

DIP
Data, Information and Process Integration with Semantic Web Services

FP6 - 507483

Deliverable

WP 5: Automatic Service Integration

D5.3b

Michael Schumacher

Walter Binder

Ion Constantinescu

June 16th, 2004

Automatic Service Integration 22/06/2005

Automatic Service Integration

EXECUTIVE SUMMARY
Automatic service integration or composition is one important approach to achieve
interoperability among processes, making them collaborate in order to achieve given
user goals (see state-of-the-art analysis in DIP deliverable 5.1 [Cimpian et al. 2005]).
Actually, the goal of automated composition of web services is to compose
automatically web services together in order to achieve a new functionality. This
composition acts as a middleware, a mediator, between existing services.

In this document, we discuss in more details our specific approach to automatic
composition, using type-compatible service composition, i.e. service composition that
takes type constraints into account. We base first on the Knowledge Web Deliverable
2.4.2 [Lara et al. 2005]1 that presents a formalism to describe and reason about different
service composition algorithms. This formalism uses the composition typing
information in order to propose different composition algorithms. Then implementation
techniques are considered to enable efficient, scalable service composition in an open
environment populated by large numbers of heterogeneous services. In such a setting,
the efficient interaction of directory-based service discovery with service composition
engines is crucial. We present a directory that offers special functionality enabling
effective service composition. In order to optimize the interaction of the directory with
different service composition algorithms exploiting application-specific heuristics, the
directory supports user-defined selection and ranking functions written in a declarative
query language.

1 The referenced part of this Knowledge Web deliverable has been written by the authors of this
document.

Deliverable 5.3b i 6/22/2005

Automatic Service Integration

Document Information

IST Project
Number

FP6 – 507483 Acronym DIP

Full title Data, Information, and Process Integration with Semantic Web Services

Project URL http://dip.semanticweb.org

Document URL

EU Project officer Kai Tullius

Deliverable Number 5.3b Title Automatic Service Integration

Work package Number 5 Title Service Mediation

Date of delivery Contractual M 18 Actual 30-Jun-05

Status version. 1.0 final

Nature Prototype Report Dissemination

Dissemination
Level

Public Consortium

Authors (Partner) Michael Schumacher (EPFL), Walter Binder (EPFL), Ion Constantinescu
(NUIG)

Michael Schumacher Email michael.schumacher@epfl.ch Responsible
Author Partner EPFL Phone (+41 21) 693-6679

Abstract
(for
dissemination)

DIP D5.3b explores the use of automated service
composition in order to integrate semantic web services.
Possibilities and limitations of automated service
composition are explored in this context. A formalism is
defined to describe and reason about different service
composition algorithms. Implementation techniques are then
considered to enable efficient, scalable service composition.

Keywords Automated service composition, semantic web services,
mediation.

Version Log

Issue Date
<dd-mmm-
yy>

Rev No.
<nnn starting
001>

Author
<author
name>

Change
<Description of the changes that were made to the
preceding revision>

01-06-05 001 Michael First version

Deliverable 5.3b ii 6/22/2005

Automatic Service Integration

Schumacher

06-06-05 002 Michael
Schumacher

Several changes

10-06-05 003 Michael
Schumacher

New introductions to sections, updated executive
summary, introduction and conclusion

22-06-05 004 Michael
Schumacher

Last modifications

Deliverable 5.3b iii 6/22/2005

Automatic Service Integration

Project Consortium Information
Partner Acronym Contact

National University of Ireland Galway

NUIG

Prof. Dr. Christoph Bussler
Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway
Galway
Ireland
Email: chris.bussler@deri.org
Tel: +353 91 512460

Fundacion De La Innovacion.Bankinter

Bankinter

Monica Martinez Montes
Fundacion de la Innovation. BankInter
Paseo Castellana, 29
28046 Madrid,
Spain
Email: mmtnez@bankinter.es
Tel: 916234238

Berlecon Research GmbH

Berlecon

Dr. Thorsten Wichmann
Berlecon Research GmbH
Oranienburger Str. 32
10117 Berlin,
Germany
Email: tw@berlecon.de
Tel: +49 30 2852960

British Telecommunications Plc.

BT

Dr John Davies
BT Exact (Orion Floor 5 pp12)
Adastral Park Martlesham
Ipswich IP5 3RE,
United Kingdom
Email: john.nj.davies@bt.com
Tel: +44 1473 609583

Swiss Federal Institute of Technology,
Lausanne

EPFL

Prof. Karl Aberer
Distributed Information Systems Laboratory

École Polytechnique Féderale de Lausanne

Bât. PSE-A
1015 Lausanne, Switzerland
Email : Karl.Aberer@epfl.ch
Tel: +41 21 693 4679

Essex County Council

Essex

Mary Rowlatt,
Essex County Council
PO Box 11, County Hall, Duke Street
Chelmsford, Essex, CM1 1LX
United Kingdom.
Email: maryr@essexcc.gov.uk
Tel: +44 (0)1245 436524

Forschungszentrum Informatik

FZI

Andreas Abecker
Forschungszentrum Informatik
Haid-und-Neu Strasse 10-14
76131 Karlsruhe
Germany
Email: abecker@fzi.de
Tel: +49 721 9654 0

Deliverable 5.3b iv 6/22/2005

Automatic Service Integration

Partner Acronym Contact

Institut für Informatik, Leopold-Franzens
Universität Innsbruck

UIBK

Prof. Dieter Fensel
Institute of computer science
University of Innsbruck
Technikerstr. 25
A-6020 Innsbruck, Austria
Email: dieter.fensel@deri.org
Tel: +43 512 5076485

ILOG SA

ILOG Christian de Sainte Marie
9 Rue de Verdun, 94253
Gentilly, France
Email: csma@ilog.fr
Tel: +33 1 49082981

inubit AG

Inubit Torsten Schmale
inubit AG
Lützowstraße 105-106
D-10785 Berlin
Germany
Email: ts@inubit.com
Tel: +49 30726112 0

Intelligent Software Components, S.A.

iSOCO

Dr. V. Richard Benjamins, Director R&D
Intelligent Software Components, S.A.
Pedro de Valdivia 10
28006 Madrid, Spain
Email: rbenjamins@isoco.com
Tel. +34 913 349 797

NIWA WEB Solutions

NIWA

Alexander Wahler
NIWA WEB Solutions
Niederacher & Wahler OEG
Kirchengasse 13/1a
A-1070 Wien
Email: wahler@niwa.at
Tel:+43(0)1 3195843-11 |

The Open University

OU

Dr. John Domingue
Knowledge Media Institute
The Open University, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Email: j.b.domingue@open.ac.uk
Tel.: +44 1908 655014

SAP AG

SAP

Dr. Elmar Dorner
SAP Research, CEC Karlsruhe
SAP AG
Vincenz-Priessnitz-Str. 1
76131 Karlsruhe, Germany
Email: elmar.dorner@sap.com
Tel: +49 721 6902 31

Deliverable 5.3b v 6/22/2005

Automatic Service Integration

Sirma AI Ltd.

Sirma Atanas Kiryakov,
Ontotext Lab, - Sirma AI EAD
Office Express IT Centre, 3rd Floor
135 Tzarigradsko Chausse
Sofia 1784, Bulgaria
Email: atanas.kiryakov@sirma.bg
Tel.: +359 2 9768 303

Unicorn Solution Ltd.

Unicorn

Jeff Eisenberg
Unicorn Solutions Ltd,
Malcha Technology Park 1
Jerusalem 96951
Israel
Email: Jeff.Eisenberg@unicorn.com
Tel.: +972 2 6491111

Vrije Universiteit Brussel

VUB

Carlo Wouters
Starlab- VUB
Vrije Universiteit Brussel
Pleinlaan 2, G-10
1050 Brussel ,Belgium
Email: carlo.wouters@vub.ac.be
Tel.: +32 (0) 2 629 3719

Deliverable 5.3b vi 6/22/2005

Automatic Service Integration

TABLE OF CONTENTS

EXECUTIVE SUMMARY.. I

TABLE OF CONTENTS...VII

1 INTRODUCTION.. 1

2 FORMALISM AND SEMANTICS ... 3
2.1 Service Advertisements and Requests.. 3

2.2 Matchmaking – Current Approaches.. 4

2.3 Interval Constraints .. 4

2.4 Describing Services by Interval Constraints .. 6

3 TYPE-COMPATIBLE SERVICE COMPOSITION... 8
3.1 Type-Compatible Discovery and Composition .. 8

3.2 Type-Compatible Service Composition Versus Planning...................................... 9

3.3 Computing Type-Compatible Service Compositions... 10

3.4 Composition with Complete Type Matches ... 10

3.5 Composition with Forward Partial Type Matches.. 11

3.5.1 Discovering full input coverage .. 11
3.5.2 Discovering solution switch .. 12

4 IMPLEMENTATION TECHNIQUES FOR AUTOMATED SERVICE INTEGRATION 13
4.1 Multidimensional Access Methods - GiST .. 13

4.2 Defining Pruning and Ranking Functions .. 14

4.3 Efficient Directory Search.. 17

4.4 Example Queries for Service Composition .. 20

5 CONCLUSIONS.. 22

REFERENCES .. 23

Deliverable 5.3b vii 6/22/2005

Automatic Service Integration

LIST OF FIGURES
Figure 1: Service with types and corresponding planning operator 9

Figure 2: The architecture of our service integration engine.. 10

Figure 3: Flow of algorithm for composition with partial type matches........................ 11

Figure 4: Generalised Search Tree (GiST) ... 14

Figure 5: A grammar for SEDirQL ... 15

Figure 6: Processing of a directory query. While the given SEDirQL expression is
directly applied to leaf nodes (white), it has to be transformed for inner nodes (black).17

Figure 7: Transformation operators ↑ , ↓ , ⊕ , and for the generation of inner node
code... 18

Figure 8: Transformation operator for the generation of code in inner nodes of the
GiST. .. 19

Figure 9: Forward chaining (complete matches).. 20

Figure 10: Backward chaining.. 21

Deliverable 5.3b viii 6/22/2005

FP6 – 507483

Deliverable 5.3b

1 INTRODUCTION
Automatic service integration or composition is one important approach to achieve
interoperability among processes, making them collaborate in order to achieve given
user goals. Actually, the goal of automated composition of web services is to compose
automatically web services together in order to achieve a new functionality. This
composition acts as a middleware, a mediator, between existing services. The present
document extends this view by directly basing on section 2.2.2.3 of DIP deliverable 5.1
[Cimpian et al. 2005] which discusses process integration by process composition.

Two types of service composition can be considered [PRT05].

In functional-level composition, the searched services are selected and combined
together in a suitable way with basic composition constructs in order to match a user
query. This means that the service composition interacts with the service discovery to
dynamically retrieve relevant service descriptions. Each existing service is defined in
terms of an atomic interaction, i.e. in terms of its input and output parameters as well as
of its preconditions and effects. The query defines the overall functionality that the
composed service should implement, again in terms of its inputs, outputs, preconditions,
and effects. The composition constructs allow basic interaction schemes of the type
request-answer.

Process-level service composition follows the protocols of the different services
involved in order to obtain a composed service. The starting point can be the set of
services found in the functional-level composition. Here, however, it is insufficient to
consider services as only inputs, outputs, preconditions and effects: a more precise web
description is needed in the form of a process model. For example, in flight booking,
several details should be considered such as authentication, offer negotiation or
payment, maybe with conditional or non-nominal outcomes that may influence the
following steps. Here, more complex constructs are used that take typically advantage
of workflow concepts: atomic interactions are composed with sequences, conditions and
iterations. This means that composed processes are stateful processes. This approach to
process-level service composition is proposed in work such as [TP04] and [PRT05].

Our specific approach to automatic composition can be considered as functional-level
composition. It uses type-compatible service composition, i.e., service composition that
takes type constraints into account. Our techniques are very much related to traditional
AI planning. The service composition problem is specified by a set of available inputs
(preconditions) and provided outputs (effects). The planning results in an arrangement
of services in a simple workflow. One important difference to planning is that the set of
service descriptions (i.e., the planning operators) may be very large and is usually
maintained in service directories. Hence, it is crucial for service composition algorithms
to interact with service directories in order to dynamically retrieve relevant services. In
order to achieve reasonable composition performance, the interaction between
composition algorithm and service directory has to be carefully crafted.

This document is organized as follows. Section 2 first presents a formalism to describe
and reason about different service composition algorithms. This formalism uses the

 1

FP6 – 507483

Deliverable 5.3b

composition typing information in order to propose different composition algorithms. In
section 3, we discuss in more details our specific approach to type-compatible service
composition, i.e. service composition that takes type constraints into account. In section
4, implementation techniques are considered to enable efficient, scalable service
composition in an open environment populated by large numbers of heterogeneous
services. In such a setting, the efficient interaction of directory-based service discovery
with service composition engines is crucial. We present a directory that offers special
functionality enabling effective service composition. In order to optimize the interaction
of the directory with different service composition algorithms exploiting application-
specific heuristics, the directory supports user-defined selection and ranking functions
written in a declarative query language.

The work presented in this document is cross-integration between the Knowledge Web
and the DIP European projects. More concretely, section 2 and 3 have also been
published by the authors as a part of part of Knowledge Web Deliverable 2.4.2 [Lara et
al. 2005].

 2

FP6 – 507483

Deliverable 5.3b

2 FORMALISM AND SEMANTICS
In this section, we give some basic definitions and introduce our formalism for
describing service advertisements and service requests together with their associated
semantics. We review some state-of-the-art regarding matchmaking that is of interest
for our composition approach, and we introduce interval constraints, a supporting
formalism which we use for describing and matching services.

2.1 Service Advertisements and Requests
The functional aspects of service advertisements and service requests are
specified as parameters and states of the world [CCMW01, DS04]. Parameters can be
either input or output, and states of the world can be either preconditions (required
states) or effects (generated by the execution of the service). We presume that terms in
the service descriptions are defined using a class/ontological language. Primitive data-
types can be defined using a language like XSD [W3C].3 In our formalism each
parameter has two elements:

• A role describing the actual semantics of the parameter (e.g., in a travel domain
the role of a parameter could be departure or arrival).

• A type defining the actual datatype of the parameter (e.g., the datatype for both
departure and arrival could be location).

We define states of the world through preconditions and effects. We extend the normal
semantics of concepts that can be included in preconditions or effects.

In service advertisements input and output parameters, as well as preconditions and
effects, have the following semantics:

• In order for the service to be invokable, a value must be known for each of the
service input parameters and it has to be consistent with the respective semantic
role and syntactic type of the parameter. The parameter provided as input has to
be semantically more specific than what the service is able to accept. Regarding
the parameter type, in the case of primitive data types the invocation value must
be in the range of allowed values, or in the case of classes the invocation value
must be subsumed by the parameter type. The preconditions define in which
state the world has to be before the service can be invoked. All preconditions
must be entailed by the conditions specified by the current state of the world.

• Upon successful invocation the service will provide a value for each of the
output parameters and each of these values will be consistent with the respective
parameter role and datatype. After invocation the state of the world will be
modified such that all effects listed in the service advertisement will be added to
the new world state. Terms in the original state conflicting with terms in the new
state will be removed from the new state.

Service requests are represented in a similar manner but have different semantics:

3 At the implementation level both primitive data types and classes are represented as
sets of numeric intervals [CF03]

 3

FP6 – 507483

Deliverable 5.3b

• The service request inputs represent available parameters (e.g., provided
by the user or by another service). Each of these input parameters has attached a
semantic role description and either some description of its datatype or a
concrete value. Preconditions in a request represent the state of the world
available for any matching service advertisement. They are equivalent to initial
conditions in a classic planning environment. This state has to entail the state
required in the precondition of any compatible service.

• The service request outputs represent parameters that a compatible (composed)
service must provide. The parameter role defines the actual semantics of the
required information and the parameter type defines what ranges of values can
be handled by the requester. The compatible (composed) service must be able
to provide a value for each of the parameters in the output of the service request,
semantically more specific than the requested role, and having values in the
range defined by the requested parameter type. Effects represent the change of
the world desired by the requester of the service or the goals that the service
request needs to be fulfilled. In order for any of the goals or effects of the
service request to be considered fulfilled, the state of the world after the
invocation of a given service will have to contain an effect entailing the
respective goal.

2.2 Matchmaking – Current Approaches
Previous work regarding the matching of software components [ZW97] has considered
several possible match types based on the implication relations between preconditions
and postconditions of a library component S and a query Q. For example the PlugIn
match, one of the most useful match types is defined as:

() () (PlugIn Q S S Qmatch Q S pre pre post post), = ⇒ ∧ ⇒

In LARKS [SWKL02] the above condition has been adapted such that the implication
was replaced my a more tractable operation, the θ subsumption over sets of constraints
(θ):

() () (PlugIn Q S S Qmatch Q S pre pre post postθ θ), = ∧ .

A set of constraints Spre θ -subsumes a set of constraints (Q Spr or
otherwise or Q S), if every constraint in is subsumed by a
constraint in

Qpre e preθ

Q Spre pre pre pre⇒ Qpre
Spre (similarly for postconditions):

Q Spre preθ ⇔ () . ()(Q Q S S QC pre C pre C Cθ∀ ∈ ∃ ∈)S

Most recent work regarding matchmaking [PKPS02, LH03, CF03] has extended these
approaches by using description logic based languages [BS01, DS04] for defining terms
of service advertisements or requests.

2.3 Interval Constraints
For describing service advertisements and requests we use constraints on sets of
intervals (possibly generated from class descriptions [CF03]). A constraint is a special
form of first order predicate that universally quantifies over the values of the interval

 4

FP6 – 507483

Deliverable 5.3b

sets ; in the case that an interval represents the encoding of a class the constraint will
correspond to a quantification over all the individuals in the class:

1 2()nP C C C, , ..., ⇔ 1 1 2 2 1 2()() () (n n n)x C x C x C P x x x∀ ∈ ∀ ∈ ... ∀ ∈ , ,..., .

We define a number of possible relations between two interval sets and : 1C 2C

 1 2 1 1 2 2 1 2() ()(C C i C i C i i⇔ ∀ ∈ ∃ ∈ ⊆)

1

)

 1 2 1 2 2C C C C C C≡ ⇔ ∧

 1 2 1 1 2 2 1 2() ()(C C i C i C i i⇔ ∃ ∈ ∃ ∈ ∩ ≠∅

The relation is the logical negation of and holds when the argument interval sets
are disjoint. We define also two special relations: top that always holds and bottom

 that never holds. There is a similarity between the

¬

⊥ θ subsumption relation between
sets of clauses and the interval set subsumption relation .

We assume that constraints have unique arities - that is constraints with the same name
have always the same number of terms.

We define , a complex entailment relation between two constraints 1 11 1
and 2 2 having same arity n but possibly different names and 2 . The
predicate 1 2 1 n holds when each of the terms and of the two
constraints are in the relation specified by the respective operator :

ent ()nP C C, ...,
1 2(nP C C, ...,)
ent P P op op, , , ...,

i i

1

)i i

1

)km

1P P
() 1iC 2iC

iop

1 2 1 1 21
() n

n ii
ent P P op op C op C

=
, , ,..., ⇔∧

where . { }iop i n∈ ≡, , , ,¬ , ,⊥ , = ..

We define , a non-entailment relation having semantics in concordance with
those of en - the predicate holds when at least one of the terms and is not in
the relation specified by the respective operator :

notEnt
t 1iC 2iC

iop

1 2 1 1 21
() (n

n ii
notEnt P P op op C op C

=
, , ,..., ⇔ ¬∨

where . { }iop i n∈ ≡, , , ,¬ , ,⊥ , = ..

Constraints can be grouped in constraint stores. A constraint store is logically
equivalent to the formula formed as the conjunction of the constraints in the store:

S

1 11 1 1{ () ()}n k k kmS P C C P C C= ,..., ,..., ,..., ⇔ 1 1 1() (n k kP C C P C C,..., ∧ ...∧ ,..., .

By combining universal () and existential () quantifiers over a pair of
constraint stores Q and we can define eight predicates (e.g., Q S , Q S ,...,

S Q S Q ,..., etc). Each of the predicates holds if the two stores contain
constraints accordingly to the quantifications and that are in a relation as defined
above by :

all some
S all all all some

all all all some,
Qq Sq

ent

1 2 1()Q S nq q P P op op, , , ..., ⇔

,
(()())(()())Q S S QP P P P∀ | ∃ | ∀ | ∃ |

1()() (Q S Q SP Q P S ent P P op op∈ ∈ , , , ...,)n

2where , 1 2 { }Q S Q Sq q all all some some, ∈ , , , 1() ()store q store q≠ and where
 for , ()Xstore quant X= { }quant all some∈ , { }X Q S∈ , .

 5

FP6 – 507483

Deliverable 5.3b

We also explicitly define the negation of the quantification predicates with semantics
that can be straightforwardly deduced by the application of DeMorgan’s laws for
quantifier transformation. After applying these transformations (assumed to be already
done on the right part of the expression below) the formula can be written in terms of
the non-entailment predicate : notEnt

1 2 1()Q S nq q P P op op¬ , , ,..., ⇔

,
(()())(()())S Q Q SP P P P∃ | ∀ | ∃ | ∀ |

1()() (Q S Q SP Q P S notEnt P P op op∈ ∈ , , ,...,)n

 where 1q and 2 are as above and the negation is propagated over the quantifiers
using the extended DeMorgan laws:

q
all some¬ → ¬ , some all¬ → ¬ , . ent notEnt¬ →

We define count a function which returns the cardinality of a set of constraints selected
from the constraint store accordingly to their entailment relation with constraints in
the store Q :

S

 1()Q S Q S ncount P P op op, , , , ..., = 1{ (S Q Q S nP S P Q ent P P op op)}| ∈ : ∈ , , , , ..., | .

We introduce also Q and Sc two functions which return the cardinality of a
set of constraints having a given name from the stores Q or :

count ount
P S

1() { () }Q ncount P P C C Q=| ,..., ∈ | ,
. 1() { () }S ncount P P C C S=| ,..., ∈ |

2.4 Describing Services by Interval Constraints
We use constraint stores to define service advertisements or service requests. We will
consider the latter as user queries but this doesn’t necessarily have to be so. Input and
output constraints are defined over the two kind of elements that describe a parameter -
roles for semantics and types for syntactic compatibility. Preconditions and effects are
defined over concepts describing features of the world. The exact semantics of input,
output parameters and preconditions and effects are defined above, depending if they
are in the scope of a service advertisement or a service request. Four kinds of constraints
are used in service descriptions:

- ()IN R T, - which defines an input parameter through its role R and type T .

- - which defines an output parameter through its role (OUT R T,) R and type T .

- - which defines a precondition through the world state . ()PRE F F

- ()EFF F - which defines an effect through the world state . F

Let’s consider as an example a service description with two input parameters having
roles A and B and types a1-a2, b1, output parameters having roles C, D and types c1,
d1-d2 with preconditions p1 and p2 and effects g1. This service description would be
represented as the following constraint store: = { IN(A,a1-
a2) , IN(B,b1) ,OUT(C,c1) ,OUT(D,d1-d2)

S
,PRE(p1) ,PRE(p2) ,EFF(g1)}

In order to illustrate our approach we show below how the basic PlugIn match type is
expressed in our formalism. For a query store Q and a service store this match type
can be specified as:

S

 6

FP6 – 507483

Deliverable 5.3b

()PlugInmatch Q S, =

()S Q Q S role typeall some IN IN, , , ∧

∧

∧

.

()Q S Q S role typeall some OUT OUT, , ,

()S Q Q Sall some PRE PRE, ,

()Q S Q Sall some EFF EFF, ,

In the next section, we introduce our work on functional-level service composition and,
for that, we explain in details type-compatible service composition.

 7

FP6 – 507483

Deliverable 5.3b

3 TYPE-COMPATIBLE SERVICE COMPOSITION
Most works in functional-level service composition assume that the relevant service
descriptions are initially loaded into the reasoning engine and that no discovery is
performed during composition. However, due to the large number of services and to the
loose coupling between service providers and consumers, services are indexed in
directories. Consequently, planning algorithms must be adapted to a situation where
planning operators are not known a priori, but have to be retrieved through queries to
these directories.

We present here our approach to functional-level automated service composition that
interacts with such directories. It is based on matching input and output parameters of
services using type information in order to constrain the ways how services may be
composed. This way, we allow for partially matching types and handle them by
introducing switches in the composition plan.

3.1 Type-Compatible Discovery and Composition
For composition we consider two kinds of possible approaches: forward chaining and
backward chaining. Informally, the idea of forward chaining is to iteratively apply a
possible service to a set of input parameters provided by a query Q (i.e., all inputs
required by have to be available). If applying does not solve the problem (i.e., still
not all the outputs required by the query Q are available) then a new query can be
computed from Q and and the whole process is iterated. This part of our framework
corresponds to the planning techniques currently used for service
composition [TKAS02]. In the case of backward chaining we start from the set of
parameters required by the query Q and at each step of the process we choose a service

 that will provide at least one of the required parameters. Applying might result in
new parameters being required which can be formalised as a new queryQ . Again the
process is iterated until a solution is found.

S
S S

Q′
S

S S
′

Now we consider the conditions needed for a service to be applied to the inputs
available from a query Q using forward chaining: for all of the inputs required by the
service , there has to be a compatible parameter in the inputs provided by the queryQ .
Compatibility has to be achieved both for roles, where the role of any parameter
provided by the query Q has to be semantically more specific () than the role of the
parameter required by the service , and for types, where therange provided by the
query has to be more specific () than the one accepted by the service . In the
formalism introduced above the forward complete chaining condition would map to the

 predicate:

S

S

S
Q S

Sall someQ

 ()fwdComp Q S, = () (S Q Q S role type S Q Q Sall some IN IN all some PRE PRE), , , ∧ , , .

A similar kind of PlugIn match between the inputs of query Q and of service has
been identified by Paolluci [PKPS02].

S

 8

FP6 – 507483

Deliverable 5.3b

Forward complete matching of types is too restrictive and might not always work,
because the types accepted by the available services may partially overlap the type
specified in the query. For example, a VTA might offer restaurant recommendations
when booking a full holiday’s trip. When using a restaurant recommendations provider,
a query given by the VTA for restaurant recommendation services across all
Switzerland could specify that the integer parameter zip code could be in the range
[1000,9999] while an existing service providing recommendations for the French
speaking part of Switzerland could accept only integers in the range [1000-2999] for the
zip code parameter.

A major novelty of our approach regarding composition is in that the above condition
for forward chaining is modified such that services with partial type matches can be
supported. For doing that we relax the type inclusion to a simple overlap:

 ()fwdPart Q S, = () (typeS Q Q S role S Q Q Sall some IN IN all some PRE PRE), , , ∧ , , .

This kind of matching between the inputs of query Q and of service corresponds to
the overlap or intersection match identified by Li [LH03] and Constantinescu [CF03].

S

We will also consider the condition needed for a backward chaining approach. The
service has to provide at least one output which is required by the query Q . This
corresponds to the plugIn match for query and service outputs. Using the formal
notation above this can be specified as:

S

()
() (Q S Q S role type Q S Q S

backComp Q S
some some OUT OUT some some EFF EFF

, =
, , , ∨ , ,)

.

3.2 Type-Compatible Service Composition Versus Planning
As the majority of service composition approaches today rely on planning we will
analyze the correspondence between our formalism for service descriptions with types
and an hypothetic planning formalism using symbol-free first order logic formulas for
preconditions and effects.

As an example (see Figure 1) let’s consider the service description S which has two
input parameters A and B and two output parameters C and D. Their types are
represented as sets of accepted and provided values and are a1, a2 for A, respectively
b1, b2 for B, c1, c2 for C, and d1, d2 for D. This corresponds to an operator S that has
disjunctive preconditions and disjunctive effects. Negation is not required.

Figure 1: Service with types and corresponding planning operator

 9

FP6 – 507483

Deliverable 5.3b

Written in this way our formalism has some correspondence with existing planning
languages like ADL [Ped89] or more recently PDDL [McD98] (concerning the
disjunctive preconditions) and planning with non-deterministic actions [KHW95]
(regarding the disjunctive effects), but the combination as a whole (positive-only
disjunctive preconditions and effects) stands as a novel formalism.

3.3 Computing Type-Compatible Service Compositions
In this section we will present algorithms for computing type-compatible service
compositions. Their design is motivated by two aspects specific to large scale service
directories operating in open environments:

• large result sets - for each query the directory could return a large number of
ser- vice descriptions.

• costly directory accesses - being a shared resource accessing the directory
(possibly remotely) will be expensive.

We address these issues by interleaving discovery and composition and by computing
the “right” query at each step. For that, the integration engine (see Figure 2) uses three
separate components:

• planner - a component that computes what can be currently achieved
from the current query using the current set of discovered services. From that
the problem that remains to be solved is derived and a new query is returned.

• composer - a component that implements the interleaving between planning and
discovery. It decides what kind of queries (partial/complete) should be sent to
the directory and it deals with branching points and recoursive solving of sub-
problems.

• discovery mediator - a component that mediates composer accesses to the
directory by caching existing results and matching new queries to already
discovered services.

Figure 2: The architecture of our service integration engine.

3.4 Composition with Complete Type Matches
Composing completely matching services using forward chaining is straightforward:
once the condition for complete type matches is fulfilled (all inputs required by the
service S are present in the query Q and the types in the query are more specific than the

 10

FP6 – 507483

Deliverable 5.3b

types accepted by the service) a new query Q’ can be computed by adding to the set of
available inputs of the current query Q all the outputs provided by the service S.

Figure 3: Flow of algorithm for composition with partial type matches

3.5 Composition with Forward Partial Type Matches
Conceptually the algorithm that we use for composing services with forward partial
type matches has three steps, see (for more details see [CFB04b]):

• Discovery of completely matching services.

• Discovery of services for full coverage of available inputs.

• Discovery of services for correct switch handling.

3.5.1 Discovering full input coverage

The second step of the algorithm assumes that a solution using only complete
matches was not found and that services with partial type matches have to be
assembled in order to solve the problem. By definition any of the partially matching
services is able to handle only a limited sub-space of the values available as inputs. In
order to ensure that any combination of input values can be handled, the space of
available inputs is first discretized in parameter value cells. One cell is a rectangular
hyperspace containing all dimensions of the space of available inputs but only a single

 11

FP6 – 507483

Deliverable 5.3b

interval for each dimension. A cell corresponds to the guard condition of the switch.
Cells are built in such a way that any of the required inputs for the retrieved partially
matching services could be expressed as a collection of cells. Each of the retrieved
partially matching services is assigned to the cells that it can accept as input. The
coverage is considered complete when all cells have assigned one or more services.
When all cells are covered the algorithm proceeds at the next step. If no more partially
matching services can be found and a complete coverage was not achieved the
algorithm returns failure.

3.5.2 Discovering solution switch
The last step of the algorithm assumes that a coverage was found and a first switch can
be created. The goal of this step is to ensure that the switch will function correctly for
each of its branches. For each cell and its set of assigned services the algorithm will
compute the set of output parameters that those services will provide. Then a new query
is computed, having as available inputs the output parameters of the cell and as required
outputs the set of required outputs of the complete matching phase. The whole
composition procedure is then invoked recursively. In the case that all cells return a
successful result the switch is considered to be correct and the algorithm returns
success. Otherwise a new service is retrieved and the process continues. When no more
services can be retrieved the algorithm returns failure.

 12

FP6 – 507483

Deliverable 5.3b

4 IMPLEMENTATION TECHNIQUES FOR AUTOMATED SERVICE
INTEGRATION

In automatic service integration, the set of service descriptions may be very large and is
usually maintained in service directories. Hence, as previously showed, it is crucial for
service composition algorithms to interact with service directories in order to
dynamically retrieve relevant services. In order to achieve reasonable composition
performance, the interaction between composition algorithm and service directory has
to be carefully crafted.

In this section, we give an overview of implementation techniques to support scalable
and efficient automated service integration with service directories. We include
techniques for multidimensional indexing, the support for large result sets
(incremental retrieval of results), efficient concurrency control, and the support
for user-defined search heuristics [CBF04b, CBF04a, BCF04]. We propose a
directory service with specific features to ease service composition. Queries may not
only search for complete matches, but may also retrieve partially matching directory
entries [CF03]. As in a large-scale directory the number of (partially) matching results
for a query may be very high, it is crucial to order the result set within the directory
according to heuristics and to transfer first the better matches to the client. If the
heuristics work well, only a small part of the possibly large result set has to be
transferred, thus saving network bandwidth and boosting the performance of a directory
client that executes a service composition algorithm (the results are returned
incrementally, once a result fulfils the client’s requirements, no further results need to
be transmitted). However, the heuristics depend on the concrete composition algorithm.
For each service composition algorithm (e.g., forward chaining, backward chaining,
etc.), a different heuristic may be better adapted. As research on service composition is
still in its beginnings and the directory cannot anticipate the needs of all possible service
composition algorithms, our directory supports user-defined selection and ranking
heuristics expressed in a declarative query language. The support for application-
specific heuristics significantly increases the flexibility of our directory, as the client is
able to tailor the processing of directory queries. For efficient execution, the queries are
dynamically transformed by the directory.

This section is structured as follows: Section 4.1 discusses the directory structure. In
section 4.2, we discuss how to express application-specific selection and ranking
heuristics in a simple, functional query language. Section 4.3 explains the processing of
directory queries and introduces query transformations that enable a best-first search
with early pruning. Section 4.4 discusses some sample queries.

4.1 Multidimensional Access Methods - GiST
The need for efficient discovery and matchmaking leads to a need for search structures
and indexes for directories. We consider numerically encoded service descriptions as
multidimensional data and use techniques related to the indexing of such kind of
information in the directory. Our directory index is based on the Generalized Search
Tree (GiST), proposed as a unifying framework by Hellerstein [HNP95] (see Figure 4).
The design principle of GiST arises from the observation that search trees used in
databases are balanced trees with a high fanout in which the internal nodes are used as a
directory and the leaf nodes point to the actual data.

 13

FP6 – 507483

Deliverable 5.3b

Each internal node holds a key in the form of a predicate and a number of pointers to
other nodes (depending on system and hardware constraints, e.g., file system page size).
To search for records that satisfy a query predicate Q , the paths of the tree that have
keys satisfying are followed.

P

P Q

Figure 4: Generalised Search Tree (GiST)

More concretely, each leaf node in the GiST of our directory holds references to all
service descriptions with a certain input/output behaviour. The required inputs of the
service and the provided outputs (sets of parameter names with associated types) are
stored in the leaf node. For inner nodes of the tree, the union of all inputs/outputs found
in the subtree is stored. More precisely, each inner node I on the path to a leaf node L
contains all input/output parameters stored in L . The type associated with a parameter
in I subsumes the type of the parameter in L . That is, for an inner node, the
input/output parameters indicate which concrete parameters may be found in a leave
node of the subtree. If a parameter is not present in an inner node, it will not be present
in any leave node of the subtree.

4.2 Defining Pruning and Ranking Functions
As directory queries may retrieve large numbers of matching entries (especially when
partial matches are taken into consideration), our directory supports sessions in order to
incrementally access the results of a query [CBF04b]. By default, the order in which
matching service descriptions are returned depends on the actual structure of the
directory index (the GiST structure discussed before). However, depending on the
service composition algorithm, ordering the results of a query according to certain
heuristics may significantly improve the performance of service composition. In order
to avoid the transfer of a large number of service descriptions, the pruning, ranking, and

 14

FP6 – 507483

Deliverable 5.3b

sorting according to application-dependent heuristics should occur directly within the
directory. As for each service composition algorithm a different pruning and ranking
heuristic may be better suited, our directory allows its clients to define custom selection
and ranking functions which are used to select and sort the results of a query. This
approach can be seen as a form of remote evaluation [FPV98].

A directory query consists of a set of provided inputs and required outputs (both sets
contain tuples of parameter name and associated type), as well as a custom selection and
ranking function. The selection and ranking function is written in the simple, high-level,
functional query language SE (DirQL Directory Query Language with Set Expressions).
An (informal) EBNF grammar for SE is given in . The non-terminal constant ,
which is not shown in the grammar, represents a non-negative numeric constant (integer
or decimal number). The syntax of has some similarities with LISP.

DirQL

SEDirQL 5

Figure 5: A grammar for SEDirQL

We have designed the language considering the following requirements:

• Simplicity: SE offers only a minimal set of constructs, but it is expressive
enough to write relevant selection and ranking heuristics.

DirQL

• Declarative: SE is a functional language and does not support destructive
assignment. The absence of side-effects eases program analysis and
transformations.

DirQL

• Safety: As the directory executes user-defined code, expressions must SEDirQL

5In order to simplify the presentation, the operators ‘and’, ‘or’, ‘<’, ‘>’, ‘<=’, ‘>=’,
‘=’, ‘+’, ‘*’, ‘-’, ‘min’, and ‘max’ are binary, whereas in the implementation they may
take an arbitrary number arguments, similar to the definition of these operations in
LISP.

 15

FP6 – 507483

Deliverable 5.3b

not interfere with internals of the directory. Moreover, the resource consumption
(e.g., CPU, memory) needed for the execution of expressions is
bounded in order to prevent denial-of-service attacks: SE supports neither
recursion nor loops, and queries can be executed without dynamic memory
allocation.

SEDirQL
DirQL

• Efficient directory search: SE has been designed to enable an efficient
best-first search in the directory GiST. Code transformations automatically
generate selection and ranking functions for the inner nodes of the GiST
(see 4.3).

DirQL

A expression defines custom selection and ranking heuristics. The evaluation
of a SE expression is based on the 4 sets qin (available inputs specified in the
query), qout (required outputs specified in the query), sin (required inputs of a
certain service), and sout (provided outputs of a certain service). Each element
in each of these sets represents a query/service parameter identified by its unique name
within the set and has an associated type.

SEDirQL
DirQL

S S

A SE expression may involve some simple arithmetic. The result of a numeric
SE expression is always non-negative. The ‘-’ operator returns 0 if the second

argument is bigger than the first one. The SE programmer may use the ‘if’
conditional to ensure that the first argument of ‘-’ is bigger or equal than the second
one. For division, the second operand (divisor) has to evaluate to a constant for a given
query. That is, it is a numeric expression with only numeric constants, as well as
size(qin) and size(qout) at the leaves. Before a query is executed, the directory
ensures that the SE expression will not cause a division by zero. For this purpose,
all subexpressions are examined. The reason for these restrictions will be explained in
the following section.

DirQL
DirQL

DirQL

DirQL

A SE query may comprise a selection and a ranking expression. Service
descriptions (inputs/outputs defined by sin/sout) for which the selection expression
evaluates to are not returned to the client (pruning). The ranking expression
defines the custom ranking heuristics. For a certain service description, the ranking
expression computes a non-negative value. The directory will return service
descriptions in ascending or descending order, as specified by the ranking expression.

DirQL

false

The selection and ranking expressions may make use of several set operations. size
returns the cardinality of any of the sets qin, qout, sin, or sout. The operations
union, intersection, and minus take as arguments a query set (qin or qout) as
well as a service set (sin or sout). For union and intersection, the query set
has to be provided as the first argument. All set operations return the cardinality of the
resulting set.

union: Cardinality of the union of the argument sets. Type information is
irrelevant for this operation.
intersection: Cardinality of the intersection of the argument sets. For a
parameter to be counted in the result, it has to have the same name in both
argument sets and the type test (third argument) has to succeed.
minus: Cardinality of the set minus of the argument sets (first argument set
minus second argument set). For a parameter to be counted in the result, it has to
occur in the first argument set and, either there is no parameter with the same

 16

FP6 – 507483

Deliverable 5.3b

name in the second set, or in the case of parameters with the same name, the
type test has to fail.

The type of parameters cannot be directly accessed, only the operations
intersection and minus make use of the type information. For these operations, a
type test is applied to parameters that have the same name in the given query and
service set. The following type tests are supported (ST denotes the type of a common
parameter in the service set, while QT is the type of the parameter in the query set):
FALSE (always fails), EQUAL (succeeds if S QT T=), S_CONTAINS_Q (succeeds if ST
subsumes Q), Q_CONTAINS_S (succeeds if QT subsumes ST), OVERLAP (succeeds if
there is an overlap between ST and , i.e., if a common subtype of and exists),
and TRUE (always succeeds).

T
QT ST QT

4.3 Efficient Directory Search
Processing a user query requires traversing the GiST structure of the directory starting
from the root node. The given SE expression is applied to leaf nodes of the
directory tree, which correspond to concrete service descriptions (i.e., sin and sout
represent the exact input/output parameters of a service description). For an inner node

DirQL

I of the GiST, sin and sout are supersets of the input/output parameters found in
any node of the subtree whose root is I . The type of each parameter in I is a supertype
of the parameter found in any node (which has a parameter with the same name) in the
subtree. Therefore, the user-defined selection and ranking function cannot be directly
applied to inner nodes.

In order to prune the search (as close as possible to the root of the GiST) and to
implement a best-first search strategy which expands the most promising branch in the
tree first, appropriate selection (pruning) and ranking functions are needed for the inner
nodes of the GiST. In our approach, the client defines only the selection and ranking
function for leaf nodes (i.e., to be invoked for concrete service descriptions), while the
corresponding functions for inner nodes are automatically generated by the directory.
The directory uses a set of simple transformation rules that enable a very efficient
generation of the selection and ranking functions for inner nodes (the execution time of
the transformation algorithm is linear with the size of the query). Figure 6 illustrates the
processing of a directory query.

Figure 6: Processing of a directory query. While the given expression is directly

applied to leaf nodes (white), it has to be transformed for inner nodes (black).
SEDirQL

If the client desires ranking in ascending order, the generated ranking function for inner
nodes computes a lower bound of the ranking value in any node of the subtree; for

 17

FP6 – 507483

Deliverable 5.3b

ranking in descending order, it calculates an upper bound. While the query is being
processed, the visited nodes are maintained in a heap (or priority queue), where the node
with the most promising heuristic value comes first. Always the first node is expanded;
if it is a leaf node, it is returned to the client. Further nodes are expanded only if the
client needs more results. This technique is essential to reduce the processing time in the
directory until the first result is returned, i.e., it reduces the response time. Furthermore,
thanks to the incremental retrieval of results, the client may close the result set when no
further results are needed. In this case, the directory does not spend resources to
compute the whole result set. Consequently, this approach reduces the workload in the
directory and increases its scalability. In order to protect the directory from attacks,
queries may be terminated if the size of the internal heap or the number of retrieved
results exceed a certain threshold defined by the directory service provider.

Figure 7 shows the transformation operators ↑ and which allow to generate the code
for calculating upper and lower bounds in inner nodes of the GiST. The variables a and

 are arbitrary numeric expressions, is a numeric expression that is guaranteed to be
constant throughout a query, is a boolean expression, q may be qin or qout,
may be sin or sout, and is a type test. The operator

↓

b c
x s

t ⊕ relaxes certain type tests, the
operator constrains them. For a SE ranking expression ‘order by asc DirQL
E ’, the code for inner node ranking is ‘order by asc ’; for a ranking
expression ‘order by desc

E↓
E ’, the inner node ranking code is ‘order by

desc ’. E↑

Figure 7: Transformation operators ↑ , , ↓ ⊕ , and for the generation of inner node

code.

If I is an inner node on the path to the leaf node L and E is a SE ranking
expression, (resp.) applied to

DirQL
E↑ E↓ I has to compute an upper (resp. lower) bound

for E applied to L . We exemplarily explain 2 rules in an informal way:

First we consider computing an upper bound for ()E intersection q s t= . In an inner
node I , the service set I is a superset of L in a leaf node, while the query set
remains constant. Moreover, the type of each parameter in is subsumed by the type

s s q
Ls

 18

FP6 – 507483

Deliverable 5.3b

of the parameter with the same name in I . Not considering the parameter types,
applying

s
E to I would compute an upper bound for E applied to L , as intuitively the

intersection of with the bigger set I will not be smaller than the intersection of
with L . Taking parameter types into consideration, we must ensure that whenever a
type test succeeds for

q s q
s

L , it will also succeed for I . That is, if a common parameter is
counted in the intersection in L , it must be also counted in the intersection in I . As it
can be seen in Figure 7, will succeed in t⊕ I , if succeeds in t L (remember that
parameter types are guaranteed to be non-empty). For instance, if the type of a
parameter in L is subsumed by the type of the parameter with the same name in
(Q_CONTAINS_S succeeds for that parameter in

s q
L), the type of the corresponding

parameter in I (which subsumes the type in L) will overlap with the parameter type in
. If the types in and are equal, the type in will subsume the type in .

s s
q Ls q Is q

As a second example we want to compute an upper bound for ()E minus s q t= .
Without considering parameter types, applying E to I would give an upper bound for
E applied to L , as I is a superset of L . In contrast to intersection, a common
parameter is counted in the result if the type test fails. That is, if the type test fails in

s s
L ,

it has also to fail in I . As shown in Figure 7, will fail in t I , if t fails in L . For
example, if the type of a parameter in does not subsume the type of the parameter
with the same name in L (Q_CONTAINS_S fails for that parameter in

q
s L), it will also

not subsume the type of that parameter in I (which subsumes the type of the parameter
in L). If the type test is TRUE, it will never fail, neither in

s
s L nor in I . In all other

cases, no matter whether the type test fails in L or not, it will fail in I (because will
be FALSE). Hence, ‘↑ (minus t)’ may result in ‘(minus FALSE)’,
which is equivalent to ‘(size)’.

t
s q s q

s
Considering the upper bound operator ↑ , the reason why we require the divisor of ‘/’
to evaluate to a constant becomes apparent: If was not constant, for division the
operator would have been defined as ‘

c
↑ () ()a c a c↑ / ⎯→ / ↑ ↓ ’. Hence, even if the

ranking expression provided by the client did not divide by zero (), the
automatically generated code for computing an upper bound in inner nodes might
possibly result in a division by zero (). For this reason, c must depend neither on
sin nor on sout.

0c >

0c↓ =

In order to automatically generate the code for inner node selection (pruning), we define
the transformation operator for boolean expressions (see Figure 8). If E is true for a
leaf node L , has to be for all nodes on the path to E true L . In other words, if is

 for an inner node, it must be guaranteed that
E

false E will be for each leaf in the
subtree. This condition ensures that during the search an inner node may be discarded
(pruning) only if it is sure that all leaves in the subtree are to be discarded, too. For a

SE selection expression ‘select

false

DirQL E ’, the code for inner node selection is
‘select ’. In Figure 8 a and are numeric expressions, while and are
boolean expressions.

E b x y

Figure 8: Transformation operator for the generation of code in inner nodes of the
GiST.

 19

FP6 – 507483

Deliverable 5.3b

The alert reader may have noticed that the operators ‘not’ and ‘=’ have been omitted
in Figure 8. The reason for this omission is that initially we transform all boolean
expressions in the query according to De Morgan’s theorem, moving negations towards
the leaves, removing double negations, and changing the comparators if needed. The
resulting expressions are free of negations. Moreover, an expression of the form (=
) is transformed to the equivalent expression (and (<= a b) (<= b a)).

a
b
Related to our work are SS trees [Aoki1998], a GiST extension for directed stateful
search. The main difference between SS trees and our approach is that we use a
declarative query language which makes the internal organization of the directory
transparent to the user. In our system, search is still very efficient thanks to query
transformation.

4.4 Example Queries for Service Composition
In this section we discuss two simple selection and ranking heuristics: The first one is
suited for service composition algorithms using forward chaining, the second one for
algorithms based on backward chaining.

For forward chaining with complete type matches (see Figure 9 (a)), we want that all
inputs required by the service are provided by the query (and the service has to be able
to handle the parameter types of the provided inputs, i.e., the types in the query have to
be more specific than in the service). Moreover, we require that the service provides
new outputs which are not already available as query inputs. The results are sorted in
ascending order according to the remaining outputs that are required by the query, but
not provided by the service (services that provide more of the required outputs come
first). In order to support partial type matches, only S_CONTAINS_Q has to be replaced
with OVERLAP in the first line of the selection expression in Figure 9 (a).

Figure 9: Forward chaining (complete matches).

For backward chaining (see Figure 10 (a)), we expect that the service provides at least
one output that is required by the query. The results are sorted in ascending order
according to the number of missing parameters after application of the service, i.e., the
missing inputs of the service and the missing outputs as required by the query.

The code for inner nodes is generated according to the transformation scheme presented
in the previous section, as illustrated in Figure 9 (b) and Figure 10 (b). Note that after
applying the transformation rules, the resulting expressions have been simplified
according to simple algebraic rules, such as ‘(<= 0 0) = true ’, ‘(and true X)
= X ’, ‘(+ 0 X) = X ’, etc.

 20

FP6 – 507483

Deliverable 5.3b

Figure 10: Backward chaining.

 21

FP6 – 507483

Deliverable 5.3b

5 CONCLUSIONS
Process mediation can take advantage of process composition, which targets the
automated composition of web services to compose automatically web services together
in order to achieve a new functionality. Two kinds of composition are possible:
functional-level and process-level composition. The first one selects services according
to a goal and creates workflows with basic interaction scheme. The second one handles
the protocols of the different services involved in order to obtain an executable
composed service.

The deliverable presents our specific view on service composition and discusses
thoroughly efficient implementation techniques for composition in an open environment
populated by a large number of services. This requires a highly optimized interaction
between large-scale directories and service composition engines. The presented
directory service addresses this need with special features for service composition:
Indexing techniques allowing the efficient retrieval of (partially) matching services,
incremental data retrieval, as well as user-defined selection and ranking functions to
support application-specific search heuristics within the directory.

The results achieved in this deliverable will be further elaborated in the DIP work
package 4.12a.

 22

FP6 – 507483

Deliverable 5.3b

REFERENCES
 [Aoki1998] P. M. Aoki. Generalizing “search” in generalized search trees. In Proc.
14th IEEE Conf. Data Engineering, ICDE, pages 380–389. IEEE Computer Society,
23–27 1998.

[BCF04] Walter Binder, Ion Constantinescu, and Boi Faltings. A directory for web
service integration supporting custom query pruning and ranking. In European
Conference on Web Services (ECOWS 2004), Erfurt, Germany, September 2004.

[CBF04a] Ion Constantinescu, Walter Binder, and Boi Faltings. An Extensible
Directory Enabling Efficient Semantic Web Service Integration. In 3rd International
Semantic Web Conference (ISWC04), Hiroshima, Japan, November 2004.

[CBF04b] Ion Constantinescu, Walter Binder, and Boi Faltings. Directory services for
incremental service integration. In First European Semantic Web Symposium (ESWS-
2004), Heraklion, Greece, May 2004.

[CF03] Ion Constantinescu and Boi Faltings. Efficient matchmaking and directory
services. In The 2003 IEEE/WIC International Conference on Web Intelligence, 2003.

[CFB04a] Ion Constantinescu, Boi Faltings, and Walter Binder. Large scale testbed
for type compatible service composition. In ICAPS 04 workshop on planning and
scheduling for Web and grid services, 2004.

[CFB04b] Ion Constantinescu, Boi Faltings, and Walter Binder. Large scale, type-
compatible service composition. In IEEE International Conference on Web Services
(ICWS-2004), San Diego, CA, USA, July 2004.

[Cimpian et al. 2005] E. Cimpian, C. Drumm, M. Stollberg, I. Constantinescu, L.
Cabral, J. Domingue, F. Hakimpour and A. Kiryakov. Report on the State-of-the-Art
and Requirement Analysis (WP5 – Service Mediation). DIP Deliverable 5.1,
http://dip.semanticweb.org/, 2005.

[DS04] Mike Dean and Guus Schreiber, editors. OWL Web Ontology Language
Reference. 2004. W3C Recommendation 10 February 2004.

[FPV98] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
Code Mobility. IEEE Transactions on Software Engineering, 24(5):342–361, May
1998.

[HNP95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized
search trees for database systems. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro
Nishio, editors, Proc. 21st Int. Conf. Very Large Data Bases, VLDB, pages 562–573.
Morgan Kaufmann, 11–15 1995.

[KHW95] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An algorithm for
probabilistic planning. Artificial Intelligence, 76(1–2):239–286, 1995.

[Lara et al. 2005] R. Lara, W. Binder, I. Constantinescu, D. Fensel, U. Keller, J. Pan, M.
Pistote, A. Polleres, I. Toma, P. Traverso, M. Zaremba. Semantics for Web Service
Discovery and Composition. Knowledge Web Deliverable 2.4.2,
http://knowledgeweb.semanticweb.org/, January 2005.

 23

FP6 – 507483

Deliverable 5.3b

[LH03] L. Li and I. Horrocks. A software framework for matchmaking based on
semantic web technology. In Proceedings of the 12th International Conference on the
World Wide Web, Budapest, Hungary, May 2003.

[McD98] Drew McDermott. The planning domain definition language manual.
Technical Report 1165, Yale Computer Science, 1998.

[Ped89] Edwin P. D. Pednault. Adl: Exploringthe middle ground between strips and
the situation calculus. In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR’89), pages 324–332,
Morgan Kaufmann Publishers, 1989.

 [PKPS02] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of
web services capabilities. In I. Horrocks and J. Handler, editors, 1st Int. Semantic Web
Conference (ISWC), pages 333–347. Springer Verlag, 2002.

[PRT05] M. Pistore, P. Roberti, and P. Traverso. Process-Level Composition of
Executable Web Services: "On-thefly" Versus "Once-for-all" Composition. The
Semantic Web: Research and Applications. Proceedings of the second European
Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May/June 2005.
LNCS 3532, Springer Verlag, Heidelberg, Germany.

[PTB05] M. Pistore, P. Traverso, P. Bertoli. Automated Composition of Web Services
by Planning in Asynchronous Domains. The Fiftteenth Interational Conferece on
Automated Planning and Scheduling (ICAPS2005), June 5-10, Monterey, California,
USA.

[SWKL02] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic match-
making among heterogeneous software agents in cyberspace. Autonomous Agents and
Multi-Agent Systems, pages 173–203, 2002.

[TKAS02] S. Thakkar, Craig A. Knoblock, Jose Luis Ambite, and Cyrus Shahabi.
Dynamically composing web services from on-line sources. In Proceeding of the
AAAI-2002 Workshop on Intelligent Service Integration, pages 1–7, Edmonton,
Alberta, Canada, July 2002.

[TP04] P. Traverso, M. Pistore. Automated Composition of Semantic Web Services into
Executable Processes. Third International Semantic Web Conference (ISWC2004),
November 9-11, 2004, Hiroshima, Japan.

[W3C] W3C. XML Schema Part 2: Datatypes, http://www.w3.org/tr/xmlschema-2/.

[ZW97] A.M. Zaremski and J.M. Wing. Specification matching of software com-
ponents. ACM Transactions on Software Engineering and Methodology (TOSEM),
6:333–369, 1997.

 24

