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Abstract

We study the stability of steady sliding between elastically deformable continua using

rate and state dependent friction laws.  That is done for both elastically identical and

elastically dissimilar solids.  The focus is on linearized response to perturbations of steady

state sliding, and on studying how the positive direct effect (instantaneous increase or

decrease of shear strength in response to a respective instantaneous increase or decrease of

slip rate) of those laws allows the existence of a quasi-static range of response to

perturbations at sufficiently low slip rate.  We discuss the physical basis of rate and state

laws, including the likely basis for the direct effect in thermally activated processes allowing

creep slippage at asperity contacts, and estimate activation parameters for quartzite and

granite.  Also, a class of rate and state laws suitable for variable normal stress is presented.

As part of the work, we show that compromises from the rate and state framework for

describing velocity-weakening friction lead to paradoxical results, like supersonic

propagation of slip perturbations, or to ill-posedness, when applied to sliding between

elastically deformable solids.  The case of sliding between elastically dissimilar solids has

the inherently destabilizing feature that spatially inhomogeneous slip leads to an alteration

of normal stress, hence of frictional resistance.  We show that the rate and state friction laws

nevertheless lead to stability of response to sufficiently short wavelength perturbations, at

very slow slip rates.  Further, for the slow sliding between dissimilar solids, we show that

there is a critical amplitude of velocity-strengthening above which there is stability to

perturbations of all wavelengths.
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1. Introduction

This study considers two elastic solids, treated as half space continua, in steady

frictional sliding (Figure 1) and studies their stability to linearized perturbation.  This is

done in the framework of rate and state dependent friction.  It is argued that the rate and

state framework is the physically relevant description of friction, particularly if quasi-static

frictional responses as observed experimentally are to emerge as predicted responses on

surfaces which undergo sufficiently slow slip rates.  The existence of such quasi-static

response is shown to be critically dependent on the positiveness of the "direct effect" (see

below) in rate and state laws.  Thus the physical basis of that effect is reviewed, in terms of

thermally activated creep slippage at asperity contacts, and estimates of activation energy and

volume are made for granite and quartzite.

The rate and state framework models the variations of frictional shear strength due to its

dependence on slip rate and on the evolving properties of the contact population (Dieterich,

1979, 1981; Ruina, 1983).  Dependence on those contact properties is represented as a

dependence on a state variable, or variables ( Ruina, 1983; Rice, 1983; Rice and Ruina,

1983; Tullis and Weeks, 1986; Heslot et. al, 1994; Marone, 1998).  A formulation of

friction due to Oden and Martins (1985) can likewise be considered as a special limit of rate

and state friction, provided that the small normal motion between sliding surfaces, included

in that formulation, is simply considered as a state variable rather than also as a source of

alteration of normal stress.  Similar normal motion concepts are adopted in rate and state

friction, in considering the dependence of strength on the dilatancy of a thin gouge of wear

particles (Sleep, 1995; Segall and Rice, 1995).  The rate and state effects can be thought of

as, usually, small alterations of the friction strength from what would be predicted based on

a constant friction coefficient.  In fact, those effects describe the actually gradual transition

between what is often loosely called "static" and "kinetic" friction.  Here, for some of our

analyses, we will want to use rate and state concepts to describe memory effects in the

response not only to variations in slip rate, but also to variations in normal stress, as studied

in experiments by Linker and Dieterich (1992), Prakash and Clifton (1992), Prakash

(1998), Richardson and Marone (1999), and Bureau et al. (2000).

Two different kinds of studies are then presented using that class of friction laws.  First,

we address, by elastodynamic analysis, the problem of sliding between identical solids on an

interface which exhibits velocity-weakening friction.  The focus is on showing that the
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solution for the response to perturbation, when carried out using rate and state friction,

converges to a quasi-static solution at sufficiently low slip rates.  For such a quasi-static

limit to exist, it is essential that friction exhibits positive direct velocity effect, that is, an

abrupt change in sliding velocity should cause an abrupt change of the same sign in the

friction strength.  Such a property of friction is well-established experimentally .  That is,

for rapid enough changes in V  so as for the surfaces to be at the same population of

asperity contacts (i.e., at a constant value of the state variable), the variation of friction

strength τ  with slip rate V  is generally found to involve a positive proportionality to ln( )V .

This dependence is plausibly attributed to the presence of a thermally activated creep

process at stressed asperity contacts (Stesky, 1977; Heslot et al., 1994; Chester, 1994;

Bréchet and Estrin, 1994; Baumberger, 1997; Sleep, 1997; Persson, 1998; Baumberger et

al., 1999; Lapusta et al., 2000; Nakatani, 2001) as discussed further.  We also demonstrate

how compromises from the full rate and state constitutive framework, in the direction of

classical friction laws like pure velocity-dependent friction, of velocity-weakening type, do

not allow a quasistatic range and, in fact, lead to paradoxical prediction of supersonic

propagation of slip pulses (as recognized already by Weertman, 1969, and Knopoff and

Landoni, 1998), or to ill-posedness, depending on the strength of the velocity-weakening.

As shown for anti-plane elastodynamics with rate and state friction by Rice and Ruina

(1983), the loss of stability on velocity-weakening surfaces, as one considers the response

to perturbations of progressively longer wavelengths, occurs as a Hopf bifurcation.  At that

bifurcation wavelength, the responses to perturbations propagate at a speed c along the
interface.  We show that c cs<  (shear wave speed) for anti-plane perturbations, and c cR<

(Rayleigh surface wave speed) for in-plane perturbations.  The fact that the shortest unstable

wavelengths propagate at speeds which are, respectively, sub-shear or sub-Rayleigh

suggests that fronts of slip perturbations might likewise do so, although this is strictly a

conclusion reached here only in the context of linearized perturbation of a state of steady

sliding.

The second kind of study involves slow frictional sliding along an interface between

elastically dissimilar half-spaces.  The dissimilar material interface is especially susceptible

to frictional instability because spatially inhomogeneous slip causes a variation of normal

stress along the interface (Comninou, 1977a,b; Comninou and Schmeuser, 1979; Weertman,

1980).  Where normal stress is reduced, frictional slip is eased and the possibility for an

instability is evident.  The same effect does not exist for the sliding of identical elastic

solids, as in the first kind of study here.  Thus, for dissimilar materials in slow frictional
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sliding, we wish to examine stability versus instability due to both effects, the velocity

dependence of friction and the coupling between inhomogeneous slip and alteration of

normal stress.

The problem of stability of steady sliding between dissimilar materials has received

much recent attention in theoretical modeling (Renardy, 1992; Martins et al., 1992, 1995;

Adams, 1995; Martins and Simões, 1995; Simões and Martins, 1998; Cochard and Rice,

2000; Ranjith and Rice, 2001).  That work has, mostly, neglected rate and state effects,

instead assuming a constant coefficient of friction f, and has focused on the coupling

between inhomogeneous slip and alteration of normal stress.  Such a classical friction

model, as we emphasize here, has no quasi-static range and must be analyzed in the

framework of elastodynamics.  The results for that classical model are that sliding is

unstable to exp( )ikx  spatial perturbations (x is the coordinate along the interface, in the

sliding direction) for a very wide range of f and of ratios of elastic constants.  In fact, the

time dependence of the response of slip rate or normal stress to perturbation is then of the
form exp( )pt , where p a k ic= −ˆ  with â  and c real and independent of k (but dependent

on f and ratios of moduli).  The widely occurring unstable situations correspond to â > 0.

For those, the problem of response to a generic perturbation is ill-posed (Renardy, 1992;

Martins and Simões, 1995; Simões and Martins, 1998; Cochard and Rice, 2000; Ranjith

and Rice, 2001); it has no solution for any positive time if the Fourier strength of the
perturbation falls off less rapidly than a negative exponential in k  at large k .

That result has already put a focus on how the Coulomb friction law should be modified

to regularize such problems (Simões and Martins, 1998; Ranjith and Rice, 2001).  Andrews

and Ben-Zion (1997) reported numerical simulations of highly unstable slip pulses along

interfaces between dissimilar materials that were shear-loaded below the friction threshold.

Cochard and Rice (2000) showed that the model which Andrews and Ben-Zion used, with

constant friction coefficient, would not give numerical convergence with grid refinement, due

to the ill-posedness discussed.  Cochard and Rice (2000) also showed that a reformulation

of the problem using the regularized friction law of Ranjith and Rice (2001) did lead to

convergent solutions with properties somewhat like those suggested by Andrews and Ben-

Zion (1997).  Extensive further studies along those lines, using the same regularized friction

law, are reported by Ben-Zion (2001).

Thus for the sliding of dissimilar materials, it is appropriate to focus, as we do in this

paper, on the combined, possibly destabilizing, effects of rate and state friction and coupling
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of normal stress to slip.  That should be done in the context of elastodynamics, letting the

quasi-static range emerge as a limit case.  Here, in the interest of taking a simple first step,

that problem is directly addressed as a quasi-static problem.  Such a quasi-static limit

should exist at sufficiently slow slip rates, as a consequence of the positive direct velocity

effect in such laws.  As mentioned above, the direct effect is generally found to involve a

positive proportionality to ln( )V .  Thus ∂τ ∂/ V  (the derivative being taken at fixed normal

stress σ  and state) has, at least approximately, the form a Vσ /  at low enough (but,

obviously, not too near zero) V .  For rock friction, a  is typically of the order 0.01 at room

temperature.  In contrast, we may expect elastodynamic alterations of stress due to changes
of slip rate to scale with µ 2cs  where µ  and cs  are representative shear modulus and shear

wave speed, respectively.  Thus it may be anticipated that the dynamic term will be
dominated by a Vσ  when slip rates are slow enough to satisfy V a cs<< 2 σ µ .  For

example, in the case of crustal rocks such as granite (µ  = 30 GPa, cs= 3 km/s), 2a csσ µ/

≈  2 mm/s ×  (σ /MPa).  The slip rates should be much slower than that to be considered

quasi-static, a stringent requirement at low σ .

In the quasi-static analysis (section 4), we find that the sliding of dissimilar materials is

always stable to the perturbation of the highest wavenumbers.  As in the identical materials

case, the loss of stability on velocity-weakening surfaces occurs at a critical wavenumber (as

a Hopf bifurcation), and the sliding is unstable to perturbations of the lower wavenumbers.

However, for velocity-strengthening surfaces (for which the sliding of identical materials is

stable to perturbations of all wavenumbers), the dissimilar materials case differs; for

sufficiently low values of velocity strengthening, the sliding is still unstable to perturbations

of low enough wavelengths.  This is the manifestation of more unstable behavior of the

dissimilar materials case, where the reductions in normal stress contribute to frictional

instability.

In section 5, we adopt the elastodynamic formulation for dissimilar materials of Ranjith

and Rice (2001) and confirm the result of the quasi-static analysis that the highest wave

numbers are always stable provided that the sliding velocities are sufficiently low.  This, in

addition to the qualitative consideration above, gives further confidence in the

appropriateness of the quasi-static analysis for sufficiently slow velocities.  Furthermore, it

means that the positive direct velocity effect of friction regularizes the elastodynamic

description of sliding for dissimilar materials, at least for the sufficiently slow loading

velocities.
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2. Rate and state dependent friction laws including variable normal stress, their

linearization, and physical and empirical basis

In this section a broad class of frictional constitutive laws is considered, all of which

have the same linearized structure when applied to address small perturbations from steady

sliding.

2.1 General rate and state framework, including variable normal stress.

We are concerned with the relation between the shear stress τ , compressive normal

stress σ , and slip rate V  (in the same sense as τ ), and consider a range in which σ  > 0.

We assume that the state of the asperity contacts can be characterized suitably by a single

state variable ψ , such that

τ σ ψ= ( )F V, , .

The presence of ψ  recognizes that strength is not uniquely determined by the two other

variables, as shown in a host of experiments.  The representation of laws for evolution of

that state variable (or for a set of state variables, in more precise fits to experiments) has

been much discussed in the literature.  In the most common one-state-variable case, state

evolution laws of the type

˙ , ,ψ σ ψ= − ( )G V1

are used for sliding at constant σ .

We assume that F  has positive partial derivatives with respect to all three of its

variables.  ∂ ∂ >F σ 0 is agreeable enough, and ∂ ∂ >F V 0 is a firmly established

experimental result (Dieterich, 1979; Ruina, 1983; Tullis and Weeks, 1986; Heslot et al.,

1994; Marone, 1998), reflecting the positive instantaneous velocity dependence of processes

at asperity contacts.  ∂ ∂ >F ψ 0 merely sets a convention for the state variable; larger

values mean greater strength, which is consistent with the usual interpretation of ψ  as a

measure of the average maturity of the asperity contact population (more mature contacts are

stronger).
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For G1, the only general assumption is that when V  and σ  are constant , the equation
˙ , ,ψ σ ψ= − ( )G V1  has a stable solution which evolves monotonically towards a definite

value of ψ  (at which ψ̇ = − =G1 0).  We call that the steady state value ψ ψ σss ss V= ( , ),

satisfying G V ss1 0( , , )σ ψ = , and observe that for evolution of ψ  towards ψ ss , when V  and

σ  are maintained constant, we must require ∂ ∂ >G1 0/ ψ .  For sliding in steady state at

constant V  and σ , the frictional shear strength is thus

τ σ ψ σ τ σ= ( ) ≡F V V Vss ss, , ( , ) ( , ).

The same formulation is sometimes used also for sliding at variable σ , which is an

essential feature of sliding between elastically dissimilar materials.  However, experiments

with variable normal stress histories (Linker and Dieterich, 1992; Prakash and Clifton,

1992; Prakash, 1998; Richardson and Marone, 1999; Bureau et al., 2000) show that  there is

also a memory dependence of variations in σ , and these effects cannot be captured by the

above formulation.

Here we build on the suggestion by Linker and Dieterich (1992), based on their

experiments with steps in normal stress on a sliding surface, of a way for accounting for

such effects, while keeping the simplicity of a single state variable law.  One continues to
write τ σ ψ= ( )F V, ,  as above but now assumes that the evolution of the state has the form

(generalized from Linker and Dieterich, 1992)

˙ , ˙ , ,ψ σ σ ψ= − ( )G V  = − ( ) −G V G V1 2σ ψ σ σ ψ, , ˙ ( , , )

where G2 > 0.  This allows for normal stress variations to alter the state (some functional

forms, motivated by experiments, will be cited below).  In sustained sliding at constant V
and σ , we have the same condition for a steady state value ψ ψ σss ss V= ( , ) as above, since

that will satisfy G V G Vss ss( , , , ) , ,σ ψ σ ψ0 01= ( ) = , and hence, of course, have the same

expression for τ ss .  The effect of adding to G  the term that is linear in ̇σ  is that there is a

representation of the effect of very rapid (effectively instantaneous) changes in σ  which is

given by integrating

d d G Vψ σ σ ψ/ ( , , )= − 2

at fixed V , or with a V  which changes instantaneously in some prescribed way with the

change in σ .  This structure enables the state variable to record memory effects of normal



8

stress variation.  For example, a sudden increase of σ  brings into existence a set of freshly

formed asperity contacts, hence reducing the average contact maturity, signaled by a

reduction of ψ .  A sudden decrease of σ  may rupture the least well adhering contacts,

which may generally be expected to be the least mature of the population, and so increases

the average maturity, signaled by increase of ψ .  It may demand too much of a single state

variable to represent in a fully realistic way the effects of prior variation of both V  and σ ,

but that is what is attempted in this formulation.

2.2 Form for linearized perturbation.

Let the shear stress, normal stress, and slip rate have the respective values τo , σo , and

Vo  in a state of steady sliding which is to be perturbed.  We make the following definitions:

a V F V V= ∂ ∂[ ( , , ) / ] /σ ψ σ
a b V V Vss− = ∂ ∂[ ( , ) / ] /τ σ σ
f Vss= ∂ ∂τ σ σ( , ) /

f F V G V F V− = ∂ ∂ − ∂ ∂α σ ψ σ σ ψ σ ψ ψ( , , ) / ( , , ) ( , , ) /2

L V G V= ∂ ∂/ [ ( , , ) / ]1 σ ψ ψ

where, in all functions on the right sides, derivatives are evaluated in the steady state at σo ,

Vo , and ψ o  with ψ ψ σo ss o oV= ( , ).  Note that f  here, as well as in sections 4 and 5 (it

does not appear in section 3), is used in a special way given by the formulae above.  In the

next two sub-sections, 2.3 and 2.4, f  is used in its usual meaning to denote the general

friction coefficient f
�

= τ σ/ , although that will coincide with f as defined above if evaluated

in steady state.  The other notations on the left sides are chosen to coincide with standard

notations for parameters in the well-known logarithmic forms of rate and state friction laws,

as will be discussed.  At this point it is well to emphasize that the results given subsequently,
on linearized stability analysis, will just depend on a , b , f , α , L, σo , and Vo , and not

further on the detailed form of the functions F , G1, and G2.

If constitutive laws of the class presented are linearized about steady state, and if explicit

reference to the state variable is suppressed, those laws then linearize to

d

dt

a

V

dV

dt
f

d

dt

V

L
Vo

o

o
ss

τ σ α σ τ τ σ= + − − −( ) [ ( , )],
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where, again within the linearization,

τ σ τ σ σ σ
ss o o

o

o
oV f

a b

V
V V( , ) ( )

( )
( )= + − + − − .

Thus f  plays the role of the classical friction coefficient relative to steady-state strength,

and( )f − α  plays a similar role relative to an instantaneous change in normal stress.  The

parameter a( )> 0  characterizes the direct (instantaneous) velocity dependence, but steady

state velocity dependence is characterized by a b− , which can be positive or negative.

Those cases correspond, respectively, to steady state velocity strengthening or velocity

weakening.  The latter is of greatest interest for sliding between identical elastic solids, in

which case velocity weakening, b a> , is required for instability.  We will see here how that

conclusion generalizes to bi-materials.  Finally, L measures a characteristic slip distance

over which state evolves in sliding, due to replenishment of the population of asperity

contacts.  The constitutive response is illustrated in Figure 2.

The above linearized expressions of single-state variable laws were previously derived
by Rice (1983) for the special case σ =  constant = σo.  Also, if all velocity dependence of

friction is neglected ( )a a b= − = 0  and if f = α  so that there is no instantaneous response

to normal stress change, then the above expression corresponds to one which Ranjith and

Rice (2001) and Cochard and Rice (2000) showed would regularize the ill-posedness of

elastodynamic problems of sliding between dissimilar materials mentioned in the

introduction.

2.3 Physical and empirical basis for standard rate and state laws.

The specific rate and state constitutive relations most often used in the literature have

been developed in work by Dieterich (1979, 1981) and Ruina (1983).  The latter explicitly

introduced the concept of state variables.  The original work focused on sliding at constant

normal stress σ , writing the friction law in the form

τ σ σ ψ= = + +f f a V V[ ln( / ) ]* *

where f
�
* , a  and V*  are constants, and f

�
f a V V= + +* *ln( / ) ψ  can be called the

coefficient of friction.  Here V*  can be chosen arbitrarily, and if it is arranged in the
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definition of the state variable that ψ  vanishes in steady-state sliding at rate V* , then f
�
*

represents the friction coefficient for the steady-state sliding with the velocity V* .  This

gives a specific form for τ σ ψ= F V( , , ) above and the symbol a  is used consistently with

the definition for linearization about steady state.

The ln(
�

/ )*V V  term was introduced empirically by Dieterich and Ruina.  It is now

generally assumed to be descended from an Arrhenius activated rate process describing

creep at asperity contacts.  That interpretation had been mentioned earlier by Stesky (1977),

was implicit in Chester (1994), and was suggested explicitly, in the rate and state framework,

by Heslot et al. (1994), Bréchet and Estrin (1994), Baumberger (1997), Sleep (1997),

Persson (1998), Baumberger et al. (1999), Lapusta et al. (2000), and Nakatani (2001).  In

such an interpretation, for the simple case of a single activated process, we write the slip rate

as

V V E k TB= −1exp( / )

and understand the activation energy to have the form E E c= −1 τ Ω , where τc  is the

average shear stress at asperity contacts and Ω  is the activation volume for the process

there.  V1 can be regarded as an attempt frequency times a slip displacement per successful

attempt, and may plausibly be assumed to be at most of order cs , and possibly much less

(see below).  If σc  is the average normal stress borne at the contacts, then τ σ τ σc c/ /= .
(Note that if Ac  is the asperity contact area and A is the nominal area, then τ τc cA A=  and

σ σc cA A= ; the ratio of the two equations gives τ σ τ σc c/ /= .)   We can thus write

τ σ τ σc c= /  and rewrite the activated rate equation as

τ σ
σ σ

= +
















E k T V

Vc

B

c

1

1Ω Ω
ln .

That reproduces the empirical logarithmic form of the direct velocity dependence with the

interpretation

a k TB c= / σ Ω .

If we further assume that E c1 / σ Ω  is not a constant, but, rather, varies modestly with

changes in the maturity of the contact population (because of local plastic flow processes
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allowing better atomic scale matching, desorption of trapped impurities in the contact region,
etc.), then we can regard E c1 / σ Ω  as a state-dependent variable, or, equivalently, write it in

the form f
�
* + ψ  when V*  is identified as V1, where ψ  is a state variable.  Empirically, it is

known that the variations in the state variable part of the strength, in typical experimental

settings, is a modest amount of the total strength.  That is, the magnitude of variations in ψ
are typically quite small compared to f* , which signals that E c1 / σ Ω   will vary only

modestly with state.  Of course, the product σcΩ  entering the denominator of a  should

also vary with the maturity of a contact so, strictly, it too may vary with the state variable,

although that possibility has been neglected in use of the logarithmic form of the friction

law.  The total variation in f from such state dependence of a must be expected to be a

fractionally small change in an already small contribution to f, so it is probably a reasonable

approximation to treat a  as if it was independent of changes in state.

Recent optical measurement of asperity contact sizes (Dieterich and Kilgore, 1994,

1996), in the friction of brittle optically transparent materials (including quartz), suggest that
σc  is remarkably large, of order 0.2µ .  That is consistent with an estimate by Boitnott et al.

(1992) and with microhardness indentation strengths measured independently by Dieterich
and Kilgore.  (Since typically τ σ τ σc c/ / .= ≈ 0 6  for rocks such as granite, that implies

that τc  is of order 0.1µ  in such systems; 0.1µ  is a standard estimate of the theoretical

shear strength, and that suggests an unusual type of local plasticity at the contacts.)  Among

the most precise measurements of a are probably those of Ruina (1980, 1983) on quartzite.

He used servo-control based on a displacement measurement very near the slip surface to

simulate a very high stiffness apparatus, and thus to impose very abrupt slip rate changes,

resulting in a ≈ 0 009.  at room temperature (293 K, k TB = × −4 04 10 21.  J).   For granite at

room temperature, Linker and Dieterich (1992), using a servo-control system similar to that

of Ruina (1980, 1983), report a = ±0 0104 0 0007. . .  That is somewhat higher than the

range a ≈ 0 004 0 0075. . to given earlier by Tullis and Weeks (1986) from measurements in

a less stiff torsional apparatus, and we use a = 0 01.  for granite here.  We can thus calculate
activation volumes from the formula above for a, using σ µc ≈ ≈0 2 6 0. .  GPa for both

materials, and that gives  Ω  ≈  5 × 0 25 3.  nm( )  for quartzite and 4 × 0 25 3.  nm( )  for granite.

Those values correspond to a few atomic volumes, and hence provide plausible activation

volumes, suggesting merit to this interpretation of the logarithmic law.

Given measured values of a, and of τ σ/  at any given slip rate V, we can estimate the

activation energy E1, even from data at a single temperature, if we assume a value for V1.
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Fortunately, the exact values chosen for V  and V1 do not matter very critically for this

estimate, because of the logarithm and because of the small value of its factor a .  V1 should

be an attempt frequency times the slip of the contact per successful jump.  The attempt
frequency should be of order of a lattice vibration frequency, hence of order c ds o/ , where

do  is a lattice spacing.  Thus the largest plausible value would seem to be V cs1 ≈ , which

would result if the slip per successful jump is of order do , like expected if a dislocation-like

defect sweeps the entire asperity contact area per successful jump at a pinning point.

Instead, it is much more likely that the successful jump allows only a small portion A1 of

the contact area Ac  to slip a distance of order do ; then the total slip per success is

( / )A A dc o1  and V1 is of order c A As c1 / .  For example, if A1 has dimensions of a few nm,

and Ac  of a few µm, then V cs1
610≈ −  .  We will use V cs1

610= −  = 3 mm/s to estimate E1;

the values to be given would increase by about 20% if we had used the upper bound V cs1 =

and decrease by 10% if we used V cs1
910= − .  For quartzite, with a = 0.009 and

τ σ/ .= 0 54 (Ruina, 1980, 1983) when V = 1 µm/s in steady state at room temperature, one

thus obtains

E1
19 32 7 10 1 7 0 59 0 25≈ × = ×−. . . ( . ) J=  e.v. =170 kJ/ mole nm µ .

Linker and Dieterich (1992) do not report a precise value of τ σ/  for granite but only note

that it is "about 0.7", whereas one can infer values from 0.63 to 0.72 from data they plot
showing response to normal stress changes of 10% or more at V = 1 µm/s.  Tullis and

Weeks (1986) show values which span a comparable range, and average about 0.65, which

we use for τ σ/  in this case.  That, with a = 0 01. , yields

E1
19 32 9 10 1 8 0 63 0 25≈ × = ×−. . . ( . ) J=  e.v. =180 kJ/ mole nm µ

for granite, very close to the value for quartzite.

The logarithmic law is, of course, not suitable very near to V = 0.  A remedy for that is

to recognize that the above argument allows for forward activated jumps only, but not

backward ones, which should be equally probable at τ = 0.  A simple remedy, which

regularizes the law at V = 0, is to include backward jumps by replacing
exp / exp /τ τ σc Bk T aΩ( ) = ( ) with 2sinh /τ σa( ).  Such a procedure, motivated by the

thermal activation concept, is in standard use in formulating crustal scale earthquake models

with rate and state constitutive laws (e.g., Rice and Ben-Zion, 1996; Ben-Zion and Rice,

1997; Lapusta et al., 2000).

In contrast to the ln V( )  term just discussed, the representation of the state variable has

been entirely empirical except for the following concepts:  (1) The variable measures the
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maturity of contacts (more mature being stronger), and (2) Slip over a distance called L
here, but often denoted dc, sufficient to replenish the population of asperity contacts,

removes memory of prior state.  In writing the evolution law for ψ , at constant σ , as
˙ ,ψ ψ= − ( )G V , the following alternatives are in common use:  The Ruina-Dieterich "slip"

law (to use the terminology of Perrin et al., 1995) assumes that contact strength matures

only during slip, that the evolution from one steady state to another (following a sudden

change in slip rate) is exponential in the amount of slip, and that the steady state strength

also varies logarithmically with V .  Those assumptions correspond to the form

 G V V L b V Vslip
1 ( , ) ( / )[ ln( / )]*ψ ψ= +

where b  is a constant.  The Dieterich-Ruina "ageing" law, or "slowness" law, assumes

instead that strength varies with the logarithm of the mean contact lifetime θ , and hence
writes ψ θ= ( )b V Lln /* , again with b  being a constant.  The evolution law for θ  (which

implies one for ψ ) is thus constrained to make θ̇ = 1, or θ = t , in non-sliding contact, but to

make θ = L V/  in steady state sliding.  Those limits are met by writing ˙ /θ θ= −1 V L

which corresponds to a law for ψ̇  given by

G V b L V V bageing
1 ( , ) ( / )[ exp( / )]*ψ ψ= − − .

Both laws give ψ ss b V V= − ( )ln / *  and thus give the same strength in steady state sliding,

τ σ σss V f a b V V( , ) [ ( ) ln( / )]* *= + − .

Hence f f a b V V= + −* *( ) ln( / ) is the steady-state coefficient of friction.

2.4 Response to variable normal stress.

In attempting to represent the effects on state of variable normal stress, Linker and

Dieterich (1992) tried to maintain as much of this framework as possible, wishing to
continue to understand that τ σ ψ= ( )F V, ,  with F  given by the logarithmic law.  Since their

experiments showed fading memory of effects of alteration of normal stress, that forced

them to assume that ψ  varies not only with slip and time as in the two formulations above,

but also with σ .  (As remarked, it is an approximation to assume that a single state variable

adequately characterizes state; its validity may be even less secure when we include the
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effects of variable normal stress.)  They therefore proposed to fit their experiments to a law

of the form

˙ ( , ) ˙ /ψ ψ ασ σ= − −G V1

where G V1 ,ψ( ) is one of the two forms just discussed.  They actually did that relative to the

Dieterich-Ruina ageing form but, as Perfettini et al. (2001) discuss, the procedure they used
could be implemented with either law.  Thus the function G V2 σ ψ, ,( ) introduced earlier

corresponds to α σ/ .  Linker and Dieterich regarded α  as a constant, although Perfettini et
al. (2001) and Cochard and Rice (2000) allow the possibility that α α ψ= ( )V, .

This new law retains the same form for ψ ss , as ψ ss = − ( )b V Vln / * , and the expression

for τ σss V,( )  and f  in steady state, as given above, remain valid.  However, for changes of

σ  and V , one has

˙ ˙ ˙ ˙ ˙ ˙ ˙

( , ) ( , ) ˙ ˙ ( , )

τ σ σ σ ψ σ σ α
σ

σ

ψ α ψ σ σ σ ψ

= ( ) = + +



 = + − −





= −[ ] + −

d

dt
f f

a

V
V f

a

V
V G

f V V
a

V
V G V

1

1  

This shows that if V  is held constant but σ  is suddenly altered (sudden enough that we can

neglect the σG1 term in calculating the resulting change in τ ), then

d f V V dτ ψ α ψ σ= −[ ]( , ) ( , )  ,  with  d V dψ α ψ σ σ= − ( , ) /  .

The integrals of that set of expressions over the finite change in σ , provides the

corresponding finite change in τ .  Hence f − α  is the parameter which acts like a

coefficient of friction during a sudden alteration of normal stress at fixed V .

As Perfettini et al. (2001) and Cochard and Rice (2000) discuss, the particular choice

α ψ ψ( , ) ( , )V f V=  assures that there is precisely zero instantaneous alteration of τ  in

response to an instantaneous alteration of σ .  Such a response of τ , surprising as it is, is

what was found in the oblique shock wave experiments of Prakash and Clifton (1992) and

Prakash (1998).  Those involved plates of hard steel or titanium alloy sliding against a plate

of WC-Co cutting-tool material.  Following a step decrease of σ  on the sliding surface,

achieved by arrival of a reflected shock wave, τ  was found to evolve continuously (over a
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few µm slip, or few tenths of µs time; it is not clear from the experiment which is the

better description) to its new value associated with the new σ .  Ranjith and Rice (2001)

noted that such a constitutive feature would regularize the otherwise ill-posed problem of

dynamic sliding between dissimilar half-spaces with a constant coefficient of friction.

However, those experiments involved V  of order 1 to 10 m/s.  They lead to a different

results than do experiments (Linker and Dieterich, 1992; Richardson and Marone, 1999) at

slip rates of order 10 6−  slower, on rock materials.  Studies of normal stress changes at

those lower rates have led to the conclusion that α  is of the order of f / 3.  Further, studies

on the effects of high frequency oscillations of σ  during the slow sliding of a polymer

system led Bureau et al. (2000) to conclude that use of the ασ σ˙ /  term in ψ̇  does not

enable a good fit to their experiments.  Thus there is much yet to be understood on

representing memory effects of normal stress variation.

3. Frictional Sliding of Identical Solids and Relation of Quasi-Static and Dynamic

Analyses

Before progressing to the dissimilar materials case, we consider, in the context of

elastodynamics, the stability of the steady sliding of two identical half-spaces on one

another.  We use rate and state friction with positive direct velocity effect (a > 0), and show

that then the problem of finding the response to perturbation of steady sliding is well-posed

for all sliding velocities, in that the perturbations of the shortest wavelengths (highest

wavenumbers) are always stable.  (That is shown in a more general way, applicable to

dissimilar materials too, in section 5.)  For slow enough sliding velocities, we show that the

response to perturbations becomes quasi-static and converges to the solution of the

corresponding quasi-static problem.  We also demonstrate how compromises of the rate

and state constitutive framework, in the direction of classical friction laws, prevent the

problem of response to perturbation from having a quasi-static range, even at slow sliding

velocities, and may lead to prediction of paradoxical features like supersonic propagation of

slip perturbations, or even to ill-posedness.

3.1 Response to anti-plane perturbations.

To begin with a simple case, we consider anti-plane perturbations of an exp ikx( ) space

dependence, where now the x axis lies in the interface and is directed perpendicular to the

common direction of slip and shear loading, which is the z direction (unlike in Figure 1,
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which has been drawn for the case of in-plane perturbations considered in sub-sections 3.3

and 3.4 and in sections 4 and 5).  This problem of linear perturbation was partially

addressed by Rice and Ruina (1983).  The sliding occurs on the plane y = 0 and we write

the displacement field as

u x y t V t y u x y tz o z, , ˆ , ,( ) = ( ) + ( )1
2

sign

where ûz  is the perturbed part and satisfies c u u ts z z
2 2 2 2∇ = ∂ ∂ˆ ˆ / .  The perturbation of shear

stress and sliding velocity at the interface are then

τ τ µ µx t
u x y t

y

u x y t

yo
z

y

z

y

,
ˆ , , ˆ , ,( ) − = ∂ ( )

∂
= ∂ ( )

∂= =+ −0 0

 ,

V x t V
u x t

t

u x t

to
z z,

ˆ ( , , ) ˆ ( , , )( ) − = ∂
∂

− ∂
∂

+ −
  0 0

  .

There is no perturbation of normal stress σo , and the perturbations of τ  and V  must

therefore satisfy, within linearization,

∂
∂

= ∂
∂

− − − −( ) −









τ σ τ τ
t

a

V

V

t

V

L
a b

V V

V
o

o

o
o

o

o
.

Looking for a solution with x  and t  dependence as exp ikx pt+( ), where k  is real, one

solves the wave equation with

ˆ exp | |
/

u A y ikx k p c y ptz s= ( ) − +( ) +





1
2

2 2 2 1 2
sign

where A  is a constant and the square-root term is cut from i k cs  to i ∞ , and from − ∞i  to

−i k cs , in the complex p  plane to assure that it has a non-negative real part.  (For a quasi-

static model, in which the displacement satisfies ∇ =2 0ûz , we replace k p cs
2 2 2 1 2

+( ) /

with k  here.)

Thus the stress and velocity perturbations are
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τ τ µx t A k p c ikx pto s, exp
/

( ) − = − +( ) +( )1
2

2 2 2 1 2
,

V x t V p A ikx pto, exp( ) − = +( ).

The first expression is τ τ µx t A k ikx pto, ( / ) | | exp( ) − = − +( )1 2  in the quasi-static model.

One then finds that in order for τ  and V  to meet the above linearized frictional constitutive

relation, p  must satisfy

µ σ
2

02
2

2

1 2

p
V

L
k

p

c

p

V
ap b a

V

L
o

s

o

o

o+



 +







+ − −( )





=
/

.

For the quasi-static model, the corresponding expression is

µ σ
2

0p
V

L
k

p

V
ap b a

V

L
o o

o

o+



 + − −( )





=| | .

It may be shown (Rice and Ruina, 1983) in both cases that for large k  (short

wavelengths) one has Re p( ) < 0 and hence stability, assuming a > 0.  However, as k  is

reduced in magnitude, one finds that for velocity-weakening surfaces (i.e., surfaces with
b a− > 0), a value k kcr=  is ultimately reached at which stability is lost.  That occurs

because Re p( )  changes sign, as a pair of complex conjugate roots traverse the Im p( )  axis.

This is a Hopf bifurcation, and it occurs at the critical wavenumber

k
b a

L
qcr

cr

o≡ = −( ) +2 2
1 2π

λ
σ

µ
,

where here and subsequently, q  denotes a dimensionless measure of the unperturbed

sliding velocity, given by

q V a b a co o s= −µ σ/ [ ( ) ]2 .

The corresponding quasi-static result is (Rice and Ruina, 1983)
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k
b a

Lcr
cr

o≡ = −( )2 2π
λ

σ
µ

.

If we write the space-time dependence at the critical wave-numbers (k kcr=  and k kcr= − )

as V x t V A ik x cto cr( , ) exp[ ( )]− = ± ± , so that c  is the phase velocity of the neutrally

propagating modes, then

c qc q V a b a qs o o= + = − +/ [ ( ) ] /1 2 12 2µ σ  .

That speed is always subsonic, i.e., satisfies c cs< .  The corresponding quasi-static solution

is c V a b ao o= −[ ( ) ]µ σ2 .

In is interesting to notice that at the critical wave number, the time-dependence of the

response to perturbation is

exp exp exppt ik c i
b a

a

V t

Lcr
o( ) = ±( ) = ± −





.

That has no dependence on the inertial (cs ) or even elastic µ( ) properties of the sliding

solids, and is the same in both the dynamic and quasi-static analyses.  We will further show

that this expression holds for in-plane perturbations as well.

We see that the results of the elastodynamic analysis acquire quasi-static character for

small enough sliding velocities 0 1< <<q  or

V a b a co o s<< −[ ( ) ] /2 σ µ ,

because, in the limit q → 0,  kcr  becomes independent of the (dynamic) parameter cs , and

c c q qs/ /= + →1 02 , so that for q << 1 neutrally stable modes propagate much slower

than the shear wave speed.  Moreover, for q << 1, the elastodynamic response corresponds

to the solution of the corresponding quasi-static problem.  For granite at room temperature,
it is typically the case that a b a( )−  is of order 0.005 (e.g., Tullis and Weeks, 1986), and

thus q Vo o≈ ×[ / ( )] ( / )mm/ s MPa σ .  Note also that even though, for sufficiently small

Vo , the speed c satisfies c cs<< , it will typically still be much larger than Vo  (by a factor of

order 3 106× MPa σo  for granite).
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For conclusions from the dynamic analysis to reduce to those of the quasi-static

analysis at sufficiently slow slip rates, it is essential that a > 0, which is what is observed

experimentally.  The case a = 0 will be considered in the next section.  However, even from

the elastodynamic results of this section it is easy to see that when a → 0, then q → ∞  for
any fixed Vo , so that we have kcr → ∞ , which signals that the highest wavenumbers (the

shortest wavelengths) become unstable, and c cs→ , which hints that these highest

wavenumbers have phase velocities of the order of the shear wave speed.  That suggests that

the problem with a = 0 no longer has a quasi-static range and could even be ill-posed.

3.2 Importance of rate and state features for existence of quasi-static range;

response to anti-plane perturbations.

We may now see that dynamic analyses using versions of the friction law which neglect

all or some of the rate and state features lead to solutions which have no range of quasi-
static response to perturbation, no matter how small is (the positive) Vo  or how large is k .

Consider first classical friction, in which there are no rate or state effects.  We can

represent that case by letting all of a , b , and L approach zero (after multiplying through by

L Vo  in the equation for p).  One then obtains k p cs
2 2 2 1 2

0+( ) =  which has only the

roots p i k cs= ± , corresponding to propagation at the shear speed.  (Clearly, since τ x t,( ) is
constant in this constitutive limit, no matter how V x t,( ) changes, so long as it stays positive,

the interface will propagate perturbations as shear waves.)  Thus there is no quasi-static

version of the problem of response to perturbation in this case.

Now consider again the rate and state formulation but simply take a = 0.  (The normal

contact law of Oden and Martins, 1985, if interpreted with ψ  depending on normal

penetration, and the actual normal motion neglected in the dynamics, would fall into such

a = 0 class.)  Since the state evolution slip distance L > 0, the strength τ  then undergoes

no change upon an instantaneous change in velocity, but changes only as part of the
evolution towards the new steady state strength.  Introducing the notation P p k cs= / ,

P
V

k Lc
P

b

k L
Po

s

o+
�





+( ) − =1
2

02 1 2 σ
µ

.
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At high wave numbers, k L >> 1, and at considerably less high wave numbers in slow

sliding  (V co s<< ) with b oσ µ<<  (typically the case), this equation has a solution for

which 1 2 1 2
+( )P  differs from zero by a number of magnitude << 1.  Thus there are roots

P  in the near vicinity of ±i, implying that the response to perturbation propagates at a
speed near cs , so that there is again no quasi-static version of the problem.  Also, further

analysis shows that there are roots with Re p( ) > 0 for all values of k , so this model does

not have the short wavelength stability assured when a = 0.

A more extreme compromise of rate and state dependent friction is to let L → 0.  In that

limit, a  (as distinct from b a− ) becomes an irrelevant variable and the stress τ  always
corresponds to the steady state strength τ σss o V,( ) , towards which it now evolves

instantaneously upon any change of V.  That is, we are then assuming purely rate dependent
friction which follows the velocity weakening law τ τ σ= ( )ss o V, , without memory or state

dependence.  Using the notation

T
V V

c

b a c

V
ss o

s

o s

o
= −

∂ ( ) ∂
= −( )τ σ

µ
σ

µ
,

2
2

(not to be confused with T used for temperature earlier), and assuming T > 0, p  is

determined in that limit by

1 02 1 2
+( ) − =P TP .

That provides a problematic model.  If 0 1< <T , P p k c i Ts= = ± −1 2 .  Since

1 1 12− >T , that corresponds to supersonic propagation of perturbations along the

interface at phase velocity

c c T cs s= − >1 2 .

Since that c  is independent of k , every Fourier component of a generic perturbation

propagates at the same speed, and hence the perturbation leads to a pair of pulses, both

propagating supersonically, in opposite directions along the interface.  That is a type of

propagation in pure velocity-weakening friction which Weertman (1969), and also Knopoff

and Landoni (1998), had previously noted.  (For in-plane, versus anti-plane, perturbations of
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slip between identical solids, the propagation speed is supersonic relative to cp , unless T is

near 0, as will be discussed in subsection 3.4).  If the velocity weakening is stronger, so that

T > 1, then the solutions for p  are real,

P p k c Ts= = ± −1 12 .

While the solution in response to an individual exp i k x( )  is thus well defined, at least until

the exponential growth becomes so large that V  turns negative, this solution for p  signals

an ill-posed model.  This is much like has been discussed for the dissimilar material case

(Renardy, 1992; Simões and Martins, 1998; Cochard and Rice, 2000; Ranjith and Rice,
2001), in which a similar p k∝  occurs, and the problem of response to a generic

perturbation at t = 0, whose spatial Fourier transform falls off less rapidly with k  than

exponentially at large k , fails to have a solution for t > 0.

3.3 Response to in-plane perturbations.

To address in-plane perturbations of slip, we interpret x  in exp i k x( )  as a coordinate

axis in the interface along the direction of slip (Figure 1).  Then the perturbed displacement
field ûx , ûy corresponds to a state of plane strain in the x y,  plane, with uy as well as

σ σ= −( )y y  and τ σ=( )y x , but not ux , being continuous at y = 0.  If

ˆ expu A i k x ptx = ±( ) +( )2  on the two sides of the interface, then the slip velocity

perturbation is

V x t V u x t t u x t t pA i k x pto x x, ˆ ( , , ) / ˆ ( , , ) / exp( ) − = ∂ − ∂ = +( )+ −0 0∂ ∂ ,

like in the anti-plane case.  Stress perturbations can be obtained by solving the
elastodynamic plane strain equations for ˆ ( , , )u x y tx  and ˆ ( , , )u x y ty , and calculating the

associated stresses.  The results can be taken from Geubelle and Rice (1995), and show that

the perturbation of shear stress is

τ τ µx t k AF p ikx pto, | | ˆ( )exp( ) − = − +( )1
2

 ,

where ˆ( )
( )

( )
F p s p s

s s
=

− +

−

4 1

1

2 2

2

α α α
α α

,  αs sp k c= +( )1 2 2 2 1 2/
 ,  α p pp k c= +( )1 2 2 2 1 2/

.
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Here, as in the anti-plane case, αs  is cut from i k cs  to i ∞  and  − ∞i  to −i k cs  in the

complex p  plane, and α p  from i k cp  to i ∞  and − ∞i  to −i k cp , to assure that they have

non-negative real parts.  The numerator of ˆ( )F p  vanishes at p i k cR= ± , where cR is the

Rayleigh speed.

The corresponding quasi-static analysis leads to

τ τ µ
ν

x t k A i k x pto, exp( ) − = −
−( )

+( )
2 1

,

where ν  is the Poisson ratio; the dynamic result reduces to that when p kcs/ → 0 and

p kcp/ → 0, since 2 1 12 2 2( ) / / ( )c c cp s p− = − ν .  Thus all results for quasi-static in-plane

perturbations are identical to those given earlier for quasi-static anti-plane perturbations,

except that µ  of the latter case is now replaced by µ ν1−( ).

To continue with the dynamic in-plane analysis, the linearized constitutive law between

τ  and V  leads to

µ σ
2

0p
V

L
k F p

p

V
ap b a

V

L
o o

o

o+



 + − −( )





=| | ˆ( )

as the equation determining p , where we are assuming, as always, that a > 0 and are

considering velocity weakening surfaces so that b a− > 0.  Like for the anti-plane case,
large k  values (short wavelengths) have Re p( ) < 0 and hence stability, because a > 0.  To

find the critical wavenumber at which stability is lost, we observe, like in Rice and Ruina
(1983), that roots cannot cross from Re p( ) < 0 to Re p( ) > 0 at any k > 0 by passing

through p = 0.  Thus we identify kcr  by seeking conditions for there to be roots in the

form p i k c= , where c  is real; kcr  will be the largest k  at which such roots occur.  In that

case, ̂ ( )F p  depends only on c , and we will replace the notation ˆ( )F p  with F c( ) , where

F c
c c c c c c

c c c c

s p s

s s

( )
/ / /

/ /
=

− − − −( )
−

4 1 1 2

1

2 2 2 2 2 2 2

2 2 2 2
.
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We examine roots for three cases, c cs< , c c cs p< < , and c cp < , and then summarize the

results in Figures 3 and 4.  It is straightforward to see that roots, when they exist, will occur
in conjugate pairs p i k c= ± , so that we henceforth assume c  > 0.

In the subsonic regime c cs< , we find that for each value of q, the dimensionless

unperturbed sliding velocity introduced in section 3.1, there is a unique value of the phase

velocity c , and that value is  sub-Rayleigh, 0 < <c cR .   To demonstrate that, we note that

F c( )  is purely real for c cs<  and, separating the real and imaginary parts in the equation

determining p , we get

V

L
F c

a

V
k coµ σ

2
2( ) | |=  ,  and  

µ σ| |
( )

( )k
F c

b a

L
o

2
= −

.

From either of these equations, we see that F c( )  has to be positive, and hence potential

roots are restricted to sub-Rayleigh phase velocities, 0 < <c cR.   Taking the ratio of the two

equations, we obtain

k c
V

L

b a

a
= −

,

which is the same result as for the critical value of k c in the anti-plane case.  Substituting

the last result into the second equation produces the following equation for determining c :

c c

F c

V

a b a c
qs

o s

/
( ) ( )

=
−

≡µ
σ2

.

Since F c( )  decreases monotonically with increasing c , and passes through 0 at cR, for

each value of q (positive by definition), this equation has a unique root c  with 0 < <c cR.

The corresponding wavenumber | |k , referred to as ksub  below, can then be found from the

expression for | |k c.

In the intersonic regime c c cs p< < , more solutions of the form p i k c= ± | |  exist, for

each b a/  >  1 and for small enough q .  In this case F c( )  has nonzero real and imaginary

parts (except for the Eshelby value c cs= 2 , for which F c( )  is purely real, and the results

cited above apply).  We write F c F c iF c( ) ( ) ( )= +1 2 , where F1 and F2  (real) are evaluated
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approaching the branch cuts from the right half-plane Re( )p > 0.  Separating the real and

imaginary parts in the equation determining p , we find that

F c rF c
a c

V

c

c
ro s

s
1 2

2
( ) ( )− = σ

µ
 ,  and  rF c F c

b a c

V

c

c
o s

s
1 2

2
( ) ( )

( )+ = − σ
µ

,

where r k cL V=| | / .  Inspecting the formula for F c( ) , we observe that F1 0>  and F2 0> .

The above equations give a quadratic equation for r  in the form

r rF b F a b a a2
2 1 0+ − − =/ ( ) ( ) / ,

which has only one positive solution

r
k cL

V

bF c

aF c

bF c

aF c

b a

a
≡ = − +









 + −| | ( )

( )
( )
( )

2

1

2

1

2

2 2
.

Then, from the second equation of the set above, we get the following equation to determine

the intersonic roots c  (when they exist):

b a c c

F c b a b a F c F c b a F c

V

a b a c
qs

o s

/ /

( ) / ( ) / ( ) ( ) / ( ) ( ) ( )
−

[ ] + −( ) − +
=

−
≡1

2 1 2 2
2

2
1
2

2 2

µ
σ

 .

We denote the left-hand side of the above equation by G b a c cs( / , / )  and observe that the
equation has solutions for each value of b a/  >  1 only when q G b a c cp s< ( / , / ) .  The

corresponding wavenumber | |k , called kint  below, is then determined by the expression

for r  above.  No intersonic solutions exist if q G b a c cp s> ( / , / ) .

Finally, it can be easily shown that no solutions exist in the supersonic regime c cp < .

To sum it up, we have been seeking values of | |k  and c  (> 0) at which roots pass from
Re p( ) < 0 to Re p( ) > 0 through the points p i k c= ± | | .  We showed that for each value q

> 0 of the dimensionless sliding velocity, a solution ksub  exists with sub-Rayleigh phase

velocity 0 < <c csub R.  In addition, for a limited range of q , given by q G b a c cp s< ( / , / ) ,

there exist additional solutions kint , one for each b a/  >  1, with intersonic phase velocity



25

c c cs p< <int .  From the above expressions for ksub  and kint , and the trivial relation

c c csub s int< < , we get

k
V

c L

b a

a

V

c L

b a

a
kint

int sub
sub< − < − = .

So, for each given q , the sub-Rayleigh critical wavenumber ksub  is either the only one

existing, or the largest one.  Thus ksub  is the critical wavenumber, kcr , at which the stability

is lost.  Figures 3 and 4 illustrate the dependence of the two wavenumber solutions and their

phase velocities on the parameters q and b/a.   Like for the anti-plane case, the condition

a > 0 assures that results of the dynamic analysis reduce to those of the quasi-static

analysis at sufficiently slow sliding velocities.

In section 4, quasistatic stability results for in-plane perturbation of dissimilar materials

are considered.  In the limit case of identical materials, they will have to agree with the

quasistatic results of this sub-section.  It is only the in-plane perturbations, and not the anti-

plane ones, which could be qualitatively different in the dissimilar material case (and hence

are of interest), because they involve coupling of slip perturbation to alteration of normal

stress.

3.4 Importance of rate and state features; response to in-plane perturbations.

We showed in sub-section 3.2, for anti-plane perturbations, how compromises from the

rate and state framework, in the direction of classical friction laws, may lead to lack of

existence of a quasi-static response range and to other paradoxical features.  A similar

discussion may be repeated for the case of in-plane perturbations.  However, we confine our

attention here just to classical laws of pure velocity-dependent friction, of velocity-

weakening type.  In that case, the time dependence is determined by

ˆ( ) / (| | )F p Tp k cs− = 0,

where ˆ( )F p  is defined in sub-section 3.3 and T is defined in 3.2.  This shares features of

the anti-plane case.  Consider first strong velocity weakening, so that T > 1.  Then, since
ˆ( ) / ( )F 0 1 1= − ν  and ˆ( ) / | |F p p k cs→  as p → ∞  in Re( )p > 0, we are assured that for

every such T, there exists a real positive solution for p k cs/ | | .  Figure 5 plots ̂ ( )F p  and
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Tp k cs/ | |  against p k cs/ | |  along the positive real axis (for c cp s= 3 ) and shows

graphically the origin of the result.  That means that p k∝| | and suggests ill-posedness of

the model, just as in the anti-plane case for T > 1.  Also, like in that case, the factor of | |k

diverges as T → +1 .

Now consider weaker velocity weakening, T < 1.  There is no longer a solution on the
Re(p) axis but, so long as T is not so near 0 (i.e., for T Tmin < < 1, where Tmin is to be

defined below), there are solutions of the type p i k c= ± | |  where c is real and positive.  In

the notation of sub-section 3.3, such solutions would have to satisfy

F c iTc cs( ) /− = 0.

For non-zero T, that will have solutions only when F c( )  is imaginary, which means only
when c cp> , in which range the expression reduces to

4 1 1 2

1

2 2 2 2

3 2

( / ) ( / ) [ ( / ) ]

( / ) ( / )

c c c c c c

c c c c
T

s p s

s s

− − + −

−
= .

As illustrated by the plot in Figure 5, done for c cp s= 3 , we find supersonic (relative to

cp ) solutions in this case.  That result is foreshadowed by Weertman's (1969)

demonstration of similarly supersonic speeds of steady-state propagation of slip ruptures

along surfaces with pure velocity-dependent friction of weakening type.  The propagation

speed c  becomes unbounded as T → −1 , but it reduces in magnitude (although always
> cp) as T is reduced in size until at a special value, which we call Tmin, c becomes equal to

cp .  That lowest T value is given by

T
c c

c c c c

p s

p s p s
min

[ ( / ) ]

( / ) ( / )
=

−

−

2

1

2 2

3 2

which is Tmin / ( ) .= =1 3 6 0 136 for the case plotted in Figure 5.  We have not determined

the nature of the roots for 0 < <T Tmin.  However, for T = 0, the solution is the Rayleigh

speed, c cR=  since F cR( ) = 0; that, of course, means neutrally stable (if not quasi-static)

response to perturbation.  Then, for small positive T , we can perturb about that solution by

Taylor expansion of F c( ) .   Thus, to linear order in T,
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′ −



 − =F c

p

i k
c iT k c cR R R s( )

| |
| | / 0,

which shows that p i k c T k c c F cR R s R= − ′| | | | / [ ( )].  Since ′F cR( ) < 0, this shows that

Re(p) > 0, and further that Re( ) | |p k∝ , showing not only unstable modal response but also

the feature that denotes ill-posedness in response to a generic perturbation.

4. Quasistatic analysis of stability of slow frictional sliding between elastically

dissimilar solids

As explained at the end of section 1, the frictional sliding with the positive direct effect
should behave quasi-statically at sufficiently slow sliding rates Vo , i.e., when
V a co o s<< 2 σ µ/ .  Here, we analyze the stability of sliding in that quasi-static regime for

the dissimilar materials case.

We denote by subscript "1" the material in y > 0 and by "2" that in y < 0.  For sliding

under quasi-static conditions between such elastically dissimilar materials, expressions for

stress perturbations under in-plane slip perturbations can be taken from Comninou
(1977a,b) and Comninou and Schmeuser (1979) (remembering that our τ σ= yx  and

σ σ= − yy ) as

τ τ
π

∂δ ξ ∂ξ
ξ

ξ( , )
ˆ( , ) /

x t
M t

x
do− = −

−−∞

+∞
∫2

  ,   σ σ β ∂δ
∂

( , )
ˆ( , )

x t
M x t

xo− =
2

  .

where ˆ , ˆ ( , , ) ˆ ( , , )δ x t u x t u x tx x( ) = −+ −0 0  is the slip perturbation.  The modulus M  is twice a

modulus C  introduced by Comninou and Schmeuser (1979) and β  is a Dundurs

parameter.  These are defined by

M = −
+ + +

= −
− + −

8 1
1 1

2 1
1 1

1 2
2

2 1 1 2

1 2
2

2 1 1 2

µ µ β
µ κ µ κ

µ µ β
µ ν µ ν

/ ( )
( ) ( )

/ ( )
( ) ( )

  ,

β µ κ µ κ
µ κ µ κ

µ ν µ ν
µ ν µ ν

= − − −
+ + +

= − − −
− + −

2 1 1 2

2 1 1 2

2 1 1 2

2 1 1 2

1 1
1 1

1 2 1 2
2 1 1

( ) ( )
( ) ( )

( ) ( )
[ ( ) ( )]

  ,
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where the rightmost versions correspond to plane strain (κ ν= −3 4 ) as treated here; the

formulae are also valid for plane stress with κ ν ν= − +( ) / ( )3 1 .  Our use of "1" and "2" is

reversed relative to Comninou and Schmeuser (1979) but we use the expression as they

wrote it for β , so that for a given material pair our β  is the negative of theirs, and has the

property that when the more rigid material is the one occupying y < 0, then β  > 0 (at least if

the Poisson ratios of the two materials are not too dissimilar).  Note that M  reduces to

µ ν/ ( )1−  and β = 0 in the case of identical materials treated in subsections 3.3 and 3.4.

Suga et al. (1988) and Hutchinson and Suo (1992) give numerical values of β  for a wide

range of material pairs.  Typically, | |β  is of the order 0.1 or less although, for very

dissimilar materials, e.g., with µ µ1 2/ →  0, β ν ν= ( ) / ( )1 2 2 11 1− −  and can be as large as

0.5 if ν1 is near 0.

Thus if we seek solutions in the form ˆ , expδ x t A i k x pt( ) = +( ), then the velocity

perturbation is V x t V pA i k x pto( , ) exp− = +( )  like in the previous cases and the stress

perturbations are

τ τ( , ) | | ( / ) expx t k M A i k x pto− = − +( )2 , σ σ β( , ) ( / ) expx t ik M A i k x pto− = +( )2 .

Inserting these into the linearization of the constitutive relation, in its general form allowing

for variations of normal stress, we obtain that, for a given real k, the time dependence p

must satisfy

a

V
p

a b

L

M k ikM f
p

V

L

M k ikM fo

o

o oσ σ β α β2

2 2 2 2
0+ − + + −





+ +





=( ) | | ( ) | |

where we assume that a > 0 and L > 0.  We now introduce the non-dimensional quantities

n M k L k k pL Vo o= = =| | / ( ) / | | /2σ ε β ζ ,   ,  

so that the expression reduces to

a n i f b a n i fζ ε α ζ ε2 1 1 0+ + − − − + + ={ [ ( )] ( )} ( ) .

In the special case of identical materials, β ε= = 0.  Then one sees by inspection that, if

a b>  (steady state velocity strengthening), there are no roots with Re( )p > 0 (i.e., with

Re( )ζ > 0) and sliding is always stable.  However, if a b<  (velocity weakening), there will
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be no roots with Re( )p > 0 if n  is large enough, but such root comes into existence when

n n b acr< = − .  At n ncr=  the root is ζ = ± −i b a a( ) / .  Those reproduce the quasi-

static results of the last section for in-plane perturbations.

Our aim now is to see how those conclusions change when the materials are dissimilar

so that β ≠ 0.  We consider the nature of the roots ζ ζ1 2, .  If one is complex, the other need

not be its complex conjugate.  It is easy to show that if n  is sufficiently large, then both

roots ζ ζ1 2,  have negative real part.  On the other hand, ζ = 0 can never be a root if n > 0.

Thus, as we consider progressively smaller wave numbers (i.e., as we reduce n  from very

large values), if one of ζ ζ1 2,  develops a positive real part it must do so by crossing the

imaginary ζ  axis, which is a Hopf bifurcation.  To establish that condition, we write ζ ρ= i ,

where ρ  is real, and seek to find the values, if any, of n  for a solution of that type to occur.

With ζ ρ= i , the above quadratic equation in ζ  becomes

[ ( ) ] [( ) ]− − − + + − + + =a n f n i n a b fnρ ε α ρ ρ ε2 0

Setting the real part to 0, one solves for

ρ ε α ε α= − − ± − +





n f n f an a( ) ( ) /2 2 2 4 2

and, inserting that into the imaginary part, which must also be set to 0, one finally obtains

two tentative solutions for n .  There are two such tentative solutions because there are two

roots, which cross the imaginary ζ  axis at different values of n , and the roots are tentative

because, to be physically acceptable, they must provide a positive real number for n .
Calling the largest of the purported roots as ncr , since we will lose stability at the first axis

crossing as we reduce n  from very large values, one obtains

[ ( ) ] ( ) ( / )[ ( )( )]

| | ( ) ( / )[ ( )( )]

1 2

4

2 2

2 2

+ − = − + + − −

+ − + + − −

β α β α

β β α

f f n b a f fa f b a

f a b a fa f b a

cr 

                                   

The second root for n  is given by the same expression, but with a minus sign before the

square root term.

If the ncr  so expressed is real and positive, then the bifurcation occurs at the critical

value kcr  of | |k , and that critical wavenumber is
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k
n

MLcr
cr

cr o≡ =2 2π
λ

σ
 .

Further, one can back substitute to find the value of ρ , and hence p , at the bifurcation.

This is

p i k
V

L

b a

a
f f

b a

a
f f

b a

a
o= − − + + − −



 + + − −











sgn( ) ( )
| |

( )β β α β α
2 2

4 2

which indicates that for dissimilar materials, in the sense β ≠ 0 as now assumed, there is a

unique direction of propagation of neutrally stable slip at the bifurcation point.  That is, for
k kcr=  and k kcr= − , the responses to perturbations take the form

V x t V A ik x cto cr( , ) exp[ ( )]− = ± −

where c  (which is of magnitude MV a b ao o/ [ ( ) ]2 − σ  to lowest order in β ) has the same

sign as does β .   Thus, if the two materials have comparable ν , but the one in y > 0 is less

stiff, then β  > 0 and c  > 0.  The direction of propagation is the same as the direction of

sliding of the more compliant material relative to the more rigid one.  This echoes results

from the dynamic analysis of sliding in dissimilar materials, although as mentioned, those

have been done so far only in the cases of classical Coulomb friction, and of a particular

regularization of it (Ranjith and Rice, 2001; Cochard and Rice, 2000) that corresponds to

α = f  and a b= = 0 here.

Let us now analyze the conditions for which the solution just given makes the
expression for ncr  real and positive, so that there is instability of sliding in response to

perturbations of sufficiently low wave numbers.  Clearly, that condition is met whenever

b a>  (i.e., when there is velocity-weakening).  However, one might suspect that if a b>
(velocity strengthening), then there may be a critical value of a b−  such that any stronger

velocity strengthening will assure that sliding is stable to perturbations of all wavelengths,
which is to say that no real positive solution for ncr  exists.  As we consider increase of

a b−  from 0, it is easy to see that the expression under the square root, in the equation
above for ncr , passes from positive to negative before the remaining part of the right side of

that equation does.  Vanishing of that square root term thus gives the critical velocity

strengthening as
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( )
/

[ ( ) / ] ( )
a b

f a

f f f f
crit− =

+ − + + −

β

β α β α

2 2

2 2

2

1 2 1
  .

Since β2 is generally much less than unity (Suga et al., 1988; Hutchinson and Suo, 1992),

and f is seldom as large as unity, in essentially all practical cases this will reduce to

( ) /a b f acrit− ≈ β2 2 4

as the minimum value of velocity strengthening necessary to counteract the destabilizing

effects of slip-to-normal-stress coupling and assure that the sliding dissimilar material

interface is stable to perturbations of all wavelengths.  We leave it to future work to

understand how this result might change when velocities are not so small as to satisfy
V a co o s<< 2 σ µ/ , the quasistatic condition given earlier and discussed further in the next

section.

5. Prospectives on the quasi-static range from elastodynamic equations for

dissimilar materials with rate and state dependent friction

Here, we study dynamic stability to linearized perturbations from a state of steady

sliding along an interface between dissimilar materials and confirm the result of our quasi-

static analysis (section 4) that the perturbations with high wavenumbers are always stable

for sufficiently low sliding velocities.  Hence, we establish that a rate and state dependent

friction law with a positive direct effect, a > 0, gives rise to a well-posed stability problem in
the limit of sufficiently low sliding velocity Vo .

As before the unperturbed state is one of spatially uniform steady state sliding at
velocity Vo , a  situation for which the shear and normal stresses are uniform at τo  and σo .

Suppose that at times t > 0, a perturbation in the shear stress at the interface of the form

∆τ = +( )Q ikx ptexp

is imposed.  We define this perturbation such that, if the interfacial points were constrained
to continue to slide at the rate Vo  while a shear perturbation loading was applied, then the
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extra shear traction Q ikx ptexp +( )  would have to be borne at the interface, but no extra

normal traction.  In the absence of any such constraint, the linearized response in shear and

normal stresses and in slip velocity will then take the form

τ τ σ σ( , ) exp ( , ) expx t T ikx pt x t T ikx pto o− = +( ) − = − +( )1 2 ,   

and

V x t V p D ikx pto, exp( ) − = +( )1 .

Following Ranjith and Rice (2001), it can be shown the equations of elastodynamics will be

satisfied in the two half spaces if the relationship between these perturbations is

T M D Q T M D1 11 1 2 21 1= + =   ,

The explicit form of the transfer functionsMij  involves rather complicated expressions, that

can be developed from Geubelle and Rice (1995) and is given in Ranjith and Rice (2001).

Neglecting the Q term, these are { } [ ]{ }T M D=  where { } ( , )T T T= ′1 2  and { } ( , )D D D= ′1 2

where D2, the interface opening displacement, is set to zero.  Ranjith and Rice began with

equations in the form { } [ ]{ }D K T= , natural because tractions are continuous across the

interface, and obtained [ ]M  as [ ]K −1, so that

M K M K K K K K K11 22 21 21 12 11 22 12
2= = − = = = +/ , / / , det[ ]∆ ∆ ∆ ∆      .

For our purposes here, we note that the [ ]M  have the form

M k Y Pij ij= µ | | ( ),

where µ  is a representative shear modulus of the bi-material pair and P p k cs= / | |  with
cs  being a representative shear wave speed.  The functions Y Pij ( ) are dimensionless, but

depend on k k/ | | and, of course, on ratios of density and moduli of the bimaterial pair.

When we require that these perturbations also satisfy the linearized friction law at the

interface, there results an equation determining the slip perturbation in the form

D P v Q k P g P1 = +( ˆ) / [ | | ( )]µ  ,
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where ̂ / ( | | )v V c k Lo s=  and

g P c V aP a b v Y P f Y P v Y P fY P Po s o( ) ( / )[ ( )ˆ ] [ ( ) ( ) ( )] ˆ[ ( ) ( )] /= + − − + − − +σ µ α11 21 11 21 .

For the stability problem to be well-posed, we require that there be no zero of g P( ) with

positive real part in the short wavelength limit, | |k → ∞ .  We show that is indeed the case

at sufficiently low sliding velocities (the quasi-static limit) as long as a > 0.  In the limit

| |k → ∞ ,

g P a c V P Y P f Y Po s o( ) ( / ) ( ) ( ) ( )= − − −σ µ α11 21 .

First, consider the case where a = 0.  Then g P( ) becomes − − −Y P f Y P11 21( ) ( ) ( )α
and is precisely of the form derived by Ranjith and Rice (2001) (see their equation (28))

that governs stability to perturbations at a sliding dissimilar material interface with a

Coulomb friction law.  It follows from their analysis that g P( ) has a zero with positive real

part for a wide range of material combinations and values of f
�

 and α , giving rise to ill-

posedness.  In particular, the stability results depend on the existence of an interfacial wave,

called the generalized Rayleigh wave (Weertman (1963), Achenbach and Epstein (1967),

Gol'dshtein (1967)), in frictionless sliding of the two half-spaces.  If the material parameters

are such that the generalized Rayleigh wave exists in frictionless sliding, g P( ) has a zero in

the right-half P -plane for any f
�

 and α  as long as ( )f − ≠α 0.  If the generalized

Rayleigh wave does not exist for the bimaterial pair, a right-half plane zero exists if

| |f − α  is greater than a critical value, dependent on the bimaterial pair.  The stability

problem  is therefore quite often ill-posed when a = 0.

Next, we let a ≠ 0 and rewrite g P( ) in the form

g P P Y P( ) / ( )= +ε ,

where ε µ σο= V a co s/  (> 0) and Y P Y P f Y P( ) ( ) ( ) ( )= − − −11 21α .  In the following, we

assume the sliding velocity Vo   is sufficiently low that  ε << 1.  Then, the roots of  g P( )

must lie either close to the origin or close to a singularity of Y P( ) .  In the following, we

show that all such possible roots have negative real parts.
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It is easily seen that the root close to the origin will lie at P Y= −ε ( )0 .  Since Y21 0( ) is

purely imaginary, the real part of the root is εY11 0( ).  Observing that Y11 0( ) relates the

static slip distribution in a single exp( )ikx  mode to the shear stress in that mode at the

interface, the requirement of a positive definite strain energy density function necessitates

Y11 0 0( ) < .  (These features of Y21 0( ) and Y11 0( ) may also be directly verified from the

Comninou and Schmeuser (1979) static solution of section 4, showing that

M k M11 2= − | | /  and M ikM21 2= − β /  at P = 0, where M > 0.) Therefore, since ε > 0,

the root close to the origin always lies in the left-half P -plane.

Let us consider now the roots close to singularities of Y P( ) .  From the expressions in

Ranjith and Rice (2001) for Y P11( )  and Y P21( ) , it is seen that Y P( )   is O P( ) as P → ∞
and hence singular there (indeed, this is the singularity that gives rise to the radiation

damping effect).  Inspection of the form of g P( ) immediately informs that this singularity

is not strong enough for a root to exist close to P = ∞ .  The only other condition when a

singularity of Y P( )  can exist, if at all, would be for purely imaginary P (otherwise energy

conservation would be violated for an interface with continuous displacements, hence no

source of dissipation).  That occurs when a Stonely wave exists for the bimaterial pair.  That

is a wave for which displacements are fully continuous, {D} = {0}, so that its condition is
that [K] be singular, i.e., that ∆ = 0.  When the Stonely wave exists, all the Y Pij ( ) are

singular at p icSt= ±  (or P ic cSt s= ± / ), where cSt  is the speed of propagation of the

Stonely wave.

We show in the remainder of this section that, in such cases, the root close to
P ic cSt s= ± /  lies in the left-half P -plane if ε > 0.  Therefore, if the direct velocity effect

component, a , of the friction law is positive and the sliding velocity is  low enough that
µ σοV a co s/ << 1, the problem of stability to perturbations from steady sliding at a

dissimilar material interface is always well-posed.

For material pairs for which cSt  exists, one has the singular structure

Y P
iA

i c c P
Y P

B

i c c PSt s St s
11 21( ) ~

( / )
( ) ~

( / )− −
  ,     ,

near P i c cSt s= ( / ), where A and B are real (from expressions for [K] and [M] in Ranjith

and Rice, 2001).  Hence, when ε << 1, there is a solution of g P( ) = 0 near the pole given to

leading order by



35

i c c iA

i c c P

f B

i c c P
St s

St s St s

( / )
( / )

( )
( / )

~
ε

α−
−

− −
−

0

giving P i c c c c A i f BSt s s St~ ( / ) ( / )[ ( ) ]− − −ε α .  Hence, provided that we can show that A

> 0, the root lies in the left-half P -plane.

We now note, following Weertman (1963), Achenbach and Epstein (1967), and

Gol'dshtein (1967), that relevant wave speeds for bimaterial problems are the generalized
Rayleigh speed cGR, for frictionless slip without opening, a companion wave speed cOp  for

unimpeded opening without slip, and cSt  for the case of there being neither slip nor

opening.  These speeds are taken as positive here and provide the roots p i k cGR= ± | | ,
±i k cOp| |  and ±i k cSt| |  to the respective equationsK p22 0( ) = , K p11 0( ) =  and

∆( )p = 0, when those equations have roots.  Without loss of generality, we order the

materials of Figure 1 so that c cR R1 2< .  Then all these speeds c satisfy

c c c cR R s1 2 1< < min( , ).  We note that along the imaginary axis p i k c= | | , where c is real

and 0 1 2< <c c cs smin( , ), K11 and K22 are real, whereas K12 is pure imaginary, which

means that ∆ = −K K K11 22 12
2| |  there.  We also prove an ordering of the speeds as

follows:  Standing vibrations may be composed by superposing solutions of the type

exp[ ( )]ik x ct−  and exp[ ( )]ik x ct+ , and these have frequency | |k c.  By Rayleigh's

quotient, since the displacement field of the Stonely mode is kinematically admissible for
the other two modes, it is of higher frequency and hence max( , )c c cGR Op St≤ .  Study of the

expressions for the [K] in Ranjith and Rice, and the results of Weertman, Achenbach and
Epstein, and Gol'dshtein mentioned above, then shows the following:  (i) cOp  always exists,

no matter what the bimaterial pair.  (ii) cGR exists only for bimaterial pairs that are not too

dissimilar; it always exists if c cR s2 1<  but goes out of existence if cR2 is too much larger

than cs1.  (iii) cSt  may exist only for bimaterial pairs for which cGR exists.  That follows

because, if cGR does not exist, which is the case when cR2 is sufficiently greater than cs1,

then examination of the expressions for the [K] shows that K11 0<  and K22 0>  in the
range c c cOp s< < 1 in which cSt  would have to lie, if it exists.  But K11 0<  and K22 0>

imply that ∆ < 0, so that ∆ = 0 has no solution in that range, and hence cSt  cannot exist.

Now, assuming that the bimaterial pair is such that cSt  exists, which we have just seen to

require that cGR does also, the Stonely pole factor A will be positive if M K11 22= / ∆  > 0
for max( , )c c c cGR Op St< < .  From the expressions for K11 and K22 in Ranjith and Rice

(2001), and recalling that cOp  and cGR are the respective zeros of K11 and K22, we have
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that K11 and K22 are of opposite sign for min( , ) max( , )c c c c cGR Op GR Op< < , and hence

that ∆ < 0 for c in that range.  However, since cSt  is the root of ∆ = 0, that implies that
∆ < 0 for max( , )c c c cGR Op St< < .  In that same range of c, which is the range where c is

greater than the roots of K11 and K22, the expressions of Ranjith and Rice show that
bothK11 and K22 are negative.  Thus K22 0/ ∆ >  for max( , )c c c cGR Op St< < , which

proves that A > 0 and hence that the root near the Stonely pole lies in the domain Re(P) < 0.

That shows, finally, that the problem of stability to perturbations from steady sliding at a

dissimilar material interface is always well-posed in the high wave number limit, at sliding
velocity that is  low enough that µ σοV a co s/ << 1.  This condition can, of course, be met

only if the direct effect, a, of rate and state friction is present in the friction model.

6. Conclusions

We have established conditions for the stability of steady frictional sliding between two

elastically deformable half-spaces, assuming physically based friction laws of the rate and

state dependent type.  Of particular importance to controlling the nature of the response to

perturbation, and how it may differ qualitatively from response predicted with classical

friction laws, is the positive "direct effect" of slip rate change in rate and state laws.  That

effect is measured by the parameter a, where a > 0.  Typically, a for rocks is of order 0.01.

Rate and state laws were used in their simplest form for the stability investigations here, by

adopting a single evolving state variable to characterize strength changes due to changes in

maturity of the population of contacting asperities (the basis for velocity-weakening).  We

have also reviewed, and slightly generalized, procedures for writing rate and state friction

laws for conditions of variable normal stress.

The direct effect is thought to be due to thermally activated slip at asperity contacts.  We

have estimated activation energies (1.7 to 1.8 e.v.) and volumes (a few atomic volumes) for

the process from room-temperature data for quartzite and granite.  That basis for a explains

why the shear stress response to an instantaneous change in slip rate V, at constant normal

stress σ , has approximately the form ∂τ ∂ σ/ /V a V= , with a > 0 and constant (at a given

temperature), except at such extremely low slip rates that backward jumps can no longer be

neglected in the thermal activation model.  Comparing ∂τ ∂/ V  so expressed to a
characteristic dynamic parameter µ / 2cs  (the radiation damping factor for sliding), we see

that ∂τ ∂/ V  can always be made to dominate the dynamic term if V  is small enough, that is,
if V a cs<< 2 σ µ/ .  That provides a quantification of "slow" frictional sliding, at least
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relative to elastodynamic effects.  Such a regime does not exist if the direct effect is

neglected.

For sliding between identical elastic solids, with rate and state friction involving steady-

state velocity-weakening at their interface, we have shown the following:  The response to

perturbations of type exp( )ikx  is always stable when | |k  is sufficiently large.  There is a

critical value of | |k , called kcr  (expressed in terms of parameters of the friction law, elastic

properties, σ  and, at higher slip rates, V), below which there is instability.  The instability

always occurs as a Hopf bifurcation so that the response to slip perturbations at the critical
wave number is of the form exp[ ( )]ik x ctcr ± .  The phase velocity c  (taken non-negative)

always satisfies c cs<  for anti-plane perturbations, and c cR<  for in-plane.

Those results relied on the property a > 0.  In contrast, if one neglects the actual rate and

state features of friction, and assumes purely rate dependent friction, of velocity-weakening

type, then we show the following:  There is instability for all k .  The response

exp( )exp( )ikx pt  to perturbation, when a dimensionless measure (called T) of the

magnitude of the velocity weakening satisfies T > 1, has the form p k∝| |, with positive

coefficient of proportionality.  That means that the problem of response to a generic

perturbation is ill-posed.  When there is a smaller magnitude of velocity weakening, so that
T < 1 (but, nevertheless T T> min, a small threshold, in the in-plane case), the response is of

the form exp[ ( )]ik x ct± , but with the paradoxical feature that c is supersonic.  That is,
c cs>  for anti-plane perturbations and c cp>  for in-plane.

For sliding between elastically dissimilar materials, a full dynamic analysis of stability to

perturbation, in the rate and state friction context, has not yet been worked out.  An

additional source of instability, other than possible velocity-weakening of friction, is that

spatially inhomogeneous slip causes an alteration of normal stress; reductions of normal

stress can reduce frictional resistance and thus destabilize.  When a classical friction law

with constant fiction coefficient is used, that dissimilar material problem is known to often

(depending on friction level and ratios of material properties) be ill-posed.  We show that

with use of rate and state laws, the response to perturbation at very short wave lengths (high

| |k ) is stable at sufficiently low slip rates, in the sense that the exp( )exp( )ikx pt response

has Re( )p < 0, suggesting that the problem is then well-posed.

Assuming tentatively that with rate and state friction, a quasi-static range of response

exists in that dissimilar material case, and will coincide with a full dynamic analysis at low
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enough slip rates, we have solved the quasi-static problem of response to exp( )ikx

perturbations.  This shows stability of response at large | |k , but the possibility of unstable

response as | |k  is reduced in size.  That instability can occur even if there is steady state

velocity strengthening.  We establish the critical magnitude of the velocity-strengthening so
that no kcr  exists, i.e., so that sliding is stable to perturbations of all wavelengths.
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Figure Captions

Figure 1.  Steady frictional sliding of two elastic half spaces.  Identical materials "1" and

"2" are considered in the earlier parts of the paper, and dissimilar materials in the later parts.

Orientation shown here is for analysis of in-plane exp( )ikx  perturbations of steady sliding

at rate Vo  with uniform shear (τo ) and normal (σo ) stresses. For analysis of anti-plane

exp( )ikx  perturbations, the directions of Vo  and τo  are taken perpendicular to the plane of

the diagram.

Figure 2.  Depiction of constitutive response for small perturbations from a state of steady

sliding like in Figure 1: (a) Sudden jump in sliding rate at fixed normal stress; (b) The

same, in a stress versus rate plot; (c) Sudden jump in normal stress at fixed sliding rate.

Figure 3.  For in-plane exp( )ikx pt+  perturbations of steady sliding between identical

elastic half spaces.  Phase speeds c , as function of sliding velocity, are shown when roots

cross the Im( )p  axis at p i k c= ± | | .  The sub-Rayleigh branch, which is the same for all

ratios b a/ > 1, is shown in Figure 4 to correspond to the critical wave number, kcr .

Figure 4.  Wave number magnitudes | |k , for in-plane exp( )ikx pt+  perturbations of steady

sliding between identical elastic half spaces, when roots p  cross the Im( )p  axis.  The

branch with sub-Rayleigh phase velocity c  (Figure 3) gives the largest such | |k , which
therefore corresponds to the critical wave number, kcr .  Response to perturbation is stable

when | |k  > kcr , but unstable when | |k  < kcr .

Figure 5.  For in-plane perturbations in the case of pure velocity dependent friction of

weakening type: T is a measure of the strength of velocity weakening and the solution of
ˆ( ) / | |F p Tp k cs− = 0, with real p, is illustrated when T > 1.  The time dependence exp( )pt

of response to an exp( )ikx  perturbation thus shows p k cs∝| | , suggesting ill-posedness of

the pure velocity dependent model with T > 1 for addressing the response to generic

perturbations.

Figure 6.  Also for in-plane perturbations in the case of pure velocity dependent friction of

weakening type:  T is a measure of the strength of velocity weakening.  When T < 1 (but

T T> min, see text) solutions of ̂( ) / | |F p Tp k cs− = 0 have the form p i k c= ± | | ,

indicating a response to perturbation which propagates at speeds ±c along the sliding
interface.  However, in this range of T, the propagation speeds are supersonic, c cp> .
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Figure 1.  Steady frictional sliding of two elastic half spaces.  Identical materials "1" and

"2" are considered in the earlier parts of the paper, and dissimilar materials in the later parts.

Orientation shown here is for analysis of in-plane exp( )ikx  perturbations of steady sliding

at rate Vo  with uniform shear (τo ) and normal (σo ) stresses. For analysis of anti-plane

exp( )ikx  perturbations, the directions of Vo  and τo  are taken perpendicular to the plane of

the diagram.



44

-3 -2 -1 0 1 2 3 4 5

0

V V Vo= + ∆V Vo=τ τ− o

a V
V
o
o

σ ∆
b V

V
o
o

σ ∆

( )σ σ= =const. o

δ / L (slip / )L

(a)

V

a V
V
o
o

σ ∆
b V

V
o
o

σ ∆

τ τ σ= ss o V( , )

0

τ τ− o

Vo V Vo + ∆

( )b

-3 -2 -1 0 1 2 3 4 5

δ / / )L L (slip0

τ τ− o

(c)

σ σ= o σ σ σ= +o ∆

( )V = const.

( )f −α σ∆

f∆σ

Figure 2.  Depiction of constitutive response for small perturbations from a state of steady

sliding like in Figure 1: (a) Sudden jump in sliding rate at fixed normal stress; (b) The

same, in a stress versus rate plot; (c) Sudden jump in normal stress at fixed sliding rate.
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Figure 3.  For in-plane exp( )ikx pt+  perturbations of steady sliding between identical

elastic half spaces.  Phase speeds c , as function of sliding velocity, are shown when roots

cross the Im( )p  axis at p i k c= ± | | .  The sub-Rayleigh branch, which is the same for all

ratios b a/ > 1, is shown in Figure 4 to correspond to the critical wave number, kcr .
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sliding between identical elastic half spaces, when roots p  cross the Im( )p  axis.  The

branch with sub-Rayleigh phase velocity c  (Figure 3) gives the largest such | |k , which
therefore corresponds to the critical wave number, kcr .  Response to perturbation is stable

when | |k  > kcr , but unstable when | |k  < kcr .
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Figure 5.  For in-plane perturbations in the case of pure velocity dependent friction of

weakening type: T is a measure of the strength of velocity weakening and the solution of
ˆ( ) / | |F p Tp k cs− = 0, with real p, is illustrated when T > 1.  The time dependence exp( )pt

of response to an exp( )ikx  perturbation thus shows p k cs∝| | , suggesting ill-posedness of

the pure velocity dependent model with T > 1 for addressing the response to generic

perturbations.
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indicating a response to perturbation which propagates at speeds ±c along the sliding
interface.  However, in this range of T, the propagation speeds are supersonic, c cp> .


