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Abstract. We propose a simple model in which an agent observes not only the

choices made by others, but also some information about the process that led them to

those choices. We consider two cases: In the first, an agent observes whether another

agent has compared the alternatives before making his choice. In the second, an

agent observes the time invested in deliberation before the other agent makes his

choice. It is shown that the probability of making a mistake is higher in the second

case, and that the existence of these non‐standard “neuro” observations

systematically biases the equilibrium distribution of choices.
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1. Introduction

Our goal in this paper is to illustrate how a broad view of “neuroeconomics” can be

incorporated into economic modeling. We propose a model with “neuro‐agents”, i.e.,

agents who observe information on the process by which other agents reach their

decisions.

The standard scheme of modeling a decision‐maker in economics is through the

concept of a choice function, which assigns a single alternative (“the choice”) to every

subset of available alternatives (“a choice problem”) in some relevant domain. Thus,

CA  a means that the agent chooses the alternative a from the set A. Recent

advances in choice theory have extended the traditional definition of a choice problem

to include additional information, referred to a frame. A frame represents the

circumstances in which the choice problem was encountered ‐ circumstances, which

do not affect the preferences of the decision‐maker, but may nevertheless impact his

choice. Thus, CA, f  a means that the decision‐maker will choose a when facing the

choice problem A, presented in terms of the frame f (see Rubinstein and Salant

(2007)). Leading examples of frames include a default option, the order in which

alternatives are presented and the language in which the problem is phrased.

In this paper, we extend the choice function in a different direction (see

Rubinstein (2007)). Instead of enriching the description of the input to the choice

function (i.e., the choice problem), we enrich its output. For every choice problem, our

augmented choice function specifies what the agent will choose, as well as evidence

about the process that leads the agent to that choice. Thus, CA  a,e means that when

an agent faces a choice set A he chooses a and produces evidence e. Examples of such

evidence include response time, physical responses such as blushing, and brain

activities. An agent who is described by such an extended choice function is referred

to as a “neuro agent”.

The reader may wonder about the use of the term “neuro agent”. We are used to
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think about neuro information as information which is obtained from measuring

different activities in the brain. Here, we take a broad view of the term “neuro

evidence” to include any potentially observable information that a decision‐maker

generates while making a choice. We use the term “neuro agent” to emphasize that

from an “economic” point of view, it makes no difference whether this information is

obtained by putting him in an fMRI machine during the time he makes a decision, or

whether it is information, which observed by more conventional methods. What is

important is that economic agents do get additional non‐choice information, which is

not manipulable and which sheds light on the meaning of an action taken by other

agents.

The novelty of this paper is the embedding of neuro agents within an economic

model. We construct a model where the neuro information is instrumental for an

economic agent because it helps the agent to interpret the observed actions of other

agents, an interpretation which influences the decision of the agent. For example,

suppose you are looking for a dentist, while on a business trip. You meet two

individuals in a similar situation who have each chosen a dentist. One deliberated for

a long time and visited several dentists before making his choice. The other in

contrast, picked the first dentist he found without making any comparisons. It seems

plausible that you would be inclined to adopt the choice of the first individual.

The agents in our model are looking for a good or service that will satisfy some

need. They know there are two options out there, but don’t know what they are.

Only after they meet another agent who has already chosen one of the options, do

they learn of that option. To be able to compare the two options, an agent needs to

meet one agent who chose one of the options and another agent who chose the other.

For example, suppose you are looking for alternative treatments for back pain. You

know there are various methods of treatment available, but don’t know what these

are nor who can provide them. In order to find the treatment that best suits you, you
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need to meet someone who has received that treatment. Only after different

individuals introduce you to the available methods and give you contact information

will you be able to make the appropriate choice.

In the model, each agent randomly samples observations of how other agents

solved this decision problem. As soon as an agent observes two others who made

different choices, he stops the search, compares the two options and makes his own

choice. However, an agent might also stop the search after learning about only one

option, if his observation of the other agent includes “neuro” evidence that

“persuades” him to trust that agent’s choice. In the first of our models, this additional

information consists of whether or not the observed agent compared two options

before making his choice. In the second model, the neuro evidence consists of the

time it took for the observed agent to decide (that is, how many observations the

sampled agent made before deciding). Note that the agents’ behavior in our model is

described without explicitly specifying any optimization that produces it.

Rationalization is possible in our opinion, but not necessary for the point being made

in this paper.

In what follows, we define and characterize the equilibria of the model. We show

that in the presence of neuro information, the proportion of agents who choose the

more “popular” option (the option more likely to be chosen following a comparison)

is larger than in the absence of such information. This suggests that if, for example,

70% of the agents chose a and only 30% chose b in an environment where neuro

information is available, then we can conclude that fewer than 70% actually prefer a

to b. In short, the model demonstrates that a world in which neuro information is

observed is quite different from one in which only decisions are observed. It is also

shown that in both models we consider, the equilibria exhibit a significant probability

that an agent makes a wrong decision. Furthermore, the probability of making a

mistake is higher when the neuro evidence is time‐to‐decision than when it is
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whether a comparison was made.

2. The model

There is a continuum of agents in the model. Each agent chooses one of two available

alternatives: a and b. Each agent is aware of the existence of the two options, but not

of their substance. He is able to compare the two alternatives only after he observes

two individuals, one who has chosen a and another who has chosen b. This could

describe a situation in which an agent does not know which option he would prefer

before he obtains information about the two options from two experienced

individuals. In particular, it describes a situation in which an individual knows that

two alternatives exist, but does not have access to an alternative x ∈ a,b without

being referred by an individual who has already chosen x.

Conditional on the comparison, a proportion x of the agents would prefer x to

the other alternative. Denote a   and b  1 −  and assume that   1/2. Thus, if

an agent learns that another agent has already compared the two options and chosen

x, then he would infer that it is more likely that he himself would also choose x after

making the same comparison.

According to the conventional approach, an agent observes only the decision of

another agent. Here we assume that he also observes additional details about the

other agent’s choice process. We refer to this extra information as “neuro” evidence.

We denote an extended observation by x,e, where x ∈ a,b and e takes values from

some set E. In what follows, we consider various specifications for E. The symbol x
e

represents the proportion of agents in the population who choose x and generate e.

Denote by  the vector of proportions over all extended observations. We use the

notation e  ∑x
x

e and x  ∑e
x

e.

An agent samples a sequence of agents who have already made a choice. He

obtains extended observations of the sampled agents. As soon as he has observed
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two different choices he compares the two options and chooses the option he prefers.

However, he might also stop the sampling and make a choice before seeing both

options. The conditions under which this will occur are specified in the following

sections.

The stopping rule induces a function Px,e which specifies the probability,

given the distribution of observations , that an agent who applies the choice

procedure will choose x and produce the extra information e. Let

P  Px,ex,e∈XE be the vector of probabilities of the extended observations

produced by the choice procedure given .

We define a neuro equilibrium as a steady state of the system, which is

characterized by a distribution ∗ for which P∗  ∗. In equilibrium, the

distribution of extended observations on “newcomers” is identical to that on the

existing population.

In order to define the notion of stability, let Δ be the set of probability

distributions over X  E. In each of the three models analyzed below, we specify a set

Δ∗ ⊆ Δ, which contains the possible distributions of observations. The set must

satisfy the condition that the dynamic system, defined by ̇  P − , remains

within Δ∗ for every initial condition within Δ∗. We say that an equilibrium ∗ ∈ Δ∗ is

stable if the dynamic system is Lyapunov stable at ∗. That is, for every   0 there

exists a  small enough such that, if the system starts within distance  from ∗, it

remains within distance  from ∗.

3. The Benchmark Model

In the benchmark model, an agent observes only the choice of other agents (formally,

E is a singleton). We assume that he follows procedure (S‐n), according to which he

sequentially samples up to n agents and stops searching when either i he has

sampled two agents who have made different choices, or ii he has sampled n agents
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who all chose the same alternative. In case i, he makes a comparison and chooses

his preferred option. In case ii, he chooses the only option he has observed. This

procedure induces the function:

Pa  an  1 − an − 1 − an.

Note that the model always has two degenerate equilibria in which all agents choose

one particular alternative. We are interested in the interior equilibria which are

characterized by a non‐degenerate mixture of alternatives. With respect to the notion

of stability, we will not impose any constraints on the possible distributions, i.e.,

Δ∗  Δ.

Proposition 0.

(i) If n  1
1− , then there exists a unique interior neuro equilibrium. In this equilibrium

a  . This interior equilibrium is the only stable equilibrium.

(ii) The interior equilibrium converges to , 1 −  as n → .

(iii) If n ≤ 1
1− , then there exist only extreme neuro equilibria and the unique stable

equilibrium is the one concentrated on a.

Proof. Since a  b  1, the dynamic system is captured by the function g, which

describes the a‐component of the dynamic system:

̇  ga  an  1 − an − 1 − an − a

A distribution a, 1 − a is an equilibrium if and only if ga  0.

Note that g0  g1  0, g′0  0 and n  1
1− if and only if g′1  0. It is easy

to verify that for n  2, there exists a unique interior value of a at which g′′a  0,

and that for n  2 there is no such value.

(i) It follows from the above that the function g must have an interior equilibrium.

There exists a unique interior equilibrium a
∗ ∈ 0,1 since if there were more than

one interior equilibrium, then g′a  0 for at least three interior values of a, and
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g′′a  0 would have at least two interior values of a. Furthermore, since g  0

(given   1/2), we conclude that a
∗  .

The stability of the unique interior equilibrium follows from the fact that ga is

positive for a  a
∗ and negative for a  a

∗. Since the derivative of g is positive at

the extreme points, the degenerate equilibria are unstable.

(ii) Index the function g as gn. The sequence of functions gn converges to the function

 − a, which equals zero only at a  . Thus, the sequence of interior equilibria

must converge to , 1 −  as n → .

(iii) Recall that g0  g1  0, g′0  0 and g′1 ≤ 0. Since g′′a  0 for at most

one interior value, g′a  0 for at most two interior values. But if there were an

interior equilibrium, then g′a would equal zero for at least three interior values. 

Thus, when n is not too small, the equilibrium proportion of agents who choose a

is greater than . However, the excess of a‐choosers goes to 0. Furthermore, only a

very small fraction of a‐choosers will choose a before observing both alternatives and

making a comparison. It follows that for values of n that are not “too small”, the

distribution of choices in the benchmark model is almost unbiased. This will no

longer be true when agents observe “neuro information” about the individuals they

sample.

4. When comparison is observed

Assume now that when one agent observes another, he observes not only the choice

made, but also additional “neuro evidence”, i.e., whether or not the other agent

compared the two alternatives before making a choice. Let E  ,−. The

observation x, means that “he chose x and made a comparison” and the

observation x,− means that “he chose x and did not make a comparison”. Let x


and x
− denote the fraction of agents choosing x and producing the neuro evidence 
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and −, respectively. Also, let  ≡ a
  b

 and similarly for −.

According to the procedure we analyze in this section, denoted by (C‐n), an agent

sequentially samples up to n other agents. As soon as he has sampled two agents

who have made different choices, he stops, compares the two options and makes a

choice. After a sequence of observations, x,−, x,−,…, x,−, x,, of at most length

n, or after sampling the observation x,− n times, the agent stops and chooses x.

This procedure is not derived as a solution to an optimization problem. Rather,

we motivate the stopping rule as follows: Comparing the two options is the only way

to ascertain one’s own preferences. However, in order to make a comparison, the

agent must wait for the two alternatives to appear. This may be costly for the agent

since both sampling and comparing the two options may consume mental and

physical resources. Therefore, given the correlation between the agent’s preferences

and those of other agents, it may be optimal for the agent to stop sampling once he

has observed another agent who has compared the two options. On the other hand, it

may be sub‐optimal to stop searching after observing an agent who made a choice

without comparing the two options himself. One reason for this is that an individual’s

choice may be the outcome of a long chain of individuals who merely imitated one

another since the “initial state of the world”. This becomes even more likely if in the

background there are also “noise” agents (not modeled explicitly) who simply choose

at random without sampling any agents and without making a comparison. Thus,

observing an agent who actually compared the two options seems intuitively to be

more informative than observing an agent who simply mimicked another agent’s

choice.

Given the assumption that agents who make a comparison choose x with

probability x, we restrict the set of distributions of observations, Δ∗, to be all

distributions for which a
/b

  /1 − .

The above procedure induces the following P function: for x  a,b,
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Px,− ∑
l0

n−1

x
−lx

  x
−n

Px,  x1 − Pa,− − Pb,−

Note that the dynamic system ̇  P −  remains in Δ∗ because

∑xa,b
Px,−  Px, ≡ 1 and Pa,/Pb, ≡ /1 − .

For the case n  , we define the function Px,− by Px,−  x
/1 − x

− at any

point where x
−  1 and by Px,−  1 if x

−  1.

In the analysis below, we focus on the two extreme cases, n  2 and n  , for

which we establish the uniqueness and stability of interior equilibria.

Proposition (C‐2). Let n  2. For  ≥ 2/3, there is no interior neuro equilibrium. For

1/2    2/3, there exists a unique interior equilibrium, which is stable, and the proportion

of a‐choosers in this equilibrium is 3 − 1  .

Proof. In equilibrium,

x
−  x

  x
−x

−  x


x
  x

for x  a,b. It follows from the first equation that a
−b

−  b
  a

 and

b
−a

−  a
  b

. The two equations imply that b
a

−  1  a
b

−  1 and hence,

a
−  1/b

−  1  /1 − 

The left‐hand side must be less than 2 and therefore  must be less than 2/3. In other

words, for  ≥ 2/3 the only equilibria are the extreme ones.

Let fz  z1−z
1z . Thus, a

  fa
− and b

  fb
−. The existence of an equilibrium is

equivalent to the existence of a solution to the equation,

1  a
−  a

  b
−  b

  ha
−  ha

−  11 − / − 1

where hz  z  fz  2z
1z . Since h is increasing, there is at most one solution for a

−.

It is straightforward to solve the equation (for   2/3) and verify that the following
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tuple is an equilibrium:

a
−,b

−,a
,b

  3 − 1
31 − 

, 2 − 3
3

,
3 − 12 − 3

31 − 
,
3 − 12 − 3

3

In this equilibrium, b  2 − 3 and a  3 − 1  .

For stability, note that a point in Δ∗ is characterized by two parameters, a
− and

b
−. The dynamic system can therefore be written as (x  a,b):

̇x
−  x1 − −  x

−x
−  x1 − − − x

−

Its Jacobian in equilibrium is:

−1 − b
−  2a

−1 −   9−7
3 −1  a

−  − 2
31−

−1 − 1  b
−  − 21−

3 −1 − 1 − a
−  2b

−  −92
3

It is straightforward to verify that the eigenvalues of this matrix are negative in the

relevant range of . Therefore, the interior equilibrium is Lyapunov stable. 

The next result presents a sufficient condition for the existence of an interior

equilibrium for every n  2 (We conjecture that the equilibrium in (C‐n) is unique,

stable and has the property that more than  of the participants choose A. However,

we have not been able to prove this analytically).

Proposition (C‐n). If   2n−1
2n−1 , then an interior neuro equilibrium exists.

Proof. Define

fy  y − yn1 − y
1 − yn  y − yn

∑k0
n−1 yk

Note that f0  f1  0 , f ′0  1 and f ′1  1−n
n . In equilibrium (x  a,b):

fx
−  x

a
−  b

−    1

An interior equilibrium exists if and only if there exists a solution to the equation:

gy  f1 − y − fy/ − 1 − fy/  0
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That is, y∗ is a solution to the above equation if and only if in equilibrium, a
−  y∗,

a
  fy∗, b

−  1 − y∗ − fy∗/ and b
  fy∗1 − /.

Note that g0  g1  0 and g′y  f ′1 − y − fy/−1 − f ′y/ − f ′y1 − /.

Hence,

g′0  2n−1−1
n  0 for all   1/2, and

g′1  n−12−−n
n  0 iff   2n−1

2n−1

It follows that if   2n−1
2n−1 , there exists y∗ satisfying gy∗  0 and hence an interior

equilibrium exists. 

The next result analyzes the equilibrium for the procedure (C‐) in which the

agent stops only if he observes the two options or if he samples another agent who

has compared them.

Proposition (C‐). For n  , there is a unique interior neuro equilibrium and it is stable.

In this equilibrium, i the proportion of a‐choosers is larger than  and smaller than the

proportion of a‐choosers in the interior equilibrium for n  2, and ii the probability that an

agent makes a wrong decision is 1
2 −

1
2 4 − 42  1   21 − .

Proof. An interior equilibrium satisfies the following equations (x  a,b):

x
−  x



1 − x
−

x
  x

Therefore, a
−1 − a

− − 1 −  − a
−  a

−  2 − 1. Since  ≠ 0 we get

  2 − 2a
−. Substituting this into the first equation we get

a
−2 − a

−1  2  22  0. The only solution of this equation, which is less than one,

is:

a
−  1

2
  − 1

2
4 − 42  1

(Note that 4 − 42  1  0 for all  and since 4 − 42  1  1  2 we have a
−  0.
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For   1/2, we have 4 − 42  1  2 − 1 and thus, a
−  1. ) The proportion of

a‐choosers, a
−     − 1

2  4 − 42  1  1
2 is greater than  and one can verify

that it is less than 3 − 1.

An agent of type a (respectively, b) makes a mistake whenever he chooses b

(respectively, a) without making a comparison himself. It follows that the probability

of making a mistake is 1 − a
−  b

−. Plugging in the equilibrium values for a
− and

b
− yields the expression in ii.

With respect to stability, consider the following dynamic system:

̇a
−  1 − a

− − b
−

1 − a
− − a

−

̇b
−  1 − 1 − a

− − b
−

1 − b
− − b

−

The Jacobian is:

−b
−

1−a
−2 − 1 −

1−a
−

−1−
1−b

−
−1−a

−

1−b
−2 − 1

We have verified that the eigenvalues at the equilibrium point are negative and

hence the equilibrium is Lyapunov stable. 

Thus, once agents have observed whether other agents have made a comparison,

the proportion of a‐choosers exceeds the “natural level” of . Comparing the two

extremes, the excess of a‐choosers when there is no bound on the number of samples

is smaller than in the case of only two samples. This suggests that the excess may

decrease as the number of allowable samples increases. However, unlike the

benchmark case, the excess of a‐choosers remains positive even in the extreme case in

which an agent may continue sampling ad infinitum. The probability that an agent

makes a wrong decision is at most 1 − 1/ 2 ≈ 0.29, and it decreases to zero as 

increases from 0.5 to 1.
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5. Observing deliberation time

Assume next that an agent can observe not only the choices of other agents, but also

the duration of their search, i.e., how many other agents they sampled before making

their decision. This additional piece of information may be viewed as a proxy for the

length of the observed agent’s deliberation.

As part of the (T‐n) procedure, an agent sequentially samples up to n

observations. As soon as he observes two agents who have made two distinct

choices, he stops the search, compares the two options and chooses one of them. He

also stops searching once he observes someone who has searched for at least two

periods. In this case, the agent makes the same choice as the observed agent. If he

samples n individuals who made the same choice after searching for only one period,

the agent stops the search and makes the same choice as the n agents.

Formally, E  1,2. The observation x, 1 means that the sampled agent chose x

“hastily”, i.e., after only a single observation. The observation x, 2 describes an agent

who chose x and sampled at least two other agents prior to his choice.

We motivate the procedure as follows (as previously, we do not derive the search

procedure from an optimization problem). Agents are persuaded to choose an option

x if they themselves have compared the two options and found x to be preferable or if

they observed another agent who chose x after deliberating for a “long enough”

period. To understand why two periods of deliberation is “long enough”, consider

the following: Suppose all agents follow the (T‐n) procedure but stop and imitate

other agents only if they have deliberated for at least s periods, where s  2. Consider

an agent who observes another agent making a choice after s′ periods, where

s  s′  1. He will conclude that the agent has made his choice after comparing the

two options. Hence, the choice of the sampled agent is more informative than the

choice of an agent who made a decision after s periods. It therefore seems reasonable
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(especially if sampling and making a comparison are costly) that the agent would

stop the search after s′ periods as well.

The (T‐n) procedure induces the following function P (x  a,b):

Px,1  x
2

Px,2  ∑
k1

n−1

x
1k  x

2  x 1 − x∑
k1

n−1

x
1k  x∑

k1

n−1

−x1 k  x
1n

The model always has two extreme equilibria in which all individuals choose x: half

of the population does so immediately and the other half does so at a later point in

time.

We again are mainly interested in the interior equilibria. The next proposition

establishes necessary and sufficient conditions for the existence of an interior

equilibrium and proves that whenever such an equilibrium does exist, it is unique

(though we have not proven that it is stable). As before, we will deal separately with

the analytically more convenient case of n  , for which we will prove stability and

show that the equilibrium proportion of a‐choosers exceeds .

Proposition (T‐n). There exists an interior neuro equilibrium if and only if

2 − 1/2n−2  
1− . When an interior equilibrium exists, it is unique.

Proof. The equilibrium conditions are (x  a,b):

x
1  x

2

x
2  x

11 − x
1n−1x

2  x−x2  x−x1 
1 − x

1  x−x1 1 − −x1 n−1x
2  x

1
1 − −x1  x

1n

Define A ≡ a
1 and B ≡ b

1  1/2 − A. The above equations then reduce to:

A  A1 − An−1A  2B
1 − A

 B1 − Bn−12A
1 − B

 An

Thus, an interior equilibrium exists if and only if the following equation has a

solution in 0,1 :
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1 − 
  1 − An−1

1 − A


1 −  1
2 − An−1

1 −  1
2 − A

Letting gz ≡ 1−zn−1

1−z we can rewrite this equation as follows:

1 − 
 gA  g 1

2
− A

where A ∈ 0, 1
2 . Note that gA increases with A while g 1

2 − A decreases with A.

This has two implications. First, if an interior solution does exist, it is unique. Second,

an interior solution exists if and only if g 1
2   2 − 1/2n−2  

1− . 

It follows from the proposition that for n  2 there exist only extreme neuro

equilibria. We have not been able to prove analytically that the proportion of

a‐choosers is higher than  at the interior equilibrium of (T‐n). The case of (T‐) is

much easier to fully address. In particular, we show that also observing the length of

deliberation biases the equilibrium in favor of a.

Proposition (T‐). When n  , there exists an interior neuro equilibrium if and only if

  2/3. When this inequality holds, the equilibrium is unique and stable (for Δ∗  Δ). In this

equilibrium, i the proportion of a‐choosers is higher than that in the case of (C‐), which in

turn is higher than , and ii the probability that an agent makes a wrong decision is 1
3 .

Proof. The equilibrium equations are x  a,b):

x
1  x

2

x
2  ∑

k1



x
1k  x

2  x −x2  −x1 ∑
k1



x
1k  x

2  x
1∑

k1



−x1 k

Denoting A ≡ a
1 and B  b

1  1/2 − A, we obtain:

A  A2  2AB
1 − A

 2AB
1 − B

This equation has an interior solution A  3−1
2 if and only if   2

3 . In the interior

equilibrium, the probability of choosing a is 3 − 1  . Furthermore, one can verify
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that the proportion of a‐choosers is larger for (T‐) than for (C‐).

An agent of type a (respectively, b) makes a wrong decision after he samples an

agent who chose b (respectively, a) with some delay, and none of the previous agents

he observed had chosen a (respectively, b). It follows that the expected probability of

making a mistake is given by

1 −  a
1

1 − a
1   b

1

1 − b
1

Substituting the equilibrium values, a
1  3−1

2 and b
1  1

2 − a
1, we obtain that the

probability of making a mistake is constant and equal to 1
3 for all   2

3 .

To establish stability, we used Mathematica to derive the closed form expressions

(as functions of ) for the eigenvalues of the Jacobian matrix at the unique interior

equilibrium. Using numerical methods, we then verified that all eigenvalues are

negative when   2/3. 

To conclude, when the length of deliberation is observed, the proportion of agents

who choose a exceeds the “natural value” of , even in the limit case where there is

no bound on the number of samples. This excess is larger than in the case of the

(C‐) procedure. Furthermore, when  ≥ 2/3, no interior equilibrium exists and the

stable equilibrium is one in which all agents choose a. Note that the probability that

an agent makes a mistake in equilibrium is higher for (T‐) than for (C‐). When

  2/3, the probability of a making a mistake is 1
3 for (T‐) and at most 0.29 for

(C‐). When  ≥ 1/3, the probability of making a mistake in (T‐) is 1 −  (since all

agents choose a), which is higher than 1
2 −

1
2 4 − 42  1   21 − , the

probability of making a mistake in (C‐), for all 2/3 ≤  ≤ 1.

6. Related literature

The innovation of this model lies in its extension of the notion of observable
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information to include evidence of the choice process, such as response time or

whether a comparison was made. The benchmark model (in which only choice is

observed) is related to the literature on word‐of‐mouth and social learning, in which

agents observe samples of other agents’ actions and decide which action is best for

them based on their observations.

In one line of research, each agent receives a noisy signal regarding his payoffs

from a given set of options, which is correlated with the signal received by other

agents. Each agent chooses his action optimally after having observed the actions of

some other agents. Following Banerjee (1992) and Bikhchandani, Hirshleifer and

Welch (1992), some of these models assume that agents arrive sequentially and that

each one observes the actions of all his predecessors. In other models, such as

Banerjee (1993), each agent observes the payoffs and actions of only a sample of other

agents.

In a different type of model, agents follow exogenously specified rules of

behavior, which are not derived as the solution to some optimization problem. Most

notable are Ellison and Fudenberg (1993,1995). In these models, an agent decides

between two alternatives in each period. Each agent has a preferred alternative, but

does not know which it is because payoffs are noisy. The information available to the

agent consists of other agents’ payoffs, which are correlated with his own. In some of

these models, an agent observes a summary statistic of past payoffs and chosen

actions, while in others the agent observes a summary statistic of only the current

period’s payoffs. For experimental evidence on heuristical observational learning, see

Hohnisch et al. (2012).

The distinction between a choice function CA  a, choice with frames CA, f  a

and choice with neuro information CA  a,m was suggested in Rubinstein (2007).

Caplin and Dean (2011) consider an extended choice function that conveys not only

the final option chosen by the decision‐maker, but also how his choice changes
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during the period of deliberation prior to making the final selection. The authors

characterize necessary and sufficient conditions for when such rich data sets are

consistent with common search procedures.

7. Conclusion

This paper is motivated by a challenging question: to what extent can the ability of

agents to observe signals regarding the choice process of other agents (which we

refer to as “neuro”information) affect the outcome of economic interactions. We

examine this question in the context of economic modeling, by constructing and

analyzing a simple model in which agents receive neuro information (created

non‐strategically during the decision process) and in equilibrium interpret it in a

consistent manner. Agents choose between two options, where   1
2 of them would

prefer a over b if they had the opportunity to compare the two options. The

availability of neuro information affects the outcome of the stable equilibrium such

that, the proportion of a‐choosers exceeds .

We have looked at only one example of a neuro‐model. Future research should be

aimed at introducing other classes of models in which neuro information plays a

crucial role.
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