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CERTAIN NIL CLEAN CONDITIONS ON ZERO-DIVISORS
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Abstract: An element of a ring is (very) nil clean if it is the sum of an (a
very) idempotent and a nilpotent element. In this paper we investigate the
uniqueness of (very) nil cleanness, especially, on zero-divisors. A ring R is very
(D-very) nil clean if every element (zero-divisor) can be uniquely written as the
sum of a (very) idempotent and a nilpotent element. The structure of these
rings are determined. For instance, we prove that a ring R is very nil clean if
and only if R is abelian; J(R) is nil and R/J(R) is isomorphic to Z3, a Boolean
ring, or Z3

⊕

B where B is a Boolean. A periodic ring R is D-very nil clean
if and only if R is abelian and R/J(R) is isomorphic to a field F , Z3

⊕

Z3,
Z3

⊕

B where B is Boolean, or a Boolean ring. In particular, the structure of
uniquely ( D-uniquely) nil clean rings are also studied.

Key words: Zero-divisor; Very Nil Clean Ring; D-Very Nil Clean Ring;
Uniquely Nil Clean Ring; D-Uniquely Nil Clean Ring.
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1. INTRODUCTION

Let R be a ring with an identity. We say that a ∈ R is a left (right) zero-divisor if there exists
a nonzero b ∈ R such that ab = 0(ba = 0). An element that is a left and a right zero-divisor
is simply called a zero-divisor. Zero-divisors occur in many classes of rings. An element a
in a ring R is (uniquely) nil clean if it is the sum of (unique) an idempotent e ∈ R and a
nilpotent. A ring R is (uniquely) nil clean provided that every element in R is (unique) nil
clean. An element a in R is a very idempotent provided that a or −a is an idempotent. An
element a ∈ R is called very nil clean provided that there exists a very idempotent e ∈ R
such that a− e ∈ N(R), and that a− f ∈ N(R) with a very idempotent f ∈ R implies that
e2 = f2. A ring R is very nil clean if every element in R is very nil clean. The motivation
of this paper is to explore structure of rings with these nil clean conditions on zero-divisors.

A ring R is called D-very nil clean provided that every zero-divisor in R is very nil clean.
A ring R is called D-uniquely nil clean provided that every zero-divisor in R is uniquely nil
clean. In Section 2, we prove that a ring R is very nil clean if and only if R is abelian; J(R)
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is nil and R/J(R) is isomorphic to Z3, a Boolean ring, or Z3

⊕

B where B is a Boolean.
A ring R is called a periodic ring if for any a ∈ R there exist distinct m,n ∈ N such that
am = an. In Section 3, we shall determine the structure of D-very nil clean rings in periodic
case. We show that a periodic ring R is D-very nil clean if and only if R is abelian and
R/J(R) is isomorphic to a field F , Z3

⊕

Z3, Z3

⊕

B where B is Boolean, or a Boolean ring.
Furthermore, in Section 4, we are concern several special cases. We prove that a ring R is
an abelian ring in which every zero-divisor in R is a very idempotent or a nilpotent element
if and only if R is isomorphic to one of the following: a D-ring, a Boolean ring, Z3 ⊕ Z3,
and Z3

⊕

B where B is a Boolean. In Section 5, we characterize uniquely nil clean rings.
We prove that a ring R is uniquely nil clean if and only if 2 ∈ R is nilpotent and R is very
nil clean. From this, we show that RG is uniquely nil clean if and only if R is uniquely nil
clean and I(R,G) is nil. Finally, in the last section, we explore the structure of D-uniquely
nil clean rings. We show that a ring R is a D-uniquely nil clean ring if and only if R is a
D-ring or R is uniquely nil clean.

Throughout, all rings are associative with an identity. We use Id(R), N(R) and J(R) to
denote the sets of all idempotents, all nilpotent elements and the Jacobson radical of a ring
R. Z(R) and NZ(R) stand for the sets of all zero-divisors and non zero-divisors of a ring
R.

2. VERY NIL CLEAN RINGS

The aim of this is to investigate the structure of very nil clean rings. The necessary and
sufficient conditions under which a group ring is very nil clean are also obtained.

Lemma 2.1 [2, Theorem 2.28]. Let R be a ring. Then every element in R is a very

idempotent if and only if R is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Theorem 2.2. Let R be a ring. Then R is very nil clean if and only if

(1) R is abelian;

(2) J(R) is nil;

(3) R/J(R) is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Proof. Suppose that R is very nil clean. For any idempotent e ∈ R and any a ∈ R,
e + ea(1 − e) ∈ R is an idempotent. Since

(

e + ea(1 − e)
)

+ 0 = e + ea(1 − e), by the
uniqueness, ea(1− e) = 0; hence, ea = eae. Likewise, ae = eae, and so ea = ae. Thus, R is
abelian. Let x ∈ J(R). Then we have a very idempotent e ∈ R such that w := x−e ∈ N(R).
Clearly, e ∈ R is central; hence, wx = w(w + e) = (w + e)w = xw. This implies that
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1 − e = (1 − x) + w = (1 − x)
(

1 + (1 − x)−1w
)

∈ U(R), and so 1 − e = 1. Thus, e = 0,
and then x = w ∈ N(R). That is, J(R) is nil. Let a ∈ R. Then there exists a central very
idempotent e ∈ R such that w := a−e ∈ N(R). If e2 = e, then a−a2 = w−2ew−w2 ∈ N(R).
If e2 = −e, then a+ a2 = w+ 2ew+w2 ∈ N(R). In any case, we can find some n ∈ N such
that an = an+1f(a) where f(t) ∈ R[t]. In view of Herstein’s Theorem, R is periodic, and
then N(R) forms an ideal of R. Therefore, J(R) = N(R), and so every element in R/J(R)
is a very idempotent. In light of Lemma 2.1, (3) is satisfied.

Conversely, assume that (1) − (3) hold. Let a ∈ R. Then a is a very idempotent, in
terms of Lemma 2.1. As J(R) is nil, every idempotent lifts modulo J(R), and so every very
idempotent lifts modulo J(R). Thus, we can find a very idempotent e ∈ R such that a = e.
Hence, v := a − e ∈ J(R) ⊆ N(R). If there exists a very idempotent f ∈ R such that
w := a− f ∈ N(R), then e2 − f2 = (a− v)2 − (a−w)2 = (−av− va+ v2)+ (aw+wa−w2).
As v ∈ J(R), we see that −av− va+ v2 ∈ J(R). Furthermore, aw+wa−w2 ∈ N(R) since
aw = wa. This implies that 1−(e2−f2) = −(−av−va+v2)+

(

1−(aw+wa−w2)
)

∈ U(R). As

e2, f2 ∈ R are idempotents, we have (e2−f2)3 = e2−f2, and so (e2−f2)
(

1−(e2−f2)
)

= 0.
Accordingly, e2 = f2, as asserted. ✷

Corollary 2.3. Let R be a local ring. Then R is very nil clean if and only if

(1) J(R) is nil;

(2) R/J(R) is isomorphic to Z2 or Z3.

Proof. Suppose that R is very nil clean. Then J(R) is nil. Since every idempotent in R is 0
or 1, R/J(R) is isomorphic to Z3, or a Boolean ring. If R/J(R) is isomorphic to a Boolean
ring, then R/J(R) ∼= Z2, as desired.

The converse is clear from Theorem 2.2, as R is abelian. ✷

Corollary 2.4. Let R be a commutative ring. Then every element in R is the sum of a

very idempotent and a nilpotent element if and only if

(1) J(R) is nil;

(2) R/J(R) is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Proof. This is obvious by Theorem 2.2 ✷

Let R = Z2m×3n(m,n ∈ N). Then R ∼= Z2m ⊕Z3n . But J
(

Z2m ⊕Z3n

)

= 2Z2m ⊕ 3Z3n is
nil, and so R/J(R) ∼= Z2⊕Z3. Therefore every element in R is the sum of a very idempotent
and a nilpotent element, in terms of Corollary 2.4.

Corollary 2.5. Let R be a ring, and let σ : R → R be an endomorphism. Then R[[x, σ]] is
very nil clean if and only if

(1) R is very nil clean;

(2) σ(e) = e for all idempotents e ∈ R.
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Proof. Suppose that R[[x, σ]] is very nil clean. Then R[[x, σ]] is abelian, by Theorem 2.2.
For any idempotent e ∈ R, we see that ex = xe = σ(e)x, and so e = σ(e). Let a ∈ R be
a zero-divisor. Then a ∈ R[[x, σ]] is a zero-divisor. By hypothesis, there exists a unique
idempotent e(x) ∈ R[[x, σ]] such that a − e(x) ∈ N

(

R[[x, σ]]
)

. Hence, we have a unique
idempotent e(0) ∈ R such that a− e(0) ∈ N(R). Therefore, R is very nil clean.

Conversely, assume that (1) and (2) hold. Let e(x) =
∑

∞

i=0
eix

i ∈ R[[x, σ]] be an
idempotent. Then

e20 = e0;
e0e1 + e1σ(e0) = e1;

e0e2 + e1σ(e1) + e2σ
2(e0) = e1;

...

In view of Theorem 2.2, R is abelian. Hence, (2e0 − 1)e1 = 0. As (2e0 − 1)2 = 1, we get
e1 = 0. Likewise, e2 = · · · = 0. Hence, e(x) = e0 ∈ R is an idempotent. This implies that
R[[x, σ]] is abelian. By using Theorem 2.2 again, R/J(R) is one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Obviously,
R[[x, σ]]/J(R[[x, σ]]) ∼= R/J(R).

Therefore R[[x, σ]]/J(R[[x, σ]]) is one of the preceding. Accordingly, we complete the proof,
in terms of Theorem 2.2. ✷

Proposition 2.6. Let R be a ring, suppose that

(1) N(R) is commutative;

(2) Every element in R is the sum of a very idempotent and a nilpotent element.

Then J(R) is nil and R/J(R) is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Proof. Let a ∈ J(R). Then there exists an idempotent e ∈ R such that a + e ∈ N(R) or
a − e ∈ N(R). If v := a + e ∈ N(R), then 1 − e = (1 + a) − v ∈ U(R), and so e = 0. If
w := a − e ∈ N(R), then 1 − e = (1 − a) + w ∈ U(R), and so e = 0. In any case, we have
a ∈ N(R). Therefore, J(R) is nil.

Let e ∈ R be an idempotent, and let x ∈ N(R). Then (1 − e)xe ∈ N(R), and so
x(1− e)xe = (1− e)xex. Hence, x2e− xexe = xex− exex, and so ex2e− exexe = 0. Thus,
ex2e = (exe)2. Write xm = 0(m ≥ 1). By induction, we get (exe)2

m

= ex2
m

e = 0, and
then exe ∈ N(R). This implies that xe = exe + (1 − e)xe ∈ N(R). Likewise, ex ∈ N(R).
Let r ∈ R. Then we have an idempotent e ∈ R such that r + e ∈ N(R) or r − e ∈ N(R).
Since N(R) is commutative, we see that rx, xr ∈ N(R). We infers that N(R) is an ideal
of R. Hence, N(R) = J(R). It follows that every element in R/J(R) a very idempotent.
Therefore the result follows, by Lemma 2.1. ✷
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Let P (R) be the intersection of all prime ideals of R, i.e., P (R) is the prime radical of
R. As is well known, P (R) is the intersection of all minimal prime ideals of R.

Theorem 2.7. Let R be a ring. Then R is very nil clean if and only if

(1) R is abelian;

(2) R/P (R) is very nil clean.

Proof. Suppose that R is very nil clean. Then R is abelian. In view of Theorem 2.2, R is
clean, and so it is an exchange ring. Thus, R/P (R) is abelian. Obviously, J

(

R/P (R)
)

=

J(R)/P (R) is nil. Further,
(

R/P (R)
)

/J
(

R/P (R)
)

∼= R/J(R). By Theorem 2.2 again,
R/P (R) is very nil clean.

Conversely, assume that (1) and (2) hold. For any x ∈ J(R), we see that x ∈ J
(

R/P (R)
)

is nilpotent. Since P (R) is nil, we see that x ∈ R is an nilpotent; hence that J(R) is nil.
As R/J(R) ∼=

(

R/P (R)
)

/J
(

R/P (R)
)

, it follows from Theorem 2.2 that R is very clean, as
asserted. ✷

Let R be a ring, and let G be a group. The augmentation ideal I(R,G) of the group ring
RG is the kernel of the homomorphism from RG to R induced by collapsing G to 1. That
is, I(R,G) = ker(ω), where ω = {

∑

g∈G

rgg |
∑

g∈G

rg = 0}.

Lemma 2.8. Let R be a ring, and let G be a group. If RG is very nil clean, then so is R.

Proof. Let a ∈ R. Then we have a very idempotent e ∈ RG such that a − e ∈ N(RG)
and that such representation is unique. Hence, a − ω(e) = ω(a − e) ∈ N(R). Obviously,
ω(e) ∈ R is a very idempotent. If a− f ∈ N(R) for a very idempotent f ∈ R, then e2 = f2,
as desired. ✷

Theorem 2.9. Let R be a ring, and let G be a group. If I(R,G) is nil, then RG is very

nil clean if and only if so is R.

Proof. One direction is obvious by Lemma 2.8. Conversely, assume that R is very nil clean.
Let x ∈ RG. Then x = ω(x) +

(

x − ω(x)
)

. By hypothesis, there exists a very idempotent

e ∈ R such that w := ω(x) − e ∈ N(R). Hence, x = e +
(

w + (x − ω(x))
)

. Since ker(ω) is
nil, we see that v := w + (x − ω(x)) ∈ N(R). Assume that x = f + w where f ∈ RG is an
very idempotent and w ∈ N(RG). Then f − ω(f) ∈ ker(ω) is nil. As R is very nil clean,
R is abelian. Hence,

(

f − ω(f)
)(

1 − (f − ω(f))2
)

= 0, and so f = ω(f) ∈ R. It is easy to
verify that vw = (x− e)(x− f) = (x− f)(x− e) = wv, and then e− f = w − v ∈ N(R). It
follows from (e− f)

(

1− (e − f)2
)

= 0 that e = f , as needed. ✷

Corollary 2.10. Let R be a ring with a prime p ∈ J(R), and let G be a locally finite

p-group. Then RG is very nil clean if and only if R is very nil clean.

Proof. One direction is obvious. Conversely, assume that R is very nil clean. Then J(R) is
nil by Theorem 2.2. We first suppose G is finite and prove the claim by induction on |G|.
As the center of a nontrivial finite p-group contains more than one element, we may take
x ∈ G be an element in the center with the order p. Let (x) be the subgroup of G generated
by x. Then G = G/(x) has smaller order. By induction hypothesis, ker

(

ω
)

is nil, where

ω : RG → R,
∑

g∈G

rgg. Let ϕ : RG → RG,
∑

g

rgg →
∑

g

rgg. Then ker(ϕ) = (1−x)RG. Since

xp = 1, we see that (1−x)p ∈ pRG; hence, 1−x ∈ RG is nilpotent. But ϕ
(

ker(ω)
)

= ker
(

ω
)
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is nil. For any z ∈ ker(ω), we have some m ∈ N such that zm ∈ ker(ϕ) is nilpotent. Thus,
z ∈ RG is nilpotent. We conclude that ker(ω) is nil, and therefore RG is very nil clean, in
terms of Theorem 2.2. ✷

3. FACTORIZATION OF ZERO-DIVISORS

A ring R is D-very nil clean provided that every zero-divisor of R is very nil clean. This
section is concern on such rings. We begin with the relation of these rings with very nil
clean ones.

Theorem 3.1. Let R be a ring. Then R is very nil clean if and only if

(1) R is periodic;

(2) R is D-very nil clean;

(3) U(R) = {x± 1 | x ∈ N(R)}.

Proof. Suppose that R is very nil clean. As in the proof of Theorem 2.2, R is periodic. (2) is
obvious. Let x ∈ U(R). Then we have a very idempotent e ∈ R such that w := x−e ∈ N(R).
As R is abelian, we see that e = x− w and ew = we, and so e = ±1. Therefore x = w ± 1,
as desired.

Conversely, assume that (1)− (3) hold. Let a ∈ R. Then we have distinct m,n ∈ N(m >
n) such that am = an. If a is a zero-divisor, then a is very nil clean. If a is a non zero-divisor,
am−n = 1. By (3), we see that a is very nil clean. This completes the proof. ✷

Lemma 3.2. Every D-very nil clean ring is abelian.

Proof. Let e ∈ R be an idempotent, and let x ∈ R. Then e+ex(1−e) ∈ R is an idempotent.
If e = 1, then ex = exe. If 1− e = ex(1− e), then ex = exe. If e 6= 1 and 1− e 6= ex(1− e),
then e+ ex(1 − e) ∈ R is a zero-divisor, as

(1− e)
(

e + ex(1− e)
)

= 0 =
(

e+ ex(1− e)
)(

1− e− ex(1− e)
)

.

Since e + ex(1 − e) = e + ex(1 − e) + 0, by hypothesis, e2 =
(

e + ex(1 − e)
)2
, and then

ex(1 − e) = 0. That is, ex = exe. Likewise, xe = exe. Thus, ex = xe. This completes the
proof. ✷

We say that a ring R is a D-ring if every zero-divisor in R is nilpotent. For instance,
Zpk(p is prime, k ≥ 1). This concept coincides with that introduced by Abu-Khuzam and
Yaqub [1] for a commutative ring.

Theorem 3.3. Every D-very nil clean ring is a D-ring or the product of two very nil clean

rings.

Proof. Let R be a D-very nil clean ring. In view of Lemma 3.2, R is abelian.
Case I. R is indecomposable. Then every zero-divisor is nilpotent or invertible. The later

is imposable, and so R is a D-ring.
Case II. R is decomposable. Write R = A ⊕ B. Let a ∈ A. Then (a, 0) ∈ R is a zero-

divisor. By hypothesis, there exists a very idempotent (e, e′) ∈ R such that (a, 0)− (e, e′) ∈
N(R), and that (a, 0) − (f, f ′) ∈ N(R) with a very idempotent (f, f ′) ∈ R implies that
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(e, e′)2 = (f, f ′)2. Thus, a − e ∈ N(R). If there exists a very idempotent g ∈ A such that
a − g ∈ N(A). Then (a, 0) − (g, 0) ∈ N(R). This implies that (g, 0)2 = (e, e′)2, and so
g2 = e2. Therefore A is very nil clean. Similarly, B is very nil clean, as asserted. ✷

Example 3.4. Z3 is very nil clean, but Z3 ⊕ Z3 is not very nil clean.

Proof. Clearly, Z3 is very nil clean. One easily checks that (1, 2) ∈ Z3 ⊕ Z3 is not very nil
clean, and we are through. ✷

Lemma 3.5. Let R be a ring. Then every zero-divisor in R is a very idempotent if and

only if R is isomorphic to one of the following:

(1) a domain,

(2) Z3

⊕

Z3,

(3) Z3

⊕

B where B is a Boolean, or

(4) a Boolean ring.

Proof. Suppose that every zero-divisor in R is a very idempotent. By Lemma 3.2, R is
abelian.

Case I. R is indecomposable. Then Id(R) = {0, 1} and −Id(R) = {0,−1}. Thus, the
only zero-divisor is zero. Hence, R is a domain.

Case II. R is decomposable. Then we have S, T 6= 0 such that R = S⊕T . For any t ∈ T ,
(0, t) ∈ R is a zero-divisor. By hypothesis, (0, t) or −(0, t) is an idempotent; hence that t
or −t is an idempotent in T . Therefore every element in T is a very idempotent. In light of
Lemma 2.1, T is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Likewise, S is isomorphic to one of the preceding. Thus, R is isomorphic to one of the
following: R is isomorphic to one of the following:

(i) Z3

⊕

Z3,

(ii) a Boolean ring, or

(iii) Z3

⊕

B where B is a Boolean.

(iv) Z3

⊕

Z3

⊕

B where B is a Boolean.

But in Case (iv), (1, 2, 0) ∈ Z3

⊕

Z3

⊕

B is a zero-divisor, while it is not a very idempotent.
Therefore Case (iv) will not appear, as desired.

Conversely, if R is a domain, then every zero-divisor is zero. If R = Z3

⊕

Z3, then
NZ(R) = {(1, 1), (1, 2), (2, 1)}, Id(R) = {(0, 0), (0, 1), (1, 0), (1, 1)} and −Id(R) = {(0, 0),
(0, 2), (2, 0), (2, 2)}. Therefore R = NZ(R)

⋃

Id(R)
⋃

−Id(R). If R = Z3

⊕

B where B
is a Boolean, then Id(R) = {(0, b), (1, b) | b ∈ B} and −Id(R) = {(0, b), (2, b) | b ∈ B}.
Therefore R = Id(R)

⋃

−Id(R). If R is a Boolean ring, then every element in R is an
idempotent. In any case, every element in R is a very idempotent, and we are done. ✷

We come now to the main result of the section.

Theorem 3.6. Let R be a periodic ring. Then R is D-very nil clean if and only if
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(1) R is abelian;

(2) R/J(R) is isomorphic to one of the following:

(a) a field F ,

(b) Z3

⊕

Z3,

(c) Z3

⊕

B where B is Boolean, or

(d) a Boolean ring.

Proof. Suppose thatR isD-very nil clean. Then R is abelian. In view of [4, Theorem ], N(R)
is an ideal of R. As R is periodic, J(R) is nil; hence, J(R) = N(R). As every idempotent
lifts modulo N(R), we see that R/J(R) is abelian. Let a ∈ R/N(R) be a zero-divisor. If
a ∈ R is not a zero-divisor, then a ∈ U(R), and so a ∈ U

(

R/N(R)
)

, a contradiction. Thus,
a ∈ R is a zero-divisor. By hypothesis, a is the sum of a very idempotent and a nilpotent.
Hence, a is a very idempotent. That is, every zero-divisor in R/J(R) is a very idempotent.
In light of Lemma 3.5, R/J(R) is isomorphic to one of the following:

(i) a domain F ,

(ii) Z3

⊕

Z3,

(iii) Z3

⊕

B where B is Boolean, or

(iv) a Boolean ring.

If R = F is a domain, then for any a ∈ R, a = 0 or am = 1 for some m ∈ N. This shows
that R is a field, as required.

Conversely, assume that (1) and (2) hold. In view of [4, Theorem ], N(R) forms an
ideal of R. Let a ∈ R be a zero divisor. Then a ∈ R/J(R) is a zero-divisor; otherwise,
a ∈ R/J(R) is invertible, and so a ∈ R is invertible, a contradiction. According to Lemma
3.5, a is a very idempotent in R/J(R). As R is periodic, J(R) is nilpotent, and so every
idempotent modulo J(R). This implies that v := a − e ∈ N(R) for some very idempotent
e ∈ R. Let f ∈ R be a very idempotent such that w := a − f ∈ N(R). Then e2 − f2 =
(a− v)2 − (a−w)2 = −av− va+ v2+ aw+wa−w2 ∈ N(R). As e, f ∈ R are very clean, we
se that e2, f2 ∈ R are idempotents. It is easy to verify that (e2 − f2)

(

1 − (e2 − f2)2
)

= 0,
and so e2 = f2. Therefore we complete the proof. ✷

Let R be a ring, and let σ : R → R be an endomorphism. T (R, σ) = {

(

a b
a

)

| a, b ∈

R}. Here,
(

a b
a

)

+

(

a′ b′

a′

)

=

(

a+ a′ b+ b′

a+ a′

)

;
(

a b
a

)(

a′ b′

a′

)

=

(

aa′ ab′ + bσ(a′)
aa′

)

.

Corollary 3.7. Let R be a periodic ring, and let σ : R → R be an endomorphism. Then

T (R, σ) is D-very nil clean if and only if

(1) R is D-very nil clean;

(2) σ(e) = e for all idempotents e ∈ R.
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Proof. Obviously, T (R, σ) is periodic. Suppose that T (R, σ) is D-very nil clean. Then
T (R, σ) is abelian, by Theorem 3.6. Let e ∈ R be an idempotent, and let x ∈ R. Then

(

e
e

)(

0 1
0

)

=

(

0 1
0

)(

e
e

)

,

and so e = σ(e). Let a ∈ R be a zero divisor. Then

(

a
a

)

∈ T (R, σ) is a zero-divisor.

By hypothesis, there exists a very idempotent

(

e g
e

)

∈ T (R, σ) such that

(

a
a

)

−

(

e g
e

)

∈ N
(

T (R, σ)
)

.

It follows that we have a very idempotent e ∈ R such that a− e ∈ N(R). If a− f ∈ N(R)

with a very idempotent f ∈ R, then we have a very idempotent

(

f 0
f

)

∈ T (R, σ) such

that
(

a
a

)

−

(

f 0
f

)

∈ N
(

T (R, σ)
)

.

Thus, we get

(

e g
e

)2

=

(

f 0
f

)2

. It follows that e2 = f2, and therefore R is D-very

nil clean.
Conversely, assume that (1) and (2) hold. Then T (R, σ) is abelian, as in the preceding

discussion. By using Theorem 3.6, R/J(R) is isomorphic to one of the following:

(a) a field F ,

(b) Z3

⊕

Z3,

(c) Z3

⊕

B where B is Boolean, or

(d) a Boolean ring.

But T (R, σ)/J
(

T (R, σ)
)

∼= R/J(R), we see that T (R, σ)/J
(

T (R, σ)
)

is isomorphic to one
of the preceding. Consequently, T (R, σ) is D-very nil clean, in terms of Theorem 3.6. ✷

4. SPECIAL CASES

The purpose of this section is to explore the structure of rings in which every zero-divisor
is a very idempotent or a nilpotent element. These form a subset of all D-very nil clean
rings.

Lemma 4.1. Every ring in which every element is a very idempotent or a nilpotent element

is abelian.

Proof. Let e ∈ R be an idempotent, and let x ∈ R. Then 1 − ex(1 − e) ∈ U(R). If
(

1− ex(1− e)
)2

= 1− ex(1− e), then ex(1− e) = 0, and so ex = exe. If
(

1− ex(1− e)
)2

=

−
(

1 − ex(1 − e)
)

, then ex(1 − e) = 2. and so ex(1 − e) = 2e(1− e) = 0. Hence, ex = exe.
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If 1 − ex(1 − e) ∈ N(R), this will be a contradiction. Thus, ex = exe. Likewise, xe = exe.
Therefore ex = xe, hence the result. ✷

Lemma 4.2. Let R be a ring. Then R = N(R)
⋃

Id(R)
⋃

−Id(R) if and only if R is

isomorphic to one of the following:

(a) Z3, Z4,

(b) a Boolean ring, or

(c) Z3

⊕

B where B is a Boolean.

Proof. Suppose that R = N(R)
⋃

Id(R)
⋃

−Id(R). In view of Lemma 4.1, R is abelian.
Case I. R is indecomposable. Then R = N(R)

⋃

{0, 1,−1}. Let a ∈ N(R). Then
1 − a ∈ U(R). If (1 − a)2 = 1 − a, then a = 0. If (1 − a)2 = −(1 − a), then a = 2. If
1 − a ∈ N(R), then we get a contradiction. Therefore R = {0, 1,−1, 2, and so R ∼= Z2,Z3

or Z4.
Case II. R is decomposable. Write R = S⊕T . For any t ∈ T , (1, t) ∈ R is not nilpotent.

Then (1, t) ∈ R is a very idempotent. This implies that t ∈ T is a very idempotent. Hence,
every element in T is a very idempotent. Likewise, every element in S is a very idempotent.
In view of Lemma 2.1, S and T are isomorphic to one of the following:

(i) Z3,

(ii) a Boolean ring, or

(iii) Z3

⊕

B where B is a Boolean.

One easily checks that (1, 2) ∈ Z3 ⊕ Z3 and (1, 2, 0) ∈ Z3 ⊕ Z3 ⊕ B where B is Boolean are
neither a very idempotent nor a nilpotent. Therefore R is isomorphic to one of (a) − (c).
The converse is obvious. ✷

Theorem 4.3. Let R be a ring. Then R is an abelian ring in which every zero-divisor in

R is a very idempotent or a nilpotent element if and only if R is isomorphic to one of the

following:

(a) a D-ring,

(b) a Boolean ring,

(c) Z3 ⊕ Z3,

(d) Z3

⊕

B where B is a Boolean.

Proof. Suppose thatR is an abelian ring in which every zero-divisor in R is a very idempotent
or a nilpotent element.

Case I. R is indecomposable. Then every very idempotent is 0, 1 or −1. Hence, every
zero-divisor in R is nilpotent. Hence, R is a D-ring.

Case II. R is decomposable. Write R = S⊕T . For any t ∈ T , (0, t) is a very idempotent
or a nilpotent element. We infer that every element in T is a very idempotent or a nilpotent
element. Similarly, every element in S is a very idempotent or a nilpotent element. By
virtue of Lemma 4.2, S and T are both isomorphic to one of the following:

(a) Z3, Z4,

(b) a Boolean ring, or
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(c) Z3

⊕

B where B is a Boolean.

But one easily checks that Z(R) 6= Id(R)
⋃

−Id(R)
⋃

N(R) for any of those types

(1) Z3 ⊕ Z4,

(2) Z3 ⊕ Z3 ⊕B where B is a Boolean ring,

(3) Z4

⊕

Z4,

(4) Z4 ⊕B where B is a Boolean ring, and

(5) Z3

⊕

Z4 ⊕B where B is a Boolean ring.

Therefore R is isomorphic to one of (a)− (d).
Conversely, R is abelian, as every D-ring is connected. One easily checks that any of

these four types of rings satisfy the desired condition. ✷

Corollary 4.4. Let R be a ring. Then the following are equivalent:

(1) R is an abelian ring in which every zero-divisor in R is an idempotent or a nilpotent

element.

(2) R is a D-ring or a Boolean ring.

Proof. (1) ⇒ (2) In view of Theorem 4.3, R is isomorphic to one of the following:

(a) a D-ring,

(b) a Boolean ring,

(c) Z3 ⊕ Z3,

(d) Z3

⊕

B where B is a Boolean.

But in the case Z3⊕Z3, (0, 2) 6∈ Id(R)
⋃

N(R). In the case Z3

⊕

B, (2, 0) 6∈ Id(R)
⋃

N(R).
Therefore proving (2).

(2) ⇒ (1) This is obvious. ✷

The following example shows that the abelian condition in Corollary 4.4 is necessary.

Example 4.5. Every zero-divisor in T2

(

Z2

)

is an idempotent or a nilpotent element. But

T2

(

Z2

)

is neither a Boolean ring nor a D-ring. In this case, R is not abelian.

Proposition 4.6. Let R be a ring in which every element in R is a very idempotent or a

nilpotent element. Then every zero-divisor in R which is not 2 is a very idempotent.

Proof. Let 2 6= a ∈ R. Assume that a ∈ R is nilpotent. Then 1−a ∈ U(R). If (1−a)2 = 1−a,
then a = 0. If (1 − a)2 = −(1 − a), then a = 2, a contradiction. If 1 − a ∈ N(R), then
1− a = 0, an absurd. Therefore a ∈ R is a very idempotent, as asserted. ✷

5. UNIQUELY NIL CLEAN RINGS
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A ring R is said to be uniquely nil clean provided that for any a ∈ R there exists a
unique idempotent e ∈ R such that a − e ∈ R is nilpotent. Recently, this type of nil clean
rings was studied in [9]. We shall give the connection of uniquely nil clean rings and very nil
clean rings, and then obtain the conditions under which a group ring is uniquely nil clean.
We add several new characterizations of such rings.

Theorem 5.1. Let R be a ring. Then R is uniquely nil clean if and only if

(1) R is abelian.

(2) R/J(R) is Boolean and J(R) is nil.

Proof. Assume that R is uniquely nil clean. As in the proof of Theorem 2.2, R is abelian, and
so R is strongly nil clean. For any a ∈ R, it follows that a−a2 ∈ N(R). Write (a−a2)m = 0
for some m ∈ N. Then am = am+1b for a b ∈ R, and so R is strongly π-regular. If x ∈ J(R),
we have some n ∈ N such that xn = xn+1y for a y ∈ R; hence, xn(1 − xy) = 0. Clearly,
1− xy ∈ U(R), and so xn = 0. This implies that J(R) is nil. As R is abelian, it follows by
[4, Theorem ] that N(R) forms an ideal of R. Thus, N(R) ⊆ J(R), and therefore R/J(R)
is Boolean.

Assume that (1) and (2) hold. For any a ∈ R, a − a2 ∈ J(R), and so we have an
idempotent e ∈ R such that a − e ∈ J(R), as J(R) is nil. Write a = e + v. Then
v ∈ J(R) ⊆ N(R). If there exists an idempotent f ∈ R and a w ∈ N(R) such that a = f+w,
then e− f = (a− v)− (a−w) = w− v. Clearly, wv = (a− f)(a− e) = (a− e)(a− f) = vw,
and so e − f ∈ N(R). Since (e − f)3 = e − f , we see that e − f = 0, and then e = f .
Therefore R is uniquely nil clean. ✷

Corollary 5.2. Let R be a ring. Then R is uniquely nil clean if and only if R is uniquely

clean, and J(R) is nil.

Proof. This is obvious from Theorem 5.1. ✷

Corollary 5.3. A ring R is uniquely nil clean if and only if

(1) R is π-regular;

(2) Every idempotent in R is central;

(3) R/J(R) is Boolean.

Proof. Suppose that R is uniquely nil clean. Then R is strongly nil clean, and so R is
π-regular. Furthermore, proving (2) and (3) by Theorem 5.1.

Conversely, assume that (1), (2) and (3) hold. Clearly, R is an exchange ring, and so
every idempotent lifts modulo J(R). Let x ∈ J(R). Since R is π-regular, we have n ∈ N

and y ∈ R such that xn = xnyxn; hence, xn(1− yxn) = 0. This implies that xn = 0. That
is, J(R) is nil. Therefore we complete the proof, thanks to Theorem 5.1. ✷

We note that Z/4Z is uniquely nil clean and Z/6Z is not uniquely nil clean, though they
are both π-regular rings with all idempotents central.

Theorem 5.4. Let R be a ring. Then R is uniquely nil clean if and only if

(1) R is abelian.

(2) R is strongly nil clean.
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Proof. One direction is obvious by Theorem 5.1.
Conversely, assume that (1) and (2) hold. For any a ∈ R, there exists an idempotent

e ∈ R and a w ∈ N(R) such that a = e+w. Write a = f+v, f = f2 ∈ R, v ∈ N(R). In light
of Theorem 5.1, N(R) forms an ideal of R, and so e−f = (a−w)− (a−v) = v−w ∈ N(R).
As R is abelian, (e− f)3 = e− f ; hence, e = f , as desired. ✷

Corollary 5.5. Every homomorphic image of a uniquely nil clean ring is uniquely nil clean.

Proof. Let R be uniquely nil clean, and let I be an ideal of R. In light of Theorem 5.4, R is
abelian strongly nil clean. This shows that R/I is strongly nil clean. Clearly, R is strongly
clean. We infer that every idempotent lifts modulo I, and then R/I is abelian. By Theorem
5.2 again, R/I is uniquely nil clean, as required. ✷

Corollary 5.6. Let R be a ring. Then the following are equivalent:

(1) R is uniquely nil clean.

(2) T = {(aij) ∈ Tn(R) | a11 = · · · = ann} is uniquely nil clean.

(3) R[x]/(xn) is uniquely nil clean for all n ≥ 2.

Proof. This is obvious by Theorem 5.4. ✷

Theorem 5.7. Let R be a ring. Then R is uniquely nil clean if and only if

(1) 2 ∈ R is nilpotent;

(2) R is very nil clean.

Proof. Suppose that R is uniquely nil clean. In view of Theorem 5.1, 2
2
= 2 in R/J(R), and

so 2 ∈ J(R) is nilpotent. By Theorem 5.1 and Theorem 2.2, we observe that every uniquely
nil clean ring is very nil clean.

Conversely, assume that (1) and (2) hold. As 2 ∈ Z3 is not nilpotent. In view of Theorem
2.2, we see that R is abelian, J(R) is nil, and that R/J(R) is Boolean. The result follows
by Theorem 5.1. ✷

Corollary 5.8. Let R be a ring. Then R is uniquely nil clean if and only if

(1) R is abelian;

(2) R/P (R) is uniquely nil clean.

Proof. One direction is obvious, by Theorem 2.7 and Corollary 5.7.
Conversely, assume that (1) and (2) hold. By virtue of Theorem 5.7, 2 ∈ R/P (R)

is nilpotent. We infer that 2 ∈ R is nilpotent. Furthermore, R/P (R) is very nil clean.
According to Theorem 2.7, R is very nil clean. By using Theorem 5.7 again, R is uniquely
nil clean. ✷

Corollary 5.9. Let R be a ring, and G be a group. Then RG is uniquely nil clean if and

only if R is uniquely nil clean and I(R,G) is nil.

Proof. Suppose RG is uniquely nil clean. Then RG is very nil clean and 2 ∈ N(RG), by
Theorem 5.7. Hence, R is very nil clean and 2 ∈ N(R). By using Theorem 5.7 again, R
is uniquely nil clean. On the other hand, RG is uniquely clean, thanks to Corollary 5.2.
Hence, RG/J(RG) is Boolean. For any g ∈ G, we see that (1 − g) − (1 − g)2 ∈ J(RG);
hence, 1− g ∈ J(RG). This implies that ker(ω) ⊆ J(RG) is nil, as desired.
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Conversely, assume that R is uniquely nil clean and ker(ω) is nil. In light of Theorem
5.7 and Theorem 2.9, 2 ∈ N(R) and RG is very nil clean. By using Theorem 5.7 again, RG
is uniquely nil clean, as asserted. ✷

Example 5.10. Let G be a 3-group. Then Z3G is is not uniquely nil clean, while it is very
nil clean.

6. D-UNIQUELY NIL RINGS

A ring R is said to be D-uniquely nil clean provided that for any zero-divisor a ∈ R
there exists a unique idempotent e ∈ R such that a− e ∈ R is nilpotent. The aim of this is
to give the connection of D-uniquely nil clean rings and uniquely nil clean rings, and then
characterize the structure of D-uniquely nil clean periodic rings.

Lemma 6.1. Every D-uniquely nil clean ring is abelian.

Proof. This is similar to that in Lemma 3.2. ✷

Theorem 6.2. Let R be a ring. Then R is a D-uniquely nil clean ring if and only if R is

a D-ring or R is uniquely nil clean.

Proof. Suppose R is a D-uniquely nil clean ring. Then R is abelian by Lemma 6.1.
Case I. R is indecomposable. Let a ∈ R be a zero-divisor. Then a ∈ R is nilpotent or

a ∈ U(R). This shows that every zero-divisor is nilpotent, i.e., R is a D-ring.
Case II. R is decomposable. Write R = A ⊕ B. For any x ∈ A, (x, 0) ∈ R is a zero-

divisor. Hence, we can find a unique idempotent (e, f) ∈ R such that (x, 0)− (e, f) ∈ N(R).
Thus, x− e ∈ N(R) for an idempotent e ∈ R. If there exists an idempotent g ∈ R such that
x− g ∈ N(R). Then (x, 0)− (g, f) ∈ N(R). By the uniqueness, we get g = e, and therefore
A is uniquely nil clean. Similarly, B is uniquely nil clean, and then R is uniquely nil clean.

Conversely, if R is a D-ring, then R is a D-uniquely nil clean ring. So we assume that R
is uniquely nil clean, and therefore R is a D-uniquely nil clean ring. ✷

Corollary 6.3. Let R be D-uniquely nil clean. Then the ring T (R,R) = {

(

a b
a

)

| a, b ∈

R} is D-uniquely nil clean.

Proof. By virtue of Theorem 6.2, R is a D-ring or R is uniquely nil clean.

Case I. R is a D-ring. Let

(

a x
a

)

∈ Z
(

T (R,R)
)

. Then 0 6=

(

b y
b

)

,

(

c z
c

)

∈ T (R,R) such that

(

a x
a

)(

b y
b

)

=

(

c z
c

)(

a x
a

)

= 0.

If b, c 6= 0, it follows from ab = 0 = ca that a ∈ R is a zero-divisor. If b = c = 0, then
y, z 6= 0. It follows from ay = 0 = za that a ∈ R is a zero-divisor. If b = 0, c 6= 0 or
b 6= 0, c = 0, then ca = 0 = ay or ab = 0 = za. Then a ∈ R is a zero-divisor. Hence, a ∈ R

is nilpotent. Therefore we conclude that

(

a x
a

)

is nilpotent, and so T (R,R) is a D-ring.

Case II. R is uniquely nil clean. In light of Corollary 5.6, T (R,R) is uniquely nil clean.
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Therefore T (R,R) is D-uniquely nil clean, in terms of Theorem 6.2. ✷

Proposition 6.4. A ring R is D-uniquely nil clean if and only if for any zero-divisor a ∈ R
there exists a central idempotent e ∈ R such that a− e ∈ N(R).

Proof. One direction is obvious from Lemma 6.1. Conversely, letting e ∈ R be an idempotent,
we have a central idempotent f ∈ R such that w := e− f ∈ N(R). Thus, (e − f)3 = e− f ,
and so (e− f)

(

1− (e− f)2
)

= 0. This implies that e = f , and then R is abelian. Let a ∈ R
be a zero-divisor. Then there exists a central e ∈ R such that a− e ∈ N(R). If there exists
an idempotent f ∈ R such that a − f ∈ N(R), then e − f = (a − f) − (a − e) ∈ N(R). It
follows from (e− f)3 = e− f that e = f , which completes the proof. ✷

Theorem 6.5. Let R be a periodic ring. Then R is D-uniquely nil clean if and only if

(1) R is abelian;

(2) R is local or R/J(R) is Boolean.

Proof. Suppose that R is D-uniquely nil clean. Then R is abelian by Lemma 6.1.

In view of [4, Theorem ], N(R) forms an ideal of R. Hence, J(R) = N(R). Let a ∈
R/J(R) is a zero-divisor. Then a ∈ R is a divisor; otherwise, a ∈ U(R) as R is periodic, a
contradiction. Hence, a is the sum of an idempotent and a nilpotent element. This shows
that a is an idempotent. Therefore, every zero-divisor in R/J(R) is an idempotent.

Set S = R/J(R). Suppose that S has a nonzero zero-divisor. Then we have some
x, y ∈ R such that xy = 0, x, y 6= 0. Hence, (yx)2 = 0. If yx 6= 0, then yx ∈ R is a
zero-divisor. So yx ∈ R is an idempotent. Thus, yx = (yx)2 = 0. This implies that x ∈ R
is a zero-divisor, and so x = x2. It follows that 1 − x ∈ R is a zero-divisor; hence that
1− x = (1− x)2. Therefore x2 = x.

Let a ∈ R. Then
(

xa(1− x)
)2

= 0. Hence, xa(1− x) = 0; otherwise, xa(1− x) ∈ R is an
idempotent, and so xa(1 − x) = 0, a contradiction. Thus, xa(1 − x) = 0, hence, xa = xax.
Likewise, ax = xax. Thus, xa = ax. If xa = 0, then a ∈ R is a zero-divisor, and so it is an
idempotent. If xa 6= 0, it follows from xa(1 − x) = 0 that xa ∈ R is a zero-divisor, and so
xa = (xa)2. Hence, xa(1 − a) = 0. This implies that 1 − a ∈ R is a zero-divisor, and then
1 − a = (1 − a)2. Thus, a = a2. Therefore a ∈ R is an idempotent. Consequently, R/J(R)
is Boolean or R/J(R) is a domain. If R/J(R) is a domain, the periodic property implies
that R is a field. Thus, R is local or R/J(R) is Boolean.

Conversely, assume that (1) and (2) hold. Let a ∈ R be a zero-divisor. If R is local,
then a ∈ J(R). As R is local, we see that J(R) is nil; hence, a = 0 + a is the sum of
an idempotent and a nilpotent. If a = e + w with an idempotent e ∈ R and a nilpotent
w ∈ R, then e = a − w with aw = (e + w)w = w(e + w) = wa, as R is abelian. This
shows that e ∈ R is nilpotent. Hence, e = 0. Thus, there exists a unique idempotent e ∈ R
such that a− e ∈ N(R). If R/J(R) is Boolean, we can find an idempotent e ∈ R such that
a− e ∈ N(R), as J(R) is nil. Since R is abelian, we see that such idempotent e is unique.
Therefore R is D-uniquely nil clean. ✷

Corollary 6.6. Let R be a periodic ring, and let σ : R → R be an endomorphism. Then

T (R, σ) is D-uniquely nil clean if and only if

(1) R is D-uniquely nil clean;

(2) σ(e) = e for all idempotents e ∈ R.
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Proof. As R is a periodic ring, then so is T (R, σ). Suppose that T (R, σ) is D-uniquely nil
clean. Then T (R, σ) is abelian, by Lemma 6.1. Thus, e = σ(e) for any idempotent e ∈ R,

as in the proof of Corollary 3.7. Let a ∈ R be a zero divisor. Then

(

a
a

)

∈ T (R, σ) is

a zero-divisor. By hypothesis, there exists a unique idempotent

(

e f
e

)

∈ T (R, σ) such

that
(

a
a

)

−

(

e f
e

)

∈ N
(

T (R, σ)
)

.

It follows that we have a unique idempotent e ∈ R such that a− e ∈ N(R). Therefore, R is
D-uniquely nil clean.

Conversely, assume that (1) and (2) hold. Let

(

e f
e

)

∈ T (R, σ) be an idempotent.

Then e = e2 and ef + fσ(e) = f . As R is D-uniquely nil clean, we see that R is abelain.
Hence, (2e − 1)f = 0. It follows from (2e − 1)2 = 1 that f = 0. This implies that
T (R, σ) is abelian. In view of Theorem 6.5, R/J(R) is a division ring or a Boolean ring.
Since T (R, σ)/J

(

T (R, σ)
)

∼= R/J(R), we see that T (R, σ) is local, or T (R, σ)/J
(

T (R, σ)
)

is Boolean. Therefore T (R, σ) is D-uniquely nil clean, in terms of Theorem 6.5. ✷
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