IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010 1

Semantic-based Mashup of Composite
Applications

Anne H.H. Ngu, Michael P. Carlson, Quan Z. Sheng, Member, IEEE, and Hye-young Paik

Abstract—The need for integration of all types of client and server applications that were not initially designed to interoperate is gaining
popularity. One of the reasons for this popularity is the capability to quickly reconfigure a composite application for a task at hand, both
by changing the set of components and the way they are interconnected. Service Oriented Architecture (SOA) has recently become
a popular platform in the IT industry for building such composite applications with the integrated components being provided as Web
services. A key limitation of solely Web service based integration is that it requires extra programming efforts when integrating non
Web service components, which is not cost-effective. Moreover, with the emergence of new standards, such as Open Service Gateway
Initiative (OSGi), the components used in composite applications have grown to include more than just Web services. Our work enables
progressive composition of non Web service based components such as portlets, web applications, native widgets, legacy systems,
and Java Beans. Further, we proposed a novel application of semantic annotation together with the standard semantic web matching
algorithm for finding sets of functionally equivalent components out of a large set of available non Web service based components.
Once such a set is identified the user can drag and drop the most suitable component into an Eclipse based composition canvas. After
a set of components has been selected in such a way, they can be connected by data-flow arcs, thus forming an integrated, composite
application without any low level programming and integration efforts. We implemented and conducted extensive experimental study
on the above progressive composition framework on IBM’s Lotus Expeditor, an extension of a SOA platform called the Eclipse Rich
Client Platform (RCP) that complies with the OSGi standard.

Index Terms—Mashup, composite applications, Web services, semantic Web, semantic annotation.

O

1 INTRODUCTION ponents could be a tedious and time consuming task. For

Composite applications are a line of business applicatiof@MPle, in a portal environment, it is possible to query
constructed by connecting, or wiring, disparate softwaf8€ System for the available components. However, the list
components into combinations that provide a new level geturned is typically based on criteria that have no releean

function to an end user without the requirement to writl® the application assembler (e.g., in alphabetical or last
any new code. The components that are used to builgUBdate time). Interfaces like Google Code Search [3] allow

composite application are generally built within a Servick€ developers to search application code, but it does fuv al

Oriented Architecture (SOA). Many of the first SOA platform&hem to search using the higher level concepts of a component

exclusively relied on Web services (WSDL-based) as comp@t & model. On the other end of the spectrum, having to

nents in the composite application. The composition is doffgdnually classify and describe every aspect of components
generally using process based languages such as BPEL fﬁ _browsing and searching can be a painstaking task when

The Web-service-only integration framework requires @xt1andling a large number of components. _
programming efforts when integrating with non-Web service Secondly, none of the existing OSGi environments provides

components, which is not cost effective. With the emergengeV@y t0 leverage the semantic search techniques that have

of new standards, such as Open Service Gateway InitiatREN developed to assist users in locating compatible com-
(OSGi) [2], the components used in composite applicatioHQ”_emS like in Web service-based composite applications.
have grown to include more than just Web services. CorNlike Web services, many non-Web service components
ponents can be built from web applications, portlets, eati'ave graphical user interfaces built from technologieshsuc
widgets, legacy systems, and Java Beans. There are sev&faPOrtiets, Eclipse Views, and native application windows
challenges to mashing up non-Web service components iMgreover, there is currently no standard way of categogizin

composite applications, especially when components are @89 cataloging components for use in a composite applizatio
veloped at different times, by different groups, usingehiét Rather, components are discovered by assemblers who must
technologies, naming conventions, and structures. hunt around the Web, in documentation, and searching the

Firstly, a given enterprise may have hundreds of simildecally installed system.. This does not p_rovide an easy and
components available for mashup in a catalog, but manuaW”ageable means of finding and selecting components. De-

searching and finding compatible and complementary coRgnding on the technology used or the type of user interface
being presented, certain components may not be valid for use

e Anne H.H. Ngu is with the Department of Computer ScienceasT&tate ih a p_arUcuIar composite application. Dlsc_ernlng thislddoe
University, TX 78666-4616, USA. E-mail: angu@txstate.edu a tedious process up front, or could result in repeated syafle

e Michael P. Carlson is with IBM, Quan Z. Sheng is with the Ursity of trial and error, especially when the target environmenpsuis
Adelaide, Hye-young Paik is with the University of New Solfties. a variety of technologies

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010

After suitable components have been discovered, the as- considering the unique characteristics of a component
sembly of composite applications should not require tesliou (i.e., coexistence of graphical user interface descHiptio
and detailed programming as required of a typical software and new techniques of merging semantic descriptions
developer. Users, at least the savvier users, should be able across multiple components, a much more accurate search
to compose applications with minimal training. For a call result for compatible components can be achieved.

center in an enterprise, this may mean being able to assembl¢he paper is organized as follows. Section 2 outlines the

a composite application on the fly. This may involve, fopverall architecture of our progressive composition frevore.

instance, extracting a piece of caller's information fromeo Section 3 details the concepts of composite applicatiorimat

application and feeding it as input to other applicatiorst thing, merging multiple components into a single descriptive

are currently running on her desktop for other contextufdrmat for matching, and modeling of components GUI

information that might help in answering pressing queriegharacteristics. Section 4 provides a set of experimessgs|ts,

For a user in a small business, this may mean assembligigy analysis of progressive composition framework based on

a GPS routing application together with the list of errands @emantic web matching technique with SAWSDL annotations.

deliveries for the day and producing a more optimized routgection 5 describes the related work and Section 6 provides
We have developed a novel approach that enables progités- conclusion and future work.

sive composition of non Web service based components such

as portlets, web applications, native widgets, legacyesyst 2 PROGRESSIVE COMPOSITE APPLICATION

and Java I_Beans. Our approach e>_<pI0|ts seman_uc annOt.atl@lQAMEWORK

together with the standard semantic web matching algorithm

for finding sets of functionally equivalent components ofit &1 Application Components

a large set of available non Web service based componeiise application components referred to in this paper gener-

The identified components can be connected by data-flaly contain GUI interfaces, built from technologies such a

arcs in an Eclipse based composition canvas, thereby formiFace, JSPs, Servlets/HTML, Eclipse Standard Widget Toolk

an integrated, composite application without any low lev§EWT), Swing, native windowing systems, etc. Like Web

programming and integration efforts. The main contribugio services and Enterprise Java Beans, these applicationazomp

of this paper are as follows: nents can take programmatic inputs and produce programmati

outputs. The programmatic inputs will generally cause gean

« The paper first shows that existing techniques, t€Cly the graphical user interface, and user interaction wig t
nologies, and algorithms used for finding and matchi

"Graphical user interface will cause the programmatic astpu

Web service components (WSDL-based) can be reusggye fired. An example of an application component referred
with only minor changes, for the purpose of finding, in this paper is a Portlet [7].

compatible and complementary non-Web service based
components for composite applications. These compo-] . o
nents may include graphical user interfaces, which afe? Lotus Expeditor Composite Application Frame-
not artifacts described in Web service components. I%’/Ofk
building on the techniques initially developed for WelWWe adopt the IBM Lotus Expeditor [8] platform to develop
services matching, finding useful and valid componenépplication components and to mashup composite applica-
for composite applications using high level concepts t®ons. Lotus Expeditor is an extension of an Eclipse Rich
possible. This enables the progressive construction Gfient Platform that complies with OSGi standard and SOA
composite applications by end users from a catalog afchitecture. The Expeditor contains a Composite Appboat
available components without deep knowledge of tHafrastructure (CAI) and an associated Composite Appbeat
components in the catalog. This is an advantage oueditor (CAE). Figure 1 is a simplified architecture diagram o
existing mashup tools which require mastering of varyinigotus Expeditor Framework. CAl is the runtime environment
degrees of programming skills [4], [5]. for the composite applications. It has two main components
« Being able to automatically find components suitablealled Topology Manager and PropertyBroker. The Topology
for a composite application is critical for any mashudanager is responsible for reading and interpreting theuay
toolkits. We demonstrate in this paper how the additionaiformation stored in the composite application. The Prope
characteristics of components, specifically graphicat usBroker is responsible for passing messages between indepen
interface details, can be modeled, described using Skent components within CAl, in other words, it performs data
mantic Annotation for Web Service Description Languageediation for composite applications. The CAE editor isduse
(SAWSDL) [6] and matched in a similar fashion to théo assemble, and wire components into composite applitatio
programmatic inputs and outputs of Web service-basedthout the need for the underlying components to be aware of
components. Though similar in some respects to Walach other at development time and without the user having
service-based components, our experimental study shaaswrite any additional codes. The desired components can
that these additional characteristics of a component all@imply be dragged and dropped to add them to a composite
for further match processing logic to be used to providgpplication. The adding, removing, and wiring can be done
better results when searching for components. in an iterative/progressive fashion to allow the assemtuer
o This paper shows, through sample applications, that bgfine the composite application. This declarative data-flo

Composite
Application Editor
(CAE)

{

Lotus Expeditor Middleware

Composite Application Infrastructure (CAl) Eclipse Ul Extension

‘ Property Broker H Topology Manager

| Eclipse/OSGi Framework |

Fig. 1. Lotus Expeditor Composite Application Frame-
work

L]
like wiring of components is one of the main advantages of
Lotus Expeditor. The wired components can be saved in an
XML file and written to local file system, hosted in a web
server/portal server, or placed in Lotus Domino NSF databas
for reuse or customization by other users.

and state have been selected, the component publishes
the city and state as a single output.

Hot Spot Fi nder is implemented as an instance of the
Eclipse SWT Browser, which is programmatically driven
to different URLs based on the inputs. In order to provide
interesting content, the JiWire [9] website is accessed
by the browser. TheHot Spot Fi nder takes as input

a city and state. When this input is received, the browser
is directed to a URL (constructed dynamically with city
and state as input) on the JiWire website, which provides
a list of wireless Internet access points in the given
city. By double clicking on an address shown in the
Hot Spot Fi nder , the address is published as an output.
Googl eMapper is implemented as an instance of the
Eclipse SWT Browser, which takes as input an address,
based on this address, the browser loads a map for the
address using Google Maps to provide the actual content.

The above three components can be developed separately

The programmatic inputs and outputs of an applicatiasy different programmers using different technologiesrider
component in CAl are described using WSDL. Typically, théor them to be made available for our composition framework,
associated WSDL files for CAl components are created @ifey must be imported into Lotus Expeditor. The WSDL file
part of the component development process. In the currési each component must be created and annotated as shown
implementation of Lotus Expeditor, the WSDL files for applifater in Section 3.1.

cation components in CAIl do not include the graphical user

interface type (e.g. JSP, SWT, AWT, Swing, etc.). The com- 'he O derTracking application is composed of five

posite application assembler must have previous knowledﬁg
of component interfaces they are restricted in and the tppes' d
GUI technologies they can use. For example, if the composffg
application deployment platform does not provide support

ividual components, with several inputs and outputse Th
ividual components are all built as portlets. The basteco
this scenario was taken from the Cooperative Portlets
fsample provided as part of Rational Application Developér 7

portlet interfaces, an assembler must know which compsnehf€ Same sample is described in detail in [7]. The code was

in the repository are built from portlets and specificallyp

-y reused with only minor changes; small errors were corrected

those when assembling the composite application. Lotus EQ-the application code. The five components are:

peditor also does not provide a way for finding compatible
and complementary components from a catalog of existing®
components based @omponents’ capabilitiedVe extended
Lotus Expeditor Workbench with a new menu item called
Analyze Composite Aptinat opens a dialog box for user to
search for the desired components to use for composition
based on high-level semantic concepts.

2.3 Sample Composite Applications

In this section, we describe the functionalities of two skmp
applications used in the experimental study of our mashup
framework. These two sample applications were selected be-
cause they represent two different types of valid compos-e
ite applications. TheHot Spot Fi nder represents a hybrid
composite application that includes Eclipse SWT GUI and a
web application (jWire) accessed via a web browser (RESTful
Web service). Ther der tracki ng application represents
a real-world composite application that could be deployed t

a cooperative portal environment like IBM WebSphere Portal
or BEA WebLogic Portal. Thédot Spot Fi nder composite
application is composed of three separate components. .

o« CityStatePicker is implemented as an Eclipse Ul
Extension class, which allows a user to select a state and
a city from two separate drop down lists. After both city

Orders Portlet displays a list of existing orders
for a specific month. The component accepts a month
as input and outputs a month, status, an qriderand

a customerid. Both orderid and customelid are pro-
grammatic outputs in the sense that when a user clicks on
one of the listed ordeid, the order information reflected

in other portlets takes the ordéd as input.

Order Detail Portlet displays the details of a
specific order that includes quantity, status, sku and
tracking id. The component accepts an orddras input
and only trackingid is output as a programmatic input
to other components.

Tracking Detail Portlet displays the tracking
information related to a specific order. The component
accepts a trackingd as input. Customename is the only
programmatic output here.

Custoner Detail Portl et displays customer in-
formation. The component accepts a custqnaeand

a customemame as input and does not provide any
programmatic outputs.

Account Detail Portl et displays the account de-
tails of a particular order. The component accepts an
order id as input and does not provide any programmatic
outputs.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010

= E) ot Spot Finder
ity dew

Frtiscres]) s v
..... o d
i rs el

c !

nnnnnnnnnnnnnnnnnn

HotSpo add page

<~ 1 Renams

<3 Wiring
& Edit Page Properties

Fig. 2. Sequence of steps in composing an application

2.4 Scenario of Assembling Composite Application not aware of each other. At this point, the user can righkclic
on the in-progress composite application which will allow
Figure 2 illustrates the sequence of screen shots in Lgelection of the “wiring” action from the menu. Screen F
tus Expeditor Client workbench that results in a simplghows the result of wiring the two selected components on the
Hot Spot Fi nder composite application. Screen A shows thgniddle panel. TheCi t ySt at ePi cker component (labeled
initial composition workbench. The right panel shows trs li “City View”) provides a single output, labelecii t ySt at e.
of components (e.g.Hot Spot Fi nder, Googl eMapper, The Hot Spot Fi nder component provides a single input
CitySt at ePi cker, Order Tracker) that are available namedSet Locati onCitySt at e. The dotted line indi-
for composition as well as links to other available remoteates that theci t ySt at e output has been linked to the
components. The left panel displays all the existing cortposSet Locat i onCi t ySt at e input. Therefore, when the out-
applications of a particular user. The middle panel dispiing put ci t ySt at e is fired, the argument of that output will
in-progress composite application. To start the compmsitibe sent as the argument to tBet Locati onCityState
process, the user must first pick a component from the righput. The composition is now completed and screen G dis-
panel. The selected component then becomes the search quiays the result of running the composed application within
When the user clicks on Analyze Composite App menthe Expeditor Workbench.
a dialog box in screen B is displayed. If there are more
than one components on the canvas, the user has the opgon CoMPOSITE APPLICATION MASHUP

?.f (;:.h%os”r]g ":dr']\{'du"fll Or: rl?e(;ged rr}na‘;c?rllng criteria. Iftln this section, we describe the process of creating reasabl
individual’ maiching 1S checked, each ot the componen omponents and the techniques, technologies, and algwrith
WSDL in the current composite application will be matche

oo ; . t be | dt id i h f -
individually to the target WSDLs in the repository. If not at can be ‘everaged fo provide progressive mashup of com

checked, a merged WSDL file created from all the existirE;OSIte applications.

WSDL files in the current composite application will be used o

in the matching process. After the user enters the desiréd Building Components

search criteria at the top of screen and presses the “Fimdorder to create a component for reuse in a composite
Matches” button, screen C is displayed. By picking the beapplication, a few additional steps are required beyondtwha
matched component (the one with the highest score) framnecessary to create a stand-alone application or compone
the palette and dropping it on the middle panel, screen However, the majority of the process is similar to creating
is displayed. The middle panel now has two componergtandard applications. Obviously, different componeairfe-
(CitySt at ePi cker and Hot Spot Fi nder) which were works will advocate slightly different protocols for comment

NGU et al.: SEMANTIC-BASED MASHUP OF COMPOSITE APPLICATIONS 5

creation. In J2EE-based component systems, the concr@® Semantic Annotation of Components

processes and tools used for developing and deployingrge WsDL-based programmatic inputs and outputs of a
component will be different from Lotus Expeditor. Howevefgsaple component are annotated using suitable ontalogic
the fundamental principles are the same. One of the first steRodels to enable searching using higher level concepts. We
that any developer will need to do when building a componegjioose to use SAWSDL annotation scheme because SAWSDL
for an application is to decide on the graphical interfacg cyrrently a recommended W3C standard. This standard does
technology. This may be based on Java Swing, servlet, ANyt gictate a language for representing the specific onyolog
native widgets, portlets, and HTML. The second step iS fsfines a method of including ontological information vett
locate the data that is to be presented in the graphical ugehny specification languages into a WSDL document. In this
interface. Often this information consists of records fromashup tool, we chose to use ontological model specified in
a relational database or some other back-end data SOUrgg&_ for annotation. This allows us to leverage the estabtish
The third step is to write a bit of code to deal with thgemantic web matching techniques developed in OWL for
programmatic input and the output of the component. Upsible and intelligent search for compatible componehts.
to this point there is no difference in the process betwegrg sense, WSDL+semantic annotation (SAWSDL) is used as
creating components for a composite application and e@atiy |oose standardization of APIs that can be exposed by the
a component for a standard application. For components 4Qerse kinds of components that we want to mashup.
be reusable in a composition framework, a few additional However, using SAWSDL prevents us from including the
steps must be taken. The first additional step is to decidgergingannotatedRESTful Web services that adhere to the
which programmatic inputs, outputs, and operations shbeld sjmpjer REST architecture style of service invocation in ou
exposed if this component is reusable. The second add't'oﬂ?ashup tool. RESTful Web services do not have associated
step is to generate a WSDL file that describes the exposg@py files. Instead, they are annotated using a different
programmatic input, output, and operations of the compbneg:neme called SA-REST [11] which is based on HTML and
The last additional step is to annotate the generated WSBL fipr4. Despite its simplicity, SA-REST in its current form
with semantic information. We assume that there are egstify not sitable for use in the Lotus Expeditor framework. The
ontological models that we can use. Otherwise, those ogiolgynnotated CAE (Composite Application Editor) is dependent
ical models must be created first. The following are the stegs \wspL format for data mediation. Moreover, adopting SA-
involved for building theG tySt at ePi cker component REST will require significant changes to the structural matc
using the Lotus Expeditor Toolkit: ing part of the semantic Web matching algorithm. However,

_ _ _ ~as described in [12], it is feasible to translate SA-RESD int

« DevelopGi tySt at ePi cker Vi ew, a Java class which sawspL. Thus RESTful Web services with annotation can
extends Eclipse Ul Extension class. This class is respqfls accommodated in our framework with some additional
sible for creating the Ul to be displayed to a user igffort. Within Lotus Expeditor framework, annotating com-
Lotus Expeditor Rich Client. The Ul should allow her tGyonents using either SAWSDL or SA-REST will have similar
select a state and then a city within that state. When thgjtations when it comes to composing applications. Tisis i
city is selected, the city and state information should Rgscause both require the components to be annotated manuall
broadcasted to thBr oper t yBr oker in Expeditor. ang a-priori. If a particular capability of a component is

« Develop a Java claspubGi t ySt at e to broadcast Ul 5t peing annotated, at runtime, it is impossible to leverag
events to the’r oper t yBr oker in Expeditor. This is & that capability for mashup even if it is useful to utilize tha
helper class foGi t ySt at ePi cker Vi ew. capability within a composite application.

« Create aWSDLGI tySt at ePi cker. wsdl, to expose gemantic annotations (SAWSDL) only work if there is a
the properties (Ul inputs) and actions (operations) assghified ontological model. If the ontological model for the
ciated with theGi t y St at ePi cker that can be reused. component we are interested in annotating is not available,
This file is created using properties wizard and the editqrmst pe created first. Tools such as the Protege-OWL [13]
available in the Expeditor Toolkit in our framework. egitor can be used to create OWL-based ontological models.

« Annotate the generated WSDL file with semantic inforrgwever, a given enterprise may have a collection of models
mation on any elements in the WSDL file that will playhat already exist to describe the data and processes utie in
a part in matching the component. _ enterprise. Further, a given industry may have a colleatibn

- Create a manifest file for automatically deploying thgogels that have been already created to describe the unique
component to OSGi compatible Lotus Expeditor middlesharacteristics of that industry. If the component beint bu
ware. is intended for use in a given enterprise or industry, care
.) o . should be taken to use existing ontological models where it

With the wide availability of Web service developmentyaies sense. Since the SAWSDL specification allows multiple

toolklts,_ the generatlon of WSDL file can be automatic. Thg,qdels to be attached to a given element, it may be apprepriat
semantic annotation of WSDL, however, has to be dogg provide one or more enterprise, industry, and custom
manually. Currently, we use a plain text editor for perfaigii models to a particular element in the component. The difiiere

the annotation. However, we can envision development ofRological models must all be represented in OWL formalism
simple graphical tool to simplify the annotation processhsu

as the semantic annotation tool available in Kepler systédh [1. http:/Avww.w3.org/TR/xhtml-rdfa-primer/

in our framework to leverage using existing semantic Webg;
matching techniques. 8?1
Figure 3 is a WSDL file forCi t ySt at ePi cker com- 5
ponent. Lines 5 and 9 import the necessary namespacé$
used to add the semantic annotations. Lines 15-17 deyp
fine a new message nameci‘t yState”, which de- (138
fines the name of the string that will be output wheni;
a user interacts with this component. Line 16 describe%
a message that has been annotated with a reference i
an element in an ontological model. This is shown as!>
wssem nodel Ref erence="Travel Ont#City" in the 17
WSDL file. Tr avel Ont is an OWL-based ontological model ig
that is available on the Web. With this annotation, we arex
describing the message in terms of an OWL class in aﬁzil
existing ontological model. This message is set as an outpuy
of the “pubCi t ySt at e” operation in a portType (lines 18- 24
22) and included in a portlet type binding (lines 23-35). Theyg
“pubCi t ySt at e” operation corresponds to broadcasting the27
city and state information t&r opert yBr oker . 29
With this markup using the standard grammar defined b)?o
WSDL and SAWSDL, the component’s output can now be32
matched against other components’ programmatic inputgusi 32
existing semantic Web service matching technologies. Notes
that only properties that are pertinent to reuse are present 36
the WSDL file. By including the annotation, the matchin
engine is able to match based on capabilities of the co

ponent as described in the ontological model. For example it

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010

<?xml version="1.0" encoding="UTF-8"2

<definitions name="edu.txstate.mpc”
targetNamespace="http://www.ibm.com/wps/c2a/edtate.mpc”
xmins="http://schemas.xmlsoap.org/wsdI/"
xmins: TravelOnt="http://localhost:8080/thesis/ghow!”
xmins:portlet="http://www.ibm.com/wps/c2a”
xmins:soap="http://schemas.xmlsoap.org/wsdl/sSoap/
xmins:tns="http://www.ibm.com/wps/c2a/edu.txstatpc”
xmins:wssem="http://www.w3.org/ns/sawsdl”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-inste">
<types>

<xsd:schema targetNamespace="http://www.ibm.com/\@agémiu.txstate.mpc¥

<ltypes>
<message name="cityState”

<part name="cityState” type="xsd:string” wssem:model@&ehce="TravelOnt#City

</message
<portType name="edu.txstate.m&ervice™
<operation name="pubCityState”
<output message="tns:cityState’/
</operatiorn>
</portType>
<binding name="edu.txstate.mpcbinding” type="tns.exktate.mpcService”>
<portlet:bindingt>
<operation name="pubCityState”
< portlet:action activeOnStartup="true” caption="pubyState”
description="Announces the city and state” name="ptyf&late”
selectOnMultipleMatch="false” type="standarg¥’/
<output>
<portlet:param boundTo="request-attribute” captiontyState”
description="Published the city/state selected”
name="“cityState” partname="cityStatg/
</loutput>
</operation>
</binding>
</definitions>

3. WSDL with semantic
ySt at ePi cker component

markup for

assume theci t ySt at e” part element was to be compareqNSDL files to match upon. The output is a target WSDL file

against another component’s part elemeabtnt y”. The

that has the largest ratio of matched attributes (matchioges

text-based matching would not count these as a possiblémadg 5 Jist of target WSDL files sorted by the ratio of matched

because the two strings are not equal (i.ei t'ySt at e”

attributes. In order to calculate the matching score, bbéh t

I= “county”). However, if the ‘tounty” element had a query and the target WSDL files must be pre-processed using

semantic annotation ofTr avel Ont #Count y” in its mod- the
elReferenceattribute, the matching logic would be able to
compare the model types City and County. If the model *
described a relationship between a City and a County, psrhap
using thehasPropertyOWL attribute, it could be determined
that a city is in a county and both are part of a state. Thus, the'
two elements will return a matching score because the apalys
would show that these two elements are very closely related.

3.3 Semantic Matching of Components

Describing the semantic knowledge of a component via the
annotation process described above has a unique advantage ?
that the additional metadata added to the component’s WSDL
do not change the structure of the component’s description.
Therefore, existing semantic Web services matching tdohno *
gies and algorithms can be used directly for matching the
application components. One such set of algorithms, adopte

in our work, is described by T. Syeda-Mahmood [14], which

following procedures:

« Word tokenizationBy exploiting cues such as changes in
font and presence of delimiter, a multi-term word attribute
is tokenized.

Part-of-speech tagging and filteringSimple grammar
rules are employed to label tokenized attributes. Stop
words are removed.

» Abbreviation expansianBoth domain-independent and

domain-specific vocabularies are used to expand tok-
enized words that is abbreviated. For examp, is
expanded int@ipcode

Association of tag type with attribute&ach tokenized
attribute is labelled with its specific WSDL element types.
For examplenamein Figure 3 is labeled withpart’ tag.
Synonym searchA thesaurus, in this case WordNet [15],
is used to construct a list of synonyms for each tokenized
attribute. For example, the wordown’ is included as a
synonym for a tokenized attributesity”.

combines the use of semantic (domain independent) andsiven a pair of matching attributesi(B) with A equal to
ontological (domain dependent) matching for the purpose bfame=ci t ySt at e] and B equal to pame=count y], the
matching Web service components. In the following, we wiglimilarity matching score of this pair of attributes is edéted
briefly illustrate the matching mechanism. Interested eesd based on the following formula:

are referred to [14] for more details.
Domain Independent Matching. The input to this matching

Sem(A,B) =2+ Match(A,B)/(m+n) (1)

algorithm is a single WSDL file and the collection of target Wherem andn are the number of valid tokens it and .

NGU et al.: SEMANTIC-BASED MASHUP OF COMPOSITE APPLICATIONS 7

Both A and 3 must be of the same structural type. In this caseveral fundamental differences when dealing with non-Web
they both must be tagged witPart element of a WSDL file. services based components. In many cases, when composing
Match(A, B) returns the number of matching tokens. Givewith Web service components, a developer is looking for APIs

a query WSDL file and a collection of target WSDL files tahat can either:

match upon, the best matched WSDL file is the one that has, Match, i.e., using the output from a Sing|e Web service

the highestSem(A, B) score. and finding a second Web service that can take it as
_ _ - _ input. The developer can continue this process and string
Attr('ilftz)Pa‘r Ejj’fv'gg't'glass Distance Score together several Web services choreographed by a specific
(4, B) HasPropertyClass 0.3 process model. This is typically referred to pocess-
(A, B) HasPartClass 0.5 1 it
B eTeor 5 based We_b service composmp]r?], [18], [19], or
(A, B) Other 10 « Composei.e., starting with a known output and a known
input, through some intelligent search/inference tech-
TABLE 1 niques, the system returns one or more services that
A simple distance scoring scheme will transform the output of the first Web service into

Domain Dependent Matching. Domain independent match- something that can be consumed by the final Web service.

ing described above is basically an enhanced keyword-based -Srgr'\s;léz %F::]C;(I)Zitirsggg]e?ztﬁ ?Za;iz)inamlc semantic Web
matching. Domain dependent matching makes use of ontolog-) , ' ' ' i L i
ical relationship between tokenized attributes. Onlyitaites | e difference with respect to our composite applicatisns i
that are being annotated in the WSDL files can be used fi{at in most cases the goal is not to put together a single busi
domain dependent match. The semantic for each attribffeSS Process or tightly link fragments of software processe
are compared using a custom ontology matching algorith{ff th€ purpose of automating a specific task; rather, thé goa
from SNOBASE (Semantic Network Ontology Base), an IBN® to integrate separately created components togetheth®n

ontology management framework for loading ontologies fro@2sS” [23] and provide the ability for those applications t
files and via the Internet [16]. This algorithm takes intgOmmunicate or interact without prior knowledge of eacteoth

(pr in any specific order. There is no explicit control-flow spe

as inheritance hasPart hasProperty and equivalentclasses. 'ied between the communicating components. A component
A simple distance scoring scheme as shown in Table 1 is usE@ Start execution whenever it receives the required input
This scoring scheme gives a coarse indication of semanfigiS data-flow oriented paradigm of composition made this
distance between concepts. For example, the distance sdGgeWork suitable for users who do not have knowledge of
for two attributes that have auivalentelationship is 0. For control-flow constructs in programming or process langsage
the inheritance relationship (i.eSubClassOfn Table 1), the [© compose their applications on the fly. Furthermore, users
score is 0.7. The matching score between a pair of matchﬂ% not need to learn how to invoke application specific APIs

servicesS, ands; is calculated using the following formula; !N Order to compose different applications. o
There is no specific begin and end state in our compaosition

Match(Sq,Si) =2 h; *Z(l — dist(i,7))/(n; + ng) (2) framework. There is also no specific ordering in terms of
; the composition process. For example, the next component

Wheren; is the number of attributes of the query serwite to be composed does not have to depend on the previous
andn; is the number of annotated attributes present in servigemponent. It depends on what components are already in the
S;, h; is the number of annotated attributes of servicgs application that we are composing. We advocate progressive
that have been matched out of, and finally dist(i,j) is composition process that allows a user to explore or preview
ontological distance score between #i& term in serviceS; the functionalities of the composite application iteratwvand
and a corresponding query term. The best matched WSDL figfine them at any point in time. Users have choices on what
to a query WSDL file is given by the one that has the highetst compose that will adapt to their working style. For exaenpl
ontological match score. when composing arOr der Tr acki ng composite applica-

Final Score. Itis calculated using a winner-takes-all approachi©n: if the user is a salesperson, the application will udel
The maximum of the domain independent score and domdilf O der Portl et (Figure 11). However, if the user is a
dependent score is reported as the overall matching scare. (ustomer, itis not appropriate to include reder Por t | et .
rently, the higher score is taken to mean a “better matché& Th

advantage of using two different scoring mechanisms in ode EXPERIMENTAL STUDY

framework is that the same matching algorithm is applicablghe experiments reported in this section were completed
to either annotated or un-annotated WSDL files. If WSDLS a{ging the sample applications described in Section 2.3. The
all marked up consistently, the algorithm will be able to f'n@xperiments were conducted on a Lenovo ThinkPad T60p
more accurate match based on semantic information. If NORfning Microsoft WindowsXP SP2. An Apache HTTP server
of the WSDLs is annotated, the domain independent matchipgeonjunction with an IBM WebSphere Portal Server 6.0 was
can still be applied to return the “matches”. used to simulate the component library. In order to make
Discussions. We reused much of the same matching logic aritl easy to drive the test cases and to analyze the results, a
algorithms from semantic Web services. However, there ageaphical user interface component was created (see Hjure

account the relationships between the given attributesh s

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010

This component reads the currently executing composite a ., i PR

plication and drives the test cases. The “View Filter” anc Ss Hiie Hretes Diene A ity DJprstr isreetoner Loevee
“Display Filter” sections allow the user to set the graphica

user interface search criteria. The main panel of the WINAO s icasieisivd b fecsbostcosn ss/icensibeisioed

displays the score associated with each of the target WSD | 3 e Obimcoiuat it s et

hat was included i a search request. The Find Malche [— =X s B Em e

button starts the search process. Finally, the "Use indalid |5e Soimt hojesioigiesiene

matching” checkbox allows the user to specify which type a

matching will be used. If checked, each of the component

WSDLs in the current composite application will be matche! [Furates] Fluse ncvduai mateing

individually to the target WSDLSs in the repository. Othesey

a “merged” matching will be used.
In addition to the application components required for the

composition of the two applications described in Sectid@) 2-Fig. 4. Results of individual matching in experiment 2

an additional four WSDLs with semantic annotations were

included in the target component repository. These WS¢

Wiew Filter Display Filter

DLs are Sourcelnterface.wsdl, SourcelnterfaceV1.wsdf; T Oswr Dlwes Dleortet Dinetve [Jal DMenitor [Jerojector [JLarge onitor []oevics
getinterface.wsdl, and TargetinterfaceVi.wsdl. Thesdi-ad e e

tional WSDLs were added to the repository to Simulate othe wimm = coebetmid oot 8560 hess Cistometetalsd
components that should not be matched in the context of o | %3 bunisrie PRl oo i sl

composite applications. These WSDLs describe componel
for a retail order system, and are not applicable as comgene
in the two applications being mashed up using our framewor

. . . [use individual matching
4.1 Experiment One - Basic Matching (s

The first experiment shows simple matching using two con
ponent WSDLs and the semantic web matching logic. The
input for this scenario is the CityStatePicker.wsdl and t s :
target is the HotSpotFinder.wsdl. When run through the matr:ﬁg' 5. Results of merged matching in experiment 2
ing logic, a score of 50 is produced. This is a reasonat#@plication described in Section 2.3, specifically Accaent
score because of the differences in the two WSDLs. Thail.wsdl, OrdersDetail.wsdl, and CustomerDetails.w&iten
CityStatePicker.wsdl file defines a single messaggState this setup, any of the three target WSDLs could be a
and the HotSpotFinder.wsdl defines two messagig,and good match because each of them have inputs that can
address|In order to show the impact of the semantic matchinige satisfied by the available outputs of tkeders and
only, a modified version of the HotSpotFinder.wsdl is used. Tr acki ngDet ai | s components. In this experiment, we
the modified version, the identifying names suchcidg and first match the two input components individually against
addressare replaced with random strings suchvagandddd the other three. The results are shown in Figure 4. The first
Because these do not match fields in the CityStatePickdr.wgdur entries in the list are the result of matching against
the ontological score is always returned. The resultaniesico the Orders.wsdl; the second four results, grouped in the
this case is 37.50. This lower score can be accounted fodbabex, are the result of matching against the TrackingDe-
on the fact that only the message elements have been arthottitéds.wsdl. As we can see, th@ust oner Det ai | compo-
with additional semantics. Lastly, we remove all the seicantent has the highest overall match value of the possible
annotation in the WSDL documents so that only pure keyworthoices. This makes sense because the single output of the
matching can be used. In this run, the matching score dropsTtoacki ngDet ai | s component matches one of the two
25. Additional changes to the WSDL that remove identifyingnputs to theCust ormer Det ai | s component. When we
city and state keywords while preserving its functionadityise look at the results for th&r der s component, we see the
the score to drop even more. This shows that the semarffiest onrer Det ai | component is ranked lower than either
matching algorithm is working as expected and that we hatlee Account Detai|l or the Order Detail component
a valid environment for conducting other experiments. and equally scored against thie acki ngDet ai | s com-
ponent. TheAccount Detail and OrderDetail com-

,) ponents also scored fairly well in the match against the
4.2 Experiment Two - Merged WSDL Matching Tracki ngDet ai | s component.
The second experiment shows the effect of using a mergedsiven this ambiguity, how do we decide which component
WSDL to find compatible components for a composite ape add to the composite application? This is where the merged
plication. The two inputs for this experiment are OrderslwsWSDL search can assist. If we do a merge WSDL search, we
and TrackingDetail.wsdl. These are matched against ther othombine the inputs and outputs of the two given components
three target WSDLs that are part of the second Order Trackiagd match those against the remaining components in the

NGU et al.: SEMANTIC-BASED MASHUP OF COMPOSITE APPLICATIONS

Analysis Results E] @ Analysis Results E] @
View Filter Display Filter View Filter Display Filter
Oswt Jweb [Jrortlet [Inative [Jal [IMenitor []Projector []Large Monitor [Device Oswt Jweb [Jrortlet [Inative [Jal [IMenitor []Projector []Large Monitor [Device
[“Inone [lan [#]nane [“Inone [lan [#]nane
Match score WSDL Location Match score WSDL Location
62,5000 CustomerDetail wsdl http: /localhost: 8080 thesis /CustomerDetail, wsd 33,3333 AccountDetail . wsdl http: /localhost: 8080 thesis/AccountDetall wsdl
50,0000 AccountDetail.wed| http: /localhost: 8080 thesis/AccountDetall wsdl 33,3333 OrderDetail, wsdl http: /localhost: 8080 thesis/OrderDetail, wsdl
50,0000 OrderDetail, wsdl http: /localhost: 8080 thesis/OrderDetail . wsdl 8.3333 GoogleMapper.wsdl http: /localhost: 8080 thesis/GoogleMapper. wsdl
37.5000 Orders.wsdl http: [localhost:8080/thesis/Orders.wsdl 8.3333 HotSpotFinder.wsdl http: /localhost: 8080thesis/HotSpotFinder. wsdl
12,5000 GoogleMapper.wsd| http: /localhost: 8080thesis/GoogleMapper. wsdl 8.3333 ctypicker.wsdl http: /localhost: 8080/ thesis/citypicker.wsdl
12,5000 HotSpotFinder.wsdl http: /localhost: 8080 fthesis/HotSpotFinder. wsdl 7.1429 Sourcelnterface. wsdl http: flocalhost: 8080 thesis/Sourcelnterface. wsdl
12,5000 dtypicker.wsdl http: /flocalhost: 8080 fthesis/citypicker.wsdl 7.1429 SourcelnterfaceVl.wsdl hitp: /localhost: 8080/thesis/Sourcelnter faceV 1. wsdl
5.0000 TargetInterface.wsdl http: /localhost: 8080 thesis/Targetinterface, wsdl 5.0000 TargetInterface.wsdl http: /localhost: 8080 thesis/Targetinterface. wsdl
5.0000 TargetInterfaceVlwsd http:/localhost: 8080 /thesis/ TargetInterfacey 1.wsdl 5.0000 TargetInterfaceVlwsd http:/localhost: 8080/thesis / TargetInterfacey 1.wsdl
4.7619 Sourcelnterface. wsdl http: /localhost: 8080/ thesis/Sourcelnter face. wsdl
4.7619 SourcelnterfaceVlwsd http:fflocalhost:8080/thesis/SourcelnterfaceV 1.wsdl
Find Matches | [[] Use individual matching [use individual matching
Fig. 6. Matching with TrackingDetalil Fig. 8. Matching with TrackingDetail, CustomerDetail, and
Orders
Wiew Filter Display Filter
Oswt [Jweb [Jrortlet [natve []al [IMonitor []Projector []Large Monitor [] Device View Filter Display Filter
MNane Clan [7nane Oswt Jweb [Jrortlet [Inative [Jal [IMenitor []Projector []Large Monitor [Device
v v
Match scare WSDL Location Nane Cla Nane
40.0000 AccountDetail.wsdl http: /localhost: 8080/ thesis/AccountDetall. wsdl n 5
40.0000 OrderDetail.wsdl http: /localhost: 8080/ thesis/OrderDetail . wsdl Pashscre e Focatian -
40,0000 Orders.wsdl http: [facalhost:8080/thesis /Orders.wsdl 28,5714 AccountDetail . wsdl http: /localhost: 8080 thesis/AccountDetall wsdl
10,0000 GoogleMapper.wsdl http: /flacalhost:8080/thesis/GoogleMapper. wsdl 89,5238 SourceInterface, wsdl http: /localhost: 8080 thesis /Sourcelnter face, wsdl
10,0000 HotSpotFinder. wsdl http: /flacalhost:8080/thesis/HotSpotFinder. wsdl 9.5238 SourcelnterfaceViwsd http:/localhost:8080/thesis/SourcelnterfaceV 1wsd|
10,0000 ditypicker.wsdl http: {flacalhost:3080/thesis/citypicker. wsdl 7.1429 GoogleMapper.wsd| http: /localhost: 8080thesis/GoogleMapper. wsdl
5.0000 Targetinterface.wsdl http: /flocalhost: 8080 thesis Targetinterface wsdl 7.1429 HotSpotFinder. wsdl http: [flocalhost:B080;thesisHotSpotFinder. wsdl
5.0000 TargetinterfaceVlwsdl http: /jlocalhost:8080thesis TargetinterfaceV 1wsdl 7.1423 dtypicker.wsdl http:fﬂocalhost:SDSDﬂhas!s,fc\typlcker.wsdl
4.7619 Sourcelnterface. wsdl http:/flocalhost: 8080 thesis/Sourcelnterface wsdl 5.0000 TargetInterface.wsd hm:fﬂucalhust:SDSDfﬂ'lEs!sfl'argetlnterface.wsdl
4.7619 SourcelnterfaceVlwsd http:/flocalhost: 3080 /thesis/Sourcelnter faceV 1.wsd| 5.0000 Targetnterface¥L.wsd http:/flocalhost:8080/thesis/ TargetinterfaceV 1.wsd|

[use individual matching
Find Matches | [[] Use individual matching

Fig. 7. Matching with TrackingDetail and CustomerDetail
Fig. 9. Matching with TrackingDetail, CustomerDetall,

catalog. The results of this search are shown in Figure §,qers. and OrderDetail

In this case, we can now see that t@ast oner Det ai |
Iso observe that the score for t@eders component has

component is probably the best component to add to th) ,
composite application. actually increased by a small amount. Given that there are

three possible components to choose from with equal scores,
)) we will choose thedr der s component because it has shown
4.3 Experiment Three - Assembling the Order Track- 4 consistent increase in value over the last two searches.

ing Composite Application The Or der s component is added to the application and
We have built a number of composite applications using otlie matching analysis is run again. This time, in Figure 8,
mashup platform. In this experiment, we will particularhosv we observe that the overall scores have decreased again, but
how the order tracking composite application can be buithere is still a significant difference between the two hiihe
The goal is to demonstrate that our mashup framework candmores and the third score. There is no real drive to choase on
used for components that were built using different compbnecomponent over the other based on the scores, so we need
technologies. Here, all the components were originallytbuto choose one. Because we are building an order tracking
as portlets. From looking at the possible starting poirite, tapplication, the nameéx der Det ai | seems like a better

Or der s component would be the most obvious one to usghoice thanAccount Detail. In other experiments not
since it contains several outputs. However, instead weus#l detailed here, it was seen that choosingAbeount Det ai |

theTr acki ngDet ai | component to show how we can buildcomponent eventually lead to the same final composite ap-
the complete application. This is a reasonable choice tinbeglication described in this section. Additionally, theréagve

with because we are building an order tracking applicationature of composite application assembly allows assembler
The first step is to add th&r acki ngDet ai | component to try out components and remove them if they do not prove
to the application and run the search. The results, as shawrbe useful. In this case, if ttdccount Det ai | was found

in Figure 6, tell us that th&€ust onmer Det ai | component notto be usable in the application, the assembler couldvemo
would be a good one to add at this point. it and instead add thér der Det ai | component.

Once theCust omrer Det ai | component is added to the We add theOr der Det ai | to the application and run the
application, we can run the analysis again. Figure 7 shoasalysis again. As we see in Figure 9, the top score has again
the results of this process. Looking at the scores, the geeraropped, but it is significantly higher than the other scovés
scores have decreased, though only by ten points. You wvilerefore decide to add th&ccount Det ai | component.

10

Analysis Results (== Orders for March Al Order_ID SKU Quantity Status Tracking_ID
View Filter Display Filter TR- N N
Cswr CJweb [Jrorflet [Inatve [Jall [IMonitor [JProjector []Large Monitor [Device Order_ID Customer_ID Status 032001000000 123992 1000 DELAYED 23217832
e - (B 032001000000 8266472 DELAYED
Match score wsDL Location 032001000001 3542877 ON TIME | |Enter order id:
9.5238 S Interface, wsdl http: flocalhost: 3080/ thesis /St Interface, wsdl
5,52 Sourcelnterfacaisd hto: locahost 080/ thesi/Sourcelnte Face L D32001000002H 2208 A CONFIETE
: ! wsd) https /focalhost:a080/thesi ! wsd 3 3 3 ubmi
714 orpoteermed i Hocabostse0fhesskotporrde wed SR LT
7.1429 ctypicker.wsdl http: /localhost: 8080/ thesis/citypicker.wsdl
5.0000 TargetInterface.wsdl http: /localhost: 8080 thesis/Targetinterface. wsdl Enter month:
5.0000 TargetInterfaceV1.wedl http: /localhost: 8080 thesis/TargetInterfaceV 1. wsdl
Order Detail Portlet
Qrders Portlet
[use individual matching min ¥
Order_ID Total Value Outstanding Balance &
032001000000 $20,005 §20,005
Enter order id:
Fig. 10. Matching with All Order Detail components
9 9 P Account Detail Portlet
With the Account Det ai | component added to the app =
cation, we run the analysis again and get the results as sl |customer_In 8266472 &
in Figure 10. The top ranking score is now 9.5238 - mu |Name Amir R. Chowdhury
lower than what we started with and also much lower tl Address Systems and Solutions Inc., Corporate Blvd., Buffalo, NY

Contact arc@ssi.com

the last component we added. It is reasonable to assume
the application is now complete. We can now customize
layout of the application to suit the user's needs based er 0
component we have selected. Once a tracking ID is ent |Tcing.ID Status - Name SIS ;
in “Tracking Detail Portlet”, the related information wibe (2217832 TRasIT 205 Systems and Solutons Inc., Corporate Blvd., Buffalo,
shown immediately in other components. Figure 11 shows

assembled order tracking composite application.

Enter tracking id:

Enter customer id: Customer Detal Porflet

Tracking Defail Portlet

4.4 Experiment Four - Effectiveness and Scalability
of the Semantic Matching

We also conducted experiments to study the effectivenes:
scalability of our proposed semantic matching process. for completing the match increases in a linear fashion. This
test the effectiveness of the semantic matching, we ac demonstrates that the matching algorithm is scalable. Tihe o
additional 11 new WSDL files. These WSDLs were dowrlimiting factor is the availability of heap memory size ofth
loaded from public domain Web service portals [24], [25computer where the system is running.
These WSDL files are much more complex in the sense that _ _
they all have multiple messages, operations and bindings8 Experiment Analysis
compared to WSDLs generated for the GUI components usedperiment one and two have shown that the existing Web
in experiments 1-3. Without any annotations, all these neservices matching code can be used in conjunction with
Web services (shown in italics font) have low matching ssoreomposite applications. Because the matching logic usts bo
as shown in Figure 12. However, when we annotated tkext-based matching and semantic matching, the matching
message for the dictionary.wsdl with TravelOnt#City (tlee algorithm can be used without adding the semantic markup.
same ontology that the source CityStatePicker componentiewever, as we observed in experiment one, the semantic
using), the score increases from 0.0 to 14.28. Figure 13 shawatching always provides better results. For example, when
the resulting scores of running with annotated dictionatywo components are named differently yet provide the same
WSDL (we renamed the name of the Dictionary.wsdl filéunctionality, the semantic matching is able to find the rhatc
for this experiment). Note that these experiments were runExperiments three has shown that it is possible to
in batch mode for efficiency purpose and thus the results dreild a composite application from a collection of differ-
not displayed in a GUI-based screen as in other experimergst components—implemented using different technolegies
Interested readers are referred to [14] for a more detailading semantic annotations and semantic Web service match-
discussion on the effectiveness of semantic matching. ing logic. While there is no automatic way to start the build-
To test the scalability of the matching algorithm, we loggeithg process, once a starting point is selected, the rentainin
the elapsed time when matching with different number @ompatible components begin to stand out in the repository
target WSDLS. We started with randomly selected 11 WSDIsgarches using semantic-based mashup. As with the assembly
(used in the previous experiment) and doubling the numberaff the Or der Tr acki ng application, the components that
WSDLS in the target for each additional run. Thus, we racould be added to this application really stood out with esor
this experiment with 11, 22, 44, 88 and 166 WSDLs. Thiaree or more times greater for components that were not
memory heap size is set to 1G. Figure 14 shows that as @ygpropriate. The artificigbour ce andTar get WSDLs that
number of WSDLs increases exponentially, the time it takegere added to the repository continue to score low in allzase

Online «

Fig. 11. Assembled OrderTracking Composite Application

NGU et al.: SEMANTIC-BASED MASHUP OF COMPOSITE APPLICATIONS 11

Scalability of the Matching Algorithm

matches: 180 T T T T
http-/localhost-8080/thesis/HotSpotFinder.wsdl=50.0
http-/localhost-8080/thesis/AccountDetail.wsdl=40.0 160 |
http-/localhost-8080/thesis/Orders.wsdl=25.0 .
- _ N WSDLs —+—
http-/localhost-8080/thesis/GoogleMapper.wsdl=20.0 o b Matcning tree (in secs) ——-]

http-/localhost-8080/thesis/OrderDetail.wsdl=14.285714285714285
http-/localhost-8080/thesis/CustomerDetail.wsdl=12.5
http-/localhost-8080/thesis/TrackingDetail.wsdl=12.5
http-/localhost-8080/thesis/Sourcelnterface.wsdl=7.142857142857142
http-/localhost-8080/thesis/SourcelnterfaceV1.wsdl=7.142857142857142 100
http-/localhost-8080/thesis/TargetInterface.wsdI=5.0
http-/localhost-8080/thesis/TargetinterfaceV1.wsdl=5.0 80 -
http-/localhost-8080/thesis/getPrimeNo.wsdl=4.545454545454546
http-/localhost-8080/thesis/isbn.wsdi=4.545454545454546 60 -
http-/localhost-8080/thesis/bnprice.wsdi=4.545454545454546
http-/localhost-8080/thesis/i berconversi di=4.3478260869565215
http-/localhost-8080/thesis/braille.wsd|=3.7037037037037033
http-/localhost-8080/thesis/zipcodes.wsdl=3.414634146341463
http-/localhost-8080/thesis/currency.wsdi=2.631578947368421
http-/localhost-8080/thesis/Weather.wsdI=0.9900990099009901
http-/localhost-8080/thesis/addresslookup.wsdI=0.9181636726546906
http-/localhost-8080/thesis/USHolidayDates.wsdI=0.24096385542168677

http-/localhost-8080/thesis/Dictionary.wsdI=0.0 Fl g . 1 4 . Pe rform ance Of th em a.tCh | n g al g Orith m

three view points: i) types and extensibility of components
i) support structure for users to find suitable components,

120 |

=0 Z

40

20

0 ! ! ! !

w
S
D
Ls 0 1 2 3 4 5

Fig. 12. Matching with additional none annotated ser-

vices . : .
and iii) alternative mashup programming patterns for vgrin

matches: the components. As a number of research works suggest
http-/localhost-8080/thesis/HotSpotFinder.wsdl=50.0 1 imi
http-/localhost-8080/thesis/AccountDetail. wsdl=40.0 ([32]’ [28]’ [33]’ [34])’ most tools prOVIde llmlted. search
hitp-flocalhost-8080/thesis/Orders.wsdi=25.0 ncreased score, @nd discovery for mashup components. Users still need to
http-/localhost-8080/thesis/GoogleMapper.wsd|=20.0 . .
http-flocalhost-8080/thesis/DictionaryOWL .wsdI=14.285714285714285 know how to write code (e.g., JavaScript or XML/HTML) and
http-/localhost-8080/thesis/OrderDetail.wsd|=14.285714285714285 link the Components using technical Concepts derived from
http-/localhost-8080/thesis/CustomerDetail. wsdl=12.5
http-/localhost-8080/thesis/TrackingDetail wsdl=12.5 programming. The following discussions will highlight tha
http-/localhost-8080/thesis/Sourcelnterface.wsd|=7.142857142857142 : H
http-/localhost-8080/thesis/SourcelnterfaceV1.wsdl=7.142857142857142 our WOI'!(tries I_:O qvercome_the_se Issues thrOL:Igh the use Of
http-/localhost-8080/thesis/Targetinterface.wsdl=5.0 CompOSIte app|lcat|0nS running in Lotus EXpedItOT.

http-/localhost-8080/thesis/TargetinterfaceV1.wsdl=5.0
http-/localhost-8080/thesis/getPrimeNo.wsdl=4.545454545454546
http-/localhost-8080/thesis/isbn.wsdl=4.545454545454546
http-/localhost-8080/thesis/bnprice.wsdl=4.545454545454546
http-/localhost-8080/thesis/numberconversion.wsdl=4.3478260869565215
http-/localhost-8080/thesis/braille.wsdl=3.7037037037037033

5.1 Types of Components in Tools
Yahoo! Pipes [35] provides a Web-based means of pulling data

http-/localhost-8080/thesis/zipcodes.wsdi=3.414634146341463 from various data sources, merging and filtering the content
http-/localhost-8080/thesis/currency.wsdl=2.631578947368421 . .
http-/localhost-8080/thesis/Weather.wsdl=0.9900990099009901 of those sources, transforming the content, and outpuitiag
http-/localhost-8080/thesis/addresslookup.wsd|=0.9181636726546906 content for users to view or for use as input to other pipes

http-/localhost-8080/thesis/USHolidayDates.wsd|=0.24096385542168677

There are several limitations in Yahoo! Pipes. The first one
is the limited set of inputs and outputs on components. There
o e) _is no way to use arbitrary inputs or outputs when using this
This is not surprising as these components describe furEtioyyhjication. A component in a composite application should
unrelate_d to the applications being built in these e>_<pemtme be able to accept many different types of inputs and provide
Experiment four further demonstrates that consistently agy,ny different types of outputs. The second limitation istth
notated Web services W.I|| score higher in matche_s than "o flow of a pipe is static and sequential. While a user
domly picked Web services without any annotation. It alsgyy configure many different inputs, all of the connections
shows that the semantic matching algorithm is scalable. Thg, executed in a sequential manner until the single output
time it takes to perform the match is proportional t0 gy reached. With our composite applications, the different
number of Web services. components in the application can communicate with each
other in any manner that the assembler chooses. Finally,
5 RELATED WORK Yahoo! Pipes is a server-based technology. There is no way
Despite the fact that the mashup tools share a commimm a user to construct and execute a pipe without a network
goal—enabling users to create situational applicatiorsetba connection and execute the pipe using locally stored data. A
on existing application components—the actual capadsljti pipe can be accessed programmatically, like a Web servite, b
implementation technology and the target audience of theseorder to execute the pipe the user must be able to connect
tools are widely different. For example, IBM’s DAMIA [26], to the Yahoo! Pipes server. Similar limitations exist ineth
MashupHub [27], SABRE [28] or Apatar [29] largely targeteb portal type solutions such as Popfly [30] or Marmite [5].
enterprise intranet environments, whereas Popfly [30] &l In DAMIA [26] extends the type of data sources for mash up to
Mash Maker [31] are aimed at individual users and private usanterprise types such as Excel, Notes, Web services, and XML
The execution environment of a mashup could be on a sernvdocument rather than just URL based sources as in Yahoo!
client (i.e., browser) or a stand-alone desktop applicatio Pipes. It has a simple model of treating all data as sequences
Therefore, to focus our discussion, we compare mashapXML. DAMIA offers three kinds of main operators, namely
tools and approaches with our work mainly from the followingngestion augmentationandpublication Ingestion brings data

Fig. 13. Matching with annotated dictionary service

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010

sources into the system. Augmentation provides exteitgibiland end-user friendly composition framework via high-leve
to the system. It allows creation of new mashup operators aseimantic matching of available services, feeds and flows.
is thus more powerful than the fixed Yahoo! Pipes operators.

Finally, publication operator transforms the output from .

mashup to common output formats such as Atom, RSS %13 Alternative Mashup Patterns

JSON for the consumption of other components. It relies dé¢pnventional approach to mashup programming is to conceive
additional tools like QEDWIK to visualize outputs. DAMIA mashup as data flow that takes input from multiple sources,
focuses on data rather than component mashup. In contragglies transformation and visualizes the results. Ndymal
we treat both data and applications as components. the visual metaphor used in this environment is “boxes”
(representing data sources) and “connectors/wires” ¢sspt-

ing the flow). There are mashup tools that follow different

. . , programming patterns.
As mentioned earlier, most mashup platforms have inappro-,-ma [33] and UQBE [40] take a mashup as a schema

priate support for component cataloging and querying. &N&faching or data integration problem. In this environment,
are a few works that try to address this issue in dlfferentszvaydisparate data sources are *joined” by common attributé® as

Many works use a Web 2.0 or online Comm“nity'Stylﬁ)jning relational tables. The proposed solution is basedo
approach. For example, Intel Mash Maker observes the usgfismise that it is easier for users to understand data sesant
behaviour (e.g., wha}t _klnd of data she is interested in) q%m concrete examples. Using a progressive approach to
recommends an existing mashup that .the user would f'Egmposing data (i.e., the Query By Example principles) is
useful. It also correlates the user’s behaviour with thaitbér appealing to the non-programmers, and can be compared to

users and use the knowledge to suggests mashups defined\ By 3onr0ach to suggesting semantically close components.

other users on the same Web page. Most Web-based masfiyRever, the tools support data integration only and inhiéye

tools offer a community feature where mashups are taggeflpendent on domain specific characteristics of underlying

rated and organized by categories. data sources. It is not clear how a data source can be compo-
For data sources that publish the standard RDF, a tool syglhtiseq and reused in a different situational application

as Semantic Web Pipes [36], which |s_|nsp|red by Yahoo! Recently, utilizing spreadsheet (tabular/grid) prograngm

Pipes, offers a way to aggregate data using SPARQL [37] ag,» 4igms in data mashup is suggested. Mashroom [41] adopts

RDF-aware operators. In Intel Mash Maker [31], much of thgaqteq relational model as underlying data model to reptese
mashup creation and execution happens on the user's bIOWg@l, o iracted data. A set of mashup operations is defined

directly over the Web pages currently on display. To ex”%k/er the nested tables (e.g., merging, invoke and link amoth
d"?‘ta from Web pages, the tool uses an RDF schema assomgkergice directly on a range of rows in an iterative manner).
with each page or a knowledge-base cregted by a COMMUNIBA L iher stream of work that is worth noting is mashup
of users. Users can fo_rmulate XPath queries over the egt.jacﬁrogramming patterns at presentation level. That is, appli
schehma to createdlgtncate Sa?a rr:jodelfto manllp_ullate W'th'ﬂ%n/component integration is achieved purely through com
mhasf up 'S} crga_ue I'y combining _data roernAmlletlple paf%t:s b%nents that expose user interfaces only. Here, component
the form of mini-applications (or widgets). : also o I:models specify characteristics and behaviors of pregentat

a mashup functionality for data sources with available RD components and propose an event-based composition model to

5.2 Mashup Component Search and Discovery

Other a%pr(_)achfes fﬁcus on mal:]ing “smgrt;lguesses cify the composition logic (e.g., MixUp [42]). The fooois
recommendations for the users to choose suitable compon Up is on integration of applications at presentationellev

for a given S|_tuat|on..A good example Is MARIO (.MaShquhey do not deal with semantic annotation of component and
Automation with Runtime Orchestration and Invocatlon)][38ﬁnding compatible components

It uses tag-based service description, service selectimh a

taxonomy. The engine allows a user to explore the spaceb(g
available mashups and preview composition results interas%
tively, using tags, via an abstraction called “Wishful Sxw#r

n Smashup (Semantic mashup) [11], the components to

mashed up is restricted to RESTful Web services that is

mantically annotated using SA-REST. The role of SA-REST

. . . in Smashup is to enable automatic data mediation. Smashup

MARIO offers a light We'ght planner that Wo.rl-<s with US€laditor provides an interface where a user can enter the URLs 0

generated tags fc_)r goal-driven based composition. ._the annotated RESTful Web services that need to be mashed
MatchUp [39] intraduces the concept of auto-completion . Then the user needs to wire the appropriate inputs and

very much like email addresses in a mail client or sear tputs of the selected services. Once the complete service

phrases in a browser, _to the creation of mashups. The !de &N is specified, the user runs a command and the Smashup
based on the observation that mashups developed by dlfferg ht

: L Gitor will generate an HTML form that represents the mashed
users typically share common characteristics. The appro application. The process is similar to our mashup tool,
exploits these similarities to make ranked suggestions fﬂo

le letions” (missi " q " wever, our tool is not restricted to matching up of browser
possibie “compietions (myssmg components and connBslioy,,sqy services. Our components can be as diverse as a GUI
between them) for a partial mashup specification. These

L . -)mponent, a widget, a server-side EJB component, a .NET
proaches share similar goals as ours in providing a rap mponent, or an Adobe FLASH. We leverage SAWSDL for

2. http://services.alphaworks.ibm.com/gedwiki, it iswypart of IBM Lotus the p_ur.pose of discovery and mE.ltChin_g of services, .nOt far da
Mashups mediation. A RESTful Web service without annotation can be

NGU et al.: SEMANTIC-BASED MASHUP OF COMPOSITE APPLICATIONS 13

used in our framework just like any other type of componentthat a composite application can be viewed and described as
For a RESTful Web service with annotation, its SA-RES@ single component when searching against a repository of
has to be converted to SAWSDL before it can be used in ocomponents. This is done by creating a merged WSDL from
framework. each of the component of the composite application.

Finally, Kepler [43] is an open source scientific workflow As demonstrated in the experiment results, the use of
system which allows scientists to compose a composite apelividual matching may still be valuable, especially when
plication (a.k.a workflow) based on available actors. Aroactattempting to distinguish between components that scane ve
can be built from any kind of applications. However, Kepletlosely to each other. A potential improvement to the anslys
is not based on SOA architecture and it requires very skillfuesults would be to display the score for each target compuone
low level Java programming to convert applications intmest using both the merged matching and individual matching,
which can be composed within Kepler framework. Althougtwvhen the collection of scores is relatively close. In aduifi
in our current implementation, we do not provide tools foboth functional and non-functional descriptions are nddde
developers to convert existing components into annotaied ¢ order to make the matching more valuable for users. We are
ponents that can be used in our mashup tool, our framewatkrently working on 1) allowing a user to specify only a
support SOA standard and exposing components’ input asykecific set of inputs or outputs to consider during matching
output as WSDLs with semantic annotation is a small effop allowing a user to specify a weight on certain sets of iaput
compared to actors programming in Kepler. or outputs that affect the overall score of the matching.

One advantage of our composition framework is that end
6 CONCLUSION users do not nggd to concern Iow-!evel gontrol-flow cor_lkl;rgc

during composition. This may be fine with simple application
One of the most difficult problems faced by users in a ricthat involves a few components. However, in order to compose
client environment is finding compatible and complementagomplex application that are robust, some forms of control-
components in a large catalog of components that have be@i is necessary. Thus, a larger direction of future work is
built by different groups, at different times, using differ combining a service mashup approach with a process based
ent technologies and programming conventions, as well jagegration approach. A semantically rich process languag
reusing those components as it is in a different applicatiopith constructs for conditionals, iterations and methods f
In this paper, we have demonstrated that this problem canilguring reliability of an integrated application can fiate
largely solved by applying technologies related to the s#i@a more complex combination of a larger set of applications. It
web and Web services matching and using a progresspgn also help the analysis of an integration specification fo
composition framework. The first technology that can bgeneral properties such as lack of a deadlock or a cycle and
applied is Semantic Annotations for WSDL (SAWSDL), agroblem domain specific properties such as compliance of an

standardized by the W3C. By adding model references to tigegrated application to a set of business rules.
message elements of the WSDL, the properties exposed by the

component can be better described using modeling languages
Since the semantic modeling attributes can be added to JREFERENCES
elements of the WSDL, the definition of the component could

be further refined and described via annotations. Simjlarfy] ‘Business Process Execution Language for Web Servieesian 1.1

http://www.ibm.com/developerworks/library/specificat/ws-bpel/,

non-functional description of components can be added by 2q07.
introducing additional elements in the WSDL file. One limita[2] “OSGi -The Dynamic Module System for Java,” http:/\wvesgi.org,
2008.

tion with using SAWSDL or any other annotation techniques

. . . 3] “Google Code Search,” http://www.google.com/codeska 2008.
is that component must be annotated a-priori. If a particul] 9 P 9009 2

J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Underdtag Mashup

capability of a component is not being annotated, at runtime
is impossible to leverage that capability for mashup evérisf
useful to utilize that capability within a composite applion.
Part of our future work includes allowing components to

Development,"IEEE Internet Computingvol. 12, no. 5, pp. 44-52,
September—October 2008.

J. Wong and J. I. Hong, “Making Mashups with Marmite: Tods
End-user Programming for the Web,” Proc. of the SIGCHI Conf. on
Human Factors in Computing Systems (CHI'ONew York, NY, USA,

2007, pp. 1435-1444.

“Semantic Annotations for WSDL and XML Schema,”
http://mwww.w3.0org/TR/sawsdl, 2007.

“JSR 168: Portlet Specification,”
http://www.jcp.org/en/jsr/detail?id=168, 2008.

“IBM Lotus Expeditor,”

dynamically expose their capabilities for mashup.

The second technology group that can be applied is e
searching and matching algorithms created for use with Wetp
services. These algorithms provide a powerful method for
scoring the compatibility of an application component fram (8l

http://www.ibm.com/software/lotus/products/expedita007.

large set of possible component choices based on compongnt rind wi-Fi Hotspots Worldwide,” http:/Awww.jiwire.om, January

capabilities. This scoring approach simplifies the apfiica

20009.

creation process for the composite application assemlyer [E,,O] “A Collaborative Environment for Creating and Exeawfi Scientific

Workflows,” http://Kepler-project.org/, 2008.

providing a ranking of potential components. This allows thy11] A p. Sheth, K. Gomadam, and J. Lathem, “SA-REST: Seicaityt

assembler to focus on the highest ranked components, sRippi

Interoperable and Easier-to-Use Services and MashUpEE Internet

over the lower ranked components, when considering which ¢omputing vol. 11, no. 6, pp. 84-87, 2007.

items may be compatible in the application being creat

2] J. D. Lathem, “SA-REST: Adding Semantics to REST-ba¥éeb

Services,” 2005, Master Thesis, University of Georgia, ekt

The searching process is further improved based on the fact Georgia.

14

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]
[30]
(31]
(32
(33]

(34]

[35]
(36]

[37]

(38]

[39]

[40]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2010
H. Knublauch, R. Fergerson, N. Noy, and M. Musen, “The [41] G. Wang, S. Yang, and Y. Han, “Mashroom: End-User Mashup
Protege-OWL Plugin: An Open Development Environment for Programming Using Nested Tables,” Rroc. of the 18th Intl. Conf. on
Semantic Web Applications,” http://protege.stanford/etligins/owl/ World Wide Web (WWW’09New York, NY, USA, 2009, pp. 861-870.
publications/ISWC2004-protege-owl.pdf, 2004. [42] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Darsad
S.-M. T. Shah, R. Akkiraju, R. Ivan, and R. Goodwin, “S8gdng M. Matera, “A Framework for Rapid Integration of Preserati
Service Repositories by Combining Semantic and Ontolbgica Components,” inProc. of the 16th Intl. World Wide Web Conf.
Matching,” in Proc. of the Third Intl. Conf. on Web Services (WWW'07) New York, NY, USA, 2007, pp. 923-932.
(ICWS'05) 2005. [43] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, Eaeger, M. Jones,
G. Miller, “Wordnet: A Lexical Database for English Lgnage,” E. A. Lee, J. Tao, and Y. Zhao, “Scientific Workflow Managemantl
Communications of the ACMol. 38, no. 11, pp. 39-41, November the Kepler System,Concurrency and Computation: Practice &
1995. Experience vol. 18, no. 10, pp. 1039-1065, 2006.
J. Lee, R. Goodwin, R. Akkiraju, Y. Ye, and P. Doshi, “IBEntology

Management System,” http://www.alphaworks.ibm.confitscobase,

2008.
J. Koehler and B. Srivastava, “Web Service Compositi@arrent
Solutions and Open Problems,” IEAPS '03 Workshop on Planning Anne H.H. Ngu is currently an Associate Pro-

for Web ServicesJune 2003.

B. Medjahed and A. Bouguettaya, “A Multilevel Compo#iap Model
for Semantic Web ServiceslEEE Trans. of Knowledge and Data
Engineering (TKDE)vol. 17, no. 7, pp. 954-968, 2005.

Q. Sheng, B. Benatallah, Z. Maamar, and A. Ngu, “Confidple
Composition and Adaptive Provisioning of Web ServicdEEE Trans.
on Services Computingol. 2, no. 1, pp. 34—-49, January-March 2009.
L. Zeng, A. Ngu, R. Benatallah, B.and Podorozhny, and_é&i,
“Dynamic Composition and Optimization of Web Servicedgurnal She was a summer faculty scholar at Lawrence
on Distributed and Parallel Databases (Springer-Verlagdl. 24, no. Livermore National Laboratory from 2003-2006.
1-3, pp. 45-72, December 2008. Her main research interests are in information integration, service

S. Mcllraith, T. Son, and H. Zeng, “Semantic Web sersic¢EEE oriented computing, scientific workflows and agent technologies.
Intelligent Systemsvol. 16, no. 2, pp. 46-53, March/April 2001.

A. Marconi, M. Pistore, and P. Traverso, “Automated Qusition of
Web Services: the ASTRO ApproachHEEE Data Engineering
Bulletin, vol. 31, no. 3, September 2008.

G. Phifer, “Portals Provide a Fast Track to SOB{isiness Integration

Journal vol. 20, no. 4, Nov-Dec 2005. Michael P. Carlson is a Senior Software Engi-
“XMethods Web Services Portal,” http://www.xmethaukst/, 2009. neer at IBM, the lead developer for the Lotus

“The QWS DataSet,” _ Expeditor Client, and the architect of the Lotus
http://www.uoguelph.ca/gmahmoud/qws/index.html, 2009. Expeditor Toolkit. He has been working with
E. Simmen, M. Altinel, S. Padmanabhan, and A. Singh,rtiia Data Eclipse technology and OSGi technology since
Mashups for Intranet Applications,” iRroc. of the 2008 ACM before they worked with each other. Carlson has
SIGMOD Intl. Conf. on Management of Datdancourver, Canada, been at IBM since 1998 and has worked on a
June 2008, pp. 1171-1182. variety of products including printers, operating
“IBM MashupHub,”) systems, network appliances, web applications,
http://www-01.ibm.com/software/info/mashup-cente009. software development tools, devices, and desk-
Z. Maraikar, A. Lazovik, and F. Arbab, “Building Mashsifor the top runtime environments.

Enterprise with SABRE,” inProc. of the Sixth Intl. Conf. on Service
Oriented Computing (ICSOC’08Bydney, Australia, 2008, pp. 70-83.
“Apatar,” http://www.apatar.com/, 2008.

“Microsoft Popfly,” http:/mww.popfly.net/, 2007.

“Intel Mash Maker,”
http://softwarecommunity.intel.com/articles/eng/148m, 2007.

G. D. Lorenzo, H. Hacid, H. young Paik, and B. Benatalldbata
Integration in Mashups,SIGMOD Recordvol. 38, no. 1, pp. 59-66,
2009.

R. Tuchinda, P. Szekely, and C. A. Knoblock, “Buildingabhups By
Example,” inProc. of Intl. Conf. on Intelligent User Interface&ran
Canaria, Spain, 2008, pp. 139-148.

V. Hoyer and M. Fischer, “Market Overview of Enterpriséashup
Tools,” in Proc. of the Sixth Intl. Conf. on Service Oriented
Computing Sydney, Australia, 2008, pp. 708-721.

“Yahoo Pipes,” http://pipes.yahoo.com/pipes/, 2007

D. Le-Phuoc, A. Polleres, M. Hauswirth, G. Tummarebmd

C. Morbidoni, “Rapid Prototyping of Semantic Mash-ups Tugh
Semantic Web Pipes,” iRroc. of the 18th Intl. World Wide Web Conf.
(WWW'09) New York, NY, USA, 2009, pp. 581-590.

SPARQL Query Language for RDF. [Online]. Available:
http://www.w3.0rg/TR/rdf-spargl-query/

A. Riabov, E. Bouillet, M. Feblowitz, Z. Liu, and A. Raagathan,
“Wishful Search: Interactive Composition of Data Mashujis, Proc.

of 17th Intl. World Wide Web Conf. (WWW'Q®eijing, China, April
2008, pp. 775-784.

0. Greenshpan, T. Milo, and N. Polyzotis, “Autocomjaat for
Mashups,” inProc. of the 35th Intl. Conf. on Very Large Data Base
(VLDB'09), Lyon, France, 2009, pp. 538-549.

fessor with the Department of Computer Sci-
ence at Texas State University-San Marcos.
From 1992-2000, she worked as a Senior Lec-
turer in the School of Computer Science and
Engineering, University of New South Wales
(UNSW). She has held research scientist posi-
tions with Telecordia Technologies and Micro-
electonics and Computer Technology (MCC).

Quan Z. Sheng is a senior lecturer in the School
of Computer Science at the University of Ade-
laide. His research interests include service-
oriented architectures, distributed computing,
and pervasive computing. He is the recipient of
Microsoft Research Fellowship in 2003. He is the
author of more than 70 publications. He received
a PhD in computer science from the University
of New South Wales, Sydney, Australia. He is a
member of the IEEE and the ACM.

Hye-young Paik is a lecturer at the School
of Computer Science and Engineering in Uni-
versity of New South Wales. Her research in-
terests include flexible business process mod-
elling, modelling and reuse issues in Web ser-
vice mashups. She is an active member of Web
services research community and publishes in
international journals and conferences regularly.
J. Tatemura, S. Chen, F. Liao, O. Po, K. S. candan, andddawal, She received her PhD in computer science from
“UQBE: Uncertain Query By Example for Web Service Mashup,” i University of New South Wales, Sydney, Aus-
Proc. of the 2008 ACM SIGMOD Intl. Conf. on Management of Data tralia.

Vancourver, Canada, 2008, pp. 1275-1279.

