R). Also, in [7, Theorem
2.3], it was shown that for each faithful finitely generated module M
over a commutative ring R, cl.k.dim(M) exists if and only if dim(R)
exists and also, if one of them exists, then cl.k.dim(M) =dim(R). Thus,
by using these facts and Theorem 2.7, we have the following interesting
result.

Proposition 2.8. Let R be a ring. If M is a free R-module or R is
commutative and M is a faithful finitely generated R-module, then the
following statements are equivalent:

(1) dim(R) exists.
(2) cl.k.dim(M) exists.
(3) cl.p.dim(M) exists.
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Moreover, if one of the three exists, then dim(R) = cl.k.dim(M) =
cl.p.dim(M).

Corollary 2.9. Let R be a commutative domain, and let M be a nonzero
finitely generated projective R-module. Then, the following statements
are equivalent:

(1) dim(R) exists.
(2) cl.k.dim(M) exists.
(3) cl.p.dim(M) exists.

Moreover, if one of the three exists, then dim(R) = cl.k.dim(M) =
cl.p.dim(M).

Proof. There is a free R-module F and R-module K such that F ∼=
K ⊕M . Since R is a prime ring, then F is also a prime module. Thus,
Ann(M) = Ann(F ) = 0 and so M is a faithful R-module. Now, apply
Proposition 2.8. �

3. On modules of classical prime dimension 0

Here, we introduce various maximality conditions on submodules of
a module M which, for M = R and R commutative, are equivalent
to notion of maximal ideal in R. Then, we apply these conditions to
study modules of classical prime dimension 0. In particular, we will
show that over any commutative ring, all co-semisimple modules as well
as all Artinian modules with a classical prime submodule lie in the class
of modules with classical prime dimension zero.

Definition 3.1. Let R be a ring and M be an R-module. A submodule
P of M is called:

− virtually maximal if the factor module M/P is a homogeneous semisim-
ple module.
− maximal prime if P is a prime submodule of M and there is no prime
submodule Q of M such that P ⊂ Q.
− virtually maximal prime if P is a prime submodule of M and there is
no prime submodule Q of M such that P ⊂s Q.
− maximal classical prime if P is a classical prime submodule of M and
there is no classical prime submodule Q of M such that P ⊂ Q.
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− virtually maximal classical prime if P is a classical prime submod-
ule of M and there is no classical prime submodule Q of M such that
P ⊂s Q.
− maximal semiprime if P is a semiprime submodule of M and there is
no semiprime submodule Q of M such that P ⊂ Q.
− virtually maximal semiprime if P is a semiprime submodule of M and
there is no semiprime submodule Q of M such that P ⊂s Q.

Using the above definitions we have the following evident proposition.

Proposition 3.2. Let M be an R-module. Then,

(1) cl.p.dim(M) = 0 if and only if cl.Spec(RM) 6= ∅ and every classical
prime submodule of M is a virtually maximal classical prime submodule.
(2) cl.k.dim(M) = 0 if and only if Spec(RM) 6= ∅ and every prime
submodule of M is a virtually maximal prime submodule.

The following result shows that for any module M the notion of max-
imal semiprime submodule and maximal classical prime submodule co-
incide.

Proposition 3.3. Let M be an R-module. Then, every maximal semiprime
submodule of M is a maximal classical prime submodule of M .

Proof. Let P be a maximal semiprime submodule of M . Let M :=
M/P . Then, the zero submodule of M is the only semiprime submodule
of M . We claim that it is the only prime (classical prime) submodule of
M . It suffices to show that M is a prime module. To see this, let rRm =
0, 0 6= m ∈ M , r ∈ R and rM 6= 0. Thus, if N := {m ∈ M : rRm = 0 },
then 0 ⊂ N ⊂ M . We claim that N is a semiprime submodule of M .
Let aRa(Rm) ⊆ N , a ∈ R, m ∈ M ; i.e., rRaRa(Rm) = 0. Then,
(rRa)R(rRa)(Rm) = 0. Since M is semiprime, then rRa(Rm) = 0, and
so aRm ⊆ N , which means that N is a semiprime submodule of M ,
which is a contradiction. �

A prime ring R is called left bounded if for each regular element c
in R there exists an ideal A of R and a regular element d such that
Rd ⊆ A ⊆ Rc. A general ring R is called left fully bounded if every
prime homomorphic image of R is left bounded. A ring R is called a
left FBN-ring if R is left fully bounded and left Noetherian. It is well
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known that if R is a PI-ring (ring with polynomial identity) and P is
a prime ideal of R, then the ring R/P is (left and right) bounded and
(left and right) Goldie [16, 13.6.6].

Lemma 3.4. Let R be a PI-ring (or an FBN-ring) and let M be an
R-module in which every proper submodule is contained in a maximal
submodule. Then, for each proper submodule P of M , the following
statements are equivalent:

(1) P is a virtually maximal submodule.
(2) P is a virtually maximal prime submodule.
(3) P is a virtually maximal classical prime submodule.
(4) P is a virtually maximal semiprime submodule.

Proof. (1)⇒(2)⇒(3)⇒(4) is clear.
(4)⇒(1). Assume that P is a virtually maximal semiprime submodule of
M . Then, there exists a maximal submodule Q of M such that P ⊆ Q.
It follows that (P : M) = (Q : M) = P and M = M/Q is a simple R/P-
module. Since R is a PI-ring (or an FBN-ring), then the ring R/P is a
left bounded, left Goldie ring. Now, by [9, Proposition 9.7] we have that
R/P embeds as a left R-module in a finite direct sum of copies of M .
Thus, R/P is a left Artinian ring, and hence R/P is simple Artinian.
Therefore, the left R/P-module M/P is a direct sum of isomorphic
simple modules. It follows that M/P is a homogeneous semisimple R-
module; i.e., P is a virtually maximal submodule of M . �

Clearly, in any commutative rings R every proper ideal is contained
in a maximal ideal, and dim(R) = 0 if and only if every prime ideal of
R is maximal. Next, we generalize this fact to modules over a PI-ring
(or an FBN-ring).

Theorem 3.5. Let R be a PI-ring (or an FBN-ring), and let M be an
R-module in which every proper submodule is contained in a maximal
submodule. Then, the following statements are equivalent:

(1) cl.p.dim(M) = 0.
(2) cl.k.dim(M) = 0.
(3) every prime submodule of M is a virtually maximal submodule.
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(4) every classical prime submodule of M is a virtually maximal sub-
module.
(5) every semiprime submodule of M is a virtually maximal submodule.

Proof. Immediate from Proposition 3.2 and Lemma 3.4. �

We recall that if U and M are R−modules, then following Azumaya U
is called M−injective if for any submodule N of M , each homomorphism
N −→ U can be extended to M −→ U , and an R-module M is called
co-semisimple if every simple module is M−injective (see, for example,
[5,17,18], for several characterization). Every semisimple module is of
course co-semisimple.

Corollary 3.6. Let M be a co-semisimple module over a commutative
ring R. Then, cl.p.dim(M) = 0 and every classical prime submodule of
M is virtually maximal.

Proof. Let R be a commutative ring and M be a co-semisimple module.
By [18, 23.1], every proper submodule of M is an intersection of maximal
submodules of M , and hence every proper submodule is contained in
a maximal submodule. On the other hand, by [1, Proposition 3.1],
cl.k.dim(M) = 0 and every prime submodule of M is virtually maximal.
Now, apply Theorem 3.5. �

Corollary 3.7. Let M be a semisimple module over a PI-ring (or an
FBN-ring) R. Then, cl.p.dim(M) = 0 and every classical prime sub-
module of M is virtually maximal.

Proof. Let R be a PI-ring (or an FBN-ring) and M be a semisimple
module. Clearly, every proper submodule is contained in a maximal
submodule. On the other hand, by [1, Proposition 3.1], cl.k.dim(M) = 0
and every prime submodule of M is virtually maximal. Now, apply
Theorem 3.5. �

Also, in [1, Corollary 1.6], it is shown that every prime submodule
of an Artinian module M over a PI-ring (or an FBN-ring) is virtually
maximal, and hence if Spec(RM) 6= ∅, then cl.k.dim(M) = 0. In the
following theorem we show that this fact is also true for classical prime
submodules of Artinian modules over commutative rings.
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Theorem 3.8. Let R be a commutative ring, and let M be an Artinian
R-module. Then, every classical prime submodule of M is virtually max-
imal. Consequently, if cl.Spec(RM) 6= ∅, then cl.p.dim(M) = 0.

Proof. By [1, Corollary 1.6], it suffices to show that if P is a classical
prime submodule of M , then P is a prime submodule. Let P be a classi-
cal prime submodule of M . Since M is Artinian, then M := M/P is an
Artinian classical prime R-module. Thus, Ann(M) =

⋂
0 6=m∈M Ann(m)

and by [2, Proposition 1.1], {Ann(m) | 0 6= m ∈ M} is a chain of prime
ideal of R. Clearly, for each 0 6= m ∈ M , Rm is also an Artinian clas-
sical prime R-module. Since Rm ∼= R/Ann(m) and R is commutative,
then Rm is an Artinian prime module. Now, by [5, Corollary 1.9], Rm
is a homogenous semisimple R-module; i.e., Ann(m) = P is a maxi-
mal ideal. It follows that {Ann(m) | 0 6= m ∈ M} is singleton. Thus,
Ann(M) = Ann(m) for each 0 6= m ∈ M ; i.e, M is a prime R-module.
Therefore, P is a prime submodule of M . �

4. On modules of classical prime dimension −1

Unlike rings with unity, not every R-module contains a prime (clas-
sical prime) submodule; for example, any torsion divisible module over
a commutative domain dose not contain a (classical) prime submod-
ule (see [6] and [14]). Therefore, an R-module M does not contain
a prime submodule (resp. classical prime submodule) if and only if
cl.k.dim(M) = −1 (resp. cl.p.dim(M) = −1). Here, we investigate
modules of classical prime dimension −1.

Let M be an R-module. Since Spec(RM) ⊆cl.Spec(RM), we in-
fer that if cl.p.dim(M) = −1, then cl.k.dim(M) = −1. However,
we have not found any R-module M , where cl.k.dim(M) = −1 and
cl.p.dim(M) 6= −1. The lack of such counterexamples together with
the fact that cl.k.dim(M) = −1 if and only if cl.p.dim(M) = −1, for
modules over a large class of rings (we will shortly present these rings),
motivates the following conjecture.

Conjecture 4.1. An R-module M has a classical prime submodule if
and only if it has a prime submodule (i.e., cl.k.dim(M) = −1 if and only
if cl.p.dim(M) = −1).
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The following lemma is crucial for our investigation.

Lemma 4.2. Let R be a ring with dcc on prime ideals and M be an R-
module. Then, M has a prime submodule if and only if it has a classical
prime submodule.

Proof. Let M have no prime submodules, and let K be a classical prime
submodule of M . For creation of a contradiction, it suffices to show that
M/K has a prime submodule. Since, by [2, Proposition 1.1], (K : M)
is a prime ideal, without loss of generality we may assume that M is a
faithful classical prime R-module and R is a prime ring. Again, by [2,
Proposition 1.1], the set T := {Ann(Rm) : 0 6= m ∈ M} is a chain of
prime ideals of R and Ann(M) =

⋂
0 6=m∈M Ann(Rm). Since R is a ring

with the dcc on prime ideals, we infer that T has dcc; i.e., there exists
0 6= m ∈ M such that Ann(Rm) = Ann(M) = 0. If T is a singleton,
then for any 0 6= m ∈ M , Ann(Rm) = Ann(M) = 0; i.e., M is a prime
module and we are through. Thus, we may assume that T contains a
nonzero element. It follows that N = {m ∈ M : 0 6= Ann(Rm) ∈ T} is
a proper nonzero submodule of M , and there is a nonzero prime ideal P
in T such that it is a minimal element among the nonzero elements of T
(since T has dcc). Clearly, P = Ann(N) and we claim that N is a prime
submodule of M . To see this, let ARm ⊆ N , where m ∈ M and A is
an ideal of R. We must show that either m ∈ N or AM ⊆ N . Thus, we
may assume that A 6= 0; i.e., PA(Rm) = 0. Since R is a prime ring, we
infer that PA 6= 0; i.e., Ann(Rm) 6= 0, which means that m ∈ N and
the proof is complete. �

Corollary 4.3. Let R be a ring with dim(R) < ∞, and let M be an
R-module. Then, cl.k.dim(M) = −1 if and only if cl.p.dim(M) = −1.

Proof. Since dim(R) < ∞, we infer that R has both acc and dcc on
prime ideals. Now, by Lemma 4.2, the proof is complete. �

It is well known that any commutative Noetherian ring satisfies dcc
on prime ideas. This is also true for any left Noetherian PI-ring (see,
for example, [16, 13.7.15]). Thus, we have the following result.

Corollary 4.4. Let R be a left Noetherian PI-ring, and let M be an
R-module. Then, cl.k.dim(M) = −1 if and only if cl.p.dim(M) = −1.
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Next, we give more information about modules of classical prime di-
mension −1.

Proposition 4.5. For modules over any ring R, the following proper-
ties hold:

(i) All direct sums of modules of classical prime dimension −1 have
classical prime dimension −1.
(ii) All direct summands of modules of classical prime dimension −1
have classical prime dimension −1.
(iii) All factor modules of modules of classical prime dimension −1 have
classical prime dimension −1.
(iv) If N is a submodule of M and cl.p.dim(N) =cl.p.dim(M/N) = −1,
then cl.p.dim(M) = −1.
(v) The statements (i) − (iv) are also true when we replace “classi-
cal prime dimension” with “classical Krull dimension” (see also [14,
P roposition1.7]).

Proof. Straight forward. �

Remark 4.6. A submodule of a module of classical prime dimension
(resp. classical Krull dimension)−1 does not need to be a module of clas-
sical prime dimension (resp. classical Krull dimension) −1. To see this,
consider the Z-module Zp∞ , where p is a prime number. One can easily
see that Zp∞ has no classical prime submodule; i.e., cl.p.dim(Zp∞) =
cl.k.dim(Zp∞) = −1. But, every proper submodule of Zp∞ has a prime
(maximal) submodule. In fact, any finitely generated submodule of any
module of classical prime dimension (classical Krull dimension) −1 has
a prime (maximal) submodule. Also, a direct product of modules of
classical prime dimension (resp. classical Krull dimension) −1 does not
need to be a module of classical prime dimension (resp. classical Krull
dimension) −1 (see, [14, Proposition 1.8]).

Let R be a ring and P be a maximal ideal of R. One can easily see
that if M is an R-module such that PM 6= M , then PM is a (classical)
prime submodule of M . Thus, we have the following evident lemma.

Lemma 4.7. For any R-module M , the following statements are equiv-
alent:
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(1) cl.p.dim(M) = −1.
(2) for every P ∈ Spec(R), either PM = M or cl.p.dim(M/PM) = −1
as R/P -module.
Moreover, (1) ⇔ (2) when we replace “classical prime dimension” with
“classical Krull dimension”.

Clearly, over a simple ring R, the zero module is the only R-module of
classical prime dimension (classical Krull dimension) -1. In the following
proposition, we give a characterization for modules of classical prime di-
mension (classical Krull dimension) -1 over zero-dimensional non-simple
rings.

Proposition 4.8. Let R be a ring with dim(R) = 0 and M be an R-
module. Then, the following statement are equivalent:

(1) cl.k.dim(M) = −1.
(2) cl.p.dim(M) = −1.
(3) for every P ∈ Spec(R), PM = M .

Proof. (1) ⇔ (2). It follows from Corollary 4.3.
(1) ⇒ (3). Let P ∈ Spec(R) (i.e., P is a maximal ideal of R). If
PM 6= M , then PM is a (classical) prime submodule of M , which is a
contradiction.
(3) ⇒ (1). It follows from Lemma 4.7. �

5. Left bounded prime left Goldie rings over which, classical
prime dimension and classical Krull dimension of any

module coincide

Let R be a ring with dim(R) = 0. Then, for each R-module M , the
classical prime dimension of M and the classical Krull dimension of M
coincide. In fact, if dim(R) = 0, then by Theorem 2.7 and Proposition
4.8, for any R-module M , cl.k.dim(M) =cl.p.dim(M) = −1 or 0. Here,
we characterize left bounded prime left Goldie rings (or PI rings), in
which classical prime dimension and the classical Krull dimension of
any module coincide.

Let M be an R-module. A proper submodule P of M is called strongly
prime if:
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(i) P = (P : M) is a prime ideal of R and the ring R/P is a left Goldie
ring, and
(ii) M/P is a torsion-free left (R/P)-module (see [15], for more results
on strongly prime submodules).

We need the following lemma given in [15].

Lemma 5.1. ([15, Lemma 2.6]). Let R be a ring and P be a prime
ideal such that the ring R/P is left bounded, left Goldie. Let M be an
R-module. Then, the following statements are equivalent for a submodule
P of M :

(1) P is a prime submodule of M such that P = (P : M).
(2) P is a strongly prime submodule of M such that P = (P : M).

Lemma 5.2. Let R be a prime left Goldie ring, and let Q be the
left Goldie quotient ring of R. If R is left bounded, then the zero R-
submodule of Q is the only prime submodule of Q.

Proof. It is clear that the zero submodule of Q is a prime submodule.
Let P be a nonzero prime submodule of Q with (P : Q) = P. If
P 6= 0, then P contains a regular element of R. Since Q is divisible,
then PQ = Q ⊆ P , which is a contradiction. But, if P = 0, then we
claim that P = 0, for if not, then by Lemma 5.1, P is a nonzero strongly
prime submodule of Q with (P : Q) = 0; i.e., Q/P is a torsion-free left
R-module. Since P 6= 0 and R is a prime ring, then P ≤e Q (see also [9,
Exercise 5A and Proposition 5.6(a)]). Now, by [9, Proposition 7.8(c)],
Q/P is a torsion, which is a contradiction. �

Theorem 5.3. Let R be a left bounded, prime left Goldie ring. Then,
the following statements are equivalent:

(1) the classical prime dimension and the classical Krull dimension of
any R-module coincide.
(2) R is simple Artinian.
(3) dim(R) = 0.

Proof. (1) ⇒ (2). Let M = N ⊕Q, where N is a simple R-module and
Q is the left Goldie quotient ring of R; i.e., Q = E(RR), the injective hull
of RR. Clearly, N and Q are prime submodules of M (since M/N ∼= Q
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and M/Q ∼= N). We claim that Ann(N) = 0. Let Ann(N) 6= 0. Then,
the zero submodule of M is not a prime submodule of M , for otherwise,
Ann(M) = Ann(N) = Ann(Q) = P is a prime ideal of R. Since R
is a prime ring and P 6= 0, then P contains a regular element of R
(see [9, Proposition 7.3]) . Since Q is divisible, then PQ = Q, which
is a contradiction. Now, assume P is a nonzero prime submodule of
M with (P : M) = P. If P 6= 0, then P contains a regular element
of R. Since Q is divisible, then PQ = Q; i.e., Q ⊆ PM ⊆ P , and it
follows that P = Q (since P is a proper submodule of M and N is a
simple R-module). But, if P = 0, then we claim that P = N . First,
we show that N ⊆ P , for if not, then N ∩ P = 0; i.e., P ⊆ Q is a
nonzero prime submodule of Q, which a contradiction (see Lemma 5.2).
Next, we show that P ∩ Q = 0, for if not, then 0 6= P ∩ Q is a prime
submodule of Q, which is a contradiction. Therefore, cl.k.dim(M) = 0
and so by our hypothesis, cl.p.dim(M) = 0. Now, one can easily see that
for each m ∈ M , Ann(Rm) is a prime ideal of R ( either Ann(Rm) =
0 or Ann(Rm) = Ann(N)). Thus, by [2, Proposition 1.1], the zero
submodule is a classical prime submodule of M . It follows that (0) and
Q are two classical prime submodule of M such that (0) ⊂s Q, and so
cl.p.dim(M) ≥ 1, which is a contradiction. Thus, Ann(N) = 0 and so N
is a simple faithful R-module. Now, by [9, Proposition 9.7], RR embeds
in some finite direct sum of copies of N . Thus, R is simple Artinian.
(2) ⇒ (3) ⇒ (1). The proof is clear. �

Corollary 5.4. Let R be a PI-ring (or an FBN-ring). Then, the fol-
lowing statements are equivalent:

(1) the classical prime dimension and the classical Krull dimension of
any R-module coincide.
(2) for every prime ideal P of R, the ring R/P is simple Artinian.
(3) dim(R) = 0.

Proof. Let R be ring, over which, the classical prime dimension and the
classical Krull dimension of any R-module coincide. Clearly, for every
ideal I of R, the ring R/I has also this property. Now, if R is a PI-ring
(or an FBN-ring), then for each prime ideal P of R, the ring R/P is a
left bounded, prime left Goldie ring. Now, apply Theorem 5.3. �
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A ring R is called a Max-ring (or a left Max-ring) if every nonzero left
R-module has a maximal submodule (see, for example, [10]). In [1, The-
orem 5.6], there are several characterizations for PI-rings whose nonzero
modules have zero classical Krull dimension. Thus, by [1, Theorem 5.6]
and Theorem 2.7, we have the following proposition.

Proposition 5.5. Let R be a PI-ring. Then, the following statements
are equivalent:

(1) each nonzero R-module has zero classical prime dimension.
(2) each nonzero R-module has zero classical Krull dimension.
(3) R is a Max-ring.
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