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Abstract

Gaussian mixture probability density functions (pdfs) have been popular for modeling non-
Gaussian noise. The majority of non-Gaussian noise research has been restricted to independent
and identically distributed observation sequences due to the difficulty in characterizing multidimen-
sional pdf’s. There has been very few studies on the ability of Gaussian mixture pdfs to model
correlated non-Gaussian noise processes. In this paper, we initiate such astudy and demonstrate
that in practical cases, Gaussian mixture pdfs with a small number of mixing terms can give good
approximations to non-Gaussian noise pdfs. Some general models for correlated non-Gaussian inter-
ference and noise are reviewed. The focus is on three approaches. The first is the Gaussian mixture
model approach. The second is an approach based on spherically invariant random vectors. The final
approach involves the combination of linear filters and nonlinearities, generally in anad-hoc manner.
The three approaches are compared and the Gaussian mixture model is shown toapproximate models
generated from the other approaches.

1 Introduction
Gaussian mixture models have attracted attention for many years [1, 2, 3, 4]. A simple two term mixture
probability density function (pdf) for a scalar observation is given byf(x) = (1� �)�(x) + �h(x); (1)

where� is a small positive constant,� is a Gaussian pdf, andh is some other pdf with heavier tails.
Whenh is also a Gaussian pdf with a variance larger than that of�, (1) is called aGaussian mixture
model. Mixture models of the form of (1) have been used by many investigators to model heavy-tailed
non-Gaussian noise pdfs. The mixture model has also been found to provide a good fit to empirical noise
data in many cases.

The mixture noise pdf model of (1) has been found to be appropriate for modeling impulse noise
which can be considered to be a train of randomly occurring narrow pulses in a background of Gaussian
noise [5]. Suppose that the impulsive component of a noise waveform is expressed asI(t) = 1Xk=�1Ak p(t� tk): (2)

Here theAk, k = �1,...,1, are independent and identically distributed (iid) amplitudes and thetk,k = �1,...,1, are assumed to be generated by a Poisson point process. The pulse shapep is determined�EECS Department, Lehigh University, Bethlehem, PA 18015-3084 rblum@eecs.lehigh.eduyArmy Research Lab, 2800 Powder Mill Road, Adelphi, MD 20783 Brian Sadler@emh3.arl.milzElectrical Engineering Department, Bucknell University,Lewisburg, PA 17837 kozick@bucknell.edu



by the receiver filter response. Richter and Smits [6] derived an approximation for the pdffI of samples
of I(t) as fI(x) = (1� �Tp)�(x) + �TphI(x); (3)

for �Tp � 1. Here� is the rate parameter of the Poisson point process andTp is the width of the pulsep. hI is a density function which depends on the pulse shapep and on the density function of theAk.
When an independent Gaussian background noise is added toI(t), the first-order density function of the
total noise process becomes a convolution offI with �, resulting in the noise densityf of (1) in which�
is now�Tp andh is the convolution ofhI and�.

Based on a representation of the impulsive component of the noise similar to, but more general than
that given by (2), Middleton [1, 2, 3, 4] derived his canonical class A model. Middleton obtained an ex-
pansion of the noise pdff as an infinite weighted sum of Gaussian densities with decreasing weights for
Gaussian densities with increasing variances. Consider the univariate probability density function of the
normalized, unit-variance Middleton noise pdf model. It has a Gaussian component and an independent
additive interference component arising from a Possion mechanism. The overall noise density may be
approximated as [1, 2, 3, 4] f(x) = 1Xm=0 e�AAmm! 1p2��2m e�x2=(2�2m): (4)

Here the parameterA is called the impulsive index and a small value ofA implies highly impulsive
interference.�2m is determined by some physical parameters.

If we keep only the firstM terms in the sum (4), and use the proper normalization, an approximation
of Middleton’s class A model is obtained. For several cases of practical interest a rather small value ofM (for example,M = 2 or 3) is found to be sufficient to give excellent approximation. Such numerical
studies have been reported in [7], [14] and [16].

The majority of non-Gaussian noise research has been restricted to iid observation sequences because
of the difficulty in characterizing multidimensional pdf’s. However, in many practical situations, the
noise is temporally or spatially correlated, or both. If theprocessing scheme is based upon the iid
assumption, then the resulting estimation and detection isonly suboptimum. For example, in radar and
communication systems, closely spaced sensors in an array can cause the received interference, which is
a part of the noise, at each sensor to be highly correlated. Correlation may arise during propagation or
may be induced by filtering of uncorrelated noise. If� andh in (1) represent multidimensional Gaussian
pdfs, then a Gaussian mixture model for correlated noise results. In fact, a straightforward extension
involves considering more than two terms in (1). There are very few studies, if any, on the ability of a
Gaussian mixture pdf to model correlated non-Gaussian noise processes. In this paper, we initiate such
a study.

2 General Classes of Models
It is perhaps surprising that there are very few general models for correlated non-Gaussian interference
and noise. A search of the literature reveals that most models fall within the following three categories.

1. Spherically invariant random process (SIRP). SIRPs are widely used in modeling correlated
background clutter in radar signal detection [8]. A physical justification for this model is given here.
Consider the received signals reflected from some scatterers. For a particular scatterer, the reflected signal
might be modeled as Gaussian. However, the power of the reflected signals from different scatterers may
vary. Thus the background clutter can be modeled by an SIRP process defined by (5), which is an
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integral of the reflected signals over all scatterers. A spherically invariant random vector (SIRV)Y can
be generated byY = xG, wherex is a positive random variable with pdffx(x) andG is aN � 1
Gaussian random vector with zero mean and covariance matrixM , which is independent ofx. If M is
given, the pdf ofx determines the pdf ofY , hence it is called the characteristic pdf of the SIRP. The pdf
of Y is given by fY (y) = (2�)�N=2jM j�1=2 Z 10 x�Nexp �yTM�1y2x2 ! fx(x)dx: (5)

In [9] and [10], an introduction to SIRPs is given and a SIRP library is constructed which provides the
proper choice offx(x) to model Gaussian, Laplace, Cauchy, and Student-t distributed SIRPs. Another
important class of noise models, sub-Gaussian alpha stablenoise [11][12]1 also belongs to the SIRP
category with slight modification. The general model for generating a sub-Gaussian alpha stable noise
vector isY = x1=2G, wherex is an alpha stable random variable andG is a Gaussian random vector.

2. Gaussian mixture model. A general form of a Gaussian mixture pdf is given byf(x) = NXn=1 �nfn(x) (6)

where
PNn=1 �n = 1 and eachfn(x) is a, possibly multivariate, Gaussian pdf. Ifx is anN -dimensional

vector we call (6) anN -dimensional Gaussian mixture model. This model can be seento be a general-
ization to a truncated version of Middleton’s class A model given in (4). In order to model heavy tailed
cases, typically some terms off(x) have very large variance with smallmixing ratio �n, while other
terms have small variance but large�n. Thus impulsive noise samples, those coming from the large vari-
ance terms, occur once in a while in a Gaussian noise background. In [14], the scalar Gaussian mixture
model is used for signal detection in uncorrelated noise cases. This method is further developed for use
in signal detection in correlated non-Gaussian noise casesin [15]. A physical justification for the scalar
version of (6) was provided in the introduction and [1]-[6].A physical justification for the multivariate
version of (6) is provided in [17] for communication applications.

3. Use of various combinations of linear filters and nonlinearities driven by Gaussian noise.
There are many topologies that are possible and particular topologies are frequently chosen in anad-hoc
manner. Many generalization are also possible. For example, using a Volterra series is possible [18].
This would replace the filters and nonlinearities to implement a general nonlinearity with memory. Also,
the input can be non-Gaussian. Using such ideas one could generate interesting models such as those
discussed in [19]. In a common implementation, the iid samples (Gaussian or non-Gaussian) are input
to a filter. After filtering, correlation is introduced into the samples to produce an autoregressive (AR),
moving average (MA) or ARMA process [20]. If the iid inputs are Gaussian, non-Gaussianity can be
introduced by a zero memory nonlinearity (ZNL). If the inputis non-Gaussian, this ZNL may be omitted.
Examples are the MA linear model used by Maras [21], and AR(1)model used by Middleton [22]. A
simple extension involves summing several processes. For example, one correlation model used by some
authors can be expressed asy(k) = xN (k) + u(k); k = 0; 1; 2; ::: (7)

1For a general discussion of alpha stable models see [11] and [12]. These models include some symmetric stable models
that are not sub-Gaussian (SIRV) [11, pp. 37-42]. However, sub-Gaussian appears to be more popular.
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Here,y(k) is the correlated noise, andxN (k) is a correlated Gaussian process.u(k) is defined asu(k) = akI(k); (8)

whereak � N(0; �2I ) and I(k) = 1 with probability �, otherwiseI(k) = 0. Thusu(k) represents
an impulse train with random amplitudeak which is Gaussian with zero mean and variance�2I . The
occurrence of the impulses is modeled with an iid Bernoulli random process. At each sample time,
an impulse occurs with probability�, where0 < � < 1. In [23], this model is extended to introduce
correlation in both the Gaussian part and the impulsive part. The model used in [23] is depicted in Fig. 1
with y(k) = xN (k) + xI(k) (9)

The processy(k) is the sum of a correlated Gaussian noisexN (k) (the nominal part) and a correlated
impulsive part xI(k). Specifically, the nominal part is given byxN (n) = M1Xk=0hN (k)e(n� k); (10)

wheree(k) is iid zero-mean Gaussian process with variance�2e . Similarly, the impulsive partxI(k) is
generated by xI(n) = M2Xk=0hI(k)u(n� k): (11)

Here,hN (k) andhI(k) are impulse responses of stable linear systems.u(k) is defined in (8).e(k) andu(k) are assumed to be independent. It is also assumed that� is small, and�2I � �2e . The linear filterhI
creates a correlated impulsive transient that lasts over several time samples.

3 Approximating SIRPs with Mixture Models
In order to understand the relationship, we first consider the class ofelliptically symmetric pdfs [24]. An
elliptically symmetric pdf can be expressed asfe(xj�;�) = j�j�1=2q((x� �)0��1(x� �)); (12)

wherex is aN � 1 random vector,� is aN � 1 vector and� is aN � N positive definite matrix. In
(12),q is a function on[0;1) satisfying

RRN q(uTu)du = 1, u 2 RN . Consider the continuous mixturege(xj�;�) = Z 10 a�N=2j�j�1=2�((x� �)0��1(x� �)=a)g(a)da; (13)

whereg(a) is a pdf on(0;1). When� is a normal pdf, (13) is called a normal mixture. Thus the pdf of
an SIRV is a normal mixture from (5) and (13).

From Lemma 1.3 of [24], we know that the necessary and sufficient condition for a pdf of form (12)
to be a normal mixture is thatq satisfies(�1)k[(dk=dsk)q(s)] � 0; k = 1; 2; ::: (14)

If the integral in (13), where� is a normal pdf, is approximated with a finite sum then a finite-term
Gaussian mixture model in (6) results. Consider a scalar random variable example of (12) wherefe has
a generalized Gaussian noise distribution [5] which has the formfe(xj�;�) = k2A(k)�(1=k) e�[jxj=A(k)]k ; (15)
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where A(k) = ��2�(1=k)�(3=k)�1=2 : (16)

Here� is the gamma function�(a) = R10 xa�1e�xdx. A generalized Gaussian pdf is determined by
two constants, the variance�2 and a rate-of-exponential-decay parameterk > 0. Whenk = 2 we get
the Gaussian density function, andk = 1 gives the double-exponential (Laplace) noise distribution. For
small values ofk the tails offk decay more slowly than Gaussian tails, thus0 < k < 2 determines a
“heavy tailed” noise distribution andk > 2 determines “light tailed” noise. It has been demonstrated
in [25] that a generalized Gaussian with0 < k � 2 can be represented as a SIRP, but this is not true
for k > 2, since the conditions in (14) are not satisfied. This shows that non-heavy tailed noise is not
exactly modeled by a continuous Gaussian mixture model. However, in most practical situations, we
are interested only in heavy-tailed noise. The results imply that heavy tailed noise can be modeled by a
finite-term Gaussian mixture model as in (6) with enough terms.

Based on the previous discussion, the pdf of a SIRV should be well approximated by the Gaussian
mixture model in (6). This has been shown to be true for some specific cases. In [14], a one dimensional
Gaussian mixture density is used to successfully approximate the bivariate isotropic Cauchy distribution.
In [16], a multidimensional Gaussian mixture density is used to approximate SIRP noise. Simulation
results show that the approximation works well in all cases studied. The same method also works well
in approximating sub-Gaussian alpha stable noise [16].

We have argued that a Gaussian mixture model, as in (6), that makes use of multidimensional Gaus-
sian pdfs can model any continuous Gaussian mixture as in (13) providedN in (6) is large enough.
However, such a discrete mixture would use matrices for eachterm of (6) that are scalar multiples of one
another from (13). This is a very special case of (6). In general, the covariance matrices of each term of
(6) can be completely different. Thus in some sense, the model in (6) provides more flexibility than a
discrete approximation of (13).

4 Approximating Noise Generated using Filters and Nonlinearities with a Mixture Model
Here, we are particularly interested in the model in [23], since the correlation structure in this model
appeared to be one of the most complicated in this category. For simplicity, we first consider the case
wherehN andhI from (10) and (11) are finite impulse response (FIR) filters with durationM1 + 1 andM2 + 1 respectively. Also, suppose that we are interested in theNth order pdf ofy(k) in (9).

The input sequencee(k) in (10) is a stationary process. Thus the outputxN (k) is still a stationary
process. At timek, the outputxN (k) is a weighted sum ofM1 + 1 Gaussian random variables, thus still
a Gaussian. However, correlation is introduced between anyadjacentM1 + 1 noise samples.

The situation in the impulsive branch is a little more complicated, because an impulse inu(k) occurs
with probability� at each time. Thus each sample ofu(k) can contain a large variance Gaussian sample,
which models an impulsive noise sample, or nothing. The key to determining how to model theNth
order pdf ofxI(k) with anN -dimensional mixture model is to determine the number of possible dis-
tributions which can occur due to different patterns of impulses in the sequenceu(k). In fact, counting
the number of possible distributions is equivalent to counting the number of binary patterns of lengthN +M2. This can be seen directly from (11). Thus for anNth order pdf model, the number of possible
distributions is2N+M2 . Under the assumption that a given pattern has occurred, we are always summing
Gaussian random variables in (11) and (9). Thus for any particular pattern,xI(k) in (11) is Gaussian
and so isy(k) in (9). Thus a Gaussian mixture model, with a number of terms equal to the number of
patterns, is appropriate. In summary, we can use anN -dimensional Gaussian mixture pdf with2N+M2

5



terms to exactly represent theNth order pdf of the output processy(k). Each term in the mixture pdf
describes the distribution corresponding to one possible pattern of impulses in the sequenceu(k). It is
key to note that thexN (k) process is always added in and it always has same correlationstructure, thus
the number of terms in the Gaussian mixture pdf is decided only by xI(k). If N or M2 is large, then
the number of terms needed in the mixture pdf will be large also. However, in some practical cases, less
terms can be used to approximate theNth order pdf ofy(k), since some patterns are very unlikely to
occur. This is reasonable since we assumed that impulses occur with probability�, 0 < �� 1.

In the above analysis, we chose FIR filters. The limited length of impulse response makes the analysis
easier. For systems that arise from practical applications, we almost always find correlation that drops
off with time. Thus we can approximate these systems with FIRfilters.

We have generated some noise samples using the model in [23].The EM algorithm developed in [15]
was employed to estimate the parameters of Gaussian mixturepdf. The resulting Gaussian mixture pdf
was compared with the histogram of the sample data. In some cases, with only a small number of terms
in the mixture model, the approximation is already quite good. As an example, consider the following
model.
Example 1: xN (k) = e(k) + e(k � 1)xI(k) = u(k) + 0:5 u(k � 1) (17)

Here we usedM1 = M2 = 1. We wanted to approximate the2nd order pdf ofy(k) in (9). According
to our analysis,22+1 = 8 terms will be needed in the Gaussian mixture density to completely describe
the2nd order pdf ofy(k). We generated200; 000 noise samples and used the EM based algorithm in
[15] to estimate the parameters in the mixture model. Only2 terms were used in the Gaussian mixture
pdf for approximation. Fig. 2 gives the histogram and the contour plot of sample data. Fig.3 shows the
plots of the estimated pdf. In this example, although only2 terms is used, the approximation is already
reasonably good. In our second example, we selectedM1 = M2 = 1 andhN (k) = hI(k) as in the
following.
Example 2: xN (k) = e(k) + 0:5 e(k � 1)xI(k) = u(k) + 0:5 u(k � 1) (18)

In this case, the system is equivalent to passing the nominaland impulsive noise through one FIR filter.
Fig. 4 and Fig. 5 give the histogram and estimated pdf respectively. In this example, we also used2
terms in the Gaussian mixture model for approximation yet very good results are obtained.

In a recent paper [26], a correlated non-Gaussian process isgenerated by passing iid generalized
Gaussian white noise through an IIR filter to generate an AR(1) process, and it was shown that the pdf
of the output process can be approximated by another generalized Gaussian. Recall that in Section 3, we
have already shown that a generalized Gaussian can be approximated by a Gaussian mixture pdf under
certain conditions. Thus the results in [26] appear to support the idea that mixture models can be used
for approximating models in the third category.

5 Conclusion
In this paper, we discuss the approximation of correlated non-Gaussian processes using Gaussian mixture
models. First, a review of some general models for correlated non-Gaussian interference and noise
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is given. The three models discussed here are the Gaussian mixture model, the spherically invariant
random process model, and a model which involves the combination of linear filters and nonlinearities.
The three models are then analyzed and the Gaussian mixture model is shown to be able to approximate
the other two models with high fidelity when enough terms are used in the mixture pdf.
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Figure 1: Correlated impulsive noise model in [23]
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Figure 2: Histogram of sample data in Example 1.
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Figure 3: Estimated pdf of sample data in Example 1.
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Figure 4: Histogram of sample data in Example 2.
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Figure 5: Estimated pdf of sample data in Example 2.
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