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Abstract—An efficient and flexible dictionary structure is pro-
posed for sparse and redundant signal representation. The pro-
posed sparse dictionary is based on a sparsity model of the dictio-
nary atoms over a base dictionary, and takes the form � � ����,
where ��� is a fixed base dictionary and � is sparse. The sparse
dictionary provides efficient forward and adjoint operators, has a
compact representation, and can be effectively trained from given
example data. In this, the sparse structure bridges the gap between
implicit dictionaries, which have efficient implementations yet lack
adaptability, and explicit dictionaries, which are fully adaptable
but non-efficient and costly to deploy. In this paper, we discuss
the advantages of sparse dictionaries, and present an efficient al-
gorithm for training them. We demonstrate the advantages of the
proposed structure for 3-D image denoising.

Index Terms—Computed tomography, dictionary learning,
K-SVD, signal denoising, sparse coding, sparse representation.

I. INTRODUCTION

S PARSE representation of signals over redundant dic-
tionaries [1]–[3] is a rapidly evolving field, with

state-of-the-art results in many fundamental signal and image
processing tasks [4]–[11]. The basic model suggests that
natural signals can be compactly expressed, or efficiently
approximated, as a linear combination of prespecified atom
signals, where the linear coefficients are sparse (i.e., most of
them zero). Formally, letting be a column signal, and
arranging the atom signals as the columns of the dictionary

, the sparsity assumption is described by the fol-
lowing sparse approximation problem, for which we assume a
sparse solution exists

Subject To (1)

In this expression, is the sparse representation of , is the
error tolerance, and the function , loosely referred to as
the -norm, counts the nonzero entries of a vector. Though
known to be NP-hard in general [12], the above problem is rel-
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atively easy to approximate using a wide variety of techniques
[13]–[21].

A fundamental consideration in employing the above model
is the choice of the dictionary . The majority of literature on
this topic can be categorized into two basic approaches: the an-
alytic approach and the learning-based approach. In the first
approach, a mathematical model of the data is formulated, and
an analytic construction is developed to efficiently represent the
model. This generally leads to dictionaries that are highly struc-
tured and have a fast numerical implementation. We refer to
these as implicit dictionaries as they are described by their algo-
rithm rather than their explicit matrix. Dictionaries of this type
include Wavelets [22], Curvelets [23], Contourlets [24], Shear-
lets [25], Complex Wavelets [26], and Bandelets [27], among
others.

The second approach suggests using machine learning tech-
niques to infer the dictionary from a set of examples. In this
case, the dictionary is typically represented as an explicit matrix,
and a training algorithm is employed to adapt the matrix coeffi-
cients to the examples. Algorithms of this type include Principal
Component Analysis (PCA) [28] and Generalized PCA [29], the
method of optimal directions (MOD) [30], the K-SVD [31], and
others. Advantages of this approach are the much finer-tuned
dictionaries they produce compared to the analytic approaches,
and their significantly better performance in applications. How-
ever, this comes at the expense of generating an unstructured
dictionary, which is more costly to apply. Also, complexity con-
straints limit the size of the dictionaries that can be trained in this
way, and the dimensions of the signals that can be processed.

In this paper, we present a novel dictionary structure that
bridges some of the gap between these two approaches, gaining
the benefits of both. The structure is based on a sparsity model
of the dictionary atoms over a known base dictionary. The new
parametric structure leads to a simple and flexible dictionary
representation which is both adaptive and efficient. Advantages
of the new structure include low complexity, compact repre-
sentation, stability under noise and reduced overfitting, among
others.

A. Related Work

The idea of training dictionaries with a specific structure has
been proposed in the past, though research in this direction is
still in its early stages. Much of the work so far has focused
specifically on developing adaptive Wavelet transforms, as in
[32]–[35]. These works attempt to adapt various parameters of
the Wavelet transform, such as the mother wavelet or the scale
and dilation operators, to better suit specific given data.
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More recently, an algorithm for training unions of or-
thonormal bases was proposed in [36]. The suggested dictio-
nary structure takes the form

(2)

where the ’s are unitary sub-dictionaries. The structure has
the advantage of offering efficient sparse-coding via block co-
ordinate relaxation (BCR) [17], and its training algorithm is
simple and relatively efficient. However, the dictionary model
itself is relatively restrictive, and its training algorithm shows
somewhat weak performance. Furthermore, the structure does
not lead to quick forward and adjoint operators, as the dictio-
nary itself remains explicit.

A different approach is proposed in [6], where a semi-multi-
scale structure is employed. The dictionary model is a concate-
nation of several scale-specific dictionaries over a dyadic grid,
leading (in the 1-D case) to the form of (3), shown at the bottom
of the page. The multiscale structure is shown to provide ex-
cellent results in applications such as denoising and inpainting.
Nonetheless, the explicit nature of the dictionary is maintained
along with most of the drawbacks of such dictionaries. Indeed,
the use of sparse dictionaries to replace the explicit ones in (3)
is an exciting option for future study.

Another recent contribution is the signature dictionary pro-
posed in [37]. According to the suggested model, the dictionary
is described via a compact signature image, with each sub-block
of this image constituting an atom of the dictionary.1 The advan-
tages of this structure include near-translation-invariance, re-
duced overfitting, and faster sparse-coding when utilizing spa-
tial relationships between neighboring signal blocks. On the
other hand, the small number of parameters in this model—one
coefficient per atom—also makes this dictionary more restric-
tive than other structures. Indeed, the sparse dictionary model
proposed in this paper enhances the dictionary expressiveness
by increasing the number of parameters per atom from 1 to

, while maintaining other favorable properties of the dic-
tionary.

B. Paper Organization

This paper is organized as follows. We begin in Section II
with a description of the dictionary model and its advantages.
In Section III, we consider the task of training the dictionary
from examples, and present an efficient algorithm for doing so.
Section IV analyzes and quantifies the complexity of sparse dic-

1Indeed, both fixed and variable-sized sub-blocks can be considered, though
in [37] mostly fixed-sized blocks are studied.

tionaries, and compares it to other dictionary forms. Simulation
results are provided in Section V. We summarize and conclude
in Section VI.

Notation

• Bold uppercase letters designate matrices , and
bold lowercase letters designate column vectors .
The columns of a matrix are referenced using the corre-
sponding lowercase letter, e.g., ; the
elements of a vector are similarly referenced using stan-
dard-type letters, e.g., . The notation
is used to denote the zero vector, with its length inferred
from the context.

• Given a single index or an ordered se-
quence of indices , we denote by

the sub-matrix of containing
the columns indexed by , in the order in which they ap-
pear in . For vectors,we similarly denote the sub-vector

. We use the notation , with
a second index or sequence of indices, to refer to the

sub-matrix of containing the rows indexed by and
the columns indexed by , in their respective orders.
This notation is used for both access and assignment, so
if , the statement means
nullifying the even-indexed entries in the th row of .

II. SPARSE DICTIONARIES

A. Motivation

Selecting a dictionary for sparse signal representation in-
volves balancing between two elementary and seemingly
competing considerations. The first is the complexity of the
dictionary, as the dictionary forward and adjoint operators form
the dominant components of most sparse-coding techniques,
and these in turn form the core of all sparsity-based signal
processing methods. Indeed, techniques such as matching
pursuit (MP) [2], orthogonal matching pursuit (OMP) [13],
stagewise orthogonal matching pursuit (StOMP) [16], and their
variants, all involve costly dictionary-signal computations each
iteration. Other common methods such as interior-point Basis
Pursuit [1] and FOCUSS [15] minimize a quadratic function
each iteration, which is commonly performed using repeated
application of the dictionary and its adjoint. Many additional
methods rely heavily on the dictionary operators as well.

Over the years, a variety of dictionaries with fast implementa-
tions have been designed. For natural images, dictionaries such
as Wavelets [22], Curvelets [23], Contourlets [24], and Shear-
lets [25], all provide fast transforms. However, such dictionaries
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Fig. 1. (left) Dictionary for 8� 8 image patches, trained using the K-SVD al-
gorithm. (right) Images used for the training. Each image contributed 25 000
randomly selected patches, for a total of 100 000 training signals.

are fixed and limited in their ability to adapt to different types
of data. Adaptability is thus a second desirable property of a
dictionary, and in practical applications, adaptive dictionaries
consistently show better performance than generic ones [5], [6],
[8], [10], [11]. Unfortunately, adaptive methods usually prefer
explicit dictionary representations over structured ones, gaining
a higher degree of freedom in the training but sacrificing regu-
larity and efficiency of the result.2

Bridging this gap between complexity and adaptivity requires
a parametric dictionary model that provides sufficient degrees of
freedom. In this work, we propose the sparse dictionary model
as a simple and effective structure for achieving this goal, based
on sparsity of the atoms over a known base dictionary. Our ap-
proach can be motivated as follows. In Fig. 1,we see an example
of a dictionary trained using the K-SVD algorithm [31] on a set
of 8 8 natural image patches. The algorithm trains an explicit,
fully unconstrained dictionary matrix, and yet, we see that the
resulting dictionary is highly structured, with noticeably regular
atoms. This gives rise to the hypothesis that the dictionary atoms
themselves may have some underlying sparse structure over a
more fundamental dictionary, and as we show in this paper, such
a structure can indeed be recovered, and has several favorable
properties.

B. Dictionary Model

The sparse dictionary model suggests that each atom of the
dictionary has itself a sparse representation over some prespec-
ified base dictionary . The dictionary is therefore expressed as

(4)

where is the atom representation matrix, assumed to be
sparse. For simplicity, we focus on matrices having a fixed
number of nonzeros per column, so for some .
The base dictionary will generally be chosen to have a quick
implicit implementation, and, while may have any number
of atoms, we assume it spans the signal space. The choice of
the base dictionary obviously affects the success of the entire

2We should note that in adaptive dictionaries we are referring to dictionaries
whose content can be adapted to different families of signals, typically through
a learning process. Signal-dependent representation schemes, such as Best
Wavelet Packet Bases [32] and Bandelets [27], are another type of adaptive
process, but of a very different nature. These methods produce an optimized
dictionary for a given signal based on its specific characteristics (e.g., frequency
content or geometry, respectively), and they are not considered here.

model, and we thus prefer one which already incorporates
some prior knowledge about the data. Indeed, if more than one
possible base dictionary exists, one may benefit from experi-
menting with a few different options in order to determine the
most suitable one.

In comparison to implicit dictionaries, the dictionary model
(4) provides adaptability via modification of the matrix , and
can be efficiently trained from examples. Furthermore, as
can be any dictionary—specifically, any existing implicit dic-
tionary—the model can be viewed as an extension to existing
dictionaries, adding them a new layer of adaptivity.

In comparison to explicit dictionaries, the sparse structure is
significantly more efficient, depending mostly on the choice of

. It is also more compact to store and transmit. Furthermore, as
we show later in this paper, the imposed structure acts as a regu-
larizer in dictionary learning processes, and reduces overfitting
and instability in the presence of noise. Training a sparse dictio-
nary requires less examples than an explicit one, and produces
useable results even when only a few examples are available.

The sparse dictionary model has another interesting interpre-
tation. Assume the signal is sparsely represented over the dic-
tionary , so for some sparse . Therefore,

is the representation of over . Since both and the
columns of are sparse—having no more than, say, and
non-zeros, respectively—this representation will have approx-
imately nonzeros. However, such quadratic cardinality will
generally fall beyond the success range of sparse-approxima-
tion techniques [3]. As such, it is no longer considered sparse
in terms of the formulation (1), and sparse-coding methods will
commonly fail to recover it. Furthermore, given a noisy version
of , attempting to recover it directly over using atoms will
likely result in capturing a significant portion of the noise along
with the signal, due to the number of coefficients used.3

Through the sparse dictionary structure, we are able to ac-
commodate denser signal representations over while essen-
tially by-passing the related difficulties. The reason is that even
though every -sparse signal over will generally have a denser

-representation over , not every -representation over
will necessarily fit the model. The proposed model therefore
acts as a regularizer for the allowed dense representations over

, and by learning the matrix , we are expressing in some
form the complicated dependencies between its atoms.

III. LEARNING SPARSE DICTIONARIES

We now turn to the question of designing a sparse dictionary
for sparse signal representation. A straightforward approach
would be to select some general (probably learned) dictionary

, choose a base dictionary , and sparse-code the atoms in
to obtain . This naive approach, however,

is clearly suboptimal: specifically, the dictionary must be
sufficiently compatible with , or else the representations
in may not be very sparse. Simulation results indicate that
such dictionaries indeed perform poorly in practical signal
processing applications.

3For a signal of length � contaminated by white noise, the expected energy
of the remaining noise in a recovered signal using � atoms is approximately ���
the initial noise energy, due to the orthogonal projection.
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A more desirable approach would be to learn the sparse dic-
tionary using a process that is aware of the dictionary’s spe-
cific structure. We adopt an approach which continues the line
of work in [31], and develop a K-SVD-like learning scheme for
training the sparse dictionary from examples. The algorithm is
inspired by the Approximate K-SVD implementation presented
in [38], which we briefly review.

A. K-SVD and its Approximate Implementation

The K-SVD algorithm accepts an initial overcomplete dictio-
nary matrix , a number of iterations , and a set of
examples arranged as the columns of the matrix .
The algorithm aims to iteratively improve the dictionary by ap-
proximating the solution to

Subject To

(5)

Note that in this formulation, the atom normalization constraint
is commonly added for convenience, though it does not have
any practical significance to the result.

The K-SVD iteration consists of two basic steps: 1) sparse-
coding the signals in given the current dictionary estimate
and 2) updating the dictionary atoms given the sparse repre-
sentations in . The sparse-coding step can be implemented
using any sparse-approximation method. The dictionary update
is performed one atom at a time, optimizing the target function
for each atom individually while keeping the remaining atoms
fixed.

The atom update is carried out while preserving the sparsity
constraints in (5). To achieve this, the update uses only those
signals in whose sparse representations use the current atom.
Denoting by the indices of the signals in that use the th
atom, the update of this atom is obtained by minimizing the
target function

(6)

for both the atom and its corresponding coefficient row in .
The resulting problem is a simple rank-1 approximation, given
by

Subject To (7)

where is the error matrix without the th
atom, and and are the updated atom and coefficient row,
respectively. The problem can be solved directly via an SVD
decomposition, or more efficiently using some numerical power
method.

In practice, the exact solution of (7) can be quite computation-
ally demanding, especially when the number of training signals
is large. As an alternative, an approximate solution may be used
to reduce the complexity of this task [38]. The simplified update
step is obtained by applying a single iteration of alternated-op-
timization [17], [39], given by

(8)

The above process is known to ultimately converge to the op-
timum,4 and when truncated, supplies an approximation which
still reduces the penalty term. Also, this process eliminates the
need to explicitly compute the matrix , as only its products
with vectors are required.5

B. Sparse K-SVD Algorithm

To train a sparse dictionary, we use the same basic frame-
work as the original K-SVD algorithm. Specifically, we aim to
(approximately) solve the optimization problem

Subject To (9)

alternating sparse-coding and dictionary update steps for a fixed
number of iterations. The notable change is in the atom update
step: as opposed to the original K-SVD algorithm, in this case
the atom is constrained to the form with . The
modified atom update is therefore given by

Subject To

(10)

with defined as in (7).
Interestingly, our problem is closely related to a different

problem known as Sparse Matrix Approximation (here SMA),
recently raised in the context of Kernel-SVM methods [40].
The SMA problem is formulated similar to problem (10), but
replaces the rank-1 matrix with a general matrix , and
the sparsity constraint on with a constraint on the number
of nonzero rows in . Our problem is therefore essentially a
rank-constrained version of the original SMA problem. In [40],
Smola and Scholkopf suggest a greedy OMP-like algorithm for
solving the problem, utilizing randomization to deal with the
large amount of work involved. Unfortunately, while this ap-
proach is likely extendable to the rank-constrained case, it leads
to a computationally intensive process which is impractical for
large problems.

Our approach therefore takes a different path to solving the
problem, employing an alternated-optimization technique over

and parallel to (8). We point out that as opposed to (8), the
process here does not generally converge to the optimum when
repeated, due to the non-convexity of the problem. Nonetheless,
the method does guarantee a reduction in the target function
value, which is essentially sufficient for our purposes.

4Applying two consecutive iterations of this process produces � �
�� � ���� � � , which is the well-known power iteration for�� . The
process converges, under reasonable assumptions, to the largest eigenvector of
�� —also the largest left singular vector of �.

5Specifically, �� � � � � � ���� �� can be computed via a series
of vector inner products � � ��� �, followed by a vector sum � � and
a matrix-vector product� �. This is significantly faster and more memory-ef-
ficient than the explicit computation of�, which involves matrix-matrix opera-
tions. The same applies to the computation of � �.
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To simplify the derivation, we note that (10) may be solved
without the norm constraint on , and adding a post-pro-
cessing step which transfers energy between and to achieve

while keeping fixed. The simplified problem
is given by

Subject To

(11)
We also note that the solution to this problem is guaranteed to
be nonzero for all , hence the described renormalization
of and is possible.

Optimizing over in (11) is straightforward, and given by

(12)

Optimizing over , however, requires more attention. The min-
imization task for is given by

Subject To (13)

The straightforward approach to this problem is to rewrite as
a column vector , and formulate the problem as an ordinary
sparse-coding task for (we use to denote the Kronecker
matrix product [41])

Subject To (14)

However, this leads to an intolerably large optimization
problem, as the length of the signal to sparse-code is of the
same order of magnitude as the entire dataset. Instead, we show
that problem (13) is equivalent to a much simpler sparse-coding
problem, namely

Subject To (15)

Here, the vector is of the same length as a single training
example, and the dictionary is the base dictionary which is
assumed to have an efficient implementation; therefore, this
problem is significantly easier to handle than the previous one.
Also, as discussed above, the vector itself is much easier to
compute than the vector , which is just a vectorized version of
the matrix .

To establish the equivalence between the problems (13) and
(15), we use the following Lemma.

Lemma 1: Let and be two matrices,
and and be two vectors. Also assume that

. Then the following holds:

Proof: The equality follows from elementary properties of
the trace function

The Lemma implies that, assuming , then for every
representation vector

Clearly the important point in this equality is that the two sides
differ by a constant independent of . Thus, the target function
in (13) can be safely replaced with the right-hand side of the
equality (sans the constant), establishing the equivalence to (15).

When using the Lemma to solve (13), we note that the en-
ergy assumption on can be easily overcome, as dividing by
a nonzero constant simply results in a solution scaled by that
same constant. Thus (13) can be solved for any by normalizing
it to unit length, applying the Lemma, and rescaling the solution

by the appropriate factor. Conveniently, since is indepen-
dently renormalized at the end of the process, this rescaling can
be skipped completely, scaling instead to and con-
tinuing with the update of .

Combining the pieces, the final atom update process consists
of the following steps: 1) normalizing to unit length; 2) solving
(15) for ; 3) normalizing to ; and 4) updating

. This process may generally be repeated, though
we have found little practical advantage in doing so. The com-
plete Sparse K-SVD algorithm is detailed in Fig. 2. Figs. 3 and
4 show an example result, obtained by applying this algorithm
to the same training set as that used to train the dictionary in
Fig. 1.

IV. COMPLEXITY OF SPARSE DICTIONARIES

Sparse dictionaries are generally much more efficient than ex-
plicit ones, and provide significant gains especially for larger
dictionaries and higher-dimensional signals. In this section we
discuss the complexity of sparse dictionaries and describe the
cases where they are most advantageous. To focus the discus-
sion, we concentrate on the case of orthogonal matching pursuit
(OMP) sparse-coding, which is a widely used method which is
relatively simple to analyze.

A. Sparse Dictionary Operator Complexity

The dictionary structure (4) is implemented by multiplying
the sparse representation by and applying . In the fol-
lowing, we assume that has a total of nonzeros, and that

has an efficient implementation with complexity .
Operations with sparse matrices are not immediate to ana-

lyze, with many factors affecting actual performance (see [42]
for some insights on the topic). In this paper we make the sim-
plifying assumption that the complexity of such operations is
proportional to the number of non-zeros in the sparse matrix,
so multiplying a vector by a sparse matrix with nonzeros is
equivalent to multiplying it by a full matrix with
coefficients (a total of multiplications and additions). For
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Fig. 2. Sparse K-SVD Algorithm.

Fig. 3. (left) Overcomplete DCT dictionary for 8� 8 image patches. (right)
Sparse dictionary trained over the overcomplete DCT using Sparse K-SVD.
Dictionary atoms are represented using 6 coefficients each. Marked atoms are
magnified in Fig. 4.

Fig. 4. Some atoms from the trained dictionary in Fig. 3, and their overcom-
plete DCT components. The index pair above each overcomplete DCT atom de-
notes the wave number of the atom, with (1,1) corresponding to the upper-left
atom, (16,1) corresponding to the lower-left atom, etc. In each row, the compo-
nents are ordered by decreasing magnitude of the coefficients, the most signif-
icant component on the left. The coefficients themselves are not shown due to
space limitations, but are all of the same order of magnitude.

a concrete figure, we use , which is roughly what our ma-
chine (an Intel Core 2 running Matlab 2007a) produced. With
this assumption, the complexity of the sparse dictionary

is given by

������ ���	 (16)

The base dictionary will usually be chosen to have a com-
pact representation and sub- implementation. Indeed, most
implicit dictionaries provide these properties, with complexities
ranging from linear to low-degree polynomial. In the fol-
lowing analysis, we focus on two very common types of base
dictionaries, which roughly represent this range.

1) Separable Dictionaries: Dictionaries which are the Kro-
necker product of several 1-D dictionaries. Assuming

is a dictionary for 1-D signals of length , the dictio-
nary can be constructed for repre-
senting signals arranged in column-major order as vec-
tors of length . The dictionary adjoint is separable as well and
given by . The dictionary and its adjoint are effi-
ciently implemented by applying or (respectively) along
each of the signal dimensions, in any order. Denoting ,
and assuming is applied via explicit matrix multiplication,
the complexity of this dictionary in the 2-D case is

(17)

where and are the dictionary dimensions.
Examples of separable dictionaries include the DCT (Fourier),
overcomplete DCT (Fourier), and Wavelet dictionaries, among
others. Generalizations to higher dimensions are straightfor-
ward to derive.
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Fig. 5. Speedup of OMP-Cholesky using a sparse dictionary compared to an explicit dictionary. (left) Speedup for 2-D signals. (right) Speedup for 3-D signals.
Signal length is � � � where � is the block size and � � �� � is the number of dimensions. Dictionary size is chosen to be � � ��� �� (base dictionary is
of the same size, and the matrix� is square). Atom sparsity is set to � � ��� in the 2-D case and to � � � in the 3-D case. Complexity of linear dictionary is
� � �� .

2) Linear-Time Dictionaries: Dictionaries which are imple-
mented with a constant number of operations per sample, so

(18)

for some constant value . Examples include the Wavelet, Con-
tourlet, and Complex Wavelet dictionaries, among others.

B. Complexity of OMP

OMP is a greedy sparse-coding algorithm which has sev-
eral efficient implementations. One of the most common ones
is OMP-Cholesky [21], [38], [43] which employs a progressive
Cholesky decomposition to perform efficient matrix inversions.

When the dictionary is represented explicitly, the number of
operations performed by OMP-Cholesky can be shown to be
[38]

(19)

where is the number of OMP iterations (also the number of se-
lected atoms), and and are the dictionary dimensions. Note
that since , the dominant term in this expression
is the first one, which is associated with the explicit dictionary
operator.

With a sparse dictionary, one can show that the complexity of
OMP-Cholesky becomes

������ ���	 (20)

where is the sparsity of the dictionary atoms over the base
dictionary, and is the sparse operation overhead factor dis-
cussed above (for a derivation of this result we refer the reader
to [44]). We observe that the term proportional to in (19)
has been replaced by terms proportional to and in this
expression. Therefore, when the base dictionary has an effi-
cient implementation, and assuming , the sparse dictio-
nary indeed provides an order-of-magnitude complexity advan-
tage over an explicit one.

The complexity gain of OMP-Cholesky with a sparse dic-
tionary is depicted in Fig. 5. Fig. 5 shows the speedup factor
of OMP-Cholesky with a sparse dictionary compared to an ex-
plicit one, for 2-D and 3-D signals, and using either a separable

or linear base dictionary. The -axis corresponds to the signal
length , where for .

As can be seen, sparse dictionaries provide a pronounced per-
formance increase compared to explicit ones, especially in the
3-D case where the speedup is around for the sepa-
rable case and for the linear case. We also see that
the speedup continues to increase as the signal becomes larger.
In a practical signal processing application, where large num-
bers of signals are involved, this difference may make sparse
dictionaries the only feasible option.

C. Dictionary Training

Seeing the complexity gain in sparse-coding, it is un-
surprising that Sparse K-SVD is similarly faster than the
standard and approximate K-SVD methods. Indeed, the gain
mostly stems from the acceleration in the sparse-coding
step (line 5 of the algorithm). In the asymptotic case where

, with the number of training
signals, the complexity of the approximate K-SVD becomes
proportional to the complexity of its sparse-coding method [38].
Indeed, this result is easily extended to Sparse K-SVD as well;
consequently, Sparse K-SVD is faster than the approximate
K-SVD by approximately the sparse-coding speedup.

As we will see in the experimental section, a more significant
(though less obvious) advantage of Sparse K-SVD is the reduc-
tion in overfitting. This results in a substantially smaller number
of examples required for the training process, and leads to a fur-
ther reduction in training complexity.

V. APPLICATIONS AND SIMULATION RESULTS

The sparse dictionary structure has several advantages. It
enables larger dictionaries to be trained, for instance to fill-in
bigger holes in an image inpainting task [6]. Specifically of
interest are dictionaries for high-dimensional data. Indeed, em-
ploying sparsity-based techniques to high-dimensional signal
data is challenging, as the complicated nature of these signals
limits the availability of analytic transforms for them, while
the complexity of the training problem constrains the use of
existing adaptive techniques as well. The sparse dictionary
structure—coupled with the Sparse K-SVD algorithm—makes
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it possible to process such signals and design rich dictionaries
for representing them.

Another application for sparse dictionaries is signal compres-
sion. Using an adaptive dictionary to code signal blocks leads to
sparser representations than generic dictionaries, and therefore
to higher compression rates. Such dictionaries, however, must
be stored alongside the compressed data, and this becomes a
limiting factor when used with explicit dictionary representa-
tions. Sparse dictionaries significantly reduce this overhead. In
essence, wherever a prespecified dictionary is used for compres-
sion, one may introduce adaptivity by training a sparse dictio-
nary over this predesigned one. The facial compression algo-
rithm in [8] makes a good candidate for such a technique, and
research in this direction is currently ongoing.

In the following experiments we focus on a specific type of
signal, namely 3-D computed tomography (CT) imagery. We
compare the sparse and explicit dictionary structures in their
ability to adapt to specific data and generalize from it. We also
provide concrete CT denoising results for the two dictionary
structures, and show that the sparse dictionary consistently out-
performs the explicit one, while operating substantially faster.
Our simulations make use of the CT data provided by the NIH
Visible Human Project.6

A. Training and Generalization

Training a large dictionary generally requires increasing the
number of training signals accordingly. Heuristically, we ex-
pect the training set to grow at least linearly with the number
of atoms, to guarantee sufficient information for the training
process. Uniqueness is in fact only known to exist for an expo-
nential number of training signals in the general case [45]. Un-
fortunately, large numbers of training signals quickly become
impractical when the dictionary size increases, and it is therefore
highly desirable to develop methods for reducing the number of
required examples.

In the following experiments we compare the generalization
performance of K-SVD versus Sparse K-SVD with small
to moderate training sets. We use both methods to train a
512 1000 dictionary for signal patches. The data is
taken from the Visible Male—Head CT volume. We extract the
training blocks from a noisy version of the CT volume (PSNR

17 dB), while the validation blocks are extracted directly
from the original volume. Training is performed using 10 000,
30 000, and 80 000 training blocks, randomly selected from the
noisy volume, and with each set including all the signals in
the previous sets. The validation set consists of 20 000 blocks,
randomly selected from the locations not used for training.
The initial dictionary for both methods is the overcomplete
DCT dictionary.7 For Sparse K-SVD, we use the overcomplete
DCT as the base dictionary, and set the initial matrix to
identity. The sparse dictionary is trained using either 8, 16, or
24 coefficients per atom.

6http://www.nlm.nih.gov/research/visible/.
7The 1-D � �� overcomplete DCT dictionary is essentially a cropped ver-

sion of the orthogonal � � � DCT dictionary matrix. The �-D overcomplete
DCT dictionary is simply the Kronecker product of � 1-D overcomplete DCT
dictionaries. Note that the number of atoms in such a dictionary is� , and must
have a whole �th root (in our case, �� � 1000 atoms).

Fig. 6 shows our results. The top and bottom rows show the
performance of the K-SVD and Sparse K-SVD dictionaries on
the training and validation sets (respectively) during the algo-
rithm iterations. Following [5], we code the noisy training sig-
nals using an error target proportional to the noise, and have the

sparsity of the representations as the training target function.
We evaluate performance on the validation signals (which are
noiseless) by sparse-coding with a fixed number of atoms, and
measuring the resulting representation RMSE.

We can see that the average number of nonzeros for the
training signals decreases rapidly in the K-SVD case, espe-
cially for smaller training sets. However, this phenomena is
mostly an indication of overfitting, as the drop is greatly atten-
uated when adding training data. The overfitting consequently
leads to degraded performance on the validation set, as can be
seen in the bottom row.

In contrast, the sparse dictionary shows much more stable
performance. Even with only 10 000 training signals, the
learned dictionary performs reasonably well on the validation
signals. As the training set increases, we find that the perfor-
mance of the sparsest dictionary begins to weaken,
indicating the limits of the constrained structure. However,
for and the sparse dictionary continues to
gradually improve, and consistently outperforms the standard
K-SVD. It should be noted that while the K-SVD dictionary is
also expected to improve as the training set is increased—pos-
sibly surpassing the Sparse K-SVD at some point—such large
training sets are extremely difficult to process, to the point of
being impractical.

B. CT Volume Denoising

We used the adaptive K-SVD denoising algorithm [5] to eval-
uate CT volume denoising performance. The algorithm trains an
overcomplete dictionary using blocks from the noisy signal, and
then denoises the signal using this dictionary, averaging the de-
noised blocks when they overlap in the result. We should men-
tion that newer, state-of-the-art variants of the K-SVD denoising
scheme, such as multi-scale K-SVD denoising [6] and non-local
simultaneous sparse-coding [11], could also be used here to fur-
ther improve the results, however in this work we focus on the
original denoising formulation for simplicity.

We performed our experiments on the Visible Male—Head
and Visible Female—Ankle volumes. The intensity values of
each volume were first fitted to the range for compat-
ibility with image denoising results, and then subjected to ad-
ditive white Gaussian noise with varying standard deviations of

. We tested both 2-D denoising, in which each
CT slice is processed separately, and 3-D denoising, in which
the volume is processed as a whole. The atom sparsity for these
experiments was heuristically set to for the 2-D case and

for the 3-D case, motivated by results such as those in
Fig. 6. Our denoising results are actually expected to improve
as these values are increased, up to a point where overfitting
becomes a factor. However, we preferred to limit the atom spar-
sity in these experiments to maintain the complexity advantage
of the sparse dictionary. Further work may establish a more sys-
tematic way of selecting these values.
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Fig. 6. Training and validation results for patches from Visible Male—Head. Training signals are taken from the noisy volume (PSNR � 17 dB), and validation
signals are taken from the original volume. Block size is � � � � �, and dictionary size is 512� 1000. Training signals (noisy) are sparse-coded using an error
stopping criterion proportional to the noise; validation signals (noiseless) are sparse-coded using a fixed number of atoms. Shown penalty functions are respectively
the average number of nonzeros in the sparse representations and the coding RMSE. Sparse K-SVD with atom-sparsity � is designated in the legend as S-KSVD
���.

Fig. 7. Denoising results for Visible Male—Head, slice #137 �� � ���. Images
are provided for qualitative evaluation, and are best viewed by zooming-in using
a computer display: (a) original; (b) noisy; (c) 2-D Sparse KSVD; (d) 3-D Sparse
KSVD.

Our denoising results are summarized in Table I. Table II
shows the running times obtained by our Intel Core 2 machine
for the different algorithms in the 3-D case. For completeness,

TABLE I
CT DENOISING RESULTS USING K-SVD, SPARSE K-SVD, AND OVERCOMPLETE

DCT DICTIONARIES. VALUES REPRESENT PEAK SNR (dB), AND ARE

AVERAGED OVER 4 EXECUTIONS. BOLD NUMERALS DENOTE THE BEST

RESULT IN EACH TEST UP TO A 0.1 dB DIFFERENCE

Table III lists the full set of parameters used in these experi-
ments. Some actual denoising results are shown in Fig. 7.
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TABLE II
RUNNING TIMES OF K-SVD, SPARSE K-SVD, AND OVERCOMPLETE DCT DENOISING FOR THE RESULTS IN TABLE I (3-D CASE). TIMINGS INCLUDE DICTIONARY

TRAINING. SIMULATIONS WERE PERFORMED ON AN INTEL CORE 2 PROCESSOR, UTILIZING A SINGLE CORE. NOTE THAT LISTED RUNNING TIMES CAN

BE FURTHER IMPROVED, SEE SECTION V-C

TABLE III
PARAMETERS OF THE K-SVD DENOISING ALGORITHM (SEE [5] FOR MORE

DETAILS). NOTE THAT A LAGRANGE MULTIPLIER OF 0 MEANS THAT THE NOISY

IMAGE IS NOT WEIGHTED WHEN COMPUTING THE FINAL DENOISED RESULT

The most evident result in Table I is that 3-D denoising is
indeed substantially more effective than 2-D denoising for this
task, with significant gains of 1.5–4 dB in all cases. These re-
sults provide further motivation for the move towards larger dic-
tionaries and higher-dimensional signals, where sparse dictio-
naries are truly advantageous.

Turning to the 3-D denoising results, we find that the Sparse
K-SVD matches or outperforms the standard K-SVD in all test
cases. Indeed, in the low noise range , both methods
perform essentially the same, and provide only marginal
improvement over the fixed overcomplete DCT dictionary.
However in the medium and high noise ranges , the
training process becomes beneficial, and leads to improved
recovery compared to the fixed dictionary. In this noise range,
the increased stability of the Sparse K-SVD in the presence of
noise and limited training data becomes advantageous, and it
performs consistently better than standard K-SVD. We note that
in some cases of very high noise, the standard K-SVD actually
performs worse than its initial overcomplete DCT dictionary,
due to overfitting and its weakness in the presence of noise.

Reviewing the results in Table I, we note that the raw PSNR
gain of Sparse K-SVD over standard K-SVD, while consistent,
is typically small. Indeed, the main appeal of the Sparse K-SVD
here is its substantially better complexity, as depicted in Table II.
As can be seen, the complexity advantage of Sparse K-SVD

translates to a reduction in denoising time com-
pared to the standard K-SVD, and in fact, the long running time
of standard K-SVD makes it practically useless for this task.
In contrast, the Sparse K-SVD is much faster, performing espe-
cially reasonably in the interesting noise range of (in the
next section we discuss methods to further reduce running time
in practical applications). Thus, we conclude that the Sparse
K-SVD is indeed able to introduce adaptivity where the standard
K-SVD is impractical, making sparse dictionaries an appealing
alternative to both fixed dictionaries and explicit learned dictio-
naries alike.

C. Further Acceleration and Practical Considerations

The running times in Table II may be significantly improved
to allow incorporation of the Sparse K-SVD in practical appli-
cations. First, analysis of the Sparse K-SVD denoising run-time
shows that it is mostly dedicated to training, while the actual de-
noising requires similar time to the overcomplete DCT option.
In many cases, training time may be decreased (and denoising
results improved) by pre-training an initial sparse dictionary on
a large set of generic data of the same type as handled by the
application. This method, employed, e.g., in [11], reduces the
number of training iterations required, and can substantially ac-
celerate the process.

Another source of acceleration is replacing the OMP-
Cholesky implementation with a more efficient OMP imple-
mentation such as Batch-OMP [38]. This option, which is
not discussed here due to its relative technicality, is analyzed
in detail in [44]. Experiments done with Batch-OMP show
that it achieves a speedup in Sparse K-SVD and
overcomplete DCT denoising over the running times shown
in Table II, reducing the Sparse K-SVD denoising time to
less than 5 minutes for the noise range. The software
package published with this paper (see below) implements both
OMP-Cholesky and Batch-OMP options.

Finally, we should mention that all algorithms discussed here
are highly parallelizeable, with an expected near-linear speedup
with the number of processors. Thus we expect an 8-core pro-
cessor, combined with the Batch-OMP implementation, to carry
out the entire 3-D Sparse K-SVD denoising process in less than
a minute for any .

D. Reproducible Research

The complete K-SVD and Sparse K-SVD code reproducing
the results in this paper, along with the original CT volumes
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used, are made available for download at http://www.cs.tech-
nion.ac.il/~elad/software. The code is provided as a set of
MATLAB packages that combine Matlab code and com-
pilable C MEX functions. The packages implement both the
OMP-Cholesky and the Batch-OMP options. See the README
files and the accompanying documentation in each of the pack-
ages for more information.

VI. SUMMARY AND FUTURE WORK

We have presented a novel dictionary structure which is
both adaptive and efficient. The sparse structure is simple and
can be easily integrated into existing sparsity-based methods.
It provides fast forward and adjoint operators, enabling its
use with larger dictionaries and higher-dimensional data. Its
compact form is beneficial for tasks such as compression,
communication, and real-time systems. It may be combined
with any implicit dictionary to enhance its adaptability, with
very little overhead.

We developed an efficient K-SVD-like algorithm for training
the sparse dictionary, and showed that the structure provides
better generalization abilities than the non-constrained one. The
algorithm was applied to noisy CT data, where the sparse struc-
ture was found to outperform and operate significantly faster
than the explicit representation under moderate and high noise.
The proposed dictionary structure is thus a compelling alterna-
tive to existing explicit and implicit dictionaries alike, offering
the benefits of both.

The full potential of the new dictionary structure is yet to
be realized. We have provided preliminary results for CT de-
noising, however other signal processing tasks are expected to
benefit from the new structure as well, and additional work is
required to establish these gains. As noted in the introduction,
the generality of the sparse dictionary structure allows it to be
easily combined with other dictionary forms. As dictionary de-
sign receives increasing attention, the proposed structure can
become a valuable tool for accelerating, regularizing, and en-
hancing adaptability in future dictionary structures.
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