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Abstract

Gaussian mixture probability density functions (pdfs) have begiulao for modeling non-
Gaussian noise. The majority of non-Gaussian noise research has beeanestrindependent
and identically distributed observation sequences due to the difficuttiiaracterizing multidimen-
sional pdf's. There has been very few studies on the ability of Gaussigune pdfs to model
correlated non-Gaussian noise processes. In this paper, we initiate stistlysand demonstrate
that in practical cases, Gaussian mixture pdfs with a small number of gnigmrms can give good
approximations to non-Gaussian noise pdfs. Some general modelsrelated non-Gaussian inter-
ference and noise are reviewed. The focus is on three approaches. Thetfissdaussian mixture
model approach. The second is an approach based on spherically invariant raawdors.vT he final
approach involves the combination of linear filters and nonlinearitiegrgdiy in anad-hoc manner.
The three approaches are compared and the Gaussian mixture model is shpprotomate models
generated from the other approaches.

1 Introduction
Gaussian mixture models have attracted attention for maaysy[1, 2, 3, 4]. A simple two term mixture
probability density function (pdf) for a scalar observatis given by

f(z) = (1 = €e)n(x) + eh(z), (1)

wheree is a small positive constant; is a Gaussian pdf, ankd is some other pdf with heavier tails.
Whenh is also a Gaussian pdf with a variance larger than that, ¢fl) is called aGaussian mixture
modd. Mixture models of the form of (1) have been used by many itigators to model heavy-tailed
non-Gaussian noise pdfs. The mixture model has also beed toyprovide a good fit to empirical noise
data in many cases.

The mixture noise pdf model of (1) has been found to be ap@tepfor modeling impulse noise
which can be considered to be a train of randomly occurringomapulses in a background of Gaussian
noise [5]. Suppose that the impulsive component of a noisefwan is expressed as

0= S Aplt—to). @)
k=—o0

Here theAg, k = —oc,...0, are independent and identically distributed (iid) anyolés and the,,
k = —o0,...0c, are assumed to be generated by a Poisson point processulhespape is determined
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by the receiver filter response. Richter and Smits [6] deriae approximation for the pdf; of samples
of I(t) as
fi(z) = (1 —vTp)d(z) + vTphi(z), (3)

for vT, < 1. Herew is the rate parameter of the Poisson point processigrisl the width of the pulse
p. hy is a density function which depends on the pulse shaged on the density function of thé.
When an independent Gaussian background noise is addét) tthe first-order density function of the
total noise process becomes a convolutiorf ,ofvith n, resulting in the noise densitfy of (1) in whiche

is nowvT,, andh is the convolution of.; ands.

Based on a representation of the impulsive component ofdfse similar to, but more general than
that given by (2), Middleton [1, 2, 3, 4] derived his canohidass A model. Middleton obtained an ex-
pansion of the noise pdf as an infinite weighted sum of Gaussian densities with derrgaveights for
Gaussian densities with increasing variances. Consigaunrtivariate probability density function of the
normalized, unit-variance Middleton noise pdf model. I$ maGaussian component and an independent
additive interference component arising from a Possionhaeism. The overall noise density may be
approximated as [1, 2, 3, 4]

fay= 3 ALy (4)
= ml \/2rdZ,

Here the parameted is called the impulsive index and a small value Afimplies highly impulsive
interference§?2, is determined by some physical parameters.

If we keep only the firsf/ terms in the sum (4), and use the proper normalization, arogjppation
of Middleton’s class A model is obtained. For several cadgwactical interest a rather small value of
M (for example,M = 2 or 3) is found to be sufficient to give excellent approximationc® numerical
studies have been reported in [7], [14] and [16].

The majority of non-Gaussian noise research has beerciestto iid observation sequences because
of the difficulty in characterizing multidimensional pdf'sHowever, in many practical situations, the
noise is temporally or spatially correlated, or both. If fw@cessing scheme is based upon the iid
assumption, then the resulting estimation and detectionlis suboptimum. For example, in radar and
communication systems, closely spaced sensors in an amagatse the received interference, which is
a part of the noise, at each sensor to be highly correlatedrefaton may arise during propagation or
may be induced by filtering of uncorrelated noisey Hndh in (1) represent multidimensional Gaussian
pdfs, then a Gaussian mixture model for correlated noiselteesin fact, a straightforward extension
involves considering more than two terms in (1). There amy ¥&w studies, if any, on the ability of a
Gaussian mixture pdf to model correlated non-Gaussiaremoiscesses. In this paper, we initiate such
a study.

2 General Classes of Models
It is perhaps surprising that there are very few general nsdde correlated non-Gaussian interference
and noise. A search of the literature reveals that most nsde#lwithin the following three categories.

1. Spherically invariant random process (SIRP) SIRPs are widely used in modeling correlated
background clutter in radar signal detection [8]. A phykijcatification for this model is given here.
Consider the received signals reflected from some scagtdfer a particular scatterer, the reflected signal
might be modeled as Gaussian. However, the power of the teflsignals from different scatterers may
vary. Thus the background clutter can be modeled by an SIREeps defined by (5), which is an



integral of the reflected signals over all scatterers. A gpally invariant random vector (SIRVY can

be generated by = xG, wherex is a positive random variable with pdf,(z) andG isa N x 1
Gaussian random vector with zero mean and covariance mitriwhich is independent of. If M is
given, the pdf ofr determines the pdf df, hence it is called the characteristic pdf of the SIRP. THe pd
of Y is given by

y'M 1y
Qa2

fy(y) = (27r)*N/2|M\*1/2 /000 z Neap (— ) fo(x)dz. (5)

In [9] and [10], an introduction to SIRPs is given and a SIR¥aliy is constructed which provides the
proper choice off, () to model Gaussian, Laplace, Cauchy, and Studeltributed SIRPs. Another
important class of noise models, sub-Gaussian alpha staide [11][12} also belongs to the SIRP
category with slight modification. The general model for gating a sub-Gaussian alpha stable noise
vector isY = z'/2@G, wherer is an alpha stable random variable ards a Gaussian random vector.

2. Gaussian mixture model A general form of a Gaussian mixture pdf is given by

N

n=1

where>"™_, ¢, = 1 and eacly,, () is a, possibly multivariate, Gaussian pdfzlis an N-dimensional
vector we call (6) anV-dimensional Gaussian mixture model. This model can be &eba a general-
ization to a truncated version of Middleton’s class A modekg in (4). In order to model heavy tailed
cases, typically some terms ¢fz) have very large variance with smatiixing ratio ¢,, while other
terms have small variance but large Thus impulsive noise samples, those coming from the laagie v
ance terms, occur once in a while in a Gaussian noise baakgrdn [14], the scalar Gaussian mixture
model is used for signal detection in uncorrelated noisesashis method is further developed for use
in signal detection in correlated non-Gaussian noise dagé$]. A physical justification for the scalar
version of (6) was provided in the introduction and [1]-[&].physical justification for the multivariate
version of (6) is provided in [17] for communication applicas.

3. Use of various combinations of linear filters and nonlineatiies driven by Gaussian noise
There are many topologies that are possible and partioyenagies are frequently chosen inasihoc
manner. Many generalization are also possible. For exgmglag a Volterra series is possible [18].
This would replace the filters and nonlinearities to impletageneral nonlinearity with memory. Also,
the input can be non-Gaussian. Using such ideas one coustagerinteresting models such as those
discussed in [19]. In a common implementation, the iid samGaussian or non-Gaussian) are input
to a filter. After filtering, correlation is introduced intbé samples to produce an autoregressive (AR),
moving average (MA) or ARMA process [20]. If the iid inputseaGaussian, non-Gaussianity can be
introduced by a zero memory nonlinearity (ZNL). If the infmihon-Gaussian, this ZNL may be omitted.
Examples are the MA linear model used by Maras [21], and AR{(&)lel used by Middleton [22]. A
simple extension involves summing several processes.Xaonge, one correlation model used by some
authors can be expressed as

y(k) = zn(k) +u(k), k=0,1,2,.. (7)

For a general discussion of alpha stable models see [11]1#}d These models include some symmetric stable models
that are not sub-Gaussian (SIRV) [11, pp. 37-42]. Howewdy;Gaussian appears to be more popular.



Here,y(k) is the correlated noise, angy (k) is a correlated Gaussian processk) is defined as
u(k) = apI(k), (8)

wherea; ~ N(0,0?) and I(k) = 1 with probability ¢, otherwisel(k) = 0. Thusu(k) represents
an impulse train with random amplitudg, which is Gaussian with zero mean and variaig¢e The
occurrence of the impulses is modeled with an iid Bernoatidom process. At each sample time,
an impulse occurs with probability, where0 < e < 1. In [23], this model is extended to introduce
correlation in both the Gaussian part and the impulsive @dmt model used in [23] is depicted in Fig. 1
with

y(k) = zn (k) +z1(k) )
The procesg (k) is the sum of a correlated Gaussian noisg(k) (the nominal part) and a correlated
impulsive part z; (k). Specifically, the nominal part is given by

M
ix(n) = 3 hy(K)eln — k), (10)
k=0

wheree(k) is iid zero-mean Gaussian process with variasigeSimilarly, the impulsive part; (k) is
generated by

My
w1(n) = 3 ha(B)uln — k). an
k=0

Here,hy (k) andh; (k) are impulse responses of stable linear systeis) is defined in (8).e(k) and
u(k) are assumed to be independent. It is also assumed ithamall, andi? > 42. The linear filterh;
creates a correlated impulsive transient that lasts owaraktime samples.

3 Approximating SIRPs with Mixture Models
In order to understand the relationship, we first considercthss oflliptically symmetric pdfs [24]. An
elliptically symmetric pdf can be expressed as

felalu,2) = 12172 q((@ — p) S~ @ — p)), (12)

wherez is aN x 1 random vectory is aN x 1 vector and: is aN x N positive definite matrix. In
(12), ¢ is a function o0, oo) satisfying [~ ¢(u”u)du = 1,u € RN. Consider the continuous mixture

gelalp %) = [ a NS (@ 'S = ) a)g(a)da, (13)

whereg(a) is a pdf on(0, oo). When( is a normal pdf, (13) is called a normal mixture. Thus the @ddf o
an SIRV is a normal mixture from (5) and (13).

From Lemma 1.3 of [24], we know that the necessary and sufticendition for a pdf of form (12)
to be a normal mixture is thatsatisfies

(—~D*(d*/ds*)q(s)] >0, k=1,2,.. (14)

If the integral in (13), where is a normal pdf, is approximated with a finite sum then a fitéten
Gaussian mixture model in (6) results. Consider a scalata@mnvariable example of (12) whefg has
ageneralized Gaussian noise distribution [5] which has the form

k

ks
2A(K)D(1/k) R (15)

.fe(x‘ﬂa Z:) =
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where

I(1/k)7"?
o) (16)

Herel is the gamma functiolf (a) = [;° 2% 'e “dz. A generalized Gaussian pdf is determined by
two constants, the varian@@ and a rate-of-exponential-decay paramétes 0. Whenk = 2 we get
the Gaussian density function, ahd= 1 gives the double-exponential (Laplace) noise distrilvutigor
small values of: the tails of f;, decay more slowly than Gaussian tails, tiius k& < 2 determines a
“heavy tailed” noise distribution anél > 2 determines “light tailed” noise. It has been demonstrated
in [25] that a generalized Gaussian with< £ < 2 can be represented as a SIRP, but this is not true
for k£ > 2, since the conditions in (14) are not satisfied. This shows nion-heavy tailed noise is not
exactly modeled by a continuous Gaussian mixture model. edewy in most practical situations, we
are interested only in heavy-tailed noise. The resultsynipht heavy tailed noise can be modeled by a
finite-term Gaussian mixture model as in (6) with enough grm

Based on the previous discussion, the pdf of a SIRV shouldékeapproximated by the Gaussian
mixture model in (6). This has been shown to be true for soreeip cases. In [14], a one dimensional
Gaussian mixture density is used to successfully apprdxithe bivariate isotropic Cauchy distribution.
In [16], a multidimensional Gaussian mixture density isdus® approximate SIRP noise. Simulation
results show that the approximation works well in all cagadied. The same method also works well
in approximating sub-Gaussian alpha stable noise [16].

We have argued that a Gaussian mixture model, as in (6), thkesruse of multidimensional Gaus-
sian pdfs can model any continuous Gaussian mixture as hpifb¥ided N in (6) is large enough.
However, such a discrete mixture would use matrices for &aoh of (6) that are scalar multiples of one
another from (13). This is a very special case of (6). In gainéne covariance matrices of each term of
(6) can be completely different. Thus in some sense, the hiod6) provides more flexibility than a
discrete approximation of (13).

Ak) = {5

4 Approximating Noise Generated using Filters and Nonlinearities wh a Mixture Model
Here, we are particularly interested in the model in [23ficsi the correlation structure in this model
appeared to be one of the most complicated in this categanysifplicity, we first consider the case
wherehy andh; from (10) and (11) are finite impulse response (FIR) filterswdiurationM; + 1 and
M, + 1 respectively. Also, suppose that we are interested invitve order pdf ofy (k) in (9).

The input sequence(k) in (10) is a stationary process. Thus the outpnt(k) is still a stationary
process. At timek, the outputr 5 (k) is a weighted sum o#/; + 1 Gaussian random variables, thus still
a Gaussian. However, correlation is introduced betweeradjacentM; + 1 noise samples.

The situation in the impulsive branch is a little more corogied, because an impulseuifk) occurs
with probability e at each time. Thus each sampleu¢k) can contain a large variance Gaussian sample,
which models an impulsive noise sample, or nothing. The kegetermining how to model th&th
order pdf ofz;(k) with an N-dimensional mixture model is to determine the number ofjibs dis-
tributions which can occur due to different patterns of insps in the sequenegk). In fact, counting
the number of possible distributions is equivalent to cmgnthe number of binary patterns of length
N + M. This can be seen directly from (11). Thus forsmh order pdf model, the number of possible
distributions i2¥ M2 Under the assumption that a given pattern has occurredierah@ays summing
Gaussian random variables in (11) and (9). Thus for anyqaati pattern,z; (k) in (11) is Gaussian
and so isy(k) in (9). Thus a Gaussian mixture model, with a number of terqueakto the number of
patterns, is appropriate. In summary, we can us&agimensional Gaussian mixture pdf wigd’+2



terms to exactly represent théth order pdf of the output procesgk). Each term in the mixture pdf
describes the distribution corresponding to one possiateem of impulses in the sequencgk). It is
key to note that the: y (k) process is always added in and it always has same correkttiacture, thus
the number of terms in the Gaussian mixture pdf is decided bylx; (k). If N or M, is large, then
the number of terms needed in the mixture pdf will be large.atéowever, in some practical cases, less
terms can be used to approximate tkeh order pdf ofy(k), since some patterns are very unlikely to
occur. This is reasonable since we assumed that impulses wib probabilitye, 0 < € < 1.

In the above analysis, we chose FIR filters. The limited leiafitmpulse response makes the analysis
easier. For systems that arise from practical applicatisresalmost always find correlation that drops
off with time. Thus we can approximate these systems withfifiéts.

We have generated some noise samples using the model iTfZSEM algorithm developed in [15]
was employed to estimate the parameters of Gaussian mipdifirel he resulting Gaussian mixture pdf
was compared with the histogram of the sample data. In sosescwith only a small number of terms
in the mixture model, the approximation is already quitedjods an example, consider the following
model.

Example 1:

zn(k) =e(k) +e(k—1)
z1(k) = u(k) + 0.5 u(k — 1) (17)

Here we used/; = M, = 1. We wanted to approximate th.d order pdf ofy(k) in (9). According

to our analysis2?*! = 8 terms will be needed in the Gaussian mixture density to cetalyl describe
the 2nd order pdf ofy (k). We generate@00, 000 noise samples and used the EM based algorithm in
[15] to estimate the parameters in the mixture model. Qnigrms were used in the Gaussian mixture
pdf for approximation. Fig. 2 gives the histogram and theteonplot of sample data. Fig.3 shows the
plots of the estimated pdf. In this example, although @tgrms is used, the approximation is already
reasonably good. In our second example, we seletfed= Ms = 1 andhy (k) = h;(k) as in the
following.

Example 2:

zy(k) =e(k) + 0.5 e(k — 1)
zr(k) = u(k) + 0.5 u(k — 1) (18)

In this case, the system is equivalent to passing the noraithimpulsive noise through one FIR filter.
Fig. 4 and Fig. 5 give the histogram and estimated pdf res@det In this example, we also used
terms in the Gaussian mixture model for approximation yey g®od results are obtained.

In a recent paper [26], a correlated non-Gaussian procegsnisrated by passing iid generalized
Gaussian white noise through an IIR filter to generate an Apidcess, and it was shown that the pdf
of the output process can be approximated by another garestabaussian. Recall that in Section 3, we
have already shown that a generalized Gaussian can be appted by a Gaussian mixture pdf under
certain conditions. Thus the results in [26] appear to suppe idea that mixture models can be used
for approximating models in the third category.

5 Conclusion

In this paper, we discuss the approximation of correlated@aussian processes using Gaussian mixture
models. First, a review of some general models for corrdlaten-Gaussian interference and noise
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is given. The three models discussed here are the Gaussianrenmodel, the spherically invariant
random process model, and a model which involves the conibdinaf linear filters and nonlinearities.

The three models are then analyzed and the Gaussian mixagel i shown to be able to approximate
the other two models with high fidelity when enough terms aeduin the mixture pdf.
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Figure 1: Correlated impulsive noise model in [23]
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Figure 2: Histogram of sample data in Example 1.
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Figure 3: Estimated pdf of sample data in Example 1.
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Figure 4: Histogram of sample data in Example 2.
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Figure 5: Estimated pdf of sample data in Example 2.
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