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ABSTRACT 

JPEG XR is a draft international standard undergoing standardization within the JPEG committee, based on a Microsoft 
technology known as HD Photo.  One of the key innovations in the draft JPEG XR standard is its integer-reversible 
hierarchical lapped transform.  The transform can provide both bit-exact lossless and lossy compression in the same 
signal flow path. The transform requires only a small memory footprint while providing the compression benefits of a 
larger block transform.  The hierarchical nature of the transform naturally provides three levels of multi-resolution signal 
representation. Its small dynamic range expansion, use of only integer arithmetic and its amenability to parallelized 
implementation lead to reduced computational complexity. This paper provides an overview of the key ideas behind the 
transform design in JPEG XR, and describes how the transform is constructed from simple building blocks. 
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1. INTRODUCTION 

Presently, the JPEG committee is in the process of standardizing a new image coding specification known as JPEG XR1, 
which is based on the Microsoft HD Photo technology2.  JPEG XR has been designed to optimize image quality and 
compression efficiency while also enabling low-complexity encoding and decoding implementations. 

JPEG XR is a “block-transform” based image compression scheme which uses some of the same high-level building 
blocks as traditional image codecs: color conversion, transform, quantization, coefficient scanning and entropy coding. 
The transform converts the spatial domain image data to frequency domain information. JPEG XR uses a hierarchical 
two-stage lapped biorthogonal transform (LBT)4-8, with a novel low-complexity structure that makes it exactly invertible 
in integer arithmetic (also referred to as integer reversible). This paper provides an overview to the transform used in 
JPEG XR, and also describes how the transform enables many of the distinguishing features of JPEG XR. 

The transform is based on two basic operators: the Photo Core Transform (PCT) and the Photo Overlap Transform 
(POT). The PCT is similar to the widely used discrete cosine transform (DCT)5, and can exploit spatial correlation 
within the block. However, the PCT has some of the same shortcomings as the DCT and other block transforms, in that 
it cannot exploit redundancy across block boundaries and can result in blocking artifacts at low bit rates. The POT is 
designed to exploit the correlation across block boundaries as well as mitigate blocking artifacts, and thus address the 
drawbacks of the PCT. Note that the current draft JPEG XR specification1 uses the terms “core transform” and “overlap 
filtering” instead of PCT and POT, respectively. 

If the POT and PCT are concatenated appropriately, the combined transform is an LBT6,9. The LBT offers state-of-the-
art coding performance, both objectively and visually, at low computational complexity4-9. JPEG XR further improves 
the performance of the transform by adopting a hierarchical construction7,8. The resulting hierarchical two-stage LBT 
effectively uses long filters for low frequencies and short filters for high frequency detail. Thus, the transform has a 
better coding gain as well as reduced ringing and blocking artifacts when compared to traditional block transforms. 

Each stage of the transform can be viewed as a flexible concatenation of the POT and PCT. The POT is functionally 
independent of the PCT, and can be switched on or off, as chosen by the encoder. At each transform stage, the PCT is 
always performed. However, there are three options for controlling the POT: disabled for both stages, enabled for the 
first stage but disabled for the second stage, or enabled for both stages. The overlap option that is used at the encoder is 
signaled to the decoder as part of the compressed bitstream. The flexibility to enable or disable the overlap operators 
controls the effective filter length. Overlap operators at both levels can be turned off to minimize ringing artifacts related 
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to long filters, as well as to enable a very low complexity decoding mode. Overlap operators at both levels can be turned 
on at very low bit rates to mitigate blocking artifacts. 

Each operator of the JPEG XR transform is designed to be reversible. JPEG XR implements reversible transforms using 
a lifting-based structure, as described below, which minimizes the dynamic range expansion of the input data, and thus 
reduces implementation complexity and maximizes lossless compression performance.  As the lifting operations use 
only integer arithmetic, the decoder output is bit-exact for any given compressed bitstream. This paper is organized as 
follows.  We begin by giving a brief overview of the transform design in Section 2 and some basic design concepts in 
Section 3.  Section 4 discusses the basic building blocks for constructing the transform operators, via efficient non-
separable 2-D decompositions. Sections 5 and 6 describe how to construct the PCT and POT using these basic building 
blocks, respectively. The computational complexity and multiresolution aspects of the transform are discussed in 
Section 7. 

2. TRANSFORM OVERVIEW 

The regions of support for the PCT and POT consist of 4×4 block regions that are offset relative to each other as shown 
in Figure 1. 

PCT Block

POT Block

 

Figure 1 – Regions of support for the basic 4×4 PCT and POT operators; each POT operator is 
centered on the boundaries of four PCT operators. 

The transform operations on the encoder side are performed in the following order to produce macroblocks of luma and 
chroma transform coefficients.  One macroblock is produced for each 16×16 region of luma samples and corresponding 
(16×16, 8×16, or 8×8) region of chroma samples as applicable. 

1. First, if it is chosen to be enabled by the encoder, a 4×4 POT is applied. On image boundaries this reduces to 4-point 
1-D POTs. The region of support for a 4×4 POT uniformly spans across four blocks as shown in Figure 1.  

2. Next, a 4×4 PCT is applied to each block to obtain one DC coefficient and 15 AC coefficients. 

3. The DC coefficients of blocks from the first stage are then collected to form a block of such coefficients. For luma 
and for chroma when chroma is not downsampled relative to luma, this is a 4×4 block.  When chroma is 
downsampled relative to luma, this is a 2×2 or 2×4 block, depending on whether the downsampling is applied both 
horizontally and vertically or only horizontally. 

4. If chosen to be enabled by the encoder, another POT is then performed for the second stage. The only difference 
between what is done for this POT stage and what is done for the POT in the first stage is that when downsampled 
chroma channels are used, one or two 2×2 POTs are used instead of a 4×4 POT so as to preserve the macroblock 
structure for coding granularity (when chroma is not downsampled, an ordinary 4×4 POT is applied). On image 
boundaries, these reduce to 2-point 1-D POTs and 4-point 1-D POTs, respectively. 

5. Then a second stage PCT is applied to the block of first-stage DC coefficients. For luma and when chroma is not 
downsampled, this is a 4×4 PCT. For processing downsampled chroma, one or two 2×2 PCTs are applied to process 
the 2×2 or 2×4 block. 
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Therefore, on the encoder side, transform operations follow the following order: optional first stage POT → first stage 
PCT → optional second stage POT → second stage PCT. The inverse transform operations on the decoder side follows 
the reverse order: second stage inverse PCT → optional second stage inverse POT → first stage inverse PCT→ optional 
first stage inverse POT. As described above, there are six types of operators involved: 4×4 PCT, 2×2 PCT, 4×4 POT, 
2×2 POT, 4-point 1-D POT and 2-point 1-D POT. 

Of these six operators, the most frequently used ones are the 4×4 PCT and the 4×4 POT, the remaining operators being 
edge cases.  We describe these two operators, along with the 2×2 PCT, in the following sections. 

3. BASIC DESIGN CONCEPTS 

A separable 2-D transform is typically implemented by performing 1-D transforms on the rows of the data, followed by 
1-D transforms on its columns of data (or vice versa). The row-wise and column-wise transforms might be distinct. Let 

cT  and rT  represent the column and row transform matrices respectively. The 2-D data X  is transformed to Y  by 

 rc TXTY ′=  (1) 

3.1 Non-separable 2-D transform 

It is well known that a separable 2-D transform can be implemented as a 1-D transform operating on the data ordered in 
1-D, producing a correspondingly-ordered vector result. The equivalent transform matrix is generated by the Kronecker 
product of the row and column transforms in the separable case. Let x  and y  denote reorderings of X  and Y  to form 
column vectors, so that (1) becomes 

 xTy =  (2) 

where rc TTT ⊗=  denotes the Kronecker product of cT  and rT . 

Most separable 2-D transforms can be implemented as a cascade simpler 1-D transforms. Assume in Equation (1) that 

 21 ccc TTT =  and 21 rrr TTT =   (3) 

It is then trivial to show that in Equation (2), the following applies. 

 )(*)( 2211 rcrc TTTTT ⊗⊗=  (4) 

So the corresponding non-separable transform is also a cascade of simpler non-separable transforms. 

3.2 Transform factorization 

Transforms such as the DCT can be formulated as a cascade of elementary operations, most of which are 2-point 
rotation operations. This is the key to most fast algorithms. A rotation operator is defined as follows. 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=
)cos()sin(
)sin()cos(

)(
αα
αα

αR  (5) 

and its equivalent flowgraph is shown in Figure 2. Note that this actually combines a rotation and mirror flip and is 
involutory, which means that it is its own inverse. 
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Figure 2. Flowgraph module of a basic rotation operator. 

The 4×4 PCT is loosely based on a 1-D 4-point DCT, as illustrated in Figure 3. It uses a two-stage rotation process: the 
first stage )4/(πR  applies to a and d and to b and c; and the second stage )4/(πR  applies to a and c, and )8/(πR  
applies to b and d. The 4×4 POT is based on a 1-D 4-point overlap operator illustrated in Figure 4. This is a four-stage 
elementary operation process: the first stage )4/(πR  applies to a and d and to b and c; the second stage )8/(πR  applies 
to c and d; in the third stage a and b are scaled by s and c and d are scaled by 1/s; and the fourth stage is the same as the 
first stage.  The scaling factor s should have its value set such that the overlapping operator to generate smooth synthesis 
basis functions, which not only improve visual quality at low bit rates, but also improve coding gain. The scaling matrix 
diag(s, s, 1/ s, 1/ s) has determinant equal to one, which is needed for optimal lossless compression performance. 

 
Figure 3. One-dimensional 4-point DCT. 
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Figure 4. One-dimensional 4-point overlap operator. 

3.3 Kronecker product of two rotation operations 

The following equation holds 

 

)1,1,1,1()1,1,1,1()()( −−−−=⊗ diagBCdiagBRR βα  (6) 
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B involves two )4/(πR  operations, and C involves a )( βα −R  operation and a )( βα +R  operation. If α  is equal 
to β , then )( βα −R  becomes )1,1()0( −= diagR , which is a simple sign flip.  

With some reordering, a stage of rotation operations of a transform becomes 

 

⎥
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⎤
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For example, ⎥
⎦

⎤
⎢
⎣

⎡
=

)8/(0
0)4/(
π

π
R

R
E  for the second stage of the 1-D 4-point DCT in Figure 3. It is obvious that 

obtaining EE ⊗  with E given by (9) involves )()( αα RR ⊗ , )()( βα RR ⊗ , )()( αβ RR ⊗  and )()( ββ RR ⊗ , which 
apply to the top-left, top-right, bottom-left, and bottom-right quadrants of the data block, respectively. 

3.4 Lifting Structure 

All transform operations in JPEG XR are implemented using the lifting structure10-12. Lifting can be applied as a process 
for performing a matrix-vector multiplication using successive ‘shears’.  A shear is defined as a multiplication of the 
operand vector with a matrix which is an identity matrix plus one non-zero off-diagonal element.  The lifting structure is 
always reversible as the inverse operator can be obtained by reversing the order of the structure and sign of each 
operator. A lifting implementation showing two shears is illustrated in Figure 5.  

 
Figure 5. Lifting example (left: forward, right: inverse). 

JPEG XR uses only shear operator of the following form: y += (i x + r) >> b, where i is a small integer and both r and b 
are small non-negative integers. The shear is termed a trivial lifting step if i = 1, b ≤ 1 and r = 0 since no multiplication is 
needed, and non-trivial lifting step otherwise. If i = ±1 and b = r = 0, it reduces to a simple addition. 
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3.5 Lifting-based implementation of rotation operations 

Figure 6 shows a lifting-based implementation of the rotation operation )(αR , which requires three lifting steps plus a 
sign inversion. If α  is small, )(αR  can be approximated well as shown in Figure 7, (a) using three lifting steps, and (b) 
using just two lifting steps. 
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⎛

2
tan α( )αsin−

 
Figure 6. Lifting-based )(αR  implementation. 

 
Figure 7. Approximation of )(αR  with rational lifting factors for small values of α : (a) using three 
lifting steps and (b) using only two lifting steps. 

4. BASIC BUILDING BLOCKS 

The 2-D non-separable implementation of the PCT and POT based on the staged and factorized implementation of the 
1-D DCT in Figure 3 and the 1-D overlap operator in Figure 4 involves only the following operators: )4/(πR , )8/(πR , 

)4/()4/( ππ RR ⊗ , )8/()8/( ππ RR ⊗ , )8/()4/( ππ RR ⊗ , and some scaling operations. 

4.1 Hadamard transform )4/(πR  

The most import rotation operator in the 1-D DCT (Figure 3) and overlap operator (Figure 4) is )4/(πR , which is the 
Hadamard transform: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

==
11
11

2
1)4/(πRTH  (10) 

A lifting-based implementation is shown in Figure 8, which uses an S transform13 composed only of trivial operations. 
Note that this is not a normalized implementation; it replaces the sum of the two inputs by their averages. 

 

Figure 8. S-transform implementation of HT . 
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4.2 2-D Hadamard transform )4/()4/( ππ RR ⊗  

The Kronecker product of 2-point Hadamard transforms HT  is the 2-D Hadamard transform: 
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Interestingly it is possible to implement this 2-D Hadamard transform using only trivial lifting steps as shown in 
Figure 9. 

 
Figure 9. Implementation of HHT . 

4.3 2-Point rotation RT  

The rotation operator RT  (which is equal to )8/(πR ) can be implemented as shown in Figure 10, which is an 
approximation of the module in Figure 7 with two lifting operators with coefficients –½ and ½. 

 

Figure 10. Implementation of RT . 

4.4 2-D rotation RRT  

The 2-D rotation RRT  (which is equal to )8/()8/( ππ RR ⊗ ) can be implemented as shown in Figure 11. Referring to 
Equations (5), (6), and (7), RRT  involves B which is a stack of two HT  operators implemented in Figure 8 (with some 
sign manipulations). Note how two stages of B operations combine to get a normalized implementation. RRT  also 
involves )4/(πR  which is implemented as an approximation in the form of Figure 7. 

Proc. of SPIE Vol. 7073  70730C-7



V

S

3

0

9

C

9

p

C

q

B

It

\

B

IL 9

V

3

C

9

D

9

p

C

q

 
Figure 11. Implementation of RRT . 

4.5 2-D rotation HRT  

Similar to RRT , HRT  involves B. HRT  also involves )8/3()8/4/( πππ RR =+  and )8/()8/4/( πππ RR =− . Note also 
that 
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10
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)8/3( ππ RR  (12) 

So )8/3( πR  can also be implemented based on )8/(πR . Figure 12 shows the implementation where )8/(πR  is 
implemented based on Figure 7. 

 
Figure 12. Implementation of HRT . 
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4.6 2-Point scaling operator ST  

The scaling stage in Figure 4, when applied to 2-D data, produces the resulting scaling matrix 
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Half the matrix entries are unity and therefore these points are merely passed through. The remaining entries are paired 
symmetrically in two-point groups around the center of the matrix so that they can be implemented using lifting-based 

shear operators. The operator ST  approximately implements a two-point scaling matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −2

2

0
0

s
sTS with s2 

approximately equal to 0.6842 (choosing a value in the neighborhood of 2/1  to provide good compromise between 
coding gain and smoothness of the LBT basis functions). In the current draft of JPEG XR, this is implemented as shown 
in Figure 13.  In the prior HD Photo design, the ST  operator approximation had somewhat larger off-diagonal 
magnitudes, which resulted in a less ideal transform for the processing of data with high sample bit-depths. 
(The magnitude of the off-diagonal terms in the scheme of Figure 13 is 2–18, versus approximately 2–7 in the prior 
HD Photo design.) 

 
Figure 13. Implementation of ST  in JPEG XR. 

5. 4×4 PCT IMPLEMENTATION 

Suppose the data block is given by: 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ponm
lkji
hgfe
dcba

 (14) 

The steps to implement a 4×4 PCT are shown below, where the steps are performed as in-place operations: 

1. Hadamard transform stage: 

a. HHT (a, d, m, p) 

b. HHT (b, c, n, o) 

c. HHT (e, h, i, l) 

d. HHT (f, g, j, k) 

Proc. of SPIE Vol. 7073  70730C-9



2. Rotation stage: 

a. HHT (a, b, e, f) 

b. HRT (h, g, d, c) 

c. HRT (n, j, m, i) 

d. l = –l; o = –o 

e. RRT (k, l, o, p) 

Figure 14 contrasts the traditional 4×4 separable transform with the procedure defined above.  The PCT interleaves the 
rotations in the traditional transform, and then combines rotations across the two dimensions to result in the above 
implementation. 

Vertical transform  Horizontal transform

Vertical          Horizontal  Vertical            Horizontal 
Stage 1    Stage 2 

 
(a)                                                                                         (b) 

Figure 14. (a) Separable 4×4 transform and (b) PCT compared.  Stage 1 and 2 of the PCT above are the 
Hadamard transform and rotation stages respectively. 

 

6. 4×4 POT IMPLEMENTATION 

The steps to implement the 4×4 POT, performed as in-place operations, are: 
1. Hadamard transform stage: 

a. HHT (a, d, m, p) 

b. HHT (b, c, n, o) 

c. HHT (e, h, i, l) 

d. HHT (f, g, j, k) 

2. Scaling stage: 
a. ST (a, p) 

b. ST (b, o) 

c. ST (e, l) 

d. ST (f, k) 
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3. Rotation stage: 
a. RT (n, m) 

b. RT (j, i) 

c. RT (h, d) 

d. RT (g, c) 

e. RRT (k, l, o, p) 

4. Hadamard transform stage: 
a. HHT (a, d, m, p) 

b. HHT (b, c, n, o) 

c. HHT (e, h, i, l) 

d. HHT (f, g, j, k) 

It should be apparent that ideas similar to those illustrated in Figure 14 can also be applied for an efficient 
implementation of the above steps. 

7. COMPLEXITY AND MULTIRESOLUTION 

The computational complexity of the JPEG XR transform is low, as the basic transform operators are of small size (4×4 
at most), and these operators are implemented by a few simple 2-point and 4-point building blocks. Therefore, the 
transform operators require only a small memory footprint both at the encoder/decoder. Further, the direct 
implementation of the 2-D transforms instead of implementing two 1-D separable transforms results in further reduction 
in computational complexity as many lifting steps are combined or canceled. Note that all lifting steps only involve 
integer additions, and/or right shifts, and/or multiplications. As no division or floating point operations are involved, the 
transform enables bit-exact decoding. The number of operations required to implement the basic transform operators can 
be summarized as follows:  

1. The 4×4 PCT requires only 91 trivial and 11 non-trivial operations per block, i.e., only 5.69 trivial and 0.69 
non-trivial operations per processed sample. 

2. The 4×4 POT requires only 156 trivial and 15 non-trivial operations per block, i.e. only 9.75 trivial and 0.94 
non-trivial operations per processed sample. The trivial count can be lowered slightly by combining some steps 
of stages 3 and 4. 

Note that each nontrivial operation comprises a multiply by 3, a bit shift and 2 adds. Therefore, only a single unique 
multiplier needs to be implemented. Further, additional complexity reduction is possible by exploiting the fact that only 
a single shift and add (or two adds) is necessary to implement the multiply by 3. 

Most of the operations can be implemented in parallel with SIMD instructions and all operations can be parallelized with 
MIMD instructions. Further, the use of lifting steps ensures that the dynamic range expansion of the transform is limited 
to 5 bits. Therefore, 16 bit arithmetic is sufficient for performing transform on 8 bit image data, and this allows for 
further parallelization and consequent reduction in complexity. The limited dynamic range expansion also allows for 
lossless compression of 24 bit per sample image data using 32 bit arithmetic. 

The two-stage hierarchical transform structure naturally offers three layers of multiresolution and spatial scalability. If 
only the DC coefficients of the second stage transform are used for decoding, a 16:1 downsampled version of the image 
(that is, a 16:1 "thumbnail" of the image) can be reconstructed. If only the DC coefficients for the first stage transform 
are used for decoding, a 4:1 thumbnail of the image can be reconstructed. This spatial scalability is important for 
zooming in and out of large images, and for quickly generating previews of a large number of images. JPEG XR 
provides support for the coefficients of the three frequency bands to sent in separate bitstream payloads. Therefore, only 
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bitstream payloads of related subbands need to be parsed for decoding the thumbnail . Furthermore, reconstructing the 
16:1 thumbnail does not require any inverse transform, and reconstructing the 4:1 thumbnail requires only the second-
stage inverse transform.  

CONCLUSION 

JPEG XR uses a two stage hierarchical lapped biorthogonal transform which offers state-of-the art compression 
performance. The overlap operator is used to exploit inter-block correlation and reduce artifacts at block boundaries. The 
two-stage LBT effectively uses long filters for low frequencies and shorter filters for high frequency, and offers higher 
coding gain as well as lower blocking and ringing artifacts. The hierarchical nature of the transform naturally provides 
three levels of multiresolution. The overlap operators at each level can be disabled by the encoder to achieve additional 
control over quality and decoding complexity. The transform is reversible, and supports bit-exact lossy and lossless 
compression. All the transform operators are implemented as lifting steps using only integer operations. The small 
dynamic range expansion, amenability of the operators to parallelized implementation, the low computational 
complexity and small memory footprint reduce the overall encoding/decoding complexity of JPEG XR. 
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