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The stochastic root-finding problem is that of finding a zero of a vector-valued function known only through a stochastic
simulation. The simulation-optimization problem is that of locating a real-valued function’s minimum, again with only
a stochastic simulation that generates function estimates. Retrospective approximation (RA) is a sample-path technique
for solving such problems, where the solution to the underlying problem is approached via solutions to a sequence of
approximate deterministic problems, each of which is generated using a specified sample size, and solved to a specified
error tolerance. Our primary focus, in this paper, is providing guidance on choosing the sequence of sample sizes and
error tolerances in RA algorithms. We first present an overview of the conditions that guarantee the correct convergence
of RA’s iterates. Then we characterize a class of error-tolerance and sample-size sequences that are superior to others in a
certain precisely defined sense. We also identify and recommend members of this class and provide a numerical example
illustrating the key results.

Subject classifications : simulation: efficiency, design of experiments; programming: stochastic.
Area of review : Simulation.
History : Received March 2007; revisions received November 2007, August 2008, September 2008, October 2008;

accepted November 2008. Published online in Articles in Advance March 24, 2010.

1. Introduction and Motivation
The stochastic root-finding problem (SRFP) and the sim-
ulation optimization problem (SOP) are simulation-based
stochastic analogues of the well-researched root-finding
and optimization problems, respectively. These problems
have recently generated a tremendous amount of attention
amongst researchers and practitioners, primarily owing to
their generality. Because the functions involved in these
formulations are specified implicitly through a stochastic
simulation, virtually any level of complexity is afforded.
Various flavors of SRFP and SOP have thus found appli-
cation in an enormous range of large-scale, real-world
contexts such as vehicular transportation networks, qual-
ity control, telecommunication systems, and health care.
See Andradóttir (2006), Spall (2003), Fu (2002), Barton
and Meckesheimer (2006), Chen and Schmeiser (2001),
and Ólafsson (2006) for entry points into this literature and
overviews on the subject.
For solving SOPs and SRFPs, sample-average approxi-

mation (SAA), amongst a few other popular classes of algo-
rithms (see §3), has found particular expediency amongst
researchers and practitioners. In its most basic form, SAA
involves generating a sample-path problem using an appro-
priately chosen sample size, and then solving it to desired
precision using a chosen numerical procedure. This step is
usually followed by an analysis of the solution estimator,
using the now well-established large-sample (Robinson

1996, Shapiro 2004, Atlason et al. 2004) and small-sample
properties (Mak et al. 1999), and theories on assessing
solution quality (Bayraksan and Morton 2007). Due to
its simplicity, and the ability to incorporate powerful and
mature tools from the deterministic context, SAA has
been widely applied. Some examples of SAA applica-
tion by experts include optimal release times in produc-
tion flow lines (Homem-de-Mello et al. 1999), call-center
staffing (Atlason et al. 2004, 2008), tandem production
lines and stochastic PERT (Plambeck et al. 1996), trans-
shipment problems (Herer et al. 2006), design for health
care (Prakash et al. 2008), and vehicle-routing problems
(Verweij et al. 2003).
Our specific focus in this paper is a recent refinement of

the SAA class of methods called, variously, retrospective
approximation (RA) (Chen and Schmeiser 2001, Pasupathy
and Schmeiser 2009) and variable sample size (Homem-
de-Mello 2003) methods. Whereas a generic SAA method
generates a single sample-path problem with a large enough
sample size, and then solves it to a prescribed error tol-
erance, the said SAA refinements generate a sequence of
sample-path problems with progressively increasing sam-
ple sizes, and then solve these to progressively decreasing
error tolerances. This elaborate structure in the SAA refine-
ments is explicitly constructed to gain overall efficiency.
The early iterations are efficient, in principle, because the
small sample sizes ensure that not much computing effort
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is expended in generating sample-path problems. The later
iterations are efficient, again in principle, because the start-
ing solution for the sample-path problem is probably close
to the true solution, and not much effort is expended in
solving sample-path problems. The solving of the individ-
ual sample-path problems, as in generic SAA, is accom-
plished by choosing any numerical procedure from amongst
the powerful host of deterministic root-finding/optimization
techniques that are currently available.
The general RA structure is indeed attractive from both

the efficiency and the implementability perspectives, and
the resulting RA estimators inherit much of the well-
studied large-sample properties of generic SAA estima-
tors. Little is currently known, however, about how exactly
to trade off parameters, i.e., sample sizes and error tol-
erances, within such frameworks. Although these frame-
works seem to serve as viable implementation refinements
to SAA, the stipulations dictated by convergence allow an
enormous number of possible choices for sample-size and
error-tolerance sequences, some of which are conceivably
much inferior to others from an algorithm efficiency stand-
point. It seems intuitively clear that the sample-size and
error-tolerance sequences should be chosen in balance—
increasing sample sizes too fast compared to the decrease
rate of error tolerances will lead to residual bias from the
undersolving of sample-path problems; increasing sample
sizes too slowly compared to the decreasing rate of error
tolerances will lead to wasted computational effort result-
ing from the oversolving of the sample-path problems. This
trade-off resulting from the choice of sample sizes and error
tolerances motivates our central questions:
—Does there exist a balanced choice of sample sizes and

error tolerances in SAA refinements such as RA, where the
terms “sample size” and “error tolerance” refer to some
generic measures of problem-generation effort and solu-
tion quality, respectively? Furthermore, can this balance be
characterized rigorously?
—Can the characterization of a balanced choice be used

to provide guidance in choosing particular sample-size and
error-tolerance sequences automatically across iterations
within SAA refinements such as RA?
As we shall see, the answer to both of the above ques-

tions is in the affirmative. Why is parameter choice such
an important question? In broad terms, parameter choice is
intimately linked to algorithm efficiency. Frequently, SOPs
and SRFPs arise in contexts where simulations are time
consuming, taking anywhere from a few seconds to a few
hours for each run. In such situations, algorithm parame-
ter choices can have a dramatic effect on solution quality
as a function of time or computing effort. Moreover, the
researcher/practitioner often does not have the flexibility to
tweak algorithm parameters so as to identify good parame-
ters. This may be because of the lack of expertise, or sim-
ply because solutions need to be obtained in a rapid and
automatic fashion. Proper guidance on the choice of param-
eters is thus imperative to ensure that resources are utilized

in an efficient fashion within RA-type algorithms. Consid-
ering applicability to a wide audience, such guidance is
especially useful if identified within a generic framework
such as we consider in this paper. Optimal parameter choice
is not an RA-specific issue. It has been recognized as an
important question in other algorithm classes as well, e.g.,
stochastic approximation algorithms (Spall 2003, 2006).

1.1. Contributions

That SAA is currently amongst the attractive methods of
solving SRFPs and SOPs is undeniable. The enormous
amount of recent theoretical development (Bayraksan and
Morton 2007, 2010; Chen and Schmeiser 2001; Higle and
Sen 1991; Homem-de-Mello 2003; Kleywegt et al. 2001;
Mak et al. 1999; Plambeck et al. 1996; Polak and Royset
2008; Shapiro 2000, 1991, 2004), and its expediency in a
wide range of actual applications (Homem-de-Mello et al.
1999; Atlason et al. 2004, 2008; Plambeck et al. 1996;
Herer et al. 2006; Prakash et al. 2008; Verweij et al.
2003), stand in evidence. Considering this broad appeal of
SAA, we address key questions relating to how parameters,
specifically sample sizes and error tolerances, should be
chosen within implementable refinements of SAA. Param-
eter choice is crucial in that it plays an important role in
deciding the efficiency of the solutions resulting from SAA
algorithm execution.
The following are specific contributions of this paper.
1. We rigorously characterize an optimal class of sam-

ple sizes and error tolerances for use within sample-path
methods. The characterization of this optimal class is in
the form of three limiting conditions involving the param-
eter sequences, and the convergence rate of the numerical
procedure used to solve the sample-path problem. We show
that the characterization is tight in the sense that optimality,
as defined, is achieved if and only if the chosen parameters
fall within the characterized class.
2. With a view toward actual implementation, we iden-

tify commonly considered classes of sample-size and
error-tolerance sequences that lie inside and outside the
characterized optimal class. For sublinear, linear, and poly-
nomially converging numerical procedures used within
sample-path problems, we provide guidance on the rate at
which sample sizes should be increasing if one is looking
to choose parameters that belong to the optimal class.
3. For completeness and ease of exposition, we clarify

the conditions under which RA algorithms converge to the
correct solution with probability one (wp1). In addition, we
prove a certain central limit theorem for RA estimators on
SRFPs. Similar results already exist for SOPs.

1.2. Organization

The remainder of the paper is organized as follows. In §2
we provide the problem statements for SRFPs and SOPs,
followed by some notation and terminology used in this
paper. In §3 we present a brief literature review on the
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existing methods to solve SRFPs and SOPs. Convergence
results on RA algorithms appear in §4, followed by the
main results in §5. Some of these results, especially those
appearing in §4, have been stated in abbreviated form or
without proofs in Pasupathy (2006). In §6, we discuss
our choice of efficiency measure and termination criteria.
Section 7 includes an illustration of the results obtained in
the paper through a numerical example. We provide con-
cluding remarks in §8.

2. Problem Statements and Notation
The following is a list of key notation and definitions
adopted in the paper: (i) x∗ denotes a true solution to
the SRFP or SOP; (ii) X∗

k denotes a true solution to the
kth sample-path problem; (iii) Xk denotes the kth retro-
spective solution, i.e., the estimated solution to the kth
sample-path problem; (iv) Xn

p→ X means that the sequence
of random variables �Xn� converges to the random vari-
able X in probability; (v) Xn → X wp1 means that the
sequence of random variables �Xn� converges to the ran-

dom variable X with probability one; (vi) Xn

d→ X means
that the sequence of random variables �Xn� converges to the
random variable X in distribution; (vii) �mk� ↑ � means
that the sequence �mk� is an increasing sequence going
to infinity; (viii) the sequence �mk� → � exhibits sublin-
ear growth if lim supk→� mk/mk−1 � 1, linear growth if
1 < lim supk→� mk/mk−1 < �, polynomial growth if 0 <
lim supk→� mk/�mk−1�

p < � for some p > 1, and exponen-
tial growth if lim supk→� mk/�mk−1�

p = � for all p > 1;
(ix) �x� denotes the smallest integer greater than or equal
to x ∈ �; (x) dist�x��� = inf�
x − y
� y ∈ �� denotes
distance between a point x ∈ � and a set �; (xi) B�x� r�
denotes a ball of radius r centered on x.
Formally, the SRFP is stated as follows.
Given: A simulation capable of generating, for any x ∈

� ⊂ �q , an estimator �Ym�x� of the function g� � → �q

such that �Ym�x�
d→ g�x� as m → �, for all x ∈�.

Find: A zero x∗ ∈ � of g, i.e., find x∗ such that
g�x∗� = 0, assuming that one such exists.
Similarly, the version of SOP we will use in this paper

is as follows.
Given: A simulation capable of generating, for any x ∈

�⊂�q , an estimator �Ym�x� of the function g� �→� such

that �Ym�x�
d→ g�x� as m → �, for all x ∈�.

Find: A local minimizer x∗ ∈� of g, i.e., find x∗ having
a neighborhood V �x∗� such that every x ∈ V �x∗� satisfies
g�x�� g�x∗�, assuming that one such x∗ exists.

As stated, the SRFP and SOP make no assumptions

about the nature of �Ym�x� except that �Ym�x�
d→ g�x� as

m → �. Also, the feasible set � is assumed to be known
in the sense that the functions involved in the specification
of � are observed without error. Various slightly differing
flavors of the SOP have appeared in the literature. See, for
example, Nemirovski and Shapiro (2004).

3. Abbreviated Literature Review
In this section, we present a brief overview of the impor-
tant works related to solving SRFPs and SOPs. We limit
ourselves to a broad categorization, providing references
only to summary articles. Sample-average approximation,
being the topic of this paper, is discussed in greater
detail.
Current methods to solve SOPs fall into six broad cat-

egories: (i) metamodels, (ii) metaheuristics, (iii) compar-
ison methods, (iv) random-search methods, (v) stochastic
approximation (SA), and (vi) sample-average approxima-
tion (SAA). This categorization is not mutually exclusive,
but methods in each category share some set of distin-
guishing features. For instance, metamodels (category (i))
estimate a functional relationship between the objective
function and the variables in the search space, and then
employ deterministic optimization techniques on the esti-
mated objective function. See Barton and Meckesheimer
(2006) for detailed ideas. The methods in category (ii) are
based on metaheuristics such as tabu search, evolution-
ary algorithms, simulated annealing, and nested parti-
tions (Ólafsson 2006). Comparison methods (category (iii)),
a mature class of methods predominantly based on statis-
tical procedures, have been specially developed to solve
SOPs where the set of feasible solutions is discrete and
small. See Kim and Nelson (2006) for a broad overview.
Random-search methods (category (iv)) include algorithms
that use some intelligent sampling procedure to traverse
the search space, followed by an update mechanism to
report the current best solution. See Andradóttir (2006)
for an overview. SA methods (category (v)) are based
on a recursion introduced in Robbins and Monro (1951),
and have seen enormous development. Several books
(Kushner and Clark 1978, Kushner and Yin 2003, Spall
2003) are available on the subject. Multiscale SA (Bhat-
nagar and Borkar 1998, Bhatnagar et al. 2001, Tadic and
Meyn 2003), an interesting subclass of SA, improves on
generic SA using paired recursions for parameter updating
and system evolution.
SAA (category (vi)) is the category of most interest in

this paper. SAA techniques seem to have first appeared
in Shapiro (1991) and Healy and Schruben (1991) and were
later used by several other authors (Rubinstein and Shapiro
1993, Plambeck et al. 1996, Atlason et al. 2004) in vari-
ous contexts. The idea of SAA is easily stated. Obtain an
estimator for the true solution x∗ of the SOP (or SRFP)
by solving an approximate problem S. The approximate
problem S substitutes the unknown function g in the orig-
inal problem by its sample-path approximation ȳm�x	 
�
generated with sample size m, and the vector of random
numbers 
. SAA has a well-developed small-sample (Mak
et al. 1999) and large-sample (Robinson 1996, Shapiro
2004, Kleywegt et al. 2001, Atlason et al. 2004) theory.
Recent work includes methods to assess solution quality
(Bayraksan and Morton 2007).
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Retrospective approximation (RA) (Chen and Schmeiser
2001, Pasupathy and Schmeiser 2009) is a variant of SAA
where instead of generating and solving a single sample-
path problem S, a sequence of sample-path problems �Sk�

are generated with sample sizes �mk� → �, and solved to
error tolerances ��k� → 0. The estimated solution Xk−1 of
the sample-path problem Sk−1, also called the �k−1�th ret-
rospective solution, is used as the initial solution to the sub-
sequent sample-path problem Sk. The philosophy behind
the RA structure is as follows: During the early iterations,
use “small” sample-sizes mk and “large” error-tolerances �k

in solving the sample-path problem Sk; in later iterations, as
the retrospective solution Xk tends closer to the true solu-
tion x∗, use “larger” sample sizes and “smaller” error tol-
erances. In implementing RA algorithms, three parameters
need to be chosen: (i) a numerical procedure for solving
the sample-path problem Sk; (ii) a sequence of sample sizes
�mk� to be used for generating the sample-path functions
�ȳmk

�x	 
k��; and (iii) a sequence of error tolerances ��k�

to guide termination of iterations. The subject of this paper
is the rigorous choice of parameters (i), (ii), and (iii), with
an emphasis on (ii) and (iii).
Three recent papers are directly relevant to what we dis-

cuss in this paper. In Homem-de-Mello (2003), through a
setup that is very similar to that considered in this paper,
stipulations on sample-size growth rates are identified so
as to ensure the consistency of the objective function esti-
mator. The results derived in this paper thus complement
those in Homem-de-Mello (2003). In Polak and Royset
(2008), through a framework that is slightly less generic
than that considered in this paper, an efficient schedule
of sample sizes and stages is identified through the solu-
tion of an auxiliary optimization problem, and under the
assumption that the procedure used to solve the sample-
path problems is linearly convergent. Most recently, in
Bayraksan and Morton (2010), a sequential sampling pro-
cedure is suggested for use within SAA-type algorithms.
The primary contribution of Bayraksan and Morton (2010)
is the identifying of a schedule of sample sizes, along
with the set of conditions, sufficient to provide probabilis-
tic guarantees on the optimality gap of a candidate solution
obtained through SAA. Differences between the current
work and Bayraksan and Morton (2010) are worth noting—
whereas the broad objective in Bayraksan and Morton
(2010) is obtaining an SAA solution that is of a guaranteed
prespecified quality (in a probabilistic sense), ours is ensur-
ing that the sequence of obtained SAA solutions converges
optimally. For the same reason, our results are intimately
linked to the convergence rate of the numerical procedure
used to solve the sample-path problems within SAA, unlike
in Bayraksan and Morton (2010), where the optimality gap
is estimated. The “controllables” in both the current paper
and Bayraksan and Morton (2010) are the sample sizes
used in generating the sample-path problems.

4. Conditions for Guaranteed
Convergence

In this section, we state sufficient conditions to ensure that
the sequence �Xk� of retrospective solutions in RA algo-
rithms converges to the true solution x∗ wp1. Separate treat-
ments are provided for the SRFP and the SOP contexts. The
results presented in this section are a simple consequence
of some well-known results in the literature.
We start with Theorem 1, which appears as Theorem 5.1

in Shapiro (2000). Theorem 1 asserts that under mild condi-
tions, a sequence �X∗

k � of global minimizers of the sample-
path functions �ȳmk

�x	 
k�� converges in distance to the set
�∗ of global minimizers of the limiting function g wp1.

Theorem 1. Assume that (i) the set � ⊂ �q is compact;
(ii) the function g� �q → � is continuous; and (iii) the
functional sequence �ȳmk

�x	 
k�� converges to g uniformly
wp1. Then, if X∗

k is a global minimizer of ȳmk
�x	 
k�, and

�∗ is the nonempty set of global minimizers of g, the dis-
tance dist�X∗

k ��∗� → 0 wp1.

Theorem 1 is more useful in proving convergence of RA
iterates for the SRFP context than for the SOP context.
This is because although we seek a local minimizer of the
limit function g in SOPs, Theorem 1 is global in nature.
In other words, Theorem 1 talks about the convergence of
global minimizers of the sample-path functions to the set
of global minimizers of the limit function g.

4.1. SRFP Context

To establish convergence of the retrospective solutions �Xk�
to the true solution x∗ in the SRFP context, we first con-
vert the original SRFP into an equivalent SOP where every
local minimizer is also a global minimizer, and then apply
Theorem 1. This is demonstrated in Theorem 2, the main
convergence result for RA iterates in the context of SRFPs.

Theorem 2 (SRFP). Assume that (i) the set � ⊂ �q is
compact; (ii) the function g� �q → �q is continuous; and
(iii) the functional sequence �ȳmk

�x	 
k�� converges to g
uniformly wp1. Let the positive-valued sequence ��k� →
0, and Xk satisfy 
Xk − X∗

k
 � �k, where X∗
k is a zero of

ȳmk
�x	 
k�. Then, dist�Xk��∗� → 0 wp1, where �∗ is the

set of zeros of the function g.

Proof. See appendix. �

4.2. SOP Context

Theorem 1 is a statement about the behavior of a sequence
of global minimizers of sample-path functions. In study-
ing SOPs, Theorem 1 is thus useful only if the numerical
procedure used to solve the sample-path problems returns
a global minimizer. Our interest, however, is in analyzing
RA algorithms where sample-path problems are solved for
a local minimizer, and that too with finite stopping. For
such situations, Theorem 1 is not as useful because it says
nothing about the behavior of any particular sequence of
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local minimizers. For instance, consider g�x� = �x�, and
ȳmk

�x	 
k� = g�x� + fk�x�I1−1/k�1+1/k�, where fk is any
continuous function with a unique minimum at x = 1,
fk�x�� 0 for all x ∈ 1 − 1/k�1 + 1/k�, fk�1 − 1/k� =
fk�1 + 1/k� = 0, and limk→� fk�1� = 0 (e.g., fk�x� =
�1−x�2−�1/k�2). Then, ȳmk

�x	 
k� has the same two local
minima for each k and differs from g�x� only in the inter-
val �1 − 1/k�1 + 1/k�. Also, the sequence �ȳmk

�x	 
k��
converges to g�x� uniformly, and the set of global mini-
mizers of the function ȳmk

�x	 
k� converges to the global
minimizer of g�x� as k → �. Notice, however, that the
sequence �xk = 1� of local minimizers of �ȳmk

�x	 
k�� does
not converge to a local minimizer of the limit function g.
This example implies, as Homem-de-Mello (2003) notes,
that using locally convergent algorithms to solve sample-
path problems may “trap” SAA solutions at a local min-
imizer. In other words, even in the hypothetical scenario
where a local minimizer is solved to infinite precision dur-
ing each iteration, there is no guarantee that the obtained
sequence of local minimizers will converge to a true solu-
tion x∗.
The following is a technical assumption devised by

Bastin et al. (2006) to exclude possibilities of the type
illustrated in the previous example. We call it the rigidity
assumption to reflect the fact that it excludes such exam-
ples by stipulating that local minimizers of sample-path
functions that persist across iterations, do so over some
arbitrarily small ball whose size remains rigid, i.e., whose
radius remains larger than some threshold.

Assumption 1. Let �k�
k� be the set of local minimizers
of ȳmk

�x	 
k�, and let �∗ be the set of cluster points of all
sequences �X∗

k ��X∗
k ∈�k�
k�� If l∗ ∈�∗, then there exists a

subsequence �X∗
kj

� ⊆ �X∗
k � converging to l∗, and constants

� > 0, t > 0� such that X∗
kj
is a minimizer of ȳmk

�x	 
k� in
B�X∗

kj
� �� for all j > t.

This assumption has the same implications as in Bastin
et al. (2006)—it prevents the occurrence of kinks in the
sample-path functions that vanish with increasing sample
size. This is a reasonable stipulation because such examples
where local minima appear artificially in the sample-path
problems and then disappear as the sample size is increased
seem infrequent in practice. Theorem 4.1 in Bastin et al.
(2006) then directly applies to any sequence of local min-
imizers �X∗

k � of the sample-path functions �ȳmk
�x	 
k��.

Specifically, it guarantees that when Assumption 1 holds,
�X∗

k � converges to some local minimizer x∗ of the limit
function g wp1. Now recall that the retrospective solution
Xk identified during the kth iteration in RA is at most �k

away from X∗
k . Because ��k� → 0, the convergence of �Xk�

to some local minimizer x∗ of g becomes a trivial exten-
sion of Theorem 4.1 in Bastin et al. (2006). We formally
state this next without a proof.

Theorem 3 (SOP). Let the conditions in Theorem 1 and
Assumption 1 hold. Let the positive-valued sequence

��k� → 0, and Xk satisfy 
Xk − X∗
k
 � �k, where X∗

k is a
local minimizer of ȳmk

�x	 
k�. Then, dist�Xk��∗� → 0 wp1,
where �∗ is the set of local minimizers of the function g.

5. Choosing Sample-Size and
Error-Tolerance Sequences

Having discussed convergence of RA iterates in the
previous section, our objective in this section is more
interesting—provide rigorous guidance in choosing RA
algorithm parameters, specifically the error-tolerance
sequence ��k� and the sample-size sequence �mk�. We wish
to automatically choose the sequences ��k� and �mk� in a
fashion that ensures that the retrospective solutions �Xk�
converge to the true solution x∗ in some reasonably and
precisely defined optimal sense.
Before we present the main ideas on choosing parameter

sequences, we present a type of central limit theorem (CLT)
on the sample-path solution X∗

k in the context of SRFPs,
essential for later exposition. A corresponding result for the
context of SOPs appears in Shapiro (2000, Theorems 5.2,
5.3, 5.4). We follow the notation established in the previous
section—ȳmk

�x	 
k� is the kth sample-path function gen-
erated with sample size mk, the sample-path solution X∗

k

is a zero of ȳmk
�x	 
k� in the context of SRFPs and some

local minimizer of ȳmk
�x	 
k� in the context of SOPs, and

the retrospective solution Xk is obtained by solving the kth
sample-path problem to within the chosen tolerance �k. A
proof is provided in the appendix.

Theorem 4 (SRFP). Let the conditions of Theorem 2 hold.
Furthermore, assume (i) X∗

k and x∗ are the unique zeros
of the functions ȳmk

�x	 
k� and g�x�, respectively; (ii) the
functions ȳmk

�x	 
k� and g�x� have nonsingular deriva-
tives �ȳmk

�x	 
k���g�x� in some neighborhood around x∗;
(iii) the sequence ��ȳmk

�x	 
k�� converges uniformly (ele-
mentwise) to �g�x� in some neighborhood around x∗ wp1;
and (iv) a central limit theorem holds for ȳmk

�x	 
k�, i.e.,√
mk�ȳmk

�x	 
k�− g�x��
d→ N�0���, where N�0��� is the

Gaussian random variable with mean zero and covari-
ance �. Then,

√
mk�X

∗
k − x∗�

d→ N�0��g�x∗�−1���g�x∗�−1�T ��

The assumption (iii) on the sequence of derivatives
��ȳmk

�x	 
k�� is important and ensures that the sample-
path functions smoothly approximate the true function.
Under what conditions can this assumption be expected
to hold? The most general answer to this question is
provided by standard results in most real-analysis text-
books. For example, Theorem 7.17 in Rudin (1976, p. 152)
guarantees that the uniform convergence of ��ȳmk

�x	 
k��
is sufficient to ensure that ��ȳmk

�x	 
k�� converges to
�g�x�. Similarly, when g�x� is an expectation, the uni-
form integrability of the finite differences formed from
�ȳmk

�x	 
k��, along with the finiteness of g�x�, provide
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necessary and sufficient conditions for ��ȳmk
�x	 
k�� →

�g�x� to hold (Glasserman 1991, p. 14). The most pop-
ular method to guarantee ��ȳmk

�x	 
k�� → �g�x� when
g�x� is an expectation is through Lebesgue’s dominated
convergence theorem (Rudin 1976, p. 321) in combina-
tion with the generalized mean value theorem (Glasserman
1991, p. 15).
These results, although providing conditions in all gen-

erality, still do not leave us with complete intuition on
whether ��ȳmk

�x	 
k�� → �g�x� will be satisfied for a
given system. This question of when ��ȳmk

�x	 
k�� →
�g�x� is addressed in great detail in Glasserman (1991).
The key factor turns out to be the continuity of the per-
formance measure ȳmk

�x	 
k�. Although neither necessary
nor sufficient to ensure ��ȳmk

�x	 
k�� → �g�x�, the con-
tinuity of ȳmk

�x	 
k� ensures that only a few other mild
assumptions are needed to deem the assumption valid.
For example, let g�x� = Eȳmk

�x	 
k��. Then, if ȳmk
�x	 
k�

is continuously differentiable on a compact set C and
Esupx∈C �ȳmk

�x	 
k�� < �, the interchange holds, i.e.,
E� ȳmk

�x	 
k�� = �g�x� on C. Furthermore, in general-
ized semi-Markov processes (GSMP)—a general model for
discrete-event systems seen in practice—the stipulation of
continuity in ȳmk

�x	 
k� can be checked through a commut-
ing condition on the GSMP representation of the system in
consideration (Glasserman 1991, Chapter 3).
Various other specific contexts have routinely used

��ȳmk
�x	 
k�� → �g�x�, particularly when g�x� is an

expectation. For example, the said exchange has been val-
idated in great detail in fluid-flow models (Wardi et al.
2002). In stochastic linear programs (Higle and Sen 1991),
the structure of the problem automatically produces con-
tinuous sample paths, thereby naturally allowing exchanges
of this type.
The other important assumption (i) in Theorem 4—

the functions ȳmk
�x	 
k� and g�x� have unique zeros—is

admittedly stringent. Two remarks are relevant regarding
this assumption. First, it has been our experience that in
SOP and SRFP contexts, sample paths almost invariably
mimic the structural properties of the limiting function.
(A notable exception is an empirical cumulative distribu-
tion function.) This is indeed interesting and lends some
credibility to assuming similar properties on ȳmk

�x	 
k� and
g�x�. Second, virtually all Newton-based iterations to find
zeros of a function seem to need an assumption on the
nearness of the starting point (to a zero) in order to prove
convergence. Our assumption of a unique zero is compara-
ble, and can be relaxed through similar assumptions on the
closeness of the starting solution when solving a sample-
path problem.

5.1. Relation Between Sample-Size and
Error-Tolerance Sequences

Our message is that for optimal convergence, choose ��k�
and �mk� in balance so that they converge to their respec-
tive limits, zero and infinity, at similar rates. We make this

claim precise through Theorem 5, where we prove that
those sample-size and error-tolerance sequences that satisfy
conditions C.1, C.2, and C.3, to be stated, are superior to
others in a certain precise sense.
Before we state conditions C.1, C.2, and C.3, we

remind the reader of the notions of sublinear, linear, and
superlinear convergence. Let the deterministic sequence
�zk� → z∗ with zk �= z∗ for all k. Then the quotient
convergence factors, or Q-factors, of the sequence �zk�
are Qp = lim supk→� 
zk+1 − z∗
/
zk − z∗
p defined for
p ∈ 1��� (Ortega and Rheinboldt 1970). The sequence
�zk� exhibits linear convergence if 0 < Q1 < 1, sublin-
ear convergence if Q1 � 1, and superlinear convergence if
Q1 = 0. In this paper, for a more specific characterization
of superlinear convergence, we say that the sequence �zk�
exhibits polynomial convergence if Q1 = 0 and Qp > 0 for
some p > 1.
We now state the conditions C.1, C.2, and C.3, to be

satisfied by the sequences ��k� and �mk�.
C.1. When the numerical procedure used to solve

sample-path problems exhibits
(a) linear convergence: lim infk→� �k

√
mk−1 > 0	

(b) polynomial convergence: lim infk→��log�1/√
mk−1�/ log��k�� > 0.
C.2. lim supk→��

∑k
j=1 mj��

2
k < ��

C.3. lim supk→��
∑k

j=1 mj�m
−1
k < ��

The conditions C.1, C.2, and C.3 have a clear phys-
ical interpretation. The condition C.1 says, for instance,
that the sequence ��k� of error tolerances should not be
reduced to zero “too fast” compared to the sequence of
sample sizes �mk�. Understandably, the notion of “too fast”
depends on the convergence rate of the numerical procedure
in use, thus warranting the expression of condition C.1 in
two parts. The condition C.1(a) is a more stringent special
case of C.1(b), i.e., sequences ��k�, �mk� that satisfy con-
dition C.1(a) automatically satisfy C.1(b). This is expected
because procedures that exhibit polynomial convergence, as
defined, take a smaller far number of “asymptotic” steps
to solve to a specific error tolerance than do procedures
that exhibit linear convergence. The intuitive sense behind
condition C.1 is solving the sample-path problems for only
as long as we do not “chase randomness,” i.e., only to the
extent that it is beneficial from the standpoint of getting
closer to the true solution x∗. In order to understand con-
ditions C.2 and C.3, we notice that the number of points
visited Nk � 1 for all k. Therefore, during the kth iteration,
at least mk amount of work is done. This work would be
wasted if there is no movement in going from the �k−1�th
retrospective solution Xk−1 to the kth retrospective solution
Xk. This can happen either because �k is chosen so large
that the stipulated tolerance is too easily satisfied, or if the
difference between mk−1 and mk is so small that there is lit-
tle change between the �k−1�th sample-path solution X∗

k−1

and the kth sample-path solution X∗
k . To avoid these sce-

narios, the conditions C.2 and C.3 impose a lower bound
on the rate at which the error-tolerance sequence ��k� and
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the sample-size sequence �mk� go to their respective lim-
its. We discuss specific examples of sequences that satisfy
conditions C.1, C.2, and C.3 in §5.3.
As a measure of effectiveness, we use the product of

work and squared error. Therefore, at the end of the kth iter-
ation, if the retrospective solution is Xk and the total num-
ber of simulation calls expended from iterations 1 through k
is Wk, then the random variable of interest is Wk
Xk −x∗
2�
with smaller values of the random variable being better.
See §6 for more on this measure.
We also remind the reader of the stochastic version Op�·�

of the O�·� relation, useful in discussing stochastic conver-
gence. By Xn = Op�1� we mean that the sequence of ran-
dom variables �Xn� is such that for every � > 0 there exist
M�, N� such that Fn�M��−Fn�−M�� > 1−� for all n > N��
where Fn is the distribution function of Xn. Furthermore,
we say Xn is Op�Yn� if Xn/Yn is Op�1�. Therefore, if �Xn�
and �Yn� are sequences of random variables that converge
to zero wp1, and if Xn is Op�Yn�, we say in loose terms
that �Xn� converges at least as fast as �Yn�.

We are now ready to state two results that establish the
sense in which it is beneficial to choose sequences ��k� and
�mk� that satisfy conditions C.1, C.2, and C.3.

Theorem 5. Assume that the kth sample-path problem is
solved successfully wp1, i.e., a retrospective solution Xk is
found during the kth iteration so that 
Xk −X∗

k
� �k wp1,
where X∗

k is the unique sample-path solution to the kth
sample-path problem. Assume that ��k� → 0 and �mk� ↑ �.
Let Wk =∑k

j=1 Njmj be the total number of simulation calls
expended from iterations 1 through k in solving the sample-
path problems, where Nj is the number of points observed
during the jth iteration and mj is the sample-size used to
generate the sample-path function during the jth iteration.
If the sequences ��k�, �mk� satisfy conditions C.1, C.2, and
C.3, then Wk
Xk − x∗
2 = Op�1��

Proof. In solving the sample-path problem during the
kth iteration, the initial solution is Xk−1, and the objective
is to reach a point within a ball of radius �k centered on X∗

k .
Let Nk be the number of points visited in achieving this.
Then, because the sample size used during the kth iteration
is mk, the total work done up to the kth iteration is Wk =∑k

j=1 Njmj� We will now prove the result in two cases char-
acterized by whether the numerical procedure used to solve
the sample-path problems exhibits (i) polynomial conver-
gence or (ii) linear convergence.
Case (i) (polynomial convergence): Recall that for the

kth sample-path problem, 
Xk−1 − X∗
k
 is the initial dis-

tance to the solution, and �k is the stipulated error toler-
ance. Because the numerical procedure used for solving the
sample-path problem converges superlinearly with Q-order
p > 1, the number of points visited

Nk = Op

(
1+ 1

logp

(
log

log �k

log
Xk−1 − X∗
k


))
� (1)

The above expression for Nk is obtained upon noting that
the errors for a numerical procedure exhibiting polyno-
mial convergence “look like” 
Xk−1 − X∗

k
�
Xk−1 − X∗
k
p�


Xk−1−X∗
k
p2

� � � � � and then solving for the smallest n such
that 
Xk−1 − X∗

k
pn
� �k.

We know from the CLT on X∗
k (Theorem 4 and Shapiro

2000), and because Xk−1 is located within a ball of radius
�k−1 around X∗

k−1, that 
Xk−1 − X∗
k
 = Op�1/

√
mk−1 + 1/√

mk + �k−1�, and so

Nk =Op

(
1+ 1

logp

(
log

log�k

log�1/
√

mk−1+1/
√

mk +�k−1�

))
�

From the above expression for Nk, and because the condi-
tion C.1(b) holds,

Nk = Op�1� and Wk =
k∑

j=1

Njmj = Op

( k∑
j=1

mj

)
� (2)

Again, from the CLT on X∗
k and the relation between Xk

and X∗
k , we know that 
Xk − x∗
2 = Op��1/

√
mk + �k�

2��
Therefore, if ��k� and �mk� are chosen to satisfy conditions
C.2 and C.3,

Wk
Xk − x∗
2 = Op

(( k∑
j=1

mj

)(
1√
mk

+ �k

)2)
= Op�1��

Case (ii) (linear convergence): Proof is very similar to
the previous case, with the condition C.1(a) active instead
of C.1(b), and the following alternate expression for Nk

instead of (1):

Nk = Op

(
1+ 1

log r

(
log

�k


Xk−1 − X∗
k


))
� (3)

where r is a constant satisfying 0 < r < 1. The expres-
sion for Nk is obtained upon noting that the errors for a
numerical procedure exhibiting linear convergence “look
like” 
Xk−1 − X∗

k
� r
Xk−1 − X∗
k
� r2
Xk−1 − X∗

k
� � � � �
and then solving for the smallest n such that
rn
Xk−1 − X∗

k
� �k. �

Having shown that conditions C.1, C.2, and C.3 ensure
that the random variable of interest Wk
Xk −x∗
2 is Op�1�,
we now turn to what happens when one or more of the
conditions C.1, C.2, and C.3 are violated. We show in The-
orem 6 that under Assumption 2, when at least one of the
conditions C.1, C.2, or C.3 is violated, the random variable
Wk
Xk − x∗
2 p→ �.

Assumption 2. The sequence

��1/
√

mk + �k�
−2 · 
Xk − x∗
2�

d→ ��

where Pr�� = 0� = 0�

In loose terms, Assumption 2 states that the RA algo-
rithm in use does not magically know the location of the

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Pasupathy: On Choosing Parameters in RA Algorithms for Stochastic Root Finding
896 Operations Research 58(4, Part 1 of 2), pp. 889–901, © 2010 INFORMS

true solution x∗ relative to the sample-path solution X∗
k .

Because Xk = X∗
k +�k� where �k is a random variable sup-

ported on a sphere of radius �k, the factor �1/
√

mk + �k�
−2

is the correct scaling for stabilizing the random variable

Xk − x∗
2.

Theorem 6. Let the retrospective solutions �Xk� satisfy
Assumption 2. Then, if at least one of the conditions C.1,
C.2, or C.3 are violated, Wk
Xk − x∗
2 p→ ��

Proof. If condition C.1 is violated, and if the limit in
the definition of Q-factors exists, the number of points
Nk

p→ �. Because Assumption 2 holds, for given � > 0
there exists ���� > 0 so that

Pr��1/
√

mk + �k�
−2
Xk − x∗
2

� ������ 1− � (4)

for large enough k. Also,

Wk
Xk − x∗
2
�Nkmk�1/

√
mk + �k�

2 
Xk − x∗
2

�1/
√

mk + �k�
2
� (5)

Using (4), and because Nk

p→ �, we see that for any given
M�� > 0,

Pr
{

Nkmk�1/
√

mk + �k�
2 
Xk − x∗
2

�1/
√

mk + �k�
2
�M

}

� Pr
{{

Nkmk�1/
√

mk + �k�
2
�

M

����

}

∪ ��1/
√

mk + �k�
−2
Xk − x∗
2

� �����

}
� � + � = 2�� (6)

for large enough k, and some ���� > 0. Conclude from (5)
and (6) that Wk
Xk − x∗
2 p→ �.

If conditions C.2 or C.3 are violated, the proof is
similar—after noticing that

Wk
Xk − x∗
2
�

( k∑
j=1

mj

)
�1/

√
mk + �k�

2 
Xk − x∗
2

�1/
√

mk + �k�
2
�

use �
∑k

j=1 mj��
2
k → � when C.2 is violated, or

�
∑k

j=1 mj�m
−1
k → � when C.3 is violated. �

5.2. Convergence of Mean Squared Error

In the previous section, we studied the behavior of the ran-
dom variable Wk
Xk − x∗
2 in assessing the choice of the
parameter sequences ��k� and �mk�. We identified three
conditions C.1, C.2, and C.3 to be satisfied when choos-
ing the parameter sequences ��k� and �mk�. In this section,
in order to further help us identify specific sequences for
use, we study parameter choice through the more frequently
used mean squared error (MSE). We demonstrate, using
Theorems 7 and 8, that it is best to choose sequences ��k�,
�mk� that satisfy 0 < lim supk→� �k

√
mk < �.

Recall that the mean squared error MSE�Z� z∗� of
a random variable Z with respect to a constant z∗ is
MSE�Z� z∗� = E
Z −z∗
2�� We show through Theorems 7
and 8 that for any given sample-size sequence �mk�, to
ensure “optimal” convergence of MSE�Xk� x∗�, we should
choose the error-tolerance sequence ��k� so that ��2

k� con-
verges to zero at the same rate as �MSE�X∗

k � x∗��. We first
state Theorem 7, which asserts that it is best to choose the
sequence of error tolerances ��k� so that ��2

k� converges to
zero at least as fast as the sequence �MSE�X∗

k � x∗��.

Theorem 7. Assume that the conditions in Theorems 2
and 3 hold for the SRFP and the SOP contexts, respec-
tively. Also, let the retrospective solutions �Xk� satisfy
E
Xk − X∗

k
2�� c�2
k for some c > 0. Then

lim sup
k→�

MSE�Xk� x∗�
MSE�X∗

k � x∗�
= � if lim sup

k→�

�2
k

MSE�X∗
k � x∗�

= �

< � if lim sup
k→�

�2
k

MSE�X∗
k � x∗�

< ��

Proof. A proof is provided in the appendix. �

The assumption E
Xk − X∗
k
2� � c�2

k for some c > 0,
which appears in Theorem 7, is rather mild. It implies that
because each sample-path problem is solved to within error-
tolerance �k, the deviation of the retrospective solution Xk

from the sample-path solution X∗
k , expressed as a fraction

of the error-tolerance �k, remains bounded away from zero.
This assumption would be violated only in pathological
examples where the retrospective solutions �Xk� are such
that, across iterations, they are placed within the �k-ball
around X∗

k in progressively closer positions to x∗.
Theorem 7 establishes the minimum rate at which the

sequence of tolerances ��k� should converge to zero, i.e.,
it suggests that the sequence ��2

k� should converge to
zero at least as fast as the sequence �MSE�X∗

k � x∗��. We
now present Theorem 8, which is useful in deciding the
maximum rate of convergence of the sequence of toler-
ances ��k�. Specifically, Theorem 8 says that as long as the
sequence ��2

k� converges at least as fast as the sequence
�MSE�X∗

k � x∗��, irrespective of how much faster it con-
verges, the convergence rate of �MSE�Xk� x∗�� remains the
same.

Theorem 8. Let the conditions in Theorems 2 and 3
hold for the SRFP and the SOP contexts, respectively.
Let the sequence of error-tolerances ��k� satisfy 0 <
lim supk→� �2

k/�MSE�X∗
k � x∗��1+� < � for some � > 0.

Then

lim sup
k→�

MSE�Xk� x∗�
MSE�X∗

k � x∗�
= 1�

Proof. A proof is provided in the appendix. �

Theorem 8 suggests that there is no gain in the con-
vergence rate of the sequence of mean squared errors
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�MSE�Xk� x∗�� with an increase in the convergence rate
of the sequence of error tolerances ��k�, as long as
��k� converges to zero at least as fast as the sequence
�MSE�X∗

k � x∗��. This suggests that it may be best to choose
the sequence ��k� so that it tends to zero at the same rate as
�MSE�X∗

k � x∗��. This is because choosing ��k� to converge
any faster would mean doing additional work in solving
the individual sample-path problems, but without any cor-
responding benefit in terms of faster convergence of the ret-
rospective solutions �Xk�. Furthermore, by Theorem 4 for
SRFPs, and a corresponding result from Shapiro (2000) for
SOPs, we know that 0< lim supk→� mkMSE�X∗

k � x∗� < �
under mild conditions. This implies that choosing the
sequence ��k� so that it tends to zero at the same
rate as �MSE�X∗

k � x∗�� is, in essence, ensuring that 0 <
lim supk→� �k

√
mk < �.

5.3. A Specific Recommendation for Sample-Size
and Error-Tolerance Sequences

In this section, we exploit the results obtained in the two
previous sections to recommend specific choices for the
sequences ��k� and �mk�. Theorem 9 helps to identify these
choices by asserting that the conditions C.1, C.2, and C.3,
together with the condition 0 < lim supk→� �k

√
mk < �,

imply that the sample sizes should exhibit at most lin-
ear growth, i.e., either sublinear or linear growth, when
the numerical procedure in use exhibits linear convergence.
Similarly, Theorem 9 also asserts that the sample sizes
should exhibit at most polynomial growth, i.e., sublinear,
linear, or polynomial growth, when the numerical proce-
dure in use exhibits polynomial convergence.
It is worth mentioning that the restriction 0 <

lim supk→� �k

√
mk < � obtained in the previous sec-

tion is redundant when the numerical procedure in use
for solving the sample-path problems exhibits linear con-
vergence. This is because it so happens that the con-
ditions C.1(a), C.2, and C.3 automatically imply that
0< lim supk→� �k

√
mk < �. This is, however, not the case

when the numerical procedure in use for solving the sample-
path problems exhibits polynomial convergence, and the
restriction 0 < lim supk→� �k

√
mk < � becomes greatly

useful.

Theorem 9. Let the sequences ��k� and �mk� satisfy
��k� → 0, �mk� ↑ �� the conditions C.1, C.2, C.3, and 0<
lim supk→� �k

√
mk < �. Then, if the numerical procedure

used to solve the sample-path problems exhibits
(i) linear convergence, then lim supk→� mk/mk−1 < �	
(ii) polynomial convergence, then lim supk→� mk/

m
p
k−1 < � for some p � 1�

Proof. If the numerical procedure used to solve the
sample-path problems exhibits linear convergence, the con-
dition C.1(a) is active. Therefore, we have

lim inf
k→�

�k

1/
√

mk−1

= lim inf
k→�

�k

√
mk√

mk/mk−1

> 0� (7)

Table 1. Recommended sample-size growth rates for
different convergence rates of the numer-
ical procedure used to solve sample-path
problems.

Exponential Polynomial Linear
growth, e.g., growth, e.g., growth, e.g.,

mk = �e1�1mk−1� mk = �m1�1
k−1� mk = �1�1mk−1�

Polynomial conv. N Y Y
Linear conv. N N Y
Sublinear conv. N N NA

Notes. A “Y” indicates that the combination is recommended, an “N”
indicates that the combination is not recommended, and an “NA”
indicates that a more specific characterization is needed to make a
recommendation.

However, because 0 < lim supk→� �k

√
mk < �,

lim supk→� mk/mk−1 = � would imply that inequality (7)
would be violated. Therefore, conclude that assertion (i)
holds.
If the numerical procedure used to solve the sample-path

problems exhibits polynomial convergence, the condition
C.1(b) is active. Therefore, we have

lim sup
k→�

log �k

log�1/
√

mk−1�
< �� (8)

Because 0 < lim supk→� �k

√
mk < �, ��k� → 0, and

�mk� → �, there exists C > 0 such that �k < C/
√

mk

and � log��k�� > � log�C/
√

mk�� for large enough k. Using
this result with (8), we note that lim supk→� log�C/

√
mk�/

log�1/
√

mk−1� < �. This implies that lim supk→� log�mk�/
log�mk−1� < �. Conclude, after noting mk � mk−1 for all
k, that lim supk→� mk/m

p
k−1 < � for some p � 1� �

A natural choice for the sequence of sample sizes
exhibiting linear growth is m0 = 1, mk = �cmk−1�� where c
is some chosen constant greater than one. This ensures that
sample size is increased by 100�c − 1�% during each iter-
ation. Similarly, a choice for the sequence of sample sizes
exhibiting polynomial growth is m0 = 1, mk = �mc

k−1��
where c is some constant greater than one. For the sequence
of error tolerances ��k�, a natural choice resulting from the
stipulation 0 < lim supk→� �k

√
mk < � is �k = K/

√
mk�

where K is some constant greater than zero. It is easy to
verify that the combination m0 = 1, mk = �cmk−1�, �k =
K/

√
mk satisfies conditions C.1(a), C.2, and C.3; whereas

the combination m0 = 1, mk = �mc
k−1�, �k = K/

√
mk, satis-

fies conditions C.1(b), C.2, and C.3. Table 1 further clarifies
the recommended choices of ��k�, �mk�.

6. Postscript
In this section we discuss two issues surrounding our anal-
ysis of sample-path algorithms. First, recall that we used
Wk
Xk − x∗
2 for measuring algorithm efficiency. Why
has this form been chosen? Why not use Wk
Xk − x∗

or Wk
Xk − x∗
3, or a more elaborate measure such as
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the “expected computational work done until we attain
a solution Xk that is � > 0 within x∗ with 95% confi-
dence”? Second, we have assumed that the individual iter-
ations within an RA algorithm are terminated by checking
if 
Xk − x∗
� �k. What if this check cannot be performed
directly?
In what follows, we discuss both of these issues. We

argue somewhat subjectively in §6.1 that our choice of
efficiency measure has broad appeal from the standpoint
of intuitiveness, asymptotics, and ease of analysis. In §6.2
we take up the issue of detecting termination and provide
heuristic strategies when a direct check of the termination
criterion is unavailable.

6.1. A Justification for the Chosen Measure of
Efficiency

Recall from §5.2 that the sequence of retrospective solu-
tions �Xk� cannot converge to x∗ any faster than the
sequence of sample-path solutions �X∗

k �. We also know
from Theorem 4 (and corresponding results for SOPs)
that, under general conditions, �X∗

k � converges to x∗ at the
canonical rate O�1/

√
mk�. We thus see that unless sample

paths are generated in an intelligent non-i.i.d. fashion, the
fastest-possible convergence rate for the sequence �Xk� is
O�1/

√
mk�.

This last point motivates the measure Wk
Xk − x∗
2.
Because 
Xk − x∗
2 cannot converge faster than O�1/mk�,
and the work done up to the kth iteration Wk is at least
mk, the best we can achieve through intelligent parame-
ter choice is ensuring that Wk
Xk − x∗
2 does not tend to
infinity. By contrast, the measure Wk
Xk − x∗
 tends to
infinity irrespective of parameter choice. Thus, in consider-
ing the form Wk
Xk − x∗
r , r = 2 is the smallest exponent
that remains interesting by providing opportunities for effi-
ciency gains through parameter choice. Values of r larger
than two are less discerning because if Wk
Xk − x∗
2 is
asymptotically finite, so is Wk
Xk − x∗
r for r > 2.

Instead of measures having the form Wk
Xk − x∗
r ,
we could have used a measure such as “the expected
work done to ensure with 95% confidence that the ret-
rospective solution Xk is at most � within x∗.” Such
a measure is undoubtedly appealing, and has been pur-
sued recently (Bayraksan and Morton 2010) in the con-
text of identifying feasible sampling plans that guarantee
identifying solutions of a probabilistic standard. However,
performing optimization across parameters using such a
finite-time measure poses analytical challenges due to dif-
ficulties associated with characterizing the expected work
done at termination. Specifically, whereas making state-
ments about guaranteed stopping is possible (as shown
in Bayraksan and Morton 2010), deriving expressions for
the exact number of iterations until stopping is difficult.
In all of the above-discussed measures, what constitutes

Wk? As detailed in §5.1, Wk is the total number of sim-
ulation calls expended in visiting the various points up to
the kth iteration. For instance, let k = 3, m1 = 1, m2 = 2,

m3 = 4, and suppose the algorithm visited three points in
the first iteration, two in the second, and two in the third.
Then Wk = �3 × 1� + �2 × 2� + �2 × 4� = 15. Implicit in
such a calculation are two key points: (i) the computa-
tional work involved in performing algebraic operations
is negligible compared to the computational work due to
simulation calls; (ii) simulation calls are not differentiated
by function, e.g., we have made no attempt to specially
deal with possibly less burdensome simulation calls made
expressly for gradient or Hessian calculations. Although
recognizing both of these as drawbacks, we note that the
main results of the paper remain unchanged if these sources
of error have at most a linear effect on the total work done,
i.e., have the effect of inflating (or deflating) the total work
done by only a proportionality constant.

6.2. Detecting Termination

Recall the way error has been characterized—as the dis-
tance 
Xk − X∗

k
 in the solution space. This choice is
convenient because it allows easy exposition in terms
of the convergence rates (invariably expressed in the
solution-space; see, for example, Ortega and Rheinboldt
1970, Chapter 9) of the deterministic numerical proce-
dure that is used to solve the sample-path problems.
Alternatively, we could have constructed our results by
measuring error in the function space—as 
ȳmk

�Xk	 
k� −
ȳmk

�X∗
k 	 
k�
 = 
ȳmk

�Xk	 
k�
 in the SRFP context, and as

�ȳmk

�Xk	 
k� − �ȳmk
�X∗

k 	 
k�
 = 
�ȳmk
�Xk	 
k�
 in the

SOP context. Results analogous to Theorems 5, 6, 7, and 8
then follow directly, and the exact same conclusions on the
relation between the choice of parameters and convergence
rates hold true, but with convergence rates now interpreted
in the function space as opposed to the solution space.
From an implementation standpoint, when the condition


Xk −X∗
k
� �k cannot be verified directly, we recommend

a heuristic check based on a first-order approximation of
the function ȳmk

�x	 
k�. Specifically, for SRFPs, we have

0= ȳmk
�X∗

k 	 
k�

= ȳmk
�Xk	 
k� + H�Xk��X

∗
k − Xk� + R�X∗

k − Xk�� (9)

where H�Xk� is the gradient of ȳmk
�x	 
k� at Xk, and R�·�

is a reminder term (Ortega and Rheinboldt 1970, p. 184)
satisfying limh→0 R�h�/
h
 = 0. Using (9), terminate the
kth iteration in SRFPs if 
 �H�Xk�

−1ȳmk
�Xk	 
k�
� �k,

where �H�Xk� is an estimate of H�Xk�. Similarly,
in the SOP context, terminate the kth iteration if

 �H�Xk�

−1��ȳmk
�Xk	 
k�
 � �k, where �H�Xk� is an esti-

mate of the Hessian H�Xk� of ȳmk
�x	 
k� at Xk, and

��ȳmk
�Xk	 
k� is an estimate of the gradient �ȳmk

�Xk	 
k�
of ȳmk

�x	 
k� at Xk. The essential idea is that, assum-
ing that the feasible set � contains all local minima
in its interior, and assuming that the Hessian H�X∗

k �
is positive definite, Xk − X∗

k can be approximated by
�H�Xk�

−1��ȳmk
�Xk	 
k� when Xk is sufficiently close to X∗

k .
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Admittedly, this heuristic checks only the first-order condi-
tions and has no knowledge about whether the second-order
sufficient conditions for a minimum are satisfied at X∗

k . It
thus breaks down, for example, when the Hessian H�X∗

k �
is singular or when Xk is close to a local maximum. For
more elaborate termination heuristics, including strategies
for checking second-order sufficient conditions in smooth
problems and general optimality conditions in nonsmooth
problems, see Gill et al. (1986, §8.2.3).

7. A Numerical Example
We now illustrate the main results of this paper through
a stochastic version of the analytic center (AC) prob-
lem (Boyd 2004, §8.5.3). Recall that the AC problem
involves finding the point with the maximum depth in a
bounded region formed by a set of linear constraints. For-
mally, the AC problem involves maximizing

∏M
i=1 Si, sub-

ject to Ax � B, �xi� � h, x ∈ �q� where A is an M × q
matrix, B is an M × 1 vector of positive constants, h is
a positive constant, and xi is the ith element of x. Also,
Si = Bi − Aix, where Bi is the ith element of the vector B,
and Ai is the ith row of matrix A.
The stochastic analytic center (SAC) problem is a

stochastic analogue of the AC problem obtained by replac-
ing the number of constraints M , and the elements in
A and B, with random variables, and then maximizing
E
∏M

i=1 Si�.
For the specific numerical example considered in this

section, the number of constraints M is generated from
a distribution that takes on values 1�2� � � � � q with equal
probability. The elements in the vector B are generated
independently, each from an exponential distribution with
mean 1. The �i� j�th element of the matrix A is formed

as A�i� j� = U�i� j�/
√∑q

j=1 U 2�i� j�, where U�i� j� is uni-
formly distributed between j − 1 and j . The sample-path
problems are solved using the guarded Newton method
with backtracking search (Boyd 2004, pp. 464, 487).
Recall that Theorems 5, 6, and 9 show that when the

sequences �mk� and ��k� are chosen to satisfy conditions
C.1, C.2, and C.3, the random variable Wk
Xk − x∗
2 is
Op�1�. Figure 1 illustrates this by plotting an estimate
of EWk
Xk − x∗
2� as a function of the iteration num-
ber k for various choices of �mk� and ��k�. Because the
numerical procedure used to solve the sample-path prob-
lems in this example exhibits polynomial convergence, the
results in this paper recommend that sample sizes grow
at most polynomially, and �k = K/

√
mk. Among the five

�mk�, ��k� choices for which curves are plotted in Figure 1,
only m0 = 1, mk = �1�1mk−1�, �k = 0�1/

√
mk, and m0 = 1,

mk = �m1�1
k−1�, �k = 0�1/

√
mk, satisfy the recommendations.

Accordingly, we see that the recommended choices dom-
inate the others. (In Figure 1, instead of plotting the ran-
dom variable Wk
Xk − x∗
2, we plot an estimate of its

expectation. It can be shown that if Wk
Xk − x∗
2 d→ ��
the sequence �Wk
Xk − x∗
2� is uniformly integrable, and

Figure 1. For the SAC example, following the guide-
lines in this paper, the error tolerance should
be the inverse square-root of the sample
size, and sample sizes can grow at most
polynomially.
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E� � < �, then limk→� EWk
Xk − x∗
2� = E� �. Also, if
Wk
Xk − x∗
2 p→ �, then limk→� EWk
Xk − x∗
2� = �.)

Figure 2 is a plot of the estimated mean squared error
MSE�Xk� x∗� as a function of the iteration number k. It
explicitly omits the number of simulation calls, and illus-
trates Theorems 7 and 8. Recall that Theorems 7 and 8
show that for any given sample-size sequence �mk�, choos-
ing ��k� to converge to zero at the same rate as the
sequence �MSE�X∗

k � x∗�� maximizes the convergence rate
of the sequence �MSE�Xk� x∗��. This implies, specifically,
that choosing ��k� to converge to zero any faster than
�1/

√
mk� is of no benefit. This is apparent from the plots

in Figure 2.

8. Summary and Concluding Remarks
RA methods for solving SRFPs and SOPs generate a
sequence of sample-path problems with increasing sample
sizes �mk� → �, and then solve them to decreasing error
tolerances ��k� → 0. Under mild conditions, detailed in this
paper, RA iterates converge to the correct solution wp1.
A more challenging issue that this paper addresses

is providing guidance in choosing the error-tolerance
sequence ��k�, and the sample-sizes sequence �mk�, used
by RA algorithms. We argue, with theoretical support,
that these sequences should be chosen to satisfy 0 <
lim supk→� �k

√
mk < �, and the three conditions C.1, C.2,

and C.3 characterized in this paper. In broad terms, these
stipulations imply that the rate at which sample sizes are
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Figure 2. In RA algorithms, choosing the error-
tolerance sequence ��k� to reduce to zero at
the same rate as �1/

√
mk� maximizes the

convergence rate of the sequence of mean
squared errors �MSE�Xk� x∗��.
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Note. Choosing ��k� to converge any faster provides no additional benefit.

increased across iterations in RA algorithms should depend
on the speed of convergence of the numerical procedure
used to solve the sample-path problems. Specifically, when
the numerical procedure exhibits linear convergence, sam-
ple sizes should grow at most linearly, and when the numer-
ical procedure exhibits polynomial convergence, the sample
sizes should grow at most polynomially.
Two additional remarks relating to future research are

now in order.
(i) The guidelines for parameter choice in this paper,

although very useful, still leave unchosen constants for the
implementer. We suspect that the quality of these con-
stants will depend on the specific instance of the SRFP
or SOP on hand. Accordingly, methods that dynamically
adjust sample-size and error-tolerance choices as the algo-
rithm evolves, and while staying within the prescribed con-
vergence rates, will be very beneficial from an efficiency
standpoint.
(ii) The theory presented in this paper assumes i.i.d.

generation of sample paths. In practice, although i.i.d.
sample-path generation is easiest and (therefore) widely
followed, “intelligent” correlated generation of sample
paths can achieve great efficiency gains. The theory corre-
sponding to such convergence is only now appearing for
SOPs (Homem-de-Mello 2008) and is virtually nonexistent
for SRFPs.

Appendix
Proof of Theorem 2. Let h�x� = 
g�x�
2, and its esti-
mator �wmk

�x	 
k� = 
ȳmk
�x	 
k�
2. The function h�x� is

continuous, and the sequence � �wmk
�x	 
k�� → h�x� uni-

formly wp1. Furthermore, the set �∗ of zeros of g�x� coin-
cides with the set of minimizers of h�x�, and X∗

k is a
zero of ȳmk

�x	 
k� if and only if it is also a global min-
imizer of �wmk

�x	 
k�. Therefore, applying Theorem 1 to
function h�x� and its estimator �wmk

�x	 
k�, we see that
dist�X∗

k ��∗� → 0 wp1. However, because dist�Xk��∗� �
dist�X∗

k ��∗�+
Xk −X∗
k
� dist�X∗

k ��∗�+ �k� and �k → 0,
we conclude dist�Xk��∗� → 0 wp1. �

Proof of Theorem 4. By Taylor’s Theorem (Rudin
1976, p. 110), we know that ȳmk

�X∗
k 	 
k� = ȳmk

�x∗	 
k� +
�ȳmk

��k	 
k��X
∗
k − x∗�� where �k lies on the line join-

ing X∗
k and x∗. Because ȳmk

�X∗
k 	 
k� = 0, this implies√

mk�X
∗
k − x∗� = −�ȳmk

��k	 
k�
−1�

√
mkȳmk

�x∗	 
k�� for
large enough k wp1. Also, because X∗

k → x∗ wp1,
�ȳmk

�x	 
k� → �g�x� uniformly wp1 (in some neighbor-
hood of x∗), and �g�x∗� is nonsingular, we know that
�ȳmk

�X∗
k 	 
k�

−1 → �g�x∗�−1 wp1. Combining these with
the CLT on ȳmk

�x	 
k�, we conclude that Theorem 4
holds. �

Proof of Theorem 7. Recall that Xk is the kth retro-
spective solution, X∗

k is the kth sample-path solution, and

Xk − X∗

k
� �k wp1. Then, noting that MSE�Xk� x∗� =
E
Xk − x∗
2�, we write

MSE�Xk� x∗� = E
Xk − X∗
k
2� +MSE�X∗

k � x∗�

+ 2�E�Xk − X∗
k �T �X∗

k − x∗���� (10)

Defining the inner product �X�Y � = EXT Y � (Szechtman
2006, p. 263), and using the Cauchy-Schwarz inequality
��X�Y ���√�X�X�√�Y �Y � (Ortega and Rheinboldt 1970,
p. 39) on the last term in expression (10), we get

�E�Xk − X∗
k �T �X∗

k − x∗���
�

√
E
Xk − X∗

k
2�
√
MSE�X∗

k � x∗�� (11)

Using the inequality (11) and the expression (10), we get∣∣∣∣MSE�Xk� x∗�
MSE�X∗

k � x∗�
− E
Xk − X∗

k
2�

MSE�X∗
k � x∗�

− 1

∣∣∣∣
� 2

√
E
Xk − X∗

k
2�

MSE�X∗
k � x∗�

� (12)

Also, because E
Xk − X∗
k
2� = ck�

2
k with 1� ck � c > 0�

c�2
k

MSE�X∗
k � x∗�

�
E
Xk − X∗

k
2�

MSE�X∗
k � x∗�

�
�2

k

MSE�X∗
k � x∗�

� (13)

Conclude from inequalities (12) and (13) that the assertion
in Theorem 7 holds. �

Proof of Theorem 8. Because 0 < lim supk→� �2
k/

�MSE�X∗
k � x∗��1+� < � for some � > 0, we know that
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lim supk→� �2
k/MSE�X∗

k � x∗� = 0. Using this in inequal-
ity (13) appearing in the proof of Theorem 7, we get
lim supk→� E
Xk −X∗

k
2�/MSE�X∗
k � x∗� = 0� Using this in

inequality (12) appearing in the proof of Theorem 7, we
conclude that the assertion in Theorem 8 holds. �
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