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Abstract

We study the stability of steady sliding between elastically deformable continua using
rate and state dependent friction laws. That is done for both elastically identical and
elastically dissimilar solids. The focus is on linearized response to perturbations of steady
state sliding, and on studying how the positive direct effect (instantaneous increase or
decrease of shear strength in response to a respective instantaneous increase or decrease of
slip rate) of those laws allows the existence of a quasi-static range of response to
perturbations at sufficiently low slip rate. We discuss the physical basis of rate and state
laws, including the likely basis for the direct effect in thermally activated processes allowing
creep slippage at asperity contacts, and estimate activation parameters for quartzite and
granite. Also, a class of rate and state laws suitable for variable normal stress is presented.
As part of the work, we show that compromises from the rate and state framework for
describing velocity-weakening friction lead to paradoxical results, like supersonic
propagation of slip perturbations, or to ill-posedness, when applied to sliding between
elastically deformable solids. The case of sliding between elastically dissimilar solids has
the inherently destabilizing feature that spatially inhomogeneous slip leads to an alteration
of normal stress, hence of frictional resistance. We show that the rate and state friction laws
nevertheless lead to stability of response to sufficiently short wavelength perturbations, at
very slow slip rates. Further, for the slow sliding between dissimilar solids, we show that
there is a critical amplitude of velocity-strengthening above which there is stability to
perturbations of all wavelengths.



1. Introduction

This study considers two elastic solids, treated as half space continua, in steady
frictional sliding (Figure 1) and studies their stability to linearized perturbation. This is
done in the framework of rate and state dependent friction. It is argued that the rate and
state framework is the physically relevant description of friction, particularly if quasi-static
frictional responses as observed experimentally are to emerge as predicted responses on
surfaces which undergo sufficiently slow slip rates. The existence of such quasi-static
response is shown to be critically dependent on the positiveness of the "direct effect” (see
below) in rate and state laws. Thus the physical basis of that effect is reviewed, in terms of
thermally activated creep slippage at asperity contacts, and estimates of activation energy and
volume are made for granite and quartzite.

The rate and state framework models the variations of frictional shear strength due to its
dependence on slip rate and on the evolving properties of the contact population (Dieterich,
1979, 1981; Ruina, 1983). Dependence on those contact properties is represented as a
dependence on a state variable, or variables ( Ruina, 1983; Rice, 1983; Rice and Ruina,
1983; Tullis and Weeks, 1986; Heslot et. al, 1994; Marone, 1998). A formulation of
friction due to Oden and Martins (1985) can likewise be considered as a special limit of rate
and state friction, provided that the small normal motion between sliding surfaces, included
in that formulation, is simply considered as a state variable rather than also as a source of
alteration of normal stress. Similar normal motion concepts are adopted in rate and state
friction, in considering the dependence of strength on the dilatancy of a thin gouge of wear
particles (Sleep, 1995; Segall and Rice, 1995). The rate and state effects can be thought of
as, usually, small alterations of the friction strength from what would be predicted based on
a constant friction coefficient. In fact, those effects describe the actually gradual transition
between what is often loosely called "static" and "kinetic" friction. Here, for some of our
analyses, we will want to use rate and state concepts to describe memory effects in the
response not only to variations in slip rate, but also to variations in normal stress, as studied
in experiments by Linker and Dieterich (1992), Prakash and Clifton (1992), Prakash
(1998), Richardson and Marone (1999), and Bureau et al. (2000).

Two different kinds of studies are then presented using that class of friction laws. First,
we address, by elastodynamic analysis, the problem of sliding between identical solids on an
interface which exhibits velocity-weakening friction. The focus is on showing that the



solution for the response to perturbation, when carried out using rate and state friction,
converges to a quasi-static solution at sufficiently low slip rates. For such a quasi-static
limit to exist, it is essential that friction exhibits positive direct velocity effect, that is, an
abrupt change in sliding velocity should cause an abrupt change of the same sign in the
friction strength. Such a property of friction is well-established experimentally . That is,

for rapid enough changes h so as for the surfaces to be at the same population of
asperity contacts (i.e., at a constant value of the state variable), the variation of friction
strengtht with slip rateV is generally found to involve a positive proportionalityiri¢V).

This dependence is plausibly attributed to the presence of a thermally activated creep
process at stressed asperity contacts (Stesky, 1977; Heslot et al., 1994; Chester, 1994;
Bréchet and Estrin, 1994; Baumberger, 1997; Sleep, 1997; Persson, 1998; Baumberger et
al., 1999; Lapusta et al., 2000; Nakatani, 2001) as discussed further. We also demonstrate
how compromises from the full rate and state constitutive framework, in the direction of
classical friction laws like pure velocity-dependent friction, of velocity-weakening type, do
not allow a quasistatic range and, in fact, lead to paradoxical prediction of supersonic
propagation of slip pulses (as recognized already by Weertman, 1969, and Knopoff and
Landoni, 1998), or to ill-posedness, depending on the strength of the velocity-weakening.

As shown for anti-plane elastodynamics with rate and state friction by Rice and Ruina
(1983), the loss of stability on velocity-weakening surfaces, as one considers the response
to perturbations of progressively longer wavelengths, occurs as a Hopf bifurcation. At that
bifurcation wavelength, the responses to perturbations propagate at a sloeethe
interface. We show that< cg (shear wave speed) for anti-plane perturbationscanck
(Rayleigh surface wave speed) for in-plane perturbations. The fact that the shortest unstable
wavelengths propagate at speeds which are, respectively, sub-shear or sub-Rayleigh
suggests that fronts of slip perturbations might likewise do so, although this is strictly a
conclusion reached here only in the context of linearized perturbation of a state of steady
sliding.

The second kind of study involves slow frictional sliding along an interface between
elastically dissimilar half-spaces. The dissimilar material interface is especially susceptible
to frictional instability because spatially inhomogeneous slip causes a variation of normal
stress along the interface (Comninou, 1977a,b; Comninou and Schmeuser, 1979; Weertman,
1980). Where normal stress is reduced, frictional slip is eased and the possibility for an
instability is evident. The same effect does not exist for the sliding of identical elastic
solids, as in the first kind of study here. Thus, for dissimilar materials in slow frictional



sliding, we wish to examine stability versus instability due to both effects, the velocity
dependence of friction and the coupling between inhomogeneous slip and alteration of
normal stress.

The problem of stability of steady sliding between dissimilar materials has received
much recent attention in theoretical modeling (Renardy, 1992; Martins et al., 1992, 1995;
Adams, 1995; Martins and Simdes, 1995; Simdes and Martins, 1998; Cochard and Rice,
2000; Ranjith and Rice, 2001). That work has, mostly, neglected rate and state effects,
instead assuming a constant coefficient of frictiand has focused on the coupling
between inhomogeneous slip and alteration of normal stress. Such a classical friction
model, as we emphasize here, has no quasi-static range and must be analyzed in the
framework of elastodynamics. The results for that classical model are that sliding is
unstable toexp(kx) spatial perturbationx {s the coordinate along the interface, in the
sliding direction) for a very wide range fodind of ratios of elastic constants. In fact, the
time dependence of the response of slip rate or normal stress to perturbation is then of the
form exp(pt), wherep = alk| —ic with & andc real and independent kfbut dependent
onf and ratios of moduli). The widely occurring unstable situations correspand @o
For those, the problem of response to a generic perturbation is ill-posed (Renardy, 1992;
Martins and Simdes, 1995; Simdes and Martins, 1998; Cochard and Rice, 2000; Ranjith

and Rice, 2001); it has no solution for any positive time if the Fourier strength of the
perturbation falls off less rapidly than a negative exponentil at largelk|.

That result has already put a focus on how the Coulomb friction law should be modified
to regularize such problems (Simbes and Martins, 1998; Ranjith and Rice, 2001). Andrews
and Ben-Zion (1997) reported numerical simulations of highly unstable slip pulses along
interfaces between dissimilar materials that were shear-loaded below the friction threshold.
Cochard and Rice (2000) showed that the model which Andrews and Ben-Zion used, with
constant friction coefficient, would not give numerical convergence with grid refinement, due
to the ill-posedness discussed. Cochard and Rice (2000) also showed that a reformulation
of the problem using the regularized friction law of Ranjith and Rice (2001) did lead to
convergent solutions with properties somewhat like those suggested by Andrews and Ben-
Zion (1997). Extensive further studies along those lines, using the same regularized friction
law, are reported by Ben-Zion (2001).

Thus for the sliding of dissimilar materials, it is appropriate to focus, as we do in this
paper, on the combined, possibly destabilizing, effects of rate and state friction and coupling



of normal stress to slip. That should be done in the context of elastodynamics, letting the
guasi-static range emerge as a limit case. Here, in the interest of taking a simple first step,
that problem is directly addressed as a quasi-static problem. Such a quasi-static limit
should exist at sufficiently slow slip rates, as a consequence of the positive direct velocity
effect in such laws. As mentioned above, the direct effect is generally found to involve a
positive proportionality tdn(V). Thusdr / oV (the derivative being taken at fixed normal
stresso and state) has, at least approximately, the fao V at low enough (but,

obviously, not too near zer®d). For rock friction,a is typically of the order 0.01 at room
temperature. In contrast, we may expect elastodynamic alterations of stress due to changes
of slip rate to scale withu/2cg where u and cg are representative shear modulus and shear
wave speed, respectively. Thus it may be anticipated that the dynamic term will be
dominated byag/V when slip rates are slow enough to satify< 2aocg/u. For

example, in the case of crustal rocks such as grgmite 30 GPacg= 3 km/s),2aocg /

= 2 mm/sx (g/MPa). The slip rates should be much slower than that to be considered
guasi-static, a stringent requirement at low

In the quasi-static analysis (section 4), we find that the sliding of dissimilar materials is
always stable to the perturbation of the highest wavenumbers. As in the identical materials
case, the loss of stability on velocity-weakening surfaces occurs at a critical wavenumber (as
a Hopf bifurcation), and the sliding is unstable to perturbations of the lower wavenumbers.
However, for velocity-strengthening surfaces (for which the sliding of identical materials is
stable to perturbations of all wavenumbers), the dissimilar materials case differs; for
sufficiently low values of velocity strengthening, the sliding is still unstable to perturbations
of low enough wavelengths. This is the manifestation of more unstable behavior of the
dissimilar materials case, where the reductions in normal stress contribute to frictional
instability.

In section 5, we adopt the elastodynamic formulation for dissimilar materials of Ranjith
and Rice (2001) and confirm the result of the quasi-static analysis that the highest wave
numbers are always stable provided that the sliding velocities are sufficiently low. This, in
addition to the qualitative consideration above, gives further confidence in the
appropriateness of the quasi-static analysis for sufficiently slow velocities. Furthermore, it
means that the positive direct velocity effect of friction regularizes the elastodynamic
description of sliding for dissimilar materials, at least for the sufficiently slow loading
velocities.



2. Rate and state dependent friction laws including variable normal stress, their
linearization, and physical and empirical basis

In this section a broad class of frictional constitutive laws is considered, all of which
have the same linearized structure when applied to address small perturbations from steady
sliding.

2.1 General rate and state framework, including variable normal stress.

We are concerned with the relation between the shear stresmpressive normal
stresso, and slip rateV (in the same sense a3, and consider a range in which> 0.
We assume that the state of the asperity contacts can be characterized suitably by a single
state variabley , such that

T1=F(o,V,p).

The presence ap recognizes that strength is not uniquely determined by the two other
variables, as shown in a host of experiments. The representation of laws for evolution of
that state variable (or for a set of state variables, in more precise fits to experiments) has
been much discussed in the literature. In the most common one-state-variable case, state
evolution laws of the type

§=-Gyo,V.y)
are used for sliding at constamt

We assume thdt has positive partial derivatives with respect to all three of its
variables. 0F/do > 0 is agreeable enough, adé/dV >0 is a firmly established
experimental result (Dieterich, 1979; Ruina, 1983; Tullis and Weeks, 1986; Heslot et al.,
1994; Marone, 1998), reflecting the positive instantaneous velocity dependence of processes
at asperity contactsoF/0y >0 merely sets a convention for the state variable; larger
values mean greater strength, which is consistent with the usual interpretaficas
measure of the average maturity of the asperity contact population (more mature contacts are
stronger).



For Gy, the only general assumption is that whémand o are constant , the equation
e —QL(G,V,L,U) has a stable solution which evolves monotonically towards a definite
value of g (at whichyy = -G; = 0). We call that the steady state valiig, = ¢(0,V),
satisfyingG,(o,V,s) = 0, and observe that for evolution gf towardsy/ s, whenV and
o are maintained constant, we must reqdi@g / 0 > 0. For sliding in steady state at
constantV ando, the frictional shear strength is thus

T=F(o,V,.ys(0,V)) =1(0,V).

The same formulation is sometimes used also for sliding at vagghidnich is an
essential feature of sliding between elastically dissimilar materials. However, experiments
with variable normal stress histories (Linker and Dieterich, 1992; Prakash and Clifton,
1992; Prakash, 1998; Richardson and Marone, 1999; Bureau et al., 2000) show that there is
also a memory dependence of variationg irand these effects cannot be captured by the
above formulation.

Here we build on the suggestion by Linker and Dieterich (1992), based on their
experiments with steps in normal stress on a sliding surface, of a way for accounting for

such effects, while keeping the simplicity of a single state variable law. One continues to
write T = F(U,V,L,U) as above but now assumes that the evolution of the state has the form

(generalized from Linker and Dieterich, 1992)
¢ =-G(o,0,V,ip) = =Gy(0,V,y) - 9G, (0, V, i)

where G, > 0. This allows for normal stress variations to alter the state (some functional

forms, motivated by experiments, will be cited below). In sustained sliding at covistant
and g, we have the same condition for a steady state yalye ¢ (o,V) as above, since

that will satisfy G(c0,0,V,(s) = Gl(U,V,w$) =0, and hence, of course, have the same
expression forg. The effect of adding t6& the term that is linear i is that there is a

representation of the effect of very rapid (effectively instantaneous) changeshich is
given by integrating

dy /do =-Gy(o,V,y)

at fixed V, or with aV which changes instantaneously in some prescribed way with the
change ino. This structure enables the state variable to record memory effects of normal



stress variation. For example, a sudden increaselnfngs into existence a set of freshly
formed asperity contacts, hence reducing the average contact maturity, signaled by a
reduction ofy. A sudden decrease of may rupture the least well adhering contacts,

which may generally be expected to be the least mature of the population, and so increases
the average maturity, signaled by increasg ofIit may demand too much of a single state
variable to represent in a fully realistic way the effects of prior variation of\b@hd o,

but that is what is attempted in this formulation.

2.2 Form for linearized perturbation.

Let the shear stress, normal stress, and slip rate have the respective yatygsand
V, in a state of steady sliding which is to be perturbed. We make the following definitions:

a=[VoF(o,V,@)/oV]/o
a-b=[Vorg(o,V)/oV]/o

f=01x(0,V)/00

f—a=0F(o,V,@) /00 —-Gy(o,V,p)oF(o,V,p) ! oy
L=V/[0Gy(o,V,p) ! 0y]

where, in all functions on the right sides, derivatives are evaluated in the steadysiate at

Vo, andyy with o = Ys(04,V,). Note thatf here, as well as in sections 4 and 5 (it

does not appear in section 3), is used in a special way given by the formulae above. In the
next two sub-sections, 2.3 and 2f4js used in its usual meaning to denote the general

friction coefficient f = 7 / o, although that will coincide withas defined above if evaluated

in steady state. The other notations on the left sides are chosen to coincide with standard
notations for parameters in the well-known logarithmic forms of rate and state friction laws,
as will be discussed. At this point it is well to emphasize that the results given subsequently,
on linearized stability analysis, will just dependanb, f, a, L, g,, and\,, and not

further on the detailed form of the functioRs G, andG,.

If constitutive laws of the class presented are linearized about steady state, and if explicit
reference to the state variable is suppressed, those laws then linearize to

dr _aog, dv do V,
—=—0 —+(f—a)——--L[1 - 1(0,V)],
dt Vot (T=a) g ~ LT T V)]



where, again within the linearization,

10 V) = o + 10 =00) + D% (v -yp).
(0]

Thus f plays the role of the classical friction coefficient relative to steady-state strength,
and(f —a) plays a similar role relative to an instantaneous change in normal stress. The
parameter(> 0) characterizes the direct (instantaneous) velocity dependence, but steady
state velocity dependence is characterized by, which can be positive or negative.

Those cases correspond, respectively, to steady state velocity strengthening or velocity
weakening. The latter is of greatest interest for sliding between identical elastic solids, in
which case velocity weakeninly,> a, is required for instability. We will see here how that
conclusion generalizes to bi-materials. Finallymeasures a characteristic slip distance
over which state evolves in sliding, due to replenishment of the population of asperity
contacts. The constitutive response is illustrated in Figure 2.

The above linearized expressions of single-state variable laws were previously derived
by Rice (1983) for the special cage= constant= g,. Also, if all velocity dependence of

friction is neglecteda=a-b =0) and if f =a so that there is no instantaneous response
to normal stress change, then the above expression corresponds to one which Ranjith and
Rice (2001) and Cochard and Rice (2000) showed would regularize the ill-posedness of
elastodynamic problems of sliding between dissimilar materials mentioned in the
introduction.

2.3 Physical and empirical basis for standard rate and state laws.

The specific rate and state constitutive relations most often used in the literature have
been developed in work by Dieterich (1979, 1981) and Ruina (1983). The latter explicitly
introduced the concept of state variables. The original work focused on sliding at constant
normal streswr, writing the friction law in the form

T =of :U[f* +a|n(V/\A)+l,U]

where fi, a and\k are constants, anfi= f« +aln(V /\4) + ¢ can be called the
coefficient of friction. Heré/ can be chosen arbitrarily, and if it is arranged in the



definition of the state variable theit vanishes in steady-state sliding at retethen f
represents the friction coefficient for the steady-state sliding with the velgcityhis
gives a specific form for = F(o,V,) above and the symbal is used consistently with
the definition for linearization about steady state.

The In(V / k) term was introduced empirically by Dieterich and Ruina. It is nhow

generally assumed to be descended from an Arrhenius activated rate process describing
creep at asperity contacts. That interpretation had been mentioned earlier by Stesky (1977),
was implicit in Chester (1994), and was suggested explicitly, in the rate and state framework,
by Heslot et al. (1994), Bréchet and Estrin (1994), Baumberger (1997), Sleep (1997),
Persson (1998), Baumberger et al. (1999), Lapusta et al. (2000), and Nakatani (2001). In
such an interpretation, for the simple case of a single activated process, we write the slip rate
as

V= Vl exp(—E/ kBT)

and understand the activation energy to have the rrE; — 7.Q, wheret, is the

average shear stress at asperity contact<amithe activation volume for the process

there. \j can be regarded as an attempt frequency times a slip displacement per successful
attempt, and may plausibly be assumed to be at most of@deand possibly much less

(see below). lfo. is the average normal stress borne at the contactstfhien, =7/ 0.

(Note that if A, is the asperity contact area ahis the nominal area, thenA. =7 A and

o.A; = OA; the ratio of the two equations gives/ o, =17 /0.) We can thus write

T. = 0.T / o and rewrite the activated rate equation as

T_UD =] N kgT InDVEE
Egm Q2 o0.Q 571%

That reproduces the empirical logarithmic form of the direct velocity dependence with the
interpretation

If we further assume thd, / 0.Q is not a constant, but, rather, varies modestly with

changes in the maturity of the contact population (because of local plastic flow processes
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allowing better atomic scale matching, desorption of trapped impurities in the contact region,
etc.), then we can regaff] / 0.Q as a state-dependent variable, or, equivalently, write it in

the form £ + ¢ when\ is identified as\j, wherey is a state variable. Empirically, it is
known that the variations in the state variable part of the strength, in typical experimental
settings, is a modest amount of the total strength. That is, the magnitude of variations in
are typically quite small compared fo, which signals thak; / 0.Q will vary only

modestly with state. Of course, the prodagt? entering the denominator af should

also vary with the maturity of a contact so, strictly, it too may vary with the state variable,
although that possibility has been neglected in use of the logarithmic form of the friction
law. The total variation ihfrom such state dependenceahust be expected to be a
fractionally small change in an already small contributidingo it is probably a reasonable
approximation to treaa as if it was independent of changes in state.

Recent optical measurement of asperity contact sizes (Dieterich and Kilgore, 1994,
1996), in the friction of brittle optically transparent materials (including quartz), suggest that
o. is remarkably large, of order Q2 That is consistent with an estimate by Boitnott et al.
(1992) and with microhardness indentation strengths measured independently by Dieterich
and Kilgore. (Since typically. /o, =1/ 0 = 0.6 for rocks such as granite, that implies
that 7 is of order 0.Ju in such systems; Ol is a standard estimate of the theoretical

shear strength, and that suggests an unusual type of local plasticity at the contacts.) Among
the most precise measurementa afe probably those of Ruina (1980, 1983) on quartzite.
He used servo-control based on a displacement measurement very near the slip surface to
simulate a very high stiffness apparatus, and thus to impose very abrupt slip rate changes,
resulting ina = 0.009 at room temperature (293 KgT = 4.04 x 10741 J). For granite at

room temperature, Linker and Dieterich (1992), using a servo-control system similar to that
of Ruina (1980, 1983), repoat= 0.0104+ 0.0007. That is somewhat higher than the

rangea = 0.004 to 0.007Egiven earlier by Tullis and Weeks (1986) from measurements in

a less stiff torsional apparatus, and we ase0.01 for granite here. We can thus calculate
activation volumes from the formula above #using o, = 0.2u = 6.0 GPe& for both

materials, and that give® = 5 x (0.25 nm)* for quartzite and 4 (0.25 nm)* for granite.

Those values correspond to a few atomic volumes, and hence provide plausible activation
volumes, suggesting merit to this interpretation of the logarithmic law.

Given measured valuesafand ofr / o at any given slip raté, we can estimate the
activation energyg, even from data at a single temperature, if we assume a vaMge for
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Fortunately, the exact values chosen\oand\j do not matter very critically for this
estimate, because of the logarithm and because of the small value of itafatjoshould

be an attempt frequency times the slip of the contact per successful jump. The attempt
frequency should be of order of a lattice vibration frequency, hence of@rtdg, where

d, is a lattice spacing. Thus the largest plausible value would seemV4celmg, which
would result if the slip per successful jump is of ordgylike expected if a dislocation-like
defect sweeps the entire asperity contact area per successful jump at a pinning point.
Instead, it is much more likely that the successful jump allows only a small péytioh
the contact ared, to slip a distance of ordek,; then the total slip per success is
(AL / A)dg and )V is of ordercg” / A;. For example, it has dimensions of a few nm,
and A; of a fewpm, then\j = 10_608 . We will use\j = 10_60s = 3 mm/s to estimaté&;;
the values to be given would increase by about 20% if we had used the uppe¥peugd
and decrease by 10% if we uséd= 10_903. For quartzite, witta = 0.009 and
7/ 0 =0.54 (Ruina, 1980, 1983) when= 1um/s in steady state at room temperature, one
thus obtains

B, =2.7x1071° J=1.7 e.v. =170 kJ/ mole= 0.59x 1(0.25nm)°.
Linker and Dieterich (1992) do not report a precise value/af for granite but only note
that it is "about 0.7", whereas one can infer values from 0.63 to 0.72 from data they plot
showing response to normal stress changes of 10% or mére Bim/s. Tullis and
Weeks (1986) show values which span a comparable range, and average about 0.65, which
we use fort / o in this case. That, wita = 0.01, yields

E; =29x1071° J=1.8 e.v. =180 kJ/ mole= 0.63x 1(0.25nm)>
for granite, very close to the value for quartzite.

The logarithmic law is, of course, not suitable very nedf to0. A remedy for that is
to recognize that the above argument allows for forward activated jumps only, but not
backward ones, which should be equally probable=a0. A simple remedy, which
regularizes the law af = 0, is to include backward jumps by replacing
exp(1.Q / kgT) = exp(7 / ao) with 2sinh(t / ao). Such a procedure, motivated by the
thermal activation concept, is in standard use in formulating crustal scale earthquake models
with rate and state constitutive laws (e.g., Rice and Ben-Zion, 1996; Ben-Zion and Rice,
1997; Lapusta et al., 2000).

In contrast to thén(V) term just discussed, the representation of the state variable has
been entirely empirical except for the following concepts: (1) The variable measures the
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maturity of contacts (more mature being stronger), and (2) Slip over a distance_called
here, but often denotedj., sufficient to replenish the population of asperity contacts,

removes memory of prior state. In writing the evolution lawggrat constantr, as
e —G(V,L,U), the following alternatives are in common use: The Ruina-Dieterich "slip"

law (to use the terminology of Perrin et al., 1995) assumes that contact strength matures
only during slip, that the evolution from one steady state to another (following a sudden
change in slip rate) is exponential in the amount of slip, and that the steady state strength
also varies logarithmically withv. Those assumptions correspond to the form

GIP(V,y) = (V/ L)[ ¢ +bIN(V /W)

whereb is a constant. The Dieterich-Ruina "ageing" law, or "slowness" law, assumes

instead that strength varies with the logarithm of the mean contact liféfiared hence
writes = bIn(\A e/ L), again withb being a constant. The evolution law K which

implies one fory ) is thus constrained to malée=1, or 6 =t, in non-sliding contact, but to

make8 = L /V in steady state sliding. Those limits are met by wriéngl—vel L
which corresponds to a law fgr given by

G99V, @) = (b/ L)V ~Vk exp(-y / b)].
Both laws givey = —bIn(V / \A) and thus give the same strength in steady state sliding,
Ts(o,V) =0l +(a-b)In(V/\)].
Hencef = f« +(a—b)In(V / \4) is the steady-state coefficient of friction.
2.4 Response to variable normal stress.
In attempting to represent the effects on state of variable normal stress, Linker and

Dieterich (1992) tried to maintain as much of this framework as possible, wishing to
continue to understand that= F(G,V,L//) with F given by the logarithmic law. Since their

experiments showed fading memory of effects of alteration of normal stress, that forced
them to assume that varies not only with slip and time as in the two formulations above,

but also withao. (As remarked, it is an approximation to assume that a single state variable
adequately characterizes state; its validity may be even less secure when we include the
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effects of variable normal stress.) They therefore proposed to fit their experiments to a law
of the form

U=-G(V.y)-adlo

where Gl(V,L,U) is one of the two forms just discussed. They actually did that relative to the

Dieterich-Ruina ageing form but, as Perfettini et al. (2001) discuss, the procedure they used
could be implemented with either law. Thus the func@ffo, V,y) introduced earlier

corresponds tar / o. Linker and Dieterich regardea as a constant, although Perfettini et
al. (2001) and Cochard and Rice (2000) allow the possibilitycthatr (V, ).

This new law retains the same form g, asgg=—-bIn(V /&), and the expression
for 7(0,V) and f in steady state, as given above, remain valid. However, for changes of
o andV, one has
d a,, . ;) C

. L 0 .- P
T_E(fa)_faJrJDVVHpD_ fa+a§/V G, 5OF

=[f(V.)-aV.p)|o+ ?/—U\'/ — oG (V.¢)

This shows that iV is held constant but is suddenly altered (sudden enough that we can
neglect theoG, term in calculating the resulting changerij then

dr =[f(V.@)-a(V,p)]do , with dy =-a(V,)do/o .

The integrals of that set of expressions over the finite changepnovides the
corresponding finite change n Hencef —a is the parameter which acts like a

coefficient of friction during a sudden alteration of normal stress at fiked

As Perfettini et al. (2001) and Cochard and Rice (2000) discuss, the particular choice
a(V,p) = f(V,y) assures that there is precisely zero instantaneous alteratian of
response to an instantaneous alteratioor ofSuch a response of surprising as it is, is
what was found in the oblique shock wave experiments of Prakash and Clifton (1992) and
Prakash (1998). Those involved plates of hard steel or titanium alloy sliding against a plate
of WC-Co cutting-tool material. Following a step decrease oh the sliding surface,
achieved by arrival of a reflected shock waweyas found to evolve continuously (over a
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few um slip, or few tenths ofis time; it is not clear from the experiment which is the
better description) to its new value associated with theanevRanijith and Rice (2001)

noted that such a constitutive feature would regularize the otherwise ill-posed problem of
dynamic sliding between dissimilar half-spaces with a constant coefficient of friction.
However, those experiments involvedof order 1 to 10 m/s. They lead to a different
results than do experiments (Linker and Dieterich, 1992; Richardson and Marone, 1999) at
slip rates of ordet0~® slower, on rock materials. Studies of normal stress changes at
those lower rates have led to the conclusiondhat of the order off / 3. Further, studies

on the effects of high frequency oscillationscofduring the slow sliding of a polymer
system led Bureau et al. (2000) to conclude that use @fdheo term ingy does not

enable a good fit to their experiments. Thus there is much yet to be understood on
representing memory effects of normal stress variation.

3. Frictional Sliding of Identical Solids and Relation of Quasi-Static and Dynamic
Analyses

Before progressing to the dissimilar materials case, we consider, in the context of
elastodynamics, the stability of the steady sliding of two identical half-spaces on one
another. We use rate and state friction with positive direct velocity effecd), and show
that then the problem of finding the response to perturbation of steady sliding is well-posed
for all sliding velocities, in that the perturbations of the shortest wavelengths (highest
wavenumbers) are always stable. (That is shown in a more general way, applicable to
dissimilar materials too, in section 5.) For slow enough sliding velocities, we show that the
response to perturbations becomes quasi-static and converges to the solution of the
corresponding quasi-static problem. We also demonstrate how compromises of the rate
and state constitutive framework, in the direction of classical friction laws, prevent the
problem of response to perturbation from having a quasi-static range, even at slow sliding
velocities, and may lead to prediction of paradoxical features like supersonic propagation of
slip perturbations, or even to ill-posedness.

3.1 Response to anti-plane perturbations.

To begin with a simple case, we consider anti-plane perturbationseeffikx) space

dependence, where now thaxis lies in the interface and is directed perpendicular to the
common direction of slip and shear loading, which isttieection (unlike in Figure 1,
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which has been drawn for the case of in-plane perturbations considered in sub-sections 3.3
and 3.4 and in sections 4 and 5). This problem of linear perturbation was patrtially
addressed by Rice and Ruina (1983). The sliding occurs on theyptadeand we write

the displacement field as

N| -

Uy (X, y,t) = = Vot sign(y) + Uy(x, y,t)
where(, is the perturbed part and satisfigs12 G, = 9° (,/ 9t. The perturbation of shear
stress and sliding velocity at the interface are then

3G, (x,y,t 0 Uy(x,y,t
r(xt)-7q = H% _ H% |
y y:0+ y y:O_

_00,(x,0%,t) _a0,(x,07,t)

V(Xx,t) -V,
(x1)=Vo ot ot

There is no perturbation of normal stregs, and the perturbations af andV must
therefore satisfy, within linearization,

ot aog,o0V V,U V-V,LC
e T L TTom(amh) e
ot V, ot L O Vo [

Looking for a solution withx andt dependence aesxdikx + pt), wherek is real, one
solves the wave equation with

~ 1 . 12
0, = 5 Asign(y) expdloc— (k2 + p? /) y |+t

where A is a constant and the square-root term is cut fifgjty to i 0, and from—i o to

—i|K cs, in the complexp plane to assure that it has a non-negative real part. (For a quasi-
- 12

static model, in which the displacement satisﬁ@ajzz 0, we replace(k2 + pz/cg)

with |k here.)

Thus the stress and velocity perturbations are
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T(x,t) - ——/,lA(k2 +p?/ ) explikx + pt),
V(x,t) =V = pAexp(ikx + pt).

The first expression is(x,t) = 7, = =(1/ 2)u A| k| explikx + pt) in the quasi-static model.
One then finds that in order farandV to meet the above linearized frictional constitutive
relation, p must satisfy

212

HO,, VolH2, pP°H gop %p o
= p+-—= + (b-a)-2==0.
2 P LOH 2H LB

For the quasi-static model, the corresponding expression is

H Uop%p oD_
k|+ b 00—
EP l | a) LQ

It may be shown (Rice and Ruina, 1983) in both cases that forjka(gbort
wavelengths) one ha?‘e( p) <0 and hence stability, assumiag> 0. However, ag is

reduced in magnitude, one finds that for velocity-weakening surfaces (i.e., surfaces with
b-a>0), avalugk| = k is ultimately reached at which stability is lost. That occurs

becauseRg(p) changes sign, as a pair of complex conjugate roots traverba thg axis.
This is a Hopf bifurcation, and it occurs at the critical wavenumber

Ky = 2 _2(b- a)aoﬂ

Acr pL

where here and subsequentlydenotes a dimensionless measure of the unperturbed
sliding velocity, given by

a= WV / [2/a(b - a)oecs].

The corresponding quasi-static result is (Rice and Ruina, 1983)
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_ 21 _ 2(b-a)o,

o Acr pL

If we write the space-time dependence at the critical wave-nunberk{ andk = -k )
asV(x,t) -V, = Aexp[xiky (x £ ct)], so thatc is the phase velocity of the neutrally

propagating modes, then

c=qcs/ 1+ q% = [V, /2alb - a)a,]/ 1+ q° .

That speed is always subsonic, i.e., satisfies,. The corresponding quasi-static solution

is ¢ =[uV,/2/a(b - a)o,].

In is interesting to notice that at the critical wave number, the time-dependence of the
response to perturbation is

exp(pt) = exp(+ikyC) = expgti /b%aa %E

That has no dependence on the inertig) r even elasticﬁu) properties of the sliding

solids, and is the same in both the dynamic and quasi-static analyses. We will further show
that this expression holds for in-plane perturbations as well.

We see that the results of the elastodynamic analysis acquire quasi-static character for
small enough sliding velocitie8< g <<1 or

Vo <<[2ya(b-a)oucs]/ 1,

because, in the limij — 0, k; becomes independent of the (dynamic) parantgteand

c/lcg=q/+1+ q2 - 0, so that forq <<1 neutrally stable modes propagate much slower
than the shear wave speed. Moreovergfgk 1, the elastodynamic response corresponds

to the solution of the corresponding quasi-static problem. For granite at room temperature,
it is typically the case thafa(b — a) is of order 0.005 (e.g., Tullis and Weeks, 1986), and
thusq=[V,/(mm/s)] x (MPa/ g,). Note also that even though, for sufficiently small

V,, the speed satisfiesc << cg, it will typically still be much larger thaiy, (by a factor of

order3x10° MP&/ o, for granite).
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For conclusions from the dynamic analysis to reduce to those of the quasi-static
analysis at sufficiently slow slip rates, it is essential &, which is what is observed
experimentally. The case= 0 will be considered in the next section. However, even from

the elastodynamic results of this section it is easy to see thatavhed, thenq — oo for
any fixedV,, so that we havé, - co, which signals that the highest wavenumbers (the

shortest wavelengths) become unstable,@ndcg, which hints that these highest

wavenumbers have phase velocities of the order of the shear wave speed. That suggests that
the problem witha = 0 no longer has a quasi-static range and could even be ill-posed.

3.2 Importance of rate and state features for existence of quasi-static range;
response to anti-plane perturbations.

We may now see that dynamic analyses using versions of the friction law which neglect

all or some of the rate and state features lead to solutions which have no range of quasi-
static response to perturbation, no matter how small is (the podigva)how large igk|.

Consider first classical friction, in which there are no rate or state effects. We can
represent that case by letting allaxfb, and L approach zero (after multiplying through by

2
L/V, in the equation fop). One then obtainék2 + p2/c§)” = 0 which has only the
roots p = tikcs, corresponding to propagation at the shear speed. (Clearlyz$inteis
constant in this constitutive limit, no matter hat(x,t) changes, so long as it stays positive,

the interface will propagate perturbations as shear waves.) Thus there is no quasi-static
version of the problem of response to perturbation in this case.

Now consider again the rate and state formulation but simplyatak@. (The normal
contact law of Oden and Martins, 1985, if interpreted witidepending on normal
penetration, and the actual normal motion neglected in the dynamics, would fall into such
a=0 class.) Since the state evolution slip distabhce0, the strengtit then undergoes

no change upon an instantaneous change in velocity, but changes only as part of the
evolution towards the new steady state strength. Introducing the nd®atiqny K| cg,

%u Vo §(1+P2)]/2—2baopzo
KL cs KL
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At high wave numbersk|L >>1, and at considerably less high wave numbers in slow
sliding (V, << cg) with bo, << u (typically the case), this equation has a solution for

2
which (1+ PZ)J/ differs from zero by a number of magnitugde1l. Thus there are roots

P in the near vicinity otti, implying that the response to perturbation propagates at a
speed neacg, so that there is again no quasi-static version of the problem. Also, further

analysis shows that there are roots viRié( p) > 0 for all values ofk, so this model does
not have the short wavelength stability assured vaei®.

A more extreme compromise of rate and state dependent friction idto-l€. In that

limit, a (as distinct fromb —a) becomes an irrelevant variable and the streakvays
corresponds to the steady state strenrgg(oo,v) , towards which it now evolves

instantaneously upon any changé/ofThat is, we are then assuming purely rate dependent
friction which follows the velocity weakening law= TSS(UO,V), without memory or state

dependence. Using the notation

_ 07ss(00,V)/0V _2(b-a)ogcs
H/2Cs HVo

(not to be confused with used for temperature earlier), and assundirgO, p is
determined in that limit by

(1+ PZ)]/Z -TP=0.

That provides a problematic model. 0k T <1, P = p/|k/cg = ii/ 1-T2. Since

]/\/1— T2 >1, that corresponds to supersonic propagation of perturbations along the
interface at phase velocity

C:CS/\/l—Tz > Cq.

Since thatc is independent ok, every Fourier component of a generic perturbation
propagates at the same speed, and hence the perturbation leads to a pair of pulses, both
propagating supersonically, in opposite directions along the interface. That is a type of
propagation in pure velocity-weakening friction which Weertman (1969), and also Knopoff
and Landoni (1998), had previously noted. (For in-plane, versus anti-plane, perturbations of
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slip between identical solids, the propagation speed is supersonic relatjyeitdessT is

near 0, as will be discussed in subsection 3.4). If the velocity weakening is stronger, so that
T >1, then the solutions fop are real,

P = p/[kics = £1/NT2 1.

While the solution in response to an individeak(i k x) is thus well defined, at least until
the exponential growth becomes so large Yhatirns negative, this solution fqr signals
an ill-posed model. This is much like has been discussed for the dissimilar material case

(Renardy, 1992; Simdes and Martins, 1998; Cochard and Rice, 2000; Ranjith and Rice,
2001), in which a similapO|k| occurs, and the problem of response to a generic

perturbation at = 0, whose spatial Fourier transform falls off less rapidly Witlthan
exponentially at largék|, fails to have a solution fdr> 0.

3.3 Response to in-plane perturbations.

To address in-plane perturbations of slip, we interpriet exr(i kx) as a coordinate

axis in the interface along the direction of slip (Figure 1). Then the perturbed displacement
field Oy, Gy corresponds to a state of plane strain inxheplane, withuy as well as

a(: —ayy) and T(: ayx), but notuy, being continuous ag=0. If
Uy = +(A/2)exp(i kx + pt) on the two sides of the interface, then the slip velocity
perturbation is

V(x,t) =V =00y (x,0%,t) / & - 80y (x,07,t) / ot = pAexp(ikx + pt),
like in the anti-plane case. Stress perturbations can be obtained by solving the

elastodynamic plane strain equationsdg(x, y,t) and Oy(x, y,t), and calculating the

associated stresses. The results can be taken from Geubelle and Rice (1995), and show that
the perturbation of shear stress is

T(x,t) - 14 = —%Hl k| AF(p)explikx + pt) ,

- da o —(1+az)2 1/2 12
where F(p) = —>P S , e =1+ 2 [2c2 , an =1+ 2 [k2c2 )
(p) as(l_ag) s ( p / s) p ( Y / p)
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Here, as in the anti-plane casg, is cut fromilk|cg to ico and i to —ik/cg in the
complex p plane, andr, from i[K/c,, to ie and—ie to —ilk|c,, to assure that they have

non-negative real parts. The numeratolé()p) vanishes ap = #ilklcg, wherecg is the

Rayleigh speed.

The corresponding quasi-static analysis leads to

T(x,t) -1 = —2(1/“1 V)|k|Aexdi kx+ pt),

wherev is the Poisson ratio; the dynamic result reduces to that wiiéng; — 0 and
p/ke, - 0, sinceZ(C% - cg) / c% =1/(1-v). Thus all results for quasi-static in-plane

perturbations are identical to those given earlier for quasi-static anti-plane perturbations,
except thatu of the latter case is now replaced py(1-v).

To continue with the dynamic in-plane analysis, the linearized constitutive law between
T andV leads to

L+ 0kIF(R) + ge(- 2)\2E=0

as the equation determinirg where we are assuming, as always, &m0 and are
considering velocity weakening surfaces so thata > 0. Like for the anti-plane case,
large|k| values (short wavelengths) haRe(p) < 0 and hence stability, becauae> 0. To
find the critical wavenumber at which stability is lost, we observe, like in Rice and Ruina
(1983), that roots cannot cross frdRe(p) <0 to Re(p) >0 at any|k| > 0 by passing
through p=0. Thus we identifyk,, by seeking conditions for there to be roots in the
form p=ilklc, wherec is real; ky will be the largestk| at which such roots occur. In that

case,lf(p) depends only o, and we will replace the notatid%\( p) with F(c), where

4\/1—02/05\/1—@/0% —(2—c2/c§)2
czlcg\/l—czlcg .

F(c) =
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We examine roots for three casfess Cs, Cs <|c| < cp, andc, <|d, and then summarize the

results in Figures 3 and 4. It is straightforward to see that roots, when they exist, will occur
in conjugate pairg = ilkic, so that we henceforth assume 0.

In the subsonic regime< cg, we find that for each value qf the dimensionless

unperturbed sliding velocity introduced in section 3.1, there is a unique value of the phase
velocity ¢, and that value is sub-Rayleigh< c<cr . To demonstrate that, we note that
F(c) is purely real forc < cg and, separating the real and imaginary parts in the equation

determiningp, we get

ao,
\%

(b-a)o,

Vu
~EF(c) =
L2 © L

k|2 and 11KlEc )=
2

From either of these equations, we see (@) has to be positive, and hence potential
roots are restricted to sub-Rayleigh phase velociies; < cg. Taking the ratio of the two

Ke=1 222
LV a

which is the same result as for the critical valuglofin the anti-plane case. Substituting

equations, we obtain

the last result into the second equation produces the following equation for deternining

cl/cg _ uv

F(c) B 2 a(b—a)oyCs

g.

Since F(c) decreases monotonically with increasmgand passes through 0y, for
each value of] (positive by definition), this equation has a unique ulith 0 <c <cg.
The corresponding wavenumbéx|, referred to a$ksub| below, can then be found from the

expression fotk | c.

In the intersonic regimeg < ¢ < cp,, more solutions of the forrp = +i |k |c exist, for

eachb/a > 1 and for small enough. In this casd-(c) has nonzero real and imaginary
parts (except for the Eshelby valae +/2c, for which F(c) is purely real, and the results

cited above apply). We writé(c) = R(c) +iF,(c), whereR and F, (real) are evaluated
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approaching the branch cuts from the right half-plRe¢p) > 0. Separating the real and
imaginary parts in the equation determinipgwe find that

2a04Cs C 2(b-a)ogcs ¢

RO ~1Ry(0) = e

, and rh(c) + Fy(c) =

wherer =|k|cL/V. Inspecting the formula fdf(c), we observe tha, >0 and F, > 0.
The above equations give a quadratic equation farthe form

r? +rib/(Ra)-(b-a)/a=0,

which has only one positive solution

r

KlcL __bRy(Q) , [bR(©) F  b-a
V' 2aR(0) \RaR(O§ a

Then, from the second equation of the set above, we get the following equation to determine
the intersonic roots (when they exist):

Jbla-1c/g by .
\/[Fz(c)b/(Za)] (b/ a-1)F2(c) - R (c)b/ (2a) + F»(c) ICCED RS

We denote the left-hand side of the above equatioB(by a,c/ cg) and observe that the
equation has solutions for each valuebdfa > 1 only whenq<G(b/a,c,/cs). The

corresponding wavenumbegk |, called|kmt| below, is then determined by the expression
for r above. No intersonic solutions existit- G(b/ a,cp / cs).

Finally, it can be easily shown that no solutions exist in the supersonic regifne

To sum it up, we have been seeking valugkdfandc (> 0) at which roots pass from
Re(p) <0 to Re(p) > 0 through the pointp = +i |k |c. We showed that for each valge

> 0 of the dimensionless sliding velocity, a soluljk;ﬂb| exists with sub-Rayleigh phase
velocity 0 < cgyp < Cr. In addition, for a limited range af, given byq <G(b/a,cp / c5),

there exist additional solutiorfig,|, one for eactb/ a > 1, with intersonic phase velocity
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Cs <Gint <Cp. From the above expressions flagy| and|kin|, and the trivial relation

Csub < Cs < Cint, We get

V |b-a V |b-a _
i <GV @ “ogpl) a el

So, for each giveq, the sub-Rayleigh critical wavenumbiey | is either the only one
existing, or the largest one. ThF1§Jb| is the critical wavenumbek, , at which the stability

is lost. Figures 3 and 4 illustrate the dependence of the two wavenumber solutions and their
phase velocities on the parametgendb/a. Like for the anti-plane case, the condition

a > 0 assures that results of the dynamic analysis reduce to those of the quasi-static
analysis at sufficiently slow sliding velocities.

In section 4, quasistatic stability results for in-plane perturbation of dissimilar materials
are considered. In the limit case of identical materials, they will have to agree with the
guasistatic results of this sub-section. It is only the in-plane perturbations, and not the anti-
plane ones, which could be qualitatively different in the dissimilar material case (and hence
are of interest), because they involve coupling of slip perturbation to alteration of normal
stress.

3.4 Importance of rate and state features; response to in-plane perturbations.

We showed in sub-section 3.2, for anti-plane perturbations, how compromises from the
rate and state framework, in the direction of classical friction laws, may lead to lack of
existence of a quasi-static response range and to other paradoxical features. A similar
discussion may be repeated for the case of in-plane perturbations. However, we confine our
attention here just to classical laws of pure velocity-dependent friction, of velocity-
weakening type. In that case, the time dependence is determined by

F(p)-Tp/(lk|cs) =0,

where If(p) is defined in sub-section 3.3 ads defined in 3.2. This shares features of

the anti-plane case. Consider first strong velocity weakening, sb#ht Then, since
F(0)=1/(1-v) andF(p) - p/|k|cg asp — = in Re(p) >0, we are assured that for
every suclT, there exists a real positive solution faf|k |cg. Figure 5 plotsﬁ(p) and
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Tp/ | k| cs againstp/ | k | cs along the positive real axis (fey, = /3cg) and shows
graphically the origin of the result. That means that k | and suggests ill-posedness of

the model, just as in the anti-plane casdforl. Also, like in that case, the factor|df|
diverges asT - 17.

Now consider weaker velocity weakenifigs 1. There is no longer a solution on the
Re(p) axis but, so long aBis not so near 0 (i.e., fOi,i, <T <1, whereT, is to be

defined below), there are solutions of the type i | k |c wherec is real and positive. In
the notation of sub-section 3.3, such solutions would have to satisfy

F(c)—-iTc/cg=0.

For non-zerd, that will have solutions only whelR(c) is imaginary, which means only
whenc > c,, in which range the expression reduces to

4l e ~1(el ) 12 (e e
(c/cs)®\(c/ cg)? -1

As illustrated by the plot in Figure 5, done fy = /3¢, we find supersonic (relative to
Cp) solutions in this case. That result is foreshadowed by Weertman's (1969)

demonstration of similarly supersonic speeds of steady-state propagation of slip ruptures

along surfaces with pure velocity-dependent friction of weakening type. The propagation

speedc becomes unbounded &s- 1 , but it reduces in magnitude (although always
>cp) asT is reduced in size until at a special value, which weTegl|, c becomes equal to

Cp- Thatlowest value is given by

N (A YA
min — 3 2
(cp/ 0%\ (Cp/ 65)7 -1

which is Ty, =1/ (3v/6) = 0.136 for the case plotted in Figure 5. We have not determined
the nature of the roots f@ < T < T, However, foiT = 0, the solution is the Rayleigh

speed,c = cr since F(cg) = 0; that, of course, means neutrally stable (if not quasi-static)

response to perturbation. Then, for small posiliyeve can perturb about that solution by
Taylor expansion of-(c). Thus, to linear order ify
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F(cR)py lkl—cRg—iﬂklcR/cs:O,

which shows thap =i |k|cg =T |k|cr/[csF'(Ccr)]. SinceF'(cr) <O, this shows that
Re() > 0, and further thaRe(p) 0| k |, showing not only unstable modal response but also
the feature that denotes ill-posedness in response to a generic perturbation.

4. Quasistatic analysis of stability of slow frictional sliding between elastically
dissimilar solids

As explained at the end of section 1, the frictional sliding with the positive direct effect
should behave quasi-statically at sufficiently slow sliding r&§gs.e., when
V, <<2a o,c5/ 1. Here, we analyze the stability of sliding in that quasi-static regime for

the dissimilar materials case.

We denote by subscript "1" the materialyirr 0 and by "2" that iny < 0. For sliding
under gquasi-static conditions between such elastically dissimilar materials, expressions for

stress perturbations under in-plane slip perturbations can be taken from Comninou
(1977a,b) and Comninou and Schmeuser (1979) (remembering thatauy, and

0 =-0y)as

M -+ 35(E L)/ IE

M MB 95(x.t)
271) - x—& '

A)—To=-
T(x,t) -1, 5 EY

dé , o(xt)-og=

Whereé(x,t) = Uy (X, 0" ,t) - Uy (x,07,1) is the slip perturbation. The modult is twice a
modulusC introduced by Comninou and Schmeuser (1979)&mnsla Dundurs
parameter. These are defined by

_ By /(- B?) _ 2 (- B%)
Po(ky + D)+ py(kp +1)  pp(L-vy) + py(-vyp)

_ MoKy =) - (ko —1) _ pp(1-2vp) — p(1-2vp)
po(ki +D) + (ko +D)  2pp(l-vy) +(@-vp)]
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where the rightmost versions correspond to plane sxain3— 4v) as treated here; the
formulae are also valid for plane stress witk (3—v)/ (1+v). Our use of "1" and "2" is
reversed relative to Comninou and Schmeuser (1979) but we use the expression as they
wrote it for 3, so that for a given material pair odris the negative of theirs, and has the
property that when the more rigid material is the one occupy#@, then 3 > 0 (at least if
the Poisson ratios of the two materials are not too dissimilar). Not&ltmatuces to

u/ (1-v) and B =0 in the case of identical materials treated in subsections 3.3 and 3.4.
Suga et al. (1988) and Hutchinson and Suo (1992) give numerical val@derad wide
range of material pairs. Typicallyg3 | is of the order 0.1 or less although, for very
dissimilar materials, e.g., witpy / > - 0, B=(1-2v;)/2(1-v,) and can be as large as
0.5if vy is near 0.

Thus if we seek solutions in the forﬁﬁx,t) = Aexpli kx + pt), then the velocity
perturbation isV(x,t) =V, = pAexp(i kx+ pt) like in the previous cases and the stress

perturbations are
T(X,t) =To == |K|(M/2)Aexp(ikx + pt), o(x,t) = 0o =ik(MB/ 2) Aexp(ikx + pt).

Inserting these into the linearization of the constitutive relation, in its general form allowing
for variations of normal stress, we obtain that, for a giverkrélaé time dependenge
must satisfy

ao, ID2+[(a—b)0O+ MIk] , ikMB(f —a)%ﬁﬁﬂ\ﬂ [kl ikMBfO_

=0
Vo H L 2 2 LH 2 2 B

where we assume that>0 and L >0. We now introduce the non-dimensional quantities
n=M|k|L/(20,), e=0k/|k|, {=pL/V,
so that the expression reduces to
aZ? +{nl+ie(f —a)]-(b-a)}l +n(l+ief) =0,
In the special case of identical materigds; € =0. Then one sees by inspection that, if

a> b (steady state velocity strengthening), there are no rootsReifh) > 0 (i.e., with
Re() > 0) and sliding is always stable. Howeveraik b (velocity weakening), there will
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be no roots withRe(p) > 0 if n is large enough, but such root comes into existence when
n<ng =b-a. At n=ng therootis{ =+i,/(b—a)/a. Those reproduce the quasi-

static results of the last section for in-plane perturbations.

Our aim now is to see how those conclusions change when the materials are dissimilar
so thatf3 # 0. We consider the nature of the rogi{s(,. If one is complex, the other need
not be its complex conjugate. It is easy to show thati#f sufficiently large, then both
roots {;,{» have negative real part. On the other hg@d 0 can never be a rootif>0.
Thus, as we consider progressively smaller wave numbers (i.e., as wenddurevery
large values), if one of1,{» develops a positive real part it must do so by crossing the
imaginary{ axis, which is a Hopf bifurcation. To establish that condition, we {ritep,
where p is real, and seek to find the values, if anyndbr a solution of that type to occur.
With ¢ =ip, the above quadratic equation{irbecomes

[-ap? - ne(f —a)p+n] +i[(n-a+Db)p+en] =0

Setting the real part to 0, one solves for

p= g-ne(f —a)i\/nzez(f —a)2+4an§2a

and, inserting that into the imaginary part, which must also be set to 0, one finally obtains
two tentative solutions fon. There are two such tentative solutions because there are two
roots, which cross the imaginadyaxis at different values aof, and the roots are tentative

because, to be physically acceptable, they must provide a positive real nunmber for
Calling the largest of the purported rootsmgs, since we will lose stability at the first axis

crossing as we redugefrom very large values, one obtains

[1+B2(f —a)f] ng =(b-a) +(B%f / 2)[fa+(f —a)(b-a)]
+]B] fya(b-a)+ (B2 A fa+(f -a)(b-a)?

The second root fon is given by the same expression, but with a minus sign before the
square root term.

If the ny so expressed is real and positive, then the bifurcation occurs at the critical
value k., of |k |, and that critical wavenumber is
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kg =20 = 2%

" Ay ML
Further, one can back substitute to find the valuge aiind hencep, at the bifurcation.
This is

f+(f a)u
a

C

E

p = i sgnkp) ‘E/b a, B (-2 aDZ
a 4 0

which indicates that for dissimilar materials, in the sgBige0 as now assumed, there is a

unique direction of propagation of neutrally stable slip at the bifurcation point. That is, for
k = ke, andk = -k, the responses to perturbations take the form

V(x,t) =V = Aexpltiky (X - ct)]

wherec (which is of magnitudéVV,, / [2./a(b — a)g,] to lowest order in3) has the same
sign as doeg. Thus, if the two materials have comparabldéut the one iry >0 is less

stiff, then 8 > 0 andc > 0. The direction of propagation is the same as the direction of
sliding of the more compliant material relative to the more rigid one. This echoes results
from the dynamic analysis of sliding in dissimilar materials, although as mentioned, those
have been done so far only in the cases of classical Coulomb friction, and of a particular
regularization of it (Ranjith and Rice, 2001; Cochard and Rice, 2000) that corresponds to
a=f anda=b=0 here.

Let us now analyze the conditions for which the solution just given makes the
expression fom,, real and positive, so that there is instability of sliding in response to
perturbations of sufficiently low wave numbers. Clearly, that condition is met whenever
b >a (i.e., when there is velocity-weakening). However, one might suspect #hatif
(velocity strengthening), then there may be a critical value-ob such that any stronger
velocity strengthening will assure that sliding is stable to perturbations of all wavelengths,
which is to say that no real positive solution fgy exists. As we consider increase of

a—Db from O, it is easy to see that the expression under the square root, in the equation
above forn,, passes from positive to negative before the remaining part of the right side of

that equation does. Vanishing of that square root term thus gives the critical velocity
strengthening as
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B*f%al2
[1+ B2 (f —a)/ 2] +41+ B2 (f -a)

(@a=Db)erit =

SinceB2 is generally much less than unity (Suga et al., 1988; Hutchinson and Suo, 1992),
andf is seldom as large as unity, in essentially all practical cases this will reduce to

(a-b)gir = B*f%al 4

as the minimum value of velocity strengthening necessary to counteract the destabilizing
effects of slip-to-normal-stress coupling and assure that the sliding dissimilar material
interface is stable to perturbations of all wavelengths. We leave it to future work to
understand how this result might change when velocities are not so small as to satisfy
V, <<2a 0,cq/ U, the quasistatic condition given earlier and discussed further in the next

section.

5. Prospectives on the quasi-static range from elastodynamic equations for
dissimilar materials with rate and state dependent friction

Here, we study dynamic stability to linearized perturbations from a state of steady
sliding along an interface between dissimilar materials and confirm the result of our quasi-
static analysis (section 4) that the perturbations with high wavenumbers are always stable
for sufficiently low sliding velocities. Hence, we establish that a rate and state dependent

friction law with a positive direct effech,> 0, gives rise to a well-posed stability problem in
the limit of sufficiently low sliding velocityy,.

As before the unperturbed state is one of spatially uniform steady state sliding at
velocity V,, a situation for which the shear and normal stresses are unifegraat .

Suppose that at timds> 0, a perturbation in the shear stress at the interface of the form
At = Qexp(ikx + pt)

is imposed. We define this perturbation such that, if the interfacial points were constrained
to continue to slide at the ratg while a shear perturbation loading was applied, then the
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extra shear tractio@exp(ikx + pt) would have to be borne at the interface, but no extra

normal traction. In the absence of any such constraint, the linearized response in shear and
normal stresses and in slip velocity will then take the form

T(x,t) =1 = Tyexp(ikx + pt) , o(x,t) — 0y = —Toexp(ikx + pt)
and
V(x,t) =V = pDyexp(ikx + pt).

Following Ranjith and Rice (2001), it can be shown the equations of elastodynamics will be
satisfied in the two half spaces if the relationship between these perturbations is

T =MD +Q, To =My

The explicit form of the transfer functioh; involves rather complicated expressions, that

can be developed from Geubelle and Rice (1995) and is given in Ranjith and Rice (2001).
Neglecting the& term, these argl} =[M]{ D} where{T} =(T;,T,)" and{D} = (D, D,)’

where Dy, the interface opening displacement, is set to zero. Ranjith and Rice began with
equations in the foriD} = [K{ T}, natural because tractions are continuous across the
interface, and obtaingdv] as[K]"l, so that

Mll: K22 /A y M21 = —K21/A = K12 /A , A= det[K] = K11K22 + Kl22
For our purposes here, we note that[tkig¢ have the form
Mij = [ k[ (P),

where u is a representative shear modulus of the bi-material paiPang/ | k | c5 with
Cs being a representative shear wave speed. The fundfj¢R$ are dimensionless, but

depend ork/ | k | and, of course, on ratios of density and moduli of the bimaterial pair.

When we require that these perturbations also satisfy the linearized friction law at the
interface, there results an equation determining the slip perturbation in the form

Dy =(P+V)Q/[u|k|Pg(P)],
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wherev =V, /(cg|k|L) and
9(P) = (0qCs ! HVp)[aP +(a=b)V] = [Y1(P) + (f —a)Y21(P)] = V[\12(P) + fY21(P)] / P.

For the stability problem to be well-posed, we require that there be no zg(®)a#ith
positive real part in the short wavelength linjik | - . We show that is indeed the case

at sufficiently low sliding velocities (the quasi-static limit) as lon@as0. In the limit
| K- oo,

9(P) = (ageCs / Vo)P = ¥11(P) = (f —a)¥24(P).

First, consider the case wheae= 0. Thend(P) becomes-Y;1(P) - (f - a)Yy1(P)
and is precisely of the form derived by Ranjith and Rice (2001) (see their equation (28))
that governs stability to perturbations at a sliding dissimilar material interface with a
Coulomb friction law. It follows from their analysis th@P) has a zero with positive real
part for a wide range of material combinations and valugsarid a, giving rise to ill-
posedness. In particular, the stability results depend on the existence of an interfacial wave,
called the generalized Rayleigh wave (Weertman (1963), Achenbach and Epstein (1967),
Gol'dshtein (1967)), in frictionless sliding of the two half-spaces. If the material parameters
are such that the generalized Rayleigh wave exists in frictionless stidfPghas a zero in
the right-halfP-plane for anyf anda as long agf —a) # 0. If the generalized

Rayleigh wave does not exist for the bimaterial pair, a right-half plane zero exists if
| f —a | is greater than a critical value, dependent on the bimaterial pair. The stability

problem is therefore quite often ill-posed wteen 0.
Next, we leta # 0 and rewriteg(P) in the form
agP)=P/e+Y(P),
wheree = u\V, /ao,cs (> 0) andY(P) = -Y11(P) = (f —a)Y>1(P). In the following, we
assume the sliding velocity, is sufficiently low that € <<1. Then, the roots of(P)

must lie either close to the origin or close to a singularity(éf) . In the following, we
show that all such possible roots have negative real parts.
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It is easily seen that the root close to the origin will li®at —£Y(0). SinceY,41(0) is
purely imaginary, the real part of the rookh 1(0). Observing thay; 1(0) relates the
static slip distribution in a singlexp(ikx) mode to the shear stress in that mode at the

interface, the requirement of a positive definite strain energy density function necessitates
Y11(0) <0. (These features 0f1(0) andY;1(0) may also be directly verified from the

Comninou and Schmeuser (1979) static solution of section 4, showing that
My1=-|k|M/2 and My, =-ikMB/2 at P =0, whereM > 0.) Therefore, since >0,
the root close to the origin always lies in the left-Hdplane.

Let us consider now the roots close to singularitieg(éf). From the expressions in
Ranjith and Rice (2001) foy;1(P) and Y>1(P), it is seen tha¥(P) is O(P) asP -
and hence singular there (indeed, this is the singularity that gives rise to the radiation
damping effect). Inspection of the form @fP) immediately informs that this singularity

is not strong enough for a root to exist closéte «. The only other condition when a
singularity of Y(P) can exist, if at all, would be for purely imagin&yotherwise energy

conservation would be violated for an interface with continuous displacements, hence no
source of dissipation). That occurs when a Stonely wave exists for the bimaterial pair. That

is a wave for which displacements are fully continuo$,< {0}, so that its condition is
that [K] be singular, i.e., thafl = 0. When the Stonely wave exists, all thgP) are

singular atp = xicg (or P = icg / Cg), wherecg is the speed of propagation of the

Stonely wave.

We show in the remainder of this section that, in such cases, the root close to
P = ticq / cq lies in the left-halfP-plane if € > 0. Therefore, if the direct velocity effect

componentga, of the friction law is positive and the sliding velocity is low enough that
UV,  ao,cq <<1, the problem of stability to perturbations from steady sliding at a

dissimilar material interface is always well-posed.
For material pairs for whicleg exists, one has the singular structure

iA B
Yll(P)~W : Y21(P)~W ,

nearP =i(cg / c5), whereA andB are real (from expressions féf][and M] in Ranjith
and Rice, 2001). Hence, wherx<1, there is a solution af(P) = 0 near the pole given to
leading order by
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i(Cq /Cs) iA _ (f-a)B
£ i(cg/cg)—P i(cg/cg)—P

giving P ~i(cg / c5) — &(cg/ cg)[A—i(f —a)B]. Hence, provided that we can show #hat
> 0, the root lies in the left-haP-plane.

We now note, following Weertman (1963), Achenbach and Epstein (1967), and

Gol'dshtein (1967), that relevant wave speeds for bimaterial problems are the generalized
Rayleigh speedgg, for frictionless slip without opening, a companion wave segdor

unimpeded opening without slip, acg for the case of there being neither slip nor
opening. These speeds are taken as positive here and provide theaotk | cgR,

i [k|cop and+i [k |cg to the respective equatioks,(p) = 0, Kq4(p) =0 and

A(p) =0, when those equations have roots. Without loss of generality, we order the
materials of Figure 1 so thak; <cry,. Then all these speedsatisfy

Crp <C<min(crp,Cq). We note that along the imaginary axis i |k | c, wherec is real
and 0 <c <min(cg,Cs2), K11 and Ky, are real, whereak; » is pure imaginary, which
means thatl = K;1Koo— | K9 |2 there. We also prove an ordering of the speeds as
follows: Standing vibrations may be composed by superposing solutions of the type
explik(x —ct)] and explik(x + ct)], and these have frequenidy|c. By Rayleigh's
guotient, since the displacement field of the Stonely mode is kinematically admissible for
the other two modes, it is of higher frequency and hemar(Cgr,Cop) < Cg. Study of the

expressions for th&] in Ranjith and Rice, and the results of Weertman, Achenbach and
Epstein, and Gol'dshtein mentioned above, then shows the followings, (@lways exists,

no matter what the bimaterial pair. (@}r exists only for bimaterial pairs that are not too
dissimilar; it always exists i€gy < cg but goes out of existencedk, is too much larger
thancg. (iii) cg may exist only for bimaterial pairs for whidgg exists. That follows
because, itgr does not exist, which is the case whgp is sufficiently greater thang,
then examination of the expressions for tieghows thatk;, <0 and K55, >0 in the
rangecop <C<Cgqg in which cg would have to lie, if it exists. BuK;; <0 and Ky, >0

imply that A <0, so thatA = 0 has no solution in that range, and heagecannot exist.

Now, assuming that the bimaterial pair is such tagexists, which we have just seen to

require thatcgr does also, the Stonely pole fackowill be positive if M1 = Koo / A >0
for max(Cgr,Cop) <c<cg. From the expressions fét; ; and K, in Ranjith and Rice

(2001), and recalling thalg, and cgg are the respective zeros ki, and Ky,, we have
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that K1; and K, are of opposite sign famin(cgr, cop) < ¢ < max(Cgr,cop), and hence

that A <0 for cin that range. However, sinog is the root ofA = 0, that implies that
A <0 for max(Cgr,Cop) <C<cCg. Inthat same range ofwhich is the range whetes

greater than the roots &f;; and K55, the expressions of Ranjith and Rice show that
bothK;, and Ky, are negative. Thukj,/ A >0 for max(gr,Cop) < € < Cg, Which

proves thatA > 0 and hence that the root near the Stonely pole lies in the dom&n<Re(

That shows, finally, that the problem of stability to perturbations from steady sliding at a
dissimilar material interface is always well-posed in the high wave number limit, at sliding
velocity that is low enough thatV;, / ac,c5 <<1. This condition can, of course, be met

only if the direct effecta, of rate and state friction is present in the friction model.
6. Conclusions

We have established conditions for the stability of steady frictional sliding between two
elastically deformable half-spaces, assuming physically based friction laws of the rate and
state dependent type. Of particular importance to controlling the nature of the response to
perturbation, and how it may differ qualitatively from response predicted with classical
friction laws, is the positive "direct effect” of slip rate change in rate and state laws. That
effect is measured by the parametevherea > 0. Typically,a for rocks is of order 0.01.

Rate and state laws were used in their simplest form for the stability investigations here, by
adopting a single evolving state variable to characterize strength changes due to changes in
maturity of the population of contacting asperities (the basis for velocity-weakening). We
have also reviewed, and slightly generalized, procedures for writing rate and state friction
laws for conditions of variable normal stress.

The direct effect is thought to be due to thermally activated slip at asperity contacts. We
have estimated activation energies (1.7 to 1.8 e.v.) and volumes (a few atomic volumes) for
the process from room-temperature data for quartzite and granite. That bagisdiains
why the shear stress response to an instantaneous change in Sligtratmnstant normal
stresso, has approximately the forar / oV =ao / V, witha > 0 and constant (at a given
temperature), except at such extremely low slip rates that backward jumps can no longer be
neglected in the thermal activation model. Compa#ingdV so expressed to a
characteristic dynamic parameter 2c5 (the radiation damping factor for sliding), we see

that ot / oV can always be made to dominate the dynamic tekmisf small enough, that is,
if V <<2aocg/ u. That provides a quantification of "slow" frictional sliding, at least
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relative to elastodynamic effects. Such a regime does not exist if the direct effect is
neglected.

For sliding between identical elastic solids, with rate and state friction involving steady-
state velocity-weakening at their interface, we have shown the following: The response to
perturbations of typexp(kx) is always stable whefk | is sufficiently large. There is a
critical value of| k|, calledk, (expressed in terms of parameters of the friction law, elastic
properties,c and, at higher slip rateg), below which there is instability. The instability

always occurs as a Hopf bifurcation so that the response to slip perturbations at the critical
wave number is of the forraxp[iky (X £ ct)]. The phase velocitg (taken non-negative)

always satisfieg < cg for anti-plane perturbations, ardk cg for in-plane.

Those results relied on the propeaty 0. In contrast, if one neglects the actual rate and
state features of friction, and assumes purely rate dependent friction, of velocity-weakening
type, then we show the following: There is instability forkall The response
exp(ikx)exp(pt) to perturbation, when a dimensionless measure (CBlletithe
magnitude of the velocity weakening satisfies 1, has the fornp [ k |, with positive
coefficient of proportionality. That means that the problem of response to a generic
perturbation is ill-posed. When there is a smaller magnitude of velocity weakening, so that
T <1 (but, neverthelest > T,;,, @ small threshold, in the in-plane case), the response is of

the form exp[ik(x £ ct)], but with the paradoxical feature tleas supersonic. That is,
¢ > ¢ for anti-plane perturbations ard> ¢, for in-plane.

For sliding between elastically dissimilar materials, a full dynamic analysis of stability to
perturbation, in the rate and state friction context, has not yet been worked out. An
additional source of instability, other than possible velocity-weakening of friction, is that
spatially inhomogeneous slip causes an alteration of normal stress; reductions of normal
stress can reduce frictional resistance and thus destabilize. When a classical friction law
with constant fiction coefficient is used, that dissimilar material problem is known to often
(depending on friction level and ratios of material properties) be ill-posed. We show that
with use of rate and state laws, the response to perturbation at very short wave lengths (high
|k |) is stable at sufficiently low slip rates, in the sense thaexipgkx) exp(pt) response
hasRe(p) < 0, suggesting that the problem is then well-posed.

Assuming tentatively that with rate and state friction, a quasi-static range of response
exists in that dissimilar material case, and will coincide with a full dynamic analysis at low
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enough slip rates, we have solved the quasi-static problem of resp@xgxi kw)
perturbations. This shows stability of response at Igkgebut the possibility of unstable
response apk | is reduced in size. That instability can occur even if there is steady state

velocity strengthening. We establish the critical magnitude of the velocity-strengthening so
that nok;, exists, i.e., so that sliding is stable to perturbations of all wavelengths.
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Figure Captions

Figure 1. Steady frictional sliding of two elastic half spaces. Identical materials "1" and

"2" are considered in the earlier parts of the paper, and dissimilar materials in the later parts.
Orientation shown here is for analysis of in-plang(kx) perturbations of steady sliding

at rateV, with uniform shear {,) and normal §,) stresses. For analysis of anti-plane

exp(kx) perturbations, the directions bf and 7, are taken perpendicular to the plane of

the diagram.

Figure 2. Depiction of constitutive response for small perturbations from a state of steady
sliding like in Figure 1: (a) Sudden jump in sliding rate at fixed normal stress; (b) The
same, in a stress versus rate plot; (¢) Sudden jump in normal stress at fixed sliding rate.

Figure 3. For in-planexp(kx + pt) perturbations of steady sliding between identical
elastic half spaces. Phase spegdss function of sliding velocity, are shown when roots
cross thelm(p) axis atp = i |k|c. The sub-Rayleigh branch, which is the same for all
ratiosb/a>1, is shown in Figure 4 to correspond to the critical wave nunkger,

Figure 4. Wave number magnituddd, for in-planeexp({kx + pt) perturbations of steady
sliding between identical elastic half spaces, when rpatsoss thelm(p) axis. The

branch with sub-Rayleigh phase veloaityFigure 3) gives the largest sujk|, which
therefore corresponds to the critical wave numkgr, Response to perturbation is stable

when|k|> kg, but unstable whehk | < k.

Figure 5. For in-plane perturbations in the case of pure velocity dependent friction of
weakening typeT is a measure of the strength of velocity weakening and the solution of
If(p) —Tp/ |k|cs =0, with realp, is illustrated wheif > 1. The time dependenexp(pt)

of response to aexp(kx) perturbation thus shows [J| k | c5, suggesting ill-posedness of
the pure velocity dependent model witkr 1 for addressing the response to generic
perturbations.

Figure 6. Also for in-plane perturbations in the case of pure velocity dependent friction of
weakening typeT is a measure of the strength of velocity weakening. \Whef (but
T > Thin, See text) solutions df(p) — Tp/ | k| cg = 0 have the formp = +i |k |c,

indicating a response to perturbation which propagates at speedisng the sliding
interface. However, in this rangeBfthe propagation speeds are supersawcgy,.
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Figure 1. Steady frictional sliding of two elastic half spaces. Identical materials "1" and

"2" are considered in the earlier parts of the paper, and dissimilar materials in the later parts.
Orientation shown here is for analysis of in-plang(kx) perturbations of steady sliding

at rateV, with uniform shear {,) and normal §,) stresses. For analysis of anti-plane

exp(kx) perturbations, the directions bf and 7, are taken perpendicular to the plane of

the diagram.
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Figure 2. Depiction of constitutive response for small perturbations from a state of steady

sliding like in Figure 1: (a) Sudden jump in sliding rate at fixed normal stress; (b) The
same, in a stress versus rate plot; (c) Sudden jump in normal stress at fixed sliding rate.
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Figure 3. For in-planexp(kx + pt) perturbations of steady sliding between identical

elastic half spaces. Phase spegdss function of sliding velocity, are shown when roots
cross thelm(p) axis atp = i |k|c. The sub-Rayleigh branch, which is the same for all
ratiosb/a>1, is shown in Figure 4 to correspond to the critical wave nunkger,
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Figure 4. Wave number magnituddd, for in-planeexp({kx + pt) perturbations of steady
sliding between identical elastic half spaces, when rpatsoss thelm(p) axis. The

branch with sub-Rayleigh phase veloaityFigure 3) gives the largest sujk|, which
therefore corresponds to the critical wave numkgr, Response to perturbation is stable

when|k|> kg, but unstable whefk | < k.
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Figure 5. For in-plane perturbations in the case of pure velocity dependent friction of
weakening typeT is a measure of the strength of velocity weakening and the solution of
If(p) - Tp/ |k|cs =0, with realp, is illustrated wheiT > 1. The time dependenexp(pt)

of response to aexp(kx) perturbation thus shows [J| k | c5, suggesting ill-posedness of
the pure velocity dependent model witkr 1 for addressing the response to generic
perturbations.
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Figure 6. Also for in-plane perturbations in the case of pure velocity dependent friction of
weakening typeT is a measure of the strength of velocity weakening. Whef (but
T > Thin, See text) solutions df(p) — Tp/ | k| cg = 0 have the formp = +i |k |c,

indicating a response to perturbation which propagates at speedisng the sliding
interface. However, in this rangeBfthe propagation speeds are supersawcgy,.
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