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THE NEUROBIOLOGY OF ZINC 
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Abstract | The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 
2000 BC (for example, the Smith Papyrus1), and zinc has apparently been used fairly steadily 
throughout Roman2 and modern times (for example, as the American lotion named for its zinc 
ore, ‘Calamine’). It is, therefore, somewhat ironic that zinc is a relatively late addition to the 
pantheon of signal ions in biology and medicine. However, the number of biological functions, 
health implications and pharmacological targets that are emerging for zinc indicate that it might 
turn out to be ‘the calcium of the twenty-first century’.

To nutritionists, zinc is an essential micronutrient3; 
to biochemists, it is a component of enzymes and 
other proteins4; whereas to environmentalists and 
marine biologists, free zinc in water is a toxic pollutant5 
BOX 1. To neuroscientists, zinc is not only a micro nutrient 
and a component of proteins, but is also an ionic signal. 
Zn2+ moves through gated membrane channels 6,7 and 
among various organelles and storage depots within 
cells8,9, modulating protein function by binding to and 
detaching from zinc-dependent proteins throughout 
the cell9–11. Like calcium, excess free zinc in body 
tissues is toxic12.

Zn2+ is selectively stored in, and released from, the 
presynaptic vesicles of a specific type of neuron, which 
is found chiefly in the mammalian cerebral cortex 
(FIG. 1). These zinc-releasing neurons also release gluta-
mate, and the term ‘gluzinergic’ has, therefore, been 
proposed to describe them13,14. Most glutamate- and 
zinc-releasing neurons have their cell bodies in either 
the cerebral cortex or the limbic structures (amygdala 
and septum) of the forebrain15. Therefore, the glutamate- 
and zinc-releasing neuronal system comprises a vast 
cortical–limbic associational network that unites limbic 
and cerebrocortical functions.

In the fifty years since zinc’s signalling role was first 
discovered16, a broad outline of the function of gluta-
mate- and zinc-releasing neurons has emerged (FIG. 2). 
Zinc seems to modulate the overall excitability of the 
brain through its effects on glutamate, and probably 

γ-aminobutyric acid (GABA), receptors17, and is also 
thought to be important in synaptic plasticity18,19.

Here, we describe the biology of glutamate- and 
zinc-releasing neurons and review the current evidence 
for the normal function of these neurons and their 
synaptic zinc signals. We also review findings that 
implicate zinc signals in the pathophysiology of acute 
brain damage and degenerative brain diseases.

Discovery of glutamate–zinc neurons
Focal deposits of ‘free’ or ‘exchangeable’ zinc were first 
found in the brain by Maske16, who used a histochemical 
method that could detect only the exchangeable zinc. 
Although he was primarily interested in zinc-secreting 
pancreatic cells, Maske also looked at the brains of his 
test animals, where he found a conspicuous, bright red 
band of zinc–dithizonate staining.

We now know that the band was comprised of 
hip po campal mossy fibre axons, the giant terminals 
of which are rich in exchangeable zinc. Moreover, we 
also now know that the mossy fibres are just one example 
of many intrinsic, cerebrocortical pathways,  the axons 
of which sequester zinc and glutamate in their syn-
aptic vesicles. Although glutamatergic, the long axon 
pathways that project into the cerebral cortex and 
those that project corticopedally to subcortical targets 
have no vesicular zinc20–23,24. Likewise, glutamatergic 
pathways that originate outside the cerebral cortex and 
limbic nuclei contain only token amounts of stainable 
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metals25,26. By contrast, in some areas of the cerebral 
cortex, glutamate- and zinc-releasing neurons contribute 
almost half of all of glutamatergic synapses27.

Measuring synaptic release of zinc. Three methods 
have been used to show synaptic zinc release: before-
and-after imaging of zinc in the boutons, analytical 
detection of zinc released into perfusates and, most 
recently, direct imaging of released zinc using fluores-
cent extracellular probes.

Haug and colleagues launched the before-and-after 
studies, and showed that staining of vesicular zinc in 
mossy fibres vanished within hours of axon transection, 
even though the ultrastructure of the axon terminals 
remained intact for several days28. Many have repli-
cated Haug’s basic result, using stimuli such as 24 h of 
electrical stimulation29, 2–4 h of status epilepticus29–31, 
excitotoxic injury, such as ischaemia–reperfusion32, 
and head trauma33, all of which dramatically deplete 
the boutons of zinc.

In a variation of the before-and-after protocol, 
vesicular zinc is labelled in situ, and release of the label 
is observed. This approach is somewhat problematic, 
as it is a zinc–label complex that is released, not 
zinc per se. Nevertheless, several groups have shown 
robust and reliable release of zinc–label complexes 
from boutons on electrical stimulation34,35, or over 
time in the absence of stimulation36. Most recently, 
the release of zinc–N-(6-methoxy-8-quinolyl)-p-
toluenesulphonamide (TSQ) was elegantly shown 
on a pulse-by-pulse basis, with each action poten-
tial releasing zinc37. Several groups have observed 
calcium-dependent zinc release into perfusates of 
electrically or chemically stimulated brain tissue 
in vivo and in vitro38–42. One recent innovation is 
the use of fluorimetry to distinguish between free 
zinc and bound zinc in the perfusates of stimulated 
tissue. Using brain microdialysis, the release of up 
to 100 nM of free zinc has been observed during 
excitotoxic stimulation of brain tissue43.

Direct imaging of synaptic zinc release is the defini-
tive method, and has now been done successfully in 
four laboratories. In the first study, released zinc was 
detected by a biosensor, which consisted of a zinc met-
alloenzyme that lacks zinc (apo-carbonic anhydrase, 
apoCA) and a fluorescent reporter that shifts emission 
on binding to holo-carbonic anhydrase (holoCA)44. 
Later work using more direct imaging of tissue slices 
revealed much faster zinc release (30 ms45,46). Three fluor-
escent probes, each with different kinetics and affinities, 
have all yielded estimates of the amount of zinc that is 
released in the 10–30 μM range43–46. Of course, such 
estimates reflect an average amount throughout the 
tissue, and concentrations in the cleft would presumably 
be much higher during the brief synaptic release events, 
whereas concentrations measured with a relatively large 
dialysis probe would be lower. One caveat that emerges 
from comparative studies is that the amount of zinc in 
the vesicles of the mossy axons of young altricial animals 
(for example, rats) is vanishingly small, and does not 
mature until ~75 days after birth. This is because the 
granule neurons are born postnatally, and their mossy 
axons are correspondingly late to appear and sequester 
zinc47,48,49. So, zinc release from the immature hippo-
campus is always modest compared with that in the 
adult hippocampus50.

Zinc entry into somata and dendrites. Neuronal somata 
and dendrites are studded with zinc-permeable, gated 
channels, which include the NMDA (N-methyl-d-
aspartate) channel, voltage-gated calcium channels and 
the calcium-permeable AMPA (α-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid)/kainate channel 
(Ca2+-A/K). Zinc influx through these channels has 
been shown using 65Zn tracing51, nuclear magnetic 
resonance (NMR) with zinc-specific contrast agents52 
and fluorescent measurements of free intracellular zinc 
([Zn2+]i)

30,53–56.
Because presynaptic terminals release zinc, and 

the post synaptic somata and dendrites have zinc-
permeable channels, it follows that, under favourable 

Box 1 | Zinc signals outside the brain 

Historically, neurotransmitters and neuromodulators were often identified and 
characterized in tissues or organs other than the brain, then tracked into the brain 
and linked to behaviour. For example, acetylcholine was first identified in the 
heart240, adrenaline in the vasculature, GABA (γ-aminobutyric acid) in crayfish 
muscle241 and peptides in the gut242. Research on zinc signalling follows this same 
historical pattern, in that the first zinc-secreting cells to be characterized were the 
insulin- (and zinc-) secreting cells of the pancreas and the fluid- (and zinc-) secreting 
cells of the venom–salivary gland in snakes243.

Today, there is broad awareness of zinc signalling throughout the body, with a 
dozen or more individual zinc-secreting cells types known. These zinc-secreting cells 
include the submandibular salivary gland244 (modified to a venom gland in snakes), 
the pancreatic β-cells245 and pancreatic exocrine cells245, the prostate epithelial 
cells246, Paneth cells in the intestine247, mast cells248, granulocytes (three types)249,250, 
pituitary cells (four types251) and CNS neurons (three types)128,252. Intriguingly, the 
biological and physiological roles of these myriad somatic zinc signals are still largely 
unknown and unstudied.

Figure 1 | Intravital staining of mossy fibres in the rat using the fluorescent probe ZP1. 
a | Inset is a x4 survey view of the hippocampal formation; the enlargement shows the bright 
staining in the stratum lucidum (SL) and lack of staining in the stratum pyramidale (SP). 
b | A further enlargement of the SL, showing individual mossy boutons (bright puncta), three of 
which (arrows) are further magnified in the inset253. 
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conditions, Zn2+ will translocate from inside a presyn-
aptic neuron to inside a postsynaptic neuron. Because 
both glutamate and depolarization open the zinc-per-
meable channels6,57–59, maximum zinc translocation 
would be expected during intense neuronal activity. 
There is considerable evidence that such translocation 
contributes to zinc-induced cell injury in excitotoxic-
ity (see below). There is also evidence that a smaller-
volume translocation might occur during physiological 
synaptic signalling, with the translocated zinc perhaps 
triggering further signalling cascades in the post-
synaptic neuron18. However, it is difficult to distinguish 
those zinc signals that have entered a cell through the 
plasma membrane from those that have arisen through 
the mobilization of zinc from intracellular proteins.

Intracellular mobilization and somatic release. In 
addition to the zinc that is released from presynaptic 
terminals into the extracellular fluid, there is also a 
pool of releasable zinc in perikarya. One source of this 
zinc is the metallothioneins (MTs), from which zinc 
can be released rapidly by nitrosylation or oxidation 
of the thiol ligands60,61.

Thioneins are small proteins (~3000 Da) that con-
tain several cysteine residues that allow them to bind 
metals, including zinc62. They function physiologically 
by accepting zinc from other zinc-binding ligands, 
including proteins. Thionein can bind seven zinc 
atoms through 20 cysteine residues in zinc clusters63. 
Oxidation or nitrosylation of cysteine residues in the 

zinc cluster results in the release of zinc64, so these pro-
teins can function as zinc donors to other zinc-binding 
proteins. Metallated thionein is in equilibrium with the 
unmetallated (or apo-) thionein65.

The metallothionein 3 (MT3) isoform is found 
only in the brain and testes, whereas other isoforms 
are more widespread66,67. In mice that lack MT3, cell 
injury in hippocampal field CA1 and the thalamus 
is significantly reduced after brain injury 68, which 
implies that zinc released from MT3 can contribute 
to cell injury. By contrast, in hippocampal field CA3, 
loss of MT3 increases cell death after excitotoxic 
injury, presumably because the presynaptic release of 
zinc is so pronounced in CA3 REF. 46 that the post-
synaptic MT3 functions more as a zinc sink than a 
zinc source.

Given that nitric oxide (NO) can mobilize zinc from 
proteins (notably MT3), and that neuronal somata fill 
up with free zinc from this source under excitotoxic 
conditions, it is possible that zinc could flow directly 
from the perikaryal cytoplasm into the surrounding 
extracellular milieu69. Zinc-permeable channels6, 70,71 
or transporters72,73 could mediate this somatic zinc 
‘release’. This phenomenon has not been shown directly, 
but images of zinc effluxing into the medium around 
brain slices as they undergo ischaemia–reperfusion 
injury are supportive74. In these images, the regions 
showing maximal release include the pyramidal cell 
stratum, which contains only pyramidal neuron 
somata (FIG. 3).

Figure 2 | Synaptic zinc transport. Vesicles decorated with the zinc transporter ZnT3 protein are assembled in the Golgi 
apparatus of glutamate- and zinc-releasing neurons (1) and transported down the axon (2). Once in the presynaptic terminal, 
the vesicles can be seen to contain both glutamate and free zinc. Calcium- and impulse-dependent exocytosis expels both 
zinc and glutamate (4), both of which have receptors on the postsynaptic membrane. In some cases, both receptors are 
components of the same iontophore, as with the GluR and GluM receptors TABLE 1.  Zinc modulates myriad channels, 
transporters and receptors locally and (perhaps) after diffusing a few tens of micrometres, on neurons and glial cells (6–10). 
All calcium channels have some zinc permeability (5 and 9), and zinc-permeating postsynaptic neurons are chaperoned by 
the thionein-metallothionein system (11). Oxidation and nitrosylation of thiols in metallothionein (MT) releases Zn2+ from MT 
(12), possibly leading to ‘somatic’ release of zinc.
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So far, the NO–MT–Zn2+ signalling cascade has been 
observed only in pathological situations, such as status 
epilepticus, trauma or ischaemia–reperfusion75,76,77. 
However, it is possible that this pathway also operates 
at a reduced level in the healthy brain18. The coupling 
of NMDA receptors to neuronal nitric oxide synthase 
(nNOS)78,79 could mediate this putative pathway.

Transporters
Two groups of proteins that are involved in zinc transport 
are known; the divalent cation transporter (DCT) fam-
ily  80 and the zinc transporter (ZnT) family  81. However, 
the ZnT proteins might only modulate transport indi-
rectly  82, whereas the DCT family have been shown to 
be direct transporters72,80. The elucidation of the ways 
in which these proteins cooperate to regulate zinc meta-
bolism and signalling will, no doubt, be a fascinating 
new chapter in the neurobiology of zinc.

Physiological functions of zinc signals. Research on 
the neuropharmacology of zinc signals is hindered 
by the fact that zinc is an ion, not a molecule. Therefore, 
there are no synthetic or metabolic enzymes to inhibit 
or stimulate, nor any receptor agonists or antagonists 
that can be deployed. Furthermore, in any biologically-
relevant medium near normal pH, exogenous zinc will 
precipitate as zinc hydroxide complexes, or bind to 
myriad ligands in the medium and tissue, which means 
that the actual free zinc signal produced is often less 
than 0.1% of the total zinc added83. However, proper 
control of the free zinc concentration (pZn) is possible 
using pZn buffers84–86 and measuring methods87. 

Excitatory amino acid receptors. The NMDA-type 
glutamate ionophore was found to be inhibited by zinc 
in 1987 REF. 88. The zinc-sensitivity of this molecule 
is now understood to be mediated by two separate 
mechanisms: a voltage-independent site on the NR2A 
subunit that has an IC50 in the single-digit nanomolar 
range86,89, and a less sensitive, voltage-dependent site on 
the NR2B90 subunit, where ionic current is depressed by 
low-micromolar concentrations of zinc.

The high-affinity site on NR2A is especially interest-
ing, because the apparent extracellular pZn of healthy 
brain tissue is between 8 and 9 (that is, the concentration 
of free  Zn2+ is between 1 nM and 10 nM). This implies 
that the zinc site on NR2A is normally partially occupied 
by zinc, and that the NMDA channel current is corre-
spondingly depressed. This, in turn, implies that merely 
chelating the extracellular zinc to above pZn = 10 (free 
zinc concentration below 0.1 nM) should increase the 
excitability of the exposed brain tissue. Several investiga-
tors have observed that the introduction of a sufficiently 
high-affinity zinc chelator leads to increased amplitude 
of  NMDA-mediated postsynaptic responses84,91,92, 
increased excitability and/or lowered threshold for 
seizure induction93–96.

The inhibitory effect of zinc on the NR2A sub-
unit is synergistic with the inhibitory effect of 
protons, with zinc shifting the pH sensitivity of NR2A 
towards stronger inhibition at a given pH89. So, the 
maximum depression of NMDA currents occurs 
when extracellular pH and pZn2+ are simultaneously 
falling. However, the on-rate and, in particular, the 
off-rate of Zn2+–NR2A binding is slow 89, so a relative 
change will be seen in this tonic downregulation of the 
NR2A subunit when the zinc concentration changes. 
This probably explains why brief ‘puffs’ of zinc fail to 
alter NMDA-gated currents97, whereas zinc chelation 
relieves zinc inhibition84,91–96.

 Zinc also causes a paradoxical delayed increase in 
the sensitivity of the NMDA receptors to agonists. This 
delayed effect (over hours) is mediated by increased 
tyrosine phosphorylation of the NR2A and NR2B 
subunits, which decreases their sensitivity to zinc-
mediated tonic inhibition98,99. This negative feedback 
results in a net potentiation of synaptic currents, 
which is mediated by the NMDA receptor. A similar 
long-term potentiation (LTP) of the glutamate synapse 
through exposure to Zn2+ has been shown at the mossy 
fibre–CA3 synapse, where the zinc seems to function 
intracellularly in the CA3 pyramidal neurons18.

Recent detailed analysis showed that ~45% of all 
dendritic spines in the stratum radiatum of the hippo-
campus receive zinc-containing glutamatergic synaptic 
input, whereas ~55% receive zinc-free glutamatergic 
input27. Intriguingly, the zinc-containing inputs prefer-
entially innervate postsynaptic sites with NMDA-type 
receptors, as opposed to AMPA or kainate receptors27. 
This implies that the zinc-mediated downregulation of 
NMDA receptors is based on local release of zinc from 
the immediately adjacent presynaptic terminal.

Inhibitory amino acid receptors. The second receptor 
to be studied intensively for zinc sensitivity was the 
GABAA (GABA type A) receptor100. Two decades of 
elegant work by Smart and colleagues17,101 and oth-
ers102–104 have culminated in almost complete expli-
cation of the molecular mechanisms by which zinc 
modulates GABAA receptors105. The α1β3 splice variant 
is most sensitive to zinc: other α and β variants have 
lower sensitivity, and GABAA receptors that contain 
γ subunits have greatly reduced sensitivity, owing to the 

Figure 3 | Zinc release into the extracellular fluid of a hippocampal slice induced by 
nitric oxide. The 60-min experiment begins in (1). A zinc-sensing fluorescent probe is present 
in the extracellular fluid, and shows essentially no extracellular zinc in frame 1 (baseline), then 
shows increasing amounts being released in frames 2–4, as the oxygen–glucose deprivation 
proceeds. Immediately after reperfusion, zinc efflux is enhanced (oxygen–glucose replacement; 
frame 4), and reaches a maximal after 30 min of reperfusion (frame 7, 60 min). The entire zinc 
release in this oxygen–glucose deprivation paradigm can be blocked by inhibition of nitric oxide 
synthase by L-NAME (N(omega)-nitro L-arginine methylester). The hippocampal slice is shown 
in (8) in brightfield. Modified, with permission, from REF. 74 © (2004) International Brain 
Research Organization.
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interposition of the γ subunit, which disrupts the α–β 
interface site105.

Several exemplary experiments have used the 
blockade (chelation) protocol to reveal the effects of 
endogenous zinc signals on GABA receptors106–108. 
Because there are neurons in the spinal cord that 
release GABA along with zinc109, the modulation of 
GABA receptors by zinc is probably a vital factor in 
normal brain function .

Changes in the zinc modulation of GABA recep-
tors have been implicated in the aetiology of epilepsy. 
Mody, Coulter and others110–112 have suggested that 
the seizure-induced sprouting of zinc-releasing axons 
into ectopic locations could result in ectopic release 
of zinc, thereby reducing GABAA receptor-mediated 
inhibition and enhancing seizure susceptibility111. The 
release of GABAA receptor-inhibiting quantities of zinc 
in the brains of rats with a history of seizures has not 

yet been found113, but this hypothesis remains attrac-
tive. In addition to the sprouting of zinc-releasing axons, 
further changes in the zinc modulation of GABA recep-
tors might contribute to progressive epileptogenesis114. 
GABA-receptor modulation by zinc also changes 
dramatically during early brain development115, and in 
the adult circadian pacemaker region as a function of 
the circadian cycle116.

Other receptors, channels and transporters. Zinc has 
been proposed to affect aminergic117–120, purinergic121,122 
and cholinergic123,124 receptors, but the physiological 
importance of such putative effects remains uncer-
tain. It has also recently been shown that the glycine125 
and proton126,127 receptors are sensitive to zinc. Given 
the strong evidence that glycine and zinc co-localize 
in presynaptic terminals in the brain stem and spinal 
cord128, the fact that zinc inhibits glycine receptors at 
high concentrations (>10 µM) and facilitates them 
at slightly lower concentrations (<10 µM) might have 
physiological significance129–131. The co-activation 
of acid-sensing proton receptors by zinc could also 
be important, especially in excitotoxic brain injury 
scenarios, in which both extracellular pZn and pH are 
likely to fall127,132,133.

The recently-described zinc-sensing receptor, which 
is a membrane-spanning protein that is sensitive to zinc 
under physiological conditions134, also merits further 
attention. This receptor, which has been  described on 
epithelial cells, initiates calcium mobilization through 
calcium/calmodulin dependent protein kinase activa-
tion of cell growth and proliferation, thereby giving the 
Zn2+ signal potent control over the fate of skin tissue134. 
Similar zinc sensors might be present in other tissues, 
including the brain.

Several types of voltage-gated channels and trans-
porters have also been shown to be sensitive to exo-
genous zinc TABLE 1. Intriguing examples include the 
inhibition of glutamate-uptake transporters by zinc135 
(another mechanism by which zinc could modulate 
glutamatergic synaptic transmission), and the effects 
of zinc on the cocaine-sensitive site of dopamine-
reuptake transporters (a potential therapeutic target 
for the treatment of cocaine abuse)136.

Zinc and brain function
Brain excitability. Zinc inhibits both excitatory and 
inhibitory receptors, so, in principle, it could make 
the forebrain neurons more excitable, less excitable or 
have no net effect. However, the administration of zinc 
chelators has generally produced outright paroxysmal/
epileptiform brain activity, lowered the threshold for 
seizure induction, or increased the excitatory post-
synaptic potentials (EPSPs) or excitatory postsynaptic 
currents (EPSCs) at NMDA receptor synapses, which 
indicates that the dominant effect of Zn2+ in the normal 
brain is to reduce excitability, thereby functioning as an 
endogenous anticonvulsant. Unfortunately, the converse 
treatment, which involves intracranial administration 
of zinc salts, is directly cytolethal and proconvulsive137 
(but see REF. 138).

Table 1 | Zinc-sensitive targets in the central nervous system

Specific protein Main effect of zinc References

Glutamate receptors

AMPA Up- and downregulates 254

NMDA Tonic downregulation
Phasic effect disputed

99,255

Metabotropic Downregulates 256

Other receptors

GABAA Mostly downregulates 17,257

GABAB Mimics, downregulates 258

Glycine Upregulates 125

Sigma 2 Mimics 259,260

Acetylcholine Up- and downregulates 124

Adenosine Up- and downregulates 121

Serotonin Downregulates 261

Dopamine Up- and downregulates 117,118

Catecholamine Up- and downregulates 120

Melanocortin Upregulates 262

Zinc receptor Mobilizes intracellular Ca2+ 134

Proton receptor Zinc–proton synergy 89

Opioid Downregulates 263

Channels

Ca2+ Blocks, inhibits 264

K+ Up- and downregulates 265

Na+ Mixed 102,266

Cl– Facilitates 267

Ca2+-amyloid Blocks 268

Transporters

Glutamate Decreases uptake 135,269

Dopamine Decreases uptake 136,270

AMPA, α-amino-3-hydroxy-5-methyl-4 isoxazole propionic acid; GABAA/GABAB, γ-aminobutyric 
acid type A/B; NMDA, N-methyl-D-aspartate.
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Synaptic plasticity. The conspicuous concentration of 
glutamate- and zinc-releasing terminals in the neocor-
tex and limbic structures (the septum and amygdala) 
indicates that glutamate- and zinc-releasing synapses 
might have a special role in the synaptic plasticity 
that underlies learning and memory139,140. It has been 
suggested that both developmental and experiential 
plasticity are zinc-dependent.

The plasticity of the young mammalian brain is 
frequently accompanied by changes in innervation 
by zinc-containing neurons. For example, the diff-
erentiation of striosomes in the caudate–putamen is 
first signalled by the appearance of zinc-containing 
boutons in each striosome141, followed by innervation 
that separates the striosomes from the matrix. A simi-
lar example can be observed in the lateral geniculate 
nucleus, where zinc-containing boutons appear briefly 
when the nucleus undergoes reorganization after 
de nervation142. Furthermore, in visual and somato-
sensory cortical areas, zinc-containing innervation is 
an early marker for the various columns and barrels 
that delineate sensory fields19,143, and changes in the 
early sensory experience are reflected in changes in 
the pattern of zinc-containing innervation19.

The idea that glutamate- and zinc-releasing synapses 
might have a zinc-dependent mode of experiential 
plasticity has been tested repeatedly, with mixed results. 
The role of zinc in LTP at the mossy fibre–pyramidal 
synapse, where the giant zinc-filled mossy boutons 
contact the CA3 pyramidal neurons, has been studied 
by five groups. Three groups found no change in LTP 
as a result of zinc chelation37,92,139, whereas the fourth 
found that blocking zinc signalling blocked LTP144 and 
the fifth found that LTP could be blocked or induced 
by zinc chelation or delivery, respectively17. The dif-
ferences in preparation and methods that account for 
these discrepancies remain to be established.

Acute toxicity of free zinc
Although zinc lacks redox activity and has traditionally 
been regarded as relatively non-toxic145, there is increas-
ing evidence that free ionic zinc is a potent killer of neu-
rons and glia. Yokoyama and associates146 showed that 
15 min exposure to 300–600 µM zinc results in exten-
sive neuronal death in cortical cell culture. Combined 
with the discovery that neurons store up to 300 µM of 
free zinc in their terminals147 and release zinc when they 
are depolarized29,38,39, these findings indicated that zinc 
has an active role in neuronal injury.

This possibility was strengthened by the observa-
tion that membrane depolarization — which invariably 
accompanies acute brain injury148,149 — greatly increases 
the potency of zinc as a neurotoxin. For instance, in 
cortical cell culture, depolarization with high concen-
tration (25 mM) potassium media allows just a 5-min 
exposure to 100 µM zinc to kill most neurons150. This 
mechanism of increased toxicity probably involves zinc 
influx, and subsequent calcium influx, through L-type 
calcium channels. NMDA and calcium-permeable 
AMPA/kainate channels might also provide routes for 
zinc entry 59,70,151.

Recent work using zinc-buffered cell growth media 
has shown that eukaryotic cells die if grown in media 
that contains free zinc in excess of ~100 nM (pZn  =  7)83. 
Preliminary estimates indicate that the physiological 
[Zn2+]i in eukaryotic cells is in the low picomolar range 
(pZn ~12.5)43. When the [Zn2+]i falls to the levels that 
are induced by strong chelators (pZn>15), apoptosis 
can be triggered152. When the [Zn2+]i rises to nanomolar 
concentrations (pZn< 9), toxicity ensues56,153.

Zinc toxicity in vivo. The idea that zinc toxicity could 
contribute to neuronal injury in vivo was first sug-
gested in 1988, on the basis of findings in rats that had 
undergone prolonged seizures or transient cerebral 
ischaemia30,154,155. Staining of adjacent brain sections 
from these animals with TSQ and acid fuchsin revealed 
a striking correlation between zinc accumulation in cell 
bodies and cell death. It was shown later that both neu-
ronal death and zinc accumulation in transient cerebral 
ischaemia were reduced or prevented by the zinc chela-
tor calcium edetate (CaEDTA), but not by the non-zinc 
chelator zinc edetate (ZnEDTA)156. Subsequently, the 
principle of endogenous zinc toxicity as a contributing 
mechanism has been investigated and shown to be valid 
in other injury models, including blunt head trauma33, 
focal ischaemia157, oxygen–glucose deprivation 
in vitro158 and glucose deprivation in vivo159.

Zinc translocation. Vesicular zinc was initially 
thought to be the only releasable pool of zinc154, and 
it was assumed that the zinc that appears in injured 
neurons was probably of presynaptic origin154. The 
later discovery that zinc could enter neurons through 
various voltage- and glutamate-gated channels sup-
ported this hypothesis7,71, as did the discovery that 
the membrane-impermeant zinc chelator CaEDTA 
substantially reduced zinc accumulation in degen-
erating neurons33,156,157. Because CaEDTA remains in 
the extracellular space, this finding was taken to be 
consistent with the chelation of released zinc in the 
extracellular space. 

If presynaptically-released zinc were the only source 
of toxic zinc that contributed to the degeneration of 
postsynaptic neurons, animals with no presynaptic zinc 
should not be susceptible to such zinc toxicity in excito-
toxic brain injury situations. Mice that lack the zinc 
transporter ZnT3 show no histochemically reactive 
zinc in their presynaptic vesicles, and this is associated 
with a substantial reduction in the amount of neuronal 
zinc staining and neuronal death in the CA3 region of 
the hippocampal formation, where synaptic release of 
zinc from the mossy boutons is extensive160. However, 
other brain regions in which the synaptic zinc input is 
scanty did not show diminished zinc staining in these 
mutants, which indicates that the zinc in injured neu-
rons comes from both presynaptic and other sources.

Other toxic mechanisms. The ‘zinc-translocation’ 
hypothesis is now recognized as incomplete69 for sev-
eral reasons. First, zinc accumulation in degenerating 
neurons is always observed, to some extent, in areas 
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that are only lightly innervated by glutamate- and zinc-
releasing fibres. For example, thalamic neurons are 
surrounded by terminals that lack vesiclular zinc13,154, 
but still show zinc accumulation following ischaemia 
or seizures156. Second, even in Znt3-null mice, extensive 
zinc accumulation has been observed in degenerating 
CA1 and thalamic neurons160. Last, the recent discov-
ery that extracellular CaEDTA can remove zinc from 
inside cells and even presynaptic vesicles161 indicated 
that zinc blockade by CaEDTA could no longer be 
accepted as evidence that the zinc had travelled through 
the extracellular fluids.

Zinc accumulation in degenerating neurons of 
Znt3-null mice indicates that there are other dyna mic 
zinc sources besides that found in synaptic vesicles. 
Zinc can be mobilized from MT3, and possibly also 
from mitochondria, and this intracellular zinc release 
could lead to a somatic release of zinc into the extra-
cellular fluid with subsequent zinc translocation into 
neighbouring cells. The direct role of nitric oxide in 
releasing this MT3 pool of zinc during excitotoxicity 
was recently shown by Wei74 (FIG. 3) and others76,77 (for 
a review, see REF. 75).

Zinc-initiated cell death pathways
Initially, the toxic effect of zinc was puzzling, because 
zinc had been considered to be a relatively innocuous 
metal and was known to inhibit apoptosis in diverse 
cell systems162.

Although zinc is not itself an oxidant, several lines 
of evidence indicate that zinc toxicity is mediated 
largely by oxidative stress. First, zinc-induced cell death 
is accompanied by increased levels of super oxides 
and lipoperoxides, which are markers for oxidative 
injury163–165. Second, zinc-induced cell death is attenu-
ated by various antioxidative measures166,167. Last, free-
radical-generating enzymes, such as NADPH oxidase, 
are induced and activated after zinc exposure, and their 
inhibitors attenuate zinc toxicity168.

Zinc-induced apoptosis. Neurons that are briefly 
exposed to high concentrations of zinc show signs of 
necrosis, such as cell body swelling and destruction 
of intracellular organelles163. However, under condi-
tions of less fulminant zinc toxicity, signs of apoptosis, 
such as DNA fragmentation and caspase activation, are 
observed166,169.

The mechanisms for zinc-triggered apoptosis 
are now being identified. In zinc-exposed neurons, 
both  the neurotrophin receptor p75NTR and p75NTR-
associated death executor (NADE) are induced170, 
which is a combination that can trigger caspase 
activation and apoptosis171. In addition, zinc can 
trigger the release of pro-apoptotic proteins, such as 
cytochrome c and apoptosis-inducing factor (AIF), 
from mitochondria172. It is not known to what extent 
apoptosis contributes to zinc-related acute brain 
injury, but in rat models of ischaemia or seizures, 
in which zinc is likely to function as a neurotoxin, 
p75NTR and NADE are co-induced in neurons that 
undergo cell death170,173.

Nitric oxide and zinc toxicity. Nitric oxide has a pivotal 
role in zinc toxicity. It releases seven zinc ions from 
each MT molecule77, and the brain-specific MT3 
isoform has a considerably lower threshold for zinc 
release by nitric oxide than the other isoforms174. 

Inhibition of nitric oxide synthase (NOS) markedly 
reduces the release of zinc from brain slices74 and 
reduces the appearance of zinc staining after trau-
matic or epileptic brain injury (C.J.F. and R. Masalha, 
unpublished observations) or hypoglycaemic brain 
injury158, so it is clear that nitric oxide-mediated 
release of zinc from MT has a crucial excitotoxic role. 
Nitric oxide also rapidly releases zinc from presynaptic 
terminals175, thereby contributing to cell death through 
the zinc-translocation mechanism. Furthermore, 
elevated intracellular zinc induces and activates nNOS 
in cultured cortical neurons176, so zinc and nitric oxide 
can both trigger a destructive cycle.

Poly-ADP-ribose polymerase. The final pathway to 
zinc-induced cell necrosis seems to occur through 
poly-ADP-ribose polymerase (PARP) activation, 
which has been shown in other cases of predominantly 
necrotic cell death177. DNA damage induced by oxida-
tive and nitrative stresses activates PARP, which transfers 
the ADP-ribose moiety from nicotinamide adenine 
di nucleotide (NAD+) to various target proteins. As up 
to several hundred moieties are transferred to one pro-
tein molecule, continued activation of PARP results in a 
drastic depletion of NAD+ and ATP178. Consistent with 
the idea that PARP activation is limited to necrosis177, 
induction of apoptosis by chronic exposure to low con-
centrations of zinc169 is not attenuated by the deletion 
of PARP1 REF. 179.

Zinc and neurodegenerative disease
Alzheimer’s disease. One of the pathological hallmarks 
of Alzheimer’s disease is the marked accumulation of 
amyloid-β (Aβ) protein, in the form of senile plaques 
and cerebrovascular amyloid deposits180–182. There 
is considerable evidence that free zinc in the extra-
cellular fluid induces amyloid deposition183,184 (FIGS 4 
and 5), and early-phase clinical trials indicate that zinc 
chelation inhibits Aβ-plaque deposition185,186.

The Aβ peptide is produced from the proteolytic 
cleavage of amyloid precursor protein (APP)182. A spe-
cific and saturable binding site for zinc (KD = 750 nM) 
has been reported in the cysteine-rich region on the 
ectodomain of APP187,188. This site has homology 
to all known members of the APP superfamily and 
the amyloid precursor-like proteins 1 and 2 (APLP1 
and APLP2)187, which indicates that zinc interaction 
might have an important, evolutionarily conserved 
role in APP function and metabolism. Many obser-
vations indicate a role for zinc in sustaining the 
adhesiveness of APP during cell–cell and cell–matrix 
interactions189,190.

Aβ40 specifically and saturably binds zinc, mani-
festing higher-affinity binding (KD = 107 nM) with 
a 1:1 (zinc:Aβ) stoichiometry and lower-affinity 
binding (KD = 5.2 µM) with a 2:1 stoichiometry183,184. 
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Because the pZn of the extracellular brain milieu is 
apparently in the 8–9 range ([Zn2+] ~1–10 nM), it 
would be expected that Aβ40 would bind little zinc 
under normal conditions. However, events that lead 
to a sustained decrease in pZn owing to a sustained 
release of zinc from cells, such as a transient hypop-
erfusion, head trauma or even local paroxysmal 
neuronal firing75, could lead to the saturation of 
the higher- and (potentially) the lower-affinity zinc 
sites. Zinc release in excess of 100 nM (pZn = 7) has 
been observed in such circumstances43.

The zinc-binding site in Aβ40 has been mapped to 
a stretch of contiguous residues between amino-acid 
residue positions 6 and 28, and the histidine residue at 
position 13 seems to have a crucial role in zinc-medi-
ated aggregation191. Occupation of the zinc binding 
site192 inhibits α-secretase-type cleavage, and might 
influence the generation of Aβ from APP, as well as 
increasing the biological half-life of Aβ by protecting 
the peptide from proteolytic attack183. Zinc rapidly pre-
cipitates synthetic human Aβ40 REF. 184, and chelation 
treatment completely reverses this precipitation193.

Although zinc-induced Aβ precipitation at pH 7.4 is 
highly specific to zinc, copper and iron can also induce 
partial aggregation, which increases substantially under 
mildly acidic conditions (pH 6.6)194. Zinc, copper and 
iron are all markedly enriched in amyloid plaques195 
TABLE 2, but only copper and zinc co-purify with the 
Aβ extracted from post-mortem human brains196 and 
have been shown to coordinate with Aβ in plaques197.

 There is considerable indirect evidence that APP 
and Aβ might function as copper chaperones or efflux-
ers183,184,194,198. In addition, knockout mice that lack either 
APP or APLP2 show specific elevations in brain and 
liver copper levels199, whereas overexpression of APP or 
of APP’s 100-amino-acid carboxy-terminal (APP-C100) 
fragment results in decreased copper levels200,201. Studies 
in yeast, as well as primary neuronal cultures from APP-
knockout mice and APP-transgenic mice202, confirm 
that APP and Aβ expression mediates the export of a 
significant fraction of neuronal copper.

In the mouse brain, copper and iron levels increase 
with age203. One idea to explain this is that Aβ REF. 198 
becomes hypermetallated with age, and is abnormally 
oxidized during the physiological processing of cop-
per204. Abnormal binding of copper to Aβ could yield 
two adverse outcomes: toxicity, mediated by redox 
activity, and oxidative modification of Aβ. Aβ–Cu2+ 
complexes are strongly reductive, and generate hydro-
gen peroxide catalytically from biological reducing 
agents, including cholesterol196,205,206. The redox activity 
is stronger for human Aβ42 than for human Aβ40 or the 
rat Aβ peptide, which correlates with the toxicity of the 
peptide in cell culture207. Copper-mediated oxidation 
of Aβ causes damage to histidine and tyrosine side-
chains208, dityrosine crosslinking209 and sulphoxidation 
of the sole methionine residue that is located at posi-
tion 35 REF. 210. This methionine residue is essential 
for keeping metallated Aβ in its normal (redox-silent) 
location within lipid membranes211,210. Therefore, 
oxidation of Aβ by copper might be the first step in 
the liberation of soluble Aβ species that can later be 
precipitated by zinc (FIG. 4). This might explain why 
almost all the Aβ deposits found in the brains of 
individuals with Alzheimer’s disease are oxidized213. 
The generation of hydrogen peroxide by soluble but 
oxidized forms214 of Aβ might explain the association 
of brain Aβ accumulation with the severe peroxidative 
damage that is characteristic in the brains of individu-
als with Alzheimer’s disease215 and of APP transgenic 
mice216. Zinc and copper chelators reverse Zn/Cu-
induced aggregation of synthetic Aβ in vitro217, inhibit 

Figure 4 | Zinc in the amyloid-β plaques of Alzheimer’s 
disease. Three cortical senile plaques from post-mortem 
human brains are immunostained for amyloid-β (a), and 
three similar plaques are stained for zinc using 
N-(6-methoxy-8-quinolyl)-p-toluenesulphonamide 
(TSQ) fluorescence (b). Reproduced, with permission, 
from REF. 204 © (2003) Elsevier Science.

Figure 5 | Proposed model for pathogenic copper and zinc interaction with amyloid-β 
in Alzheimer’s disease. Copper and iron levels increase in specific subcellular 
compartments of the brain with age. Amyloid-β (Aβ) becomes overwhelmed in its attempt to 
contain or transport copper, and becomes oxidized by copper or hydrogen peroxide (H2O2). 
This leads to protease-resistant dityrosine species, as well as oxidation of methionine 35 on 
Aβ, which allows Aβ to escape its constitutive membrane compartment. This drives up the 
levels of soluble Aβ (monomeric and oligomeric) in the brain. When bound to copper, these 
forms are toxic owing to their redox activity and the catalytic generation of  H2O2. These 
soluble Aβ species drift into the interstitial spaces of the brain, where they are driven out of 
solution by the exceptionally high concentrations of zinc influx at the glutamatergic synapses 
and the perivascular spaces, resulting in plaque formation and cerebral amyloid angiopathy 
(CAA). Although the zinc partially quenches Aβ-mediated redox activity, the amyloid deposits 
are still sites of considerable H2O2 formation and oxidation.
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Aβ-mediated hydrogen peroxide formation196,206 and 
solubilize Aβ from amyloid deposits in post-mortem 
brain tissue from patients with Alzheimer’s disease215.

Studies of the impact of the genetic ablation of 
ZnT3 in the Tg2576 mouse model of Alzheimer’s 
disease have provided evidence that synaptically 
released zinc underlies amyloid pathology. We found 
that the complete absence of any staining for synaptic 
vesicle zinc in the knockout mouse was accompa-
nied by a profound reduction in the cerebral plaque 
load216. Both synaptic zinc levels and plaque burden 
increased to a greater degree with age in female com-
pared with male mice, which indicates that sex hor-
mones influence synaptic zinc levels216. Preliminary 
evidence indicates that oestrogen might reduce the 
level of synaptic vesicle zinc, perhaps by modulating 
the expression level of the adaptor protein 3 (AP3) 
complex, which is required for the correct insertion 
of ZnT3 into vesicular membranes216. Cerebral amy-
loid angiopathy is also decreased in ZnT3-knockout 
Tg2576 mice compared with Tg2576 controls, which 
indicates that there might be a ZnT3-dependent com-
munication of plasma and neuronal zinc through the 
cerebrovascular walls217.

Besides the direct effect of the pZn on amyloid 
aggregation, it is also possible that zinc contributes 
to the pathology of Alzheimer’s disease through 
interaction with other zinc-dependent or zinc-
containing proteins. Considering that ~3% of all proteins 
contain zinc-binding motifs, this is a likely prospect. 
Potential candidates that might have an indirect, 
zinc-related role in Alzheimer’s disease include 
α2-macroglobulin, nerve growth factor-β (NGFβ), 
S100 calcium-binding protein β (S100β), metal-
lothionein and zinc-dependent proteases. Several 
reports have indicated that in neocortical tissue that 
is affected by Alzheimer’s disease, zinc levels rise in 
excess of the molar increase of Aβ (for a review, see 
REF. 14). Tissue fractionation studies to elaborate this 
elevation have not yet been reported, but it is prob-
able that several proteins will have increased zinc 
stoichiometry in advanced Alzheimer’s disease.

Amyotrophic lateral sclerosis. Two abnormalities of 
zinc-metalloproteins are implicated in the patho-
physiology of amyotrophic lateral sclerosis (ALS or 
Lou Gehrig’s disease). First is the well-established fact 

that the familial form of ALS is caused by mutations 
in the metalloenzyme Cu/Zn-superoxide dismutase 
(SOD)218,219. Mutations in SOD are associated with 
ALS-like spinal motor defects in mice, and different 
mutants have different amounts of wild-type enzymatic 
activity, which range from 0% (arginine substituted for 
histidine at amino acid position 46 (His46Arg) and 
Gly85Arg) to 100% (Gly37Arg). SOD1-knockout mice 
do not develop the ALS phenotype220, and the age of 
onset and duration of disease in ALS-transgenic mice 
is unaffected by levels of wild-type SOD1 activity221, 
which indicates that the toxicity of mutant SOD1 is 
the result of a gain of function.

Several gain-of-function redox reactions have been 
proposed for mutant SOD1, and, currently, at least 
two seem plausible. Increased peroxidase activity has 
been reported in vitro221,222 in the His48Gln, Ala4Val, 
and Gly93Ala variants, although not consistently222. 
Increased peroxidase activity in vivo has been reported 
in the Ala4Val and Gly93Ala223 species. Copper-replete, 
zinc-deficient SOD1 has been reported to confer tox-
icity by producing peroxynitrite according to these 
reactions, and loss of zinc from mutant SOD1 has been 
proposed to be a primary pathogenic event224.

The second zinc metalloprotein that is aberrant 
in patients with ALS is metallothionein, immuno  -
  re activity to which is elevated in the brain and liver218,219. 
The same pattern occurs in a transgenic-mouse 
model of ALS: SOD1-Gly93Ala-transgenic mice show 
increased MT1, MT2 and MT3 expression in astrocytes 
and increased MT3 in neurons225. Metallothionein 
elevation is probably compensatory (for example, 
in response to oxidative stress) and protective. In 
the Gly93Ala mutant SOD1 transgenic model of ALS, 
deficiency of MT1, MT2 or MT3 exacerbates the 
ALS phenotype226,227.

Zinc as a therapeutic target
Whether the aim is to treat an acute, toxic excess of free 
zinc, as occurs in excitotoxic brain injury, or to treat a 
possible chronic elevation of free zinc, as might occur 
in Alzheimer’s disease, the pZn of the brain must be 
maintained within physiological limits. As mentioned 
above, the pZn of the mammalian brain seems to be 
in the range of 10–20 nM43, and deviations substan-
tially above or below this range are proconvulsive and 
cytolethal, respectively (FIG. 6).

Table 2 | Metal levels in patients with Alzheimer’s disease and healthy individuals

Location Zinc µg g–1 (µM)* Copper µg g–1 (µM)* Iron µg g–1 (µM)*

Plaque rim 67 (1024)‡ 23 (357)‡ 52 (938)‡

Plaque core 87 (1327)‡ 30 (474) 53 (951)‡

Total senile plaque 69 (1055)‡ 25 (393)‡ 53 (940)‡

Alzheimer’s neuropil 51 (786)§ 19 (304) 39 (695)

Control neuropil 23 (346) 4 (69) 19 (338)

*Numbers in brackets represent molar concentrations, which were converted with the assumption of a sample density equivalent to 
1 g cm–3; ‡p<0.05 (plaque values compared with neuropils from patients with Alzheimer’s disease); §p<0.05 (neuropils from patients with 
Alzheimer’s disease compared with neuropils from control individuals). Adapted from REF. 195.
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Upstream regulation of free zinc. One novel approach to 
controlling pZn would be to slow or reduce the release 
of free zinc. As nitric oxide seems to trigger much of 
the zinc release that occurs in injury scenarios (see 
above), inhibiting whichever NOS is responsible for 
the zinc-releasing  nitric oxide is a plausible approach 
to reducing zinc-induced brain injury. Inhibition of 
nNOS has shown promise in reducing both the amount 
of zinc released and the number of zinc-staining neu-
rons (and, therefore, potentially the number of injured 
neurons) after excitotoxic injury74,75,159.

Buffering free zinc. There are three options for zinc-
based drug development. First, zinc buffers with 
equilibrium constants in the 10–8 to 10–9 range would 
maintain pZn in the optimal range (9>pZn>8), thereby 
preventing excess zinc damage while avoiding a harm-
ful degree of zinc deficiency. Second, for acute brain 
injuries (for example, stroke, trauma, ischaemia and 
hypoperfusion), short-lived chelation with compounds 
that have higher binding affinity might allow some 
control of zinc toxicity with minimal deleterious effects 

of lowered zinc. Last, ‘pro-buffers’ or ‘tethered buffers’ 
could be targeted towards specific cytological compart-
ments, acting on zinc only when or where such zinc 
buffering is therapeutic.

The strategy of using a relatively weak chelator has 
already produced promising results in both animal and 
human studies of Alzheimer’s disease. The quinoline 
compound clioquinol — a lipophilic chelator that 
crosses the blood–brain barrier — binds zinc in the 
mid-nanomolar range. Oral clioquinol has been shown 
to dramatically reduce the amount of amyloid plaques in 
transgenic mice and to slow the rate of cognitive decline 
in patients with Alzheimer’s disease185,186,202.

Another promising use of the low-affinity approach 
has been reported for the excitotoxic, acute zinc-toxicity 
syndrome in which the zinc ionophore, pyrithione, can 
rescue cultured cells from zinc toxicity if administered 
at the right time228. Pyrithione presumably transports 
free zinc down its concentration gradient across the 
membrane, thereby rescuing cells from zinc toxicity 
when intracellular pZn is lower than extracellular pZn. 
Unfortunately (but not unexpectedly), pyrithione exac-
erbates zinc toxicity if applied when the extracellular 
pZn is lower than the intracellular pZn43.

The idea of a ‘pro-drug’ chelator is also under 
active investigation as a treatment for Alzheimer’s 
disease. A classical strong chelator (BAPTA) is ren-
dered lipophilic and inactive by the addition of alkyl 
chains. Once through the blood–brain barrier and 
embedded in a cell wall (lipid membrane), the pro-
drug (DP-109) can be transformed into active BAPTA 
by membrane lipases. It is, therefore, expected that 
DP-109 will chelate metals predominantly in the 
vicinity of cell membranes. In Tg2576 mice, DP-109 
significantly reduced Aβ-plaque load by ~60–80% 
without noticeable side effects229 (FIG. 7). The related 
compound DPb99 has also proved efficacious in small 
samples of human patients as a neuroprotectant against 
the zinc-mediated injury that is caused by stroke and 
during bypass surgery230.

Downstream control of zinc-triggered signals. Therapies 
that target later events are also promising. As discussed 
above, diverse serial and parallel events contribute to 
zinc-induced cell death. First, as zinc toxicity is largely 
mediated by oxidative and nitrosative stress8,163,165,176,, 
antioxidants and NOS inhibitors might be useful. 
Second, the targeted inhibition of PARP179,198 might be 
effective in reducing zinc toxicity. Third, anti-apoptosis 
measures, such as caspase inhibition, might be a pos-
sibility. Although these mechanisms have been shown 
to contribute to zinc toxicity in cell culture, they are 
considered more or less general mechanisms of cell 
death in acute brain injury. At present, it is not known 
whether any particular neuroprotectant is more effective 
against zinc toxicity than other injury mechanisms. As 
a result, more studies might be needed to identify drug 
targets that are more specific to zinc toxicity. NADPH 
oxidase might be such a target, because it is induced and 
activated during zinc toxicity but much less so during 
calcium excitotoxicity231.

Figure 6 | Extracellular zinc buffering. The concentration 
of free zinc in the brain is normally low, in the 1 to 10 nM 
range (pZn = 8–9). During excitotoxic insults (such as 
stroke, cardiac arrest, head trauma or seizures), pZn falls, 
and neurons are at risk of zinc-induced toxicity. 
Alternatively, if the zinc concentration falls too low 
(pZn >> 10), there is increased excitability in the cortical 
circuitry, and, if deficiency is maintained for too long, 
deficiency-induced apoptosis. Buffering can control pZn, 
both in vivo and in vitro, which prevents these damaging 
processes.

Figure 7 | Effect of zinc and copper chelation on amyloid neuropathology in a 
transgenic mouse model of Alzheimer’s disease. Tg2576 mice were given either the 
control vehicle (a) or the metal chelator DP-109 (b, 5 mg kg–1) daily for 3 months, after which 
their brains were removed and assayed for congophilic amyloid deposition around blood 
vessels (arrows) and parenchyma (arrowheads). Sections show Congo red-stained cortex. 
The number of congophilic vessels per brain section is shown in c. Mean, n = 13;  standard 
error of the mean, n = 15); *significant difference (p<0.01). Reproduced, with permission, from 
REF. 229 © (2004) Elsevier Science.
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Pyruvate protects against zinc-induced cell death 
in cortical and oligodendrocyte progenitor cell cul-
tures232. Pyruvate protection is quite specific to zinc 
toxicity, because pyruvate does not attenuate calcium-
overload excitotoxicity in the same cortical cell cul-
ture233. Consistently, in a rat model of transient global 
ischaemia in which the role of zinc is established155,156, 
pyruvate almost completely blocks zinc accumula-
tion as well as neuronal death throughout the brain. 
A direct antioxidative effect and/or normalization of 
NAD+ levels might contribute to cytoprotection by 
pyruvate234,235.

Another possible neuroprotectant with specificity 
against zinc-mediated injury is tissue plasminogen 
activator (tPA), which is currently used for throm-
bolysis in human patients236. Although most of tPA’s 
biological effect is mediated by its protease activity237, 
blockade of zinc toxicity by tPA takes place even in 
the presence of excess protease inhibitors238. Although 
the protective mechanism is still unclear, tPA does 
not seem to function by reducing extracellular zinc or 

zinc influx into cells239. A preliminary result indicates 
that certain membrane receptors with tyrosine kinase 
activity might mediate this effect, as the epidermal 
growth factor receptor tyrosine kinase inhibitor C56 
can reverse the protection (J. Y. Koh, unpublished 
observations). If the effective moiety and its cognate 
membrane receptors can be identified, development 
of tPA-derived peptides that prevent zinc toxicity 
might be possible.

Conclusions and future directions
Like calcium, zinc is proving to be an essential and 
ubiquitous ionic signal in a myriad of cells and tis-
sues. Because fluorescent calcium probes frequently 
respond to zinc as well, separating calcium signals 
from zinc signals will be mandatory in future research. 
Therapies based on manipulating zinc signals by pre-
venting release, blocking channels, altering transport 
and buffering the pZn of target tissues are all likely 
to have increasingly important roles in twenty-first 
century medicine.
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