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ABSTRACT

In this paper we define a grid middleware, comprising feder-
ated computational resources, that facilitates a globally op-
timal mapping of applications to the available resources and
satisfies the goals of both users and resource providers. Re-
source providers in the community are able to specify access
control policies to govern the use of their resources. Appli-
cations in the community are annotated with performance
and behavioural information to enable the ‘best’ resources
to be found automatically. A computational currency allows
both the resource providers and consumers to express their
requirements (e.g. completion time and resource utilisation)
to support a globally optimal mapping of applications to re-
sources. We describe a prototype implementation of this
architecture using Java and JINI.

1. INTRODUCTION

The accelerating proliferation of high-performance comput-
ing resources and the emergence of high-speed wide area
networking has led to much interest in the development of
Computational Grids. A Computational Grid is defined as
the combination of geographically distributed heterogeneous
hardware and software resources that provide a ubiquitous
computing environment [1]. Such infrastructures are gaining
acceptance outside the traditional high performance com-
puting community as computational and data intensive ap-
plications become commonplace in both science and com-
merce.

The motivations for combining otherwise disparate comput-
ing resources into an integrated environment are primarily:

e To share resources more effectively, providing both
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wider access to and better utilisation of resources, i.e.
to increase utilisation and throughput.

e To connect geographically dispersed instruments or
computational resources to provide a unified resource
of greater power than would otherwise be available, i.e.
meta-computing

e To provide user communities with high-level and easy-
to-use access to shared computational resources and to
support collaborative working practices and manage-
ment of scientific intellectual property, i.e. e-science

Early experiments in Grid construction have generally in-
volved the explicit connection of supercomputers or scien-
tific instruments and require a high degree of expertise and
involvement from both the users and resource providers [2].

Ideally, computing power should be available ‘on tap’ from
the computational grid in the same manner as electrical
power is in the power grid: a ubiquitous and transparent
resource. This can only be achieved if the application and
grid middleware (representing the underlying resources) are
tightly integrated.

To support the federation of heterogeneous resources un-
der the administrative control of different organisations, the
middleware must mask any heterogeneity and provide:

e Information. Effective resource selection (schedul-
ing) requires information on the available hardware,
software, storage and networking resources.

e Security and Control. Resource providers will only
be willing to contribute their resources to a wider com-
putational community if they retain ultimate control
over who can access their resources and are able to
ensure the needs of their local users.

e Effective Resource Exploitation. The best resources
for an application will depend both on the user’s re-
quirements (e.g. turnaround time, availability of the
application software) and the resource provider’s goals
(e.g. revenue or utilisation maximisation).

To provide a grid computing environment that can transpar-
ently migrate applications to better resources as they become
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Figure 1: Building a resource marketplace through federated resources

available, and survive the failures that are commonplace in
a large distributed computing systems, it is necessary to
automate the resource selection process using information
from the application and middleware, but to do so within
the constraints and goals specified by both the user and re-
source provider.

With the information relating to the user’s and resource
provider’s goals we are able to balance the resources used
to execute a single application against the set of applica-
tions currently running over all the available resources in
the marketplace. We use a computational currency to enu-
merate our goals allowing us to find the ‘best’ resources for
our needs. For example, a user can choose to pay for bet-
ter resources to reduce their execution time while a resource
provider can select a job mix that maximises their revenues.

In the rest of this paper we will demonstrate how this can
be achieved through a software architecture that allows the
effective exploitation of federated resources through a com-
putational economy. In section 2 we describe a federated re-
source marketplace that allows organisations to contribute
their resources to a wider computational community and
how performance models and resource pricing can be used
to find a globally optimal job mix across all the community’s
resources. Section 3 describes a prototype implementation
of this architecture that uses Java and JINI while section 4
compares our approach to existing work in this field.

2. A COMPUTATIONAL ECONOMY
2.1 Overview

Our federated computational economy has three major com-
ponents that interact through a public resource marketplace:
(see figure 1):

e Organisations that contribute resources (software,
hardware, storage etc.) under a locally defined access
control policy to a public resource marketplace.

e Application Mappers that generate a set of exe-
cution plans matching the application’s requirements
to the resources that are currently available in the
marketplace. These plans represent feasible execution
strategies for the application that are optimal with re-
gard to performance but do not necessarily make the
best economic use of the resources.

e Brokers that handle the negotiations between organ-
isations and users in the resource marketplace to find
the best economic execution plan from those generated
by an application mapper.

An organisation’s local storage, software and computational
resources are managed through the Administrative Domain
by a local administrator. These are made publicly available
through the Domain Manager which places this information
into one or more public resource marketplaces and enforces
the local access control policy.

This model realises the goals of computational grids through
bottom up co-operation as opposed to top down proclama-
tion. It allows computational communities (and their re-
sources) to federate when they see mutual benefit in do-
ing so. Federation is achieved by advertising the resources,
alongside others in that community, in a common market-
place. It is important to note that the same resources may
appear in different marketplaces with different constraints
and that users are able to advertise their needs in several
marketplaces. This ensures there is no single point of failure
in the provision of resources and allows competition between
different marketplaces which may have different broker or
mapper implementations.

2.2 Building a Computational Community

Local computing resources will only be federated into a
larger computational community if the usage conditions gov-
erning remote access are explicit and strictly enforced. These
conditions will include authentication and authorisation, but



may also relate to current machine load and the identity of
the remote user.

For instance, in an academic environment staff may be given
a higher priority than students but a student with an up-
coming deadline may be given higher priority than staff.
Likewise, remote users may only be allowed to use the re-
sources if they are idle but collaborators may be given pri-
ority over other remote users. Being able to express these
usage policies is a key motivation for our infrastructure.

2.2.1 Resouces

Our computational community, like all grid environments,
is built from diverse computational, storage and software
resources that have both static (e.g. operating system re-
lease, architecture, etc.) and dynamic attributes (e.g. cur-
rent load, available licences, etc.). These attributes are ad-
vertised in the computational community and used during
resource selection. Persistence of these attributes (between
power cycles and unexpected failures) is maintained through
an XML syntax that describes the resource and its charac-
teristics.

¢ Computational Resources. We currently access
our own local computational hardware through a batch
scheduler abstraction with implementations for NQS,
PBS [3] and Condor [4]. Each computational resource
executes its own segment of an XML defined execution
plan passed to it by the Domain Manager.

e Storage Resources. The user must be able to ac-
cess their storage space from any resource. This is
essential to allow input and output files to be auto-
matically staged across the network to the execution
location from different filespaces. Read and write ac-
cess policies are defined by the user to allow authenti-
cated individuals, groups or organisations to use their
file space.

e Software Resources. Our current implementation
only represents unlimited-use software libraries but the
execution of a licensed library or application has to
be scheduled in the same manner as a computational
resource to ensure that a licence is available.

2.2.2 ldentificationService

Authentication is a primary concern in any distributed com-
puting environment that allows users access to resources
managed by other organisations. We use a public key in-
frastructure to recognise three distinct entities for authenti-
cation (and authorisation) purposes: an individual, a group
and an organisation. Each federated organisation may act
as a Certification Authority to its local user community.

All requests to use a resource have to pass through the local
Domain Manager. The Domain Manager delegates authenti-
cation of the request to a trusted Identification Service. The
Identification Service has a list of trusted organisations (i.e.
their X509 certificates) that are generated through off-line
resource sharing agreements or are a recognised Certification
Authority. Having authenticated the organisation through
its certificate the groups and users derived from that organ-
isation’s Certification Authority can also be authenticated.

2.2.3 DomainManager

The Domain Manager is the only route between the pri-
vate Administrative Domain containing the resources and
the public computational communities. As such it has sev-
eral roles in enforcing the access control polices defined by
the local administrator:

e Authentication. Authentication of the user, their
associated groups and their originating organisation is
delegated to the Identification Service.

e Authorisation. Access to individual resources is con-
trolled through conventional access control lists that
recognise three entities: individuals, groups and or-
ganisations. This allows the Domain Manager to im-
plement fine-grained access control policies governing
resource usage.

e Promotion. Resources and their associated access
control polices are published in one or more compu-
tational communities by the Domain Manager. The
Domain Manager is able to restrict the published in-
formation in order to hide specific resources and the
details of the local access policy from particular com-
munities. All resource requests are verified by the Do-
main Manager before being passed to the resource.

o Execution. The Domain Manager accepts validated
resource requests (as part of a user’s execution plan)
and passes them onto the individual resources. All
monitoring of the job is passed through the Domain
Manager to the individual resource.

The Domain Manager allows administrators to contribute
their resources into a federated computational community
while retaining fine-grained control of how non-local users
are permitted to use these resources.

2.3 Resource Discovery and Selection

The computational community described in the previous
section provides a mechanism for federating the resources
of different organisations into a unified set of computational
resources. Finding the best resources for a complex applica-
tion from those that are currently available is a decision that
is still generally left to the user. However, as the diversity
of the heterogeneous resources increases the need for auto-
matic or semi-automatic resource selection will also increase.
Effective automatic resource selection requires information
relating to the performance of the application on different
resources and the requirements of the user to be made avail-
able within the computational community.

2.3.1 ExecutionRequiements

A source code or binary application can be easily annotated
with attributes relating to its requirements (e.g. operat-
ing system, library versions etc.) enabling deployment to
the target architecture. This form of simple resource selec-
tion has been demonstrated in the Condor ‘matchmaking’
system[5]. However, to make effective scheduling decisions
(and especially for parallel applications) it is essential to
have knowledge as to how the application performs on dif-
ferent architectures and configurations. This knowledge is
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used to ensure that the allocated resources guarantee ex-
ecution by a specific deadline, or in the case of a parallel
execution, that optimal speedup is achieved for a particular
data size and that the resources are effectively used.

Extracting this performance information automatically from
the application is a non-trivial task. However, we believe
this information can be expressed (either automatically or
manually) through performance models and used to anno-
tate the resource requirements and automate resource selec-
tion.

2.3.2 ApplicationMapper

The Application Mapper automates the user’s selection of
the best resources from those that are currently available
within the computational community. It uses the require-
ments specified by the user (relating to job completion time),
the application (run-time environment and execution time
on different platforms) and the resource provider (governing
resource access, capability and loading) to generate a set
of viable execution plans for final selection by the user (see
figure 2). Multiple Application Mappers can operate in the
same computational community to provide the user with a
variety of feasible execution plans generated using different
approaches.

2.3.3 Maintaining Optimal ExecutionPlans

The selected execution plan remains optimal provided the
state of the computational community remains unchanged
and jobs complete as predicted. Any change in the sys-
tem (either of an application or a resource) will trigger a
re-evaluation of the current application mapping and a pos-
sible rescheduling of future or current operations. Applica-
tions that are capable of being remapped during execution
to other resources have to provide a performance model de-
scribing the cost of the remapping operation and an interface
to support it.

2.4 Computational Supply and Demand

The previous section presented a mechanism for matching
federated resources to the execution requirements of an ap-
plication. Although the Application Mapper allows an indi-
vidual user to find the most effective resources from within
the computational community for their application, as yet
we have introduced no mechanisms for the resource provider
to maximise their resource utilisation.

For example, suppose two applications request the use of
a 16 processor PC cluster and that from each application’s
performance model the optimal number of processors is de-
termined to be nine. If the first job starts with nine proces-
sors, the second job would have to wait until the first job
has completed and nine processors become available. An
alternative approach is for both applications to use eight
processors and both to begin immediately. The latter sit-
uation is preferred by the resource provider as it increases
utilisation but it may not always be feasible (or desirable)
to adjust a user’s application in this way.

The wishes of the resource provider (to maximise their re-
source utilisation) are elegantly expressed by charging a user
different costs for different resource configurations. It may
be acceptable to the user to use eight processors if the cost
were considerably less than that of using nine processors
(as the resource provider would be charging for the seven
‘wasted’ processors).

2.4.1 ComputationalCurrency

To support our marketplace we define a computational cur-
rency, backed by a trusted organisation, as an exchange
medium in our computational economy. As different mar-
ketplaces may use different currencies we foresee the need for
resource providers to recognise and convert between several
currencies.

2.4.2 ResouceBroker

The Resource Broker negotiates a cost for the execution
plans with the relevant resource provider (assuming the user
is allowed to use the resource and it is available for use) and
presents these to the user. The resource provider prices
the execution plan according to its own economic priorities
(which may be dependent on the individual, group or or-
ganisation wishing to use their resource) and attempts to
maximise their resource utilisation by consideration of, say,
revenue stream or job throughput. The user may have a lim-
ited budget or immovable job completion time but may be
willing to reduce the job turnaround time by using a more
expensive resource. Job priority, from the perspective of ei-
ther a user and resource provider, is elegantly and simply
expressed through these market mechanisms. By maximis-
ing the pay-off functions we can find the ‘best’ global allo-
cation of resources to jobs in the computational community
by balancing the needs of the users, the applications, and



the resource providers over all requests rather than on each
individual request.

25 Tools

Interaction with the architecture takes place through the
following tools:

o The Resource Manager allows the system adminis-
trator to alter the resource’s configuration (adding and
removing attributes) and to define the access policy for
each resource marketplace.

e The Resource Browser allows the user to examine
the usage policies and the attributes (i.e. operating
system revision and current load) of the resources in
the marketplace. It can also be used for manual re-
source selection or automatic optimal application par-
titioning through the use of the application mapper.

e The Grid Client allows the user to define their appli-
cation’s requirements, publish these requirements in
the resource marketplace and examine the execution
plans and associated costs generated by the applica-
tion mapper and the resource broker.

3. IMPLEMENTATION
3.1 Technology

An initial proof of concept prototype of this architecture has
been completed at Imperial College using a Java and JINI
environment [6]. The architecture described in this paper
represents an extension of this work. We exploit Java’s
cross-platform portability (essential in any heterogeneous
environment) and its rich API’s to simplify many of the
development tasks [7]. We have also adopted JINI as the
primary service infrastructure for our architecture [8]. JINI
has many desirable characteristics for a wide area grid en-
vironment. It supports dynamic registration, look-up and
connection between the Java objects that represent our grid
services and resources. As all grid resources are effectively
transient this ability to connect and reconnect over time is a
highly desirable feature. As a consequence the JINI leasing
mechanism also allows unexpected failures to be gracefully
handled. We use a JINI look-up server to implement the
public resource marketplaces and private administrative do-
mains defined in our architecture.

3.2 Testing

The Imperial College Parallel Computing Centre provides
support for multi-disciplinary applications of high perfor-
mance computing across all the constituent departments and
centres of Imperial College. As such its hardware repre-
sents a realistic development test bed for our resource mar-
ketplace comprising dedicated high performance machines
to commodity PC clusters. From our diverse existing user
community we have identified two application areas that will
immediately benefit from a grid infrastructure:

e High Throughput Computing applications in Par-
ticle Physics, Bioinformatics and Medical Image pro-
cessing.

Users

Computational Economy

Application Mapper

Computational Community (Information)

Resources Resources Resources

Figure 3: JINI Grid Middleware

e Distributed High Performance Computing ap-
plications involving the simulation of the solar coronal
mass ejections and coupled fluid-structure acoustics.

4. RELATED WORK
41 Middleware

Our approach is a combination and logical extension of two
leading grid infrastructure projects: Globus and Legion.
Globus provides a toolkit of services (information manage-
ment, security, communication etc.) to integrate heteroge-
neous computational resources into a single infrastructure
[2]. Legion uses a uniform object model for both appli-
cations and resources allowing users and administrators to
subclass generic interfaces to their specific local needs [9].

We also use an object model to provide generic function-
ality that can be customerised by the user while retaining
the flexibility of Globus’s toolkit approach. Our middleware
is capable of being developed, deployed and used in increas-
ingly sophisticated forms (see figure 3). For example, the re-
source browser can be just used to extract information from
the computational community to display the current and
projected machine load as a virtual machine room [10]. The
application mapper can be used to suggest feasible mappings
to the currently available resources. By defining a computa-
tional currency the user is encouraged to make effective use
of the community’s computational resources. This architec-
ture is also open and extensible, allowing its components to
be interchanged with the results of other grid research.

Our initial implementation indicates that the Java/JINI com-
bination is capable of providing an extensible fault tolerant
distributed infrastructure for grid computing. Work else-
where has also demonstrated the effectiveness of JINI in
providing a grid middleware [11] and the use of Java to
provide a homogeneous distributed computing environment
across heterogeneous resources (e.g. Javelin [12] and other
projects). However, these projects have not yet addressed
the policy issues regarding the access of remote users to local
resources, which is fundamental in our approach.

4.2 Application Construction

The effectiveness of our middleware relies on the ability to
describe the performance and behaviour of an application.
The skeleton approach to program composition defines an
application as a composition of components which are as-



sembled using pre-defined structural forms of known seman-
tics (e.g. pipe, farm) [13, 14]. The mapping of these com-
positions onto target architectures is guided by analytical
performance models, developed with each component, allow-
ing decisions regarding efficient implementation to be made
quantitatively and systematically.

The parallel behaviour of sequential threads that are them-
selves written in conventional imperative languages can be
defined through parallel structural forms [15]. This ap-
proach has shown that complex parallel algorithms speci-
fied in this manner are as efficient and scalable as the best
hand written code [16, 17]. However, adoption was hindered
by the use of an unorthodox language framework. Our ex-
periences with structured coordination languages is now be-
ing used in the context of conventional software components
(e.g. Java Beans). By annotating software components with
XML encoded meta-data relating to how they can be used,
deployed and perform we can compose an application and
systematically and efficiently map the composition to the
target architectures [18]. This approach yields the perfor-
mance models of the overall application and its substruc-
tures, and the execution and data flow graphs needed for
mapping an application to the heterogeneous resources that
comprise the computational grids.

4.3 Application Scheduling

Application oriented schedulers (or Mappers) such as Ap-
pLeS select the optimal number of processors from a com-
putational resource for a particular problem size by using
static or stochastic computational and networking param-
eters and standard linear programming techniques [19, 20,
21]. Our Application Mapper will extend this work to find
an optimal execution plan (or application partitioning) that
considers all the resources in the computational community
and assumes an application is defined by sequence of inter-
dependent tasks. Many jobs are defined as a network of
operations (e.g. transfer input files, execute the applica-
tion, transfer the output files) with associated execution and
data flow graphs. If each operation provides a performance
model the Application Mapper has sufficient information to
find the resources that minimises the overall execution and
completion time.

Consideration of input and output file staging and current
computational load may mean that the fastest computa-
tional resource will not always complete the job in the short-
est possible time. If the resource is heavily used it may
take several hours for the job to start, while other lightly
loaded, but slower resources, would complete the work in
less time. As applications become increasingly dependent
on larger data sets it may be quicker to execute the ap-
plication on a slow computational resource that has good
network connectivity rather than transferring the data to a
faster computational resource.

The need for superschedulers that consider resources across
administrative domains has been recognised by Scheduling
Working Group of the Grid Forum [22].

4.4 Computational Economics
The Spawn system has demonstrated how different funding
ratios could be used to guide resource allocation and usage

[23]. Nimrod/G uses historical execution times and hetero-
geneous resource costs to implement fixed budget and dead-
line scheduling of multiple tasks [24]. The resource costs
are obtained through standard auctioning techniques (e.g.
English, Dutch, Hybrid and Sealed Bid auctions [25]) and
incorporated into the linear programming model used by
the application mapper when finding an optimal application
mapping.

5. FUTURE WORK

Our experiences in using Java and JINI to produce grid mid-
dleware have to date been experimental but encouraging.
The rich APT’s within Java and JINI’s fault tolerance fea-
tures eliminate many implementation issues. A JINI work-
ing group was formed at a recent Global Grid Forum meeting
to co-ordinate research in this area [26]. The prototype im-
plementation is now being re-engineered to fully conform to
the model described in the paper and we foresee its deploy-
ment over our local test bed during Summer 2001.

We also see scope for expanding the software resource model
to provide a software service (a software and hardware com-
bination provided by an application service provider) and
even deployable single use software libraries (licences to a
particular user for a single execution). Instead of buying a
fixed software licence users will pay for each use even if the
application is executed on their own or another organisa-
tion’s resources.

The computational economy could be extended to include
the speculative purchasing of resources (futures) and other
market based actions. Such an open market in resource pro-
vision would enable resource owners, be they HPC Centres,
single machine owners or software component providers, to
participate in dynamically evolving Computational Commu-
nities that users could access to satisfy their computational
requirements.

6. CONCLUSION

Computational grids will eventually, like the Internet, change
the way we work. However, to effectively exploit the compu-
tational potential of the grid we need to articulate the needs
of the users, their applications and the resource providers.
From this information we can automatically deploy an appli-
cation to a resource that will satisfy the stated requirements
of the user and the resource provider.

Our architecture, through the federation of resources to build
computational communities, the use of application mappers
to effectively match applications to resources and brokers to
make the best economic use of the available resources, ad-
dress some of the weaknesses in current grid infrastructures.
To implement this system we exploit JINI’s fault tolerant
and decentralised infrastructure and Java’s inherent cross-
platform portability.
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