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Abstract: Nitric oxide is multifunctional messenger molecule in the brain, playing important roles including in learning
and memory and in regulating the expression of trophic factors that may be reduced with aging. Small molecules that
mimic the biological activity of NO, NO mimetics, will bypass cholinergic receptor activation and are anticipated to pro-
vide multiple pathways of treating and circumventing dementia in Alzheimer’s disease. Activation of soluble guanylyl cy-
clase and cGMP formation in the brain represents one element of effective neuroprotective pathways mediated by NO.
Substantial evidence suggests that NO mimetics may display cGMP-dependent and cGMP-independent activity and may
operate via multiple biochemical signaling pathways, both to ensure the survival of neurons subjected to stress and also to
provide cognition-enabling pathways to circumvent dementia. GT 1061 is an NO mimetic compound currently in clinical
trials for Alzheimer’s. A survey of current research indicates that NO mimetics will provide a combined neuroprotective
and cognition-enabling approach to anti-neurodegenerative therapy.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia in older individuals. AD is a neurodegenerative
disorder characterized by a progressive and global deteriora-
tion in mental function, most notably in cognitive perform-
ance. Progressive impairment of memory and visual and
spatial cognition are accompanied by changes in affective
behaviour, including depression and aggression, leading to
disintegration of intellectual skills, personality, and the abil-
ity to function in everyday life. Mild cognitive impairment
(MCI) is often apparent as a prelude to AD; an estimated 50-
80% of individuals with MCI will progress to develop AD
[1, 2]. AD is characterized by disruption of both excitatory
amino acid and cholinergic neurotransmission most notably
in temporal lobe structures and regions of the cerebral cor-
tex. In particular, loss of cholinergic neurons, and subse-
quent deficits in cholinergic neurotransmission in the hippo-
campus and cerebral cortex, is strongly correlated with clini-
cal signs of cognitive impairment and dementia in AD pa-
tients [3, 4]. Currently the only FDA-approved therapeutic
agents for treatment of mild-to-moderate AD are the
acetylchol-inesterase inhibitors (ACIs), predominantly
donepezil (Aricept). There has been criticism of ACI therapy
including reference to modest efficacy and lack of efficacy in
segments of the patient population [5]. Based upon the
cholinergic hypothesis of neuronal dysfunction, it might be
suggested that ACI therapy is inherently flawed, since ACI
therapy attempts to maintain the residual function of an

*Address correspondence to this author at the Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood St., Chicago, IL 60612-7231, USA; Tel: (312)
355-5282; Fax: (312) 996-7107; E-mail: thatcher@uic.edu

apparatus that is progressively degrading. A preferred thera-
peutic would be a neuroprotective agent that circumvents the
damaged apparatus, supplementing cholinergic function
down stream of acetylcholine (ACh). Small molecules that
mimic the biological activity of nitric oxide, termed NO mi-
metics, represent such a therapeutic strategy. The NO mi-
metic, GT 1061, a novel nitrate ester, is currently in clinical
trials for AD.

NO SIGNALING IN THE CNS

NO signaling is essential for normal physiological func-
tion in the CNS, including learning and memory, and is
compromised in many disease states including neurodegen-
erative disorders, where reduced intracellular NO levels may
result from upstream blockade, as in cases where cholinergic
neurons are damaged and acetylcholine is depleted. The en-
zyme soluble guanylyl cyclase (sGC) has often been referred
to as the “NO receptor”, because of its central role in binding
NO and relaying the NO signal [6]. The soluble isoforms of
sGC are activated by NO, which is the product of the en-
zyme action of NO synthase (NOS) on L-arginine, leading to
the formation and elevation of intracellular levels of the sec-
ond messenger molecule, cGMP. In many CNS regions,
NOS activation and elevation of tissue cGMP levels follows
as a consequence of activation of both the N-methyl-D-
aspartate (NMDA) subtype of excitatory amino acid recep-
tors and cholinergic muscarinic receptor subtypes [7-9]. The
NO/sGC/cGMP signal transduction system is considered to
be important for modulating synaptic transmission and plas-
ticity in brain regions such as the hippocampus and cerebral
cortex, which are critical for learning and memory [10-13].
In the CNS, NO can serve as a retrograde synaptic messen-
ger, as an intracellular messenger, and as a lateral diffusible
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messenger in NO plays a critical role in signal transduction
cascades that are compromised in AD and thereby contribute
to the symptoms of cognitive impairment and dementia that
characterize AD. There is evidence that NO may positively
impact learning, memory and cognition through cGMP-
dependent and independent pathways [14]. NO mimetics are
thus proposed to bypass cholinergic receptor activation and
are anticipated to provide multiple pathways of treating and
circumventing dementia.

NO AND NEUROPROTECTION

Models of glutamate-induced excitotoxic neurodegen-
eration have frequently implicated a major role for the ele-
vation of postsynaptic NO levels as causative in neuronal
damage primarily via generation of free radicals and the oxi-
dizing cytotoxin, peroxynitrite [15]. One of the initiating
events in excitotoxic, neuronal cell death is excessive release
of the excitatory amino acid glutamate. Prolonged or overac-
tivation of the N-methyl-D-aspartate (NMDA) subtype of
ionotropic glutamate receptors has long been associated with
ischemic brain injury [16]. Prolonged NMDA receptor acti-
vation allows the excessive influx of calcium into the post-
synaptic neuron, which initiates multiple processes that con-
tribute to cellular injury and death, including the activation
of proteases, and inhibition of mitochondrial respiration
leading to failure of cellular energy stores and apoptosis. The
increase in intracellular calcium also results in activation of a
number of calcium/calmodulin-dependent enzymes, includ-
ing constitutive nitric oxide synthase (NOS). Excessive pro-
duction of NO, via excitotoxic activation of NMDA recep-
tors, may lead to generation of cytotoxic peroxynitrite, which
would be a contributing factor in ischemic injury and cell
death in part due to inhibition of mitochondrial energy pro-
duction [17, 18]. Support for a neurotoxic role for NO in-
cludes observations of neuroprotection in NOS knockout
mice and on treatment with NOS inhibitors [19-22], how-
ever, several studies also clearly demonstrate the anti-
neurodegenerative properties of NO and of NO/cGMP sig-
naling [23-25]. The hypothesis of induction or activation of
NOS as a central, universal, causal factor in neuronal dam-
age is not tenable. Modifications of this paradigm propose a
threshold NO concentration above which neurotoxicity is
observed, or suggest a neuroprotective role for nNOS but a
neurodestructive role for iNOS. In the long run, these are
likely also to prove too simplistic.

Lipton’s seminal work on the interaction of NO with
NMDA receptors demonstrated that some NO donors and
nitrovasodilators are neuroprotective in models of NMDA
receptor-mediated excitotoxic neuronal injury, and provided
a role for NO as a neuroprotective agent in inhibiting NMDA
receptor-mediated excitotoxicity [17]. Putative mechanisms
of regulation of NMDA receptor activity by endogenous NO
and exogenous NO donors include modification of the thiol-
disulfide redox regulatory site and modification of other re-
ceptor cysteine residues, involving conformational changes
to the NMDA receptor induced by reversible protein thiol S-
nitrosation [17, 26]. This direct modification and inhibition
of the NMDA receptor provides one cGMP-independent
neuroprotection pathway for NO.

The biological actions of NO can be categorized as either
cGMP dependent or independent, and amongst the cGMP

independent properties are protein nitrosation, protein nitra-
tion, and antioxidant action. There is good evidence that NO
can act as a potent chain-breaking antioxidant and that cer-
tain organic nitrates may manifest antioxidant activity [27,
28]. An NO donor was shown to be neuroprotective against
an oxidative stress-induced neuronal cell injury in the sub-
stantia nigra [29]. Thus, the neuroprotective effects of NO
and NO mimetics include: the action of NO as an antioxi-
dant; NO-mediated inhibition of caspases; NO-mediated
modulation of NMDA receptor activity; and cGMP-
dependent pathways, such as those that inhibit apoptosis [30-
32]. Therefore, sGC activation and cGMP formation in the
brain represents one element of an effective NO mimetic
neuroprotective strategy.

NO IN LEARNING AND MEMORY

 Recent studies show that NO/sGC/cGMP signaling is
important in multiple forms of synaptic plasticity, and sev-
eral reports have provided experimental evidence suggesting
that the sGC/cGMP signal transduction system is important
for acquisition of new learning and memory. Passive avoid-
ance learning in the rat is associated with an increase in the
level of cGMP in the hippocampus, and administration of the
membrane permeant cGMP analog, 8-bromo cGMP, en-
hances memory performance [33]. Conversely, in the same
paradigm, inhibition of either sGC activity or cGMP-
dependent protein kinase (PKG) immediately post-training
blocks memory formation [34]. Selective inhibition of nNOS
with 7-nitroindazole impairs object recognition memory in
rats, whereas treatment with zaprinast, a selective cGMP
phosphodiesterase inhibitor, both facilitates object recogni-
tion and reverses the memory deficit induced by 7-
nitroindazole [35]. Post-training infusion of 8-bromo-cGMP
bilaterally into the hippocampus improves object recognition
memory, whereas 8-bromo-cAMP is ineffective [36].

The animal studies that implicate the NO/sGC/cGMP
signal transduction system in learning and memory are sup-
ported by numerous in vitro  studies showing that long-term
potentiation (LTP) in the hippocampus can be blocked by
inhibition of sGC [12, 13, 37-40], and that NO and cGMP
can induce long-lasting enhancement of presynaptic neuro-
transmitter release [37, 41]. Furthermore, the close temporal
relationship between activation of the NO/sGC/cGMP signal
transduction cascade and improvements in learning and
memory suggest a mechanistic link between the two phe-
nomena [40]. Activation of sGC leading to cGMP accumu-
lation will activate PKG that in turn initiates protein phos-
phorylation cascades leading to activation of transcription
regulating factors such as cAMP response element binding
protein (CREB), a critical event in both LTP and the estab-
lishment of long-term memory [13, 42, 43].

Acetylcholine plays a critical role in modulating synaptic
function in the cerebral cortex and hippocampus. The pro-
cognitive actions of ACh in these brain regions are mediated
via activation of muscarinic receptors, which induce primar-
ily excitatory effects involving multiple different ionic con-
ductances [44, 45]. In the hippocampus, cholinergic mus-
carinic receptor activation leads to increased tissue levels of
cGMP (4). Importantly, the inhibition of the slow after-
hyperpolarizing current (a calcium-activated potassium con-
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ductance that underlies spike-frequency adaptation) induced
by muscarinic receptor activation in hippocampal CA1 py-
ramidal neurons can be blocked by inhibitors of sGC and
PKG [45]. Therefore, the neuromodulatory effects of ACh in
the brain must, at least in part ,involve NO/sGC/cGMP sig-
naling.

Behavioural studies have demonstrated that NMDA re-
ceptors also play an important role in both spatial working
memory and long-term memory processes. Blockade of
NMDA receptors, or inhibition of NOS activity, impairs per-
formance in the Y-maze test, a model of spatial working
memory [46]. The impairment induced by NMDA receptor
blockade could be reversed by intracerebroventricular ad-
ministration of the nitrosothiol S-nitroso-N-acetylpeni-
cillamine (which acts in part as NO donor), L-arginine (the
substrate for NOS), or dibutyrl-cGMP [46]. From these
studies it can be proposed that both ACh and glutamate acti-
vate receptor systems coupled to NO/sGC/cGMP signal
transduction and that this biochemical pathway is important
for synaptic plasticity and the formation of memory.

NO-stimulated sGC activity is severely decreased in the
cerebral cortex of patients with AD, and aberrant signaling
by NO has been reported to occur in the brain in AD [13].
These findings lead to the prediction that sGC activation and
cGMP formation in the brain may be an effective strategy for
mitigating the cognitive dysfunction that occurs as a conse-
quence of cholinergic deficits in the CNS. Therefore, in con-
trast to the cholinesterase inhibitors that attempt to salvage
the functionality of a degenerating cholinergic system, NO
mimetics are postulated to bypass this system, to modulate
the normal function of signaling pathways downstream from
cholinergic receptor activation.

NO, MAPK SIGNALING AND CREB ACTIVATION

The NO/cGMP signal transduction system is linked to
several signaling pathways in the brain that have been asso-
ciated with neuroprotection. NO possesses neuroprotective
properties related to activation of sGC and the production of
cGMP, since cGMP has been found to protect neurons
against excitotoxic injury [47], and to promote neuronal sur-
vival and inhibit apoptotic cell death in a number of neuronal
cell types [25]. Furthermore, cyclic nucleotides (cGMP and
cAMP) attenuate lipid peroxidation-mediated neuronal in-
jury [48], and cGMP decreases both resting intracellular Ca2+

levels and the elevations in intracellular Ca2+ concentrations
that follow exposure to glutamate [23]. Elevating cellular
levels of cGMP depresses excitatory synaptic transmission in
the hippocampus, possibly via a direct, PKG-independent
interaction between cGMP and the α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid (AMPA) subtype of ex-
citatory amino acid receptors [49]. Soluble β-amyloid pre-
cursor protein (APP) has neuroprotective properties that
have been attributed to selective elevation of intracellular
cGMP levels and activation of PKG [50]. Conversely, eleva-
tion of cGMP leads to inhibiton of the proinflammatory ac-
tion of β-amyloid peptide (Aβ) itself, on microglia [51]. Mi-
croglial activation leading to release of proinflammatory
cytokines and neurotoxic factors is strongly implicated in the
pathogenesis of neurodegenerative disorders [52]. In micro-
glial cell culture, inhibitors of cytokine release, including

NO donors and cGMP analogs, operate via cGMP/PKG sig-
naling and the mitogen-activated protein kinase (MAPK)
cascade[53].

A key role for NO and the importance of MAPK signal-
ing cascades is also emphasized by studies on neuroprotec-
tion resulting from preconditioning. In cell culture experi-
ments, activation of nNOS activation triggers NO/cGMP/
PKG signaling which in turn mediates activation of signaling
cascades via ERK1/2 (extracellular signal-regulated kinases )
and c-Jun, leading to upregulation and activation of proteins
including brain derived neurotrophic factor (BDNF), thiore-
doxin and superoxide dismutase, as well as the Bcl-2 anti-
apoptotic factor [54, 55]. In these experiments, the authors
discounted a role for protein S-nitrosation, however, in other
work, neuronal preconditioning was reported to be mediated
by NOS activation, and replicated by NO donors, via
NMDA-dependent, Ras-dependent, but cGMP-independent
pathways [56]. Again in the cGMP-independent pathway,
activation of ERK1/2 by phosphorylation was observed to be
essential for neuroprotection.

NO/cGMP signaling is closely linked with behavioural
responses, learning, and memory [37, 57-61]. Animal be-
havioural studies have shown that NO is involved in both
short and long term learning and memory [43, 62, 63]. LTP,
widely held to be centrally important to learning and mem-
ory, has early and late phases that require NO/cGMP signal-
ing and CREB phosphorylation. Recent results suggest that
NO/cGMP/PKG signaling provides a parallel pathway to
PKA-signaling in both phases of LTP, with PKG and PKA
pathways performing complementary roles [13]. NO/cGMP
and PKG contribute to CREB phosphorylation, in part medi-
ated by the ERK cascade, but NO via cGMP-dependent or
independent mechanisms may also mediate CREB phos-
phorylation via PKC and the CaMK cascades [13, 43, 64].
Interestingly, experiments with YC-1 an agent that augments
sGC activation, produced an enhancement of LTP in rat hip-
pocampus and amygdala via an NO/cGMP/PKG/ERK path-
way culminating in CREB phosphorylation [42].

The critical involvement of the ERK cascade in mediat-
ing hippocampus-dependent long term memory and
amygdala/hippocampus-dependent fear conditioning has
only been known for a few years, but has led to considerable
research demonstrating the importance of this signal cascade
in several brain regions [65-69]. ERK1/2 are members of the
MAPK super-family. ERK was shown to be activated in the
rat hippocampal CA1 region following NMDA receptor
stimulation [70], but has now been shown to be activated by
a number of stimuli in the hippocampus, cerebral cortex, and
amygdala [71-74]. The membrane-associated G-protein, Ras
can activate the ERK pathway via the kinase Raf-1, which is
a MAPKKK (MEK kinase) [75]. Stimulation of several neu-
roreceptors, including NMDA, serotonin, muscarinic and
nicotinic acetylcholine receptors can lead to ERK activation
via the protein kinases, PKA or PKC. CREB can be activated
and phosphorylated via CaMK IV, PKA, and RSK2, the last
mediating the activation of CREB by ERK [76].

CREB activation, which can be elicited by NO [13, 43,
77], is a focus of investigations into the cellular mechanisms
underlying cognition and depression [66, 67, 78-83], but
understanding of the detailed upstream pathways is incom-
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plete, owing to the number and complexity of signaling cas-
cades and substantial cross-talk (Fig. 1). CaMK IV may
drive fast-onset CREB-activation [84], whereas the PKA and
ERK pathways may activate CREB in a slower manner. The
combination of multiple signaling pathways may be advan-
tageous for the precise control of gene expression and the
integration of multiple converging signals for optimal acti-
vation of CREB [84, 85].

Fig. (1). The ERK/MAPK cascade in neurons may be triggered by a
number of pathways and initiated by a number of receptors includ-
ing the NMDA receptor (NMDAR) in the hippocampus. Various
mechanisms are available to NO in eliciting ERK activation in-
cluding cGMP-dependent pathways via NO/sGC/PKG signaling
and cGMP-independent pathways. Mechanisms of NO action via
PKC, CamK and Ras have been proposed, although feedback be-
tween cGMP and cAMP pathways requires that NO/cGMP will also
influence PKA signaling.

One factor that differentiates NO from other messenger
molecules is transmembrane diffusion, allowing retrograde
signal transduction stimulating cGMP in the presynaptic
terminus, and paragrade signaling as a lateral diffusible mes-
senger sensitizing adjacent postsynaptic neurons. The exact
role of cGMP signaling in learning, memory, and affective
behaviour is not completely defined. However, there are a
number of important ideas that are emerging: the importance
of linking presynaptic and postsynaptic activity in a pathway
specific manner; the observation that cGMP signaling in
LTP may be brief and phasic; and the importance of cGMP
signaling in the early consolidation phase of learning and
memory. Clearly, NO mimetics that manifest cGMP-
dependent and independent activities may operate via multi-
ple biochemical pathways, to ensure the survival of neurons
subjected to ischemic injury, Ca2+ overload, or oxidative
stress, and also to provide cognition-enabling pathways to
circumvent dementia. Emerging research would support ac-
tivation of ERK and CREB as important in both neuropro-
tective and cognition-enhancing pathways.

THE EXTENDED CHOLINERGIC HYPOTHESIS

Despite criticisms of ACI therapy and the cholinergic
hypothesis, it is notable that the very recent AD2000 clinical
trial designed in part to correct putative bias in previous
trials (although not achieving all of the intended endpoints),
clearly replicated the reported significant efficacy of

donepezil treatment in mild-to-moderate AD [86, 87].
Moreover, there are numerous reports that ACIs may be
disease modifying in addition to providing symptomatic
relief [88, 89]. The simple cholinergic hypothesis posited
that cognition deficits resulted from loss of ACh-containing
neurons early in AD, reflected by reduced ACh-transferase
(ChAT) activity and choline uptake [90-93]. Thus, in animal
models, both use of the muscarinic ACh receptor antagonist,
scopalamine, and lesioning of cholinergic neurons resulted in
cognition deficits as demonstrated by impaired ability to
perform learning and spatial memory tasks, such as the
Morris water maze task (MWT). Moreover these functional
deficits are alleviated by administration of an ACI [94-104].
The observations that degradation of cholinergic neurons and
ChAT activity is often not a feature of early AD seems
contradictory to the hypothesis [105-107], but recent find-
ings suggest that the cholinergic hypotheses should be ex-
tended not discarded, for example, the cortical and hippo-
campal cholinergic synaptic systems [108, 109], and trophic
factors [110] can either reduce or accelerate pathogenesis
and progression of AD by effects on APP levels, metabolism
and processing [111, 112], and therefore cerebrocortical
plaques and degeneration of afferents must be linked in a
multifactorial progression.

ACI therapeutics represent symptomatic early treatments
for AD if their function is simply to augment diminishing
levels of ACh produced by degenerating neurons, but there
are lessons to be learned: firstly, ACIs utilize mechanisms in
addition to simple AChE inhibition, mediated through targets
such as butyrylcholinesterase[89]; secondly there is evidence
that ACIs and ACh-mimetics positively impact non-
cognitive behavioural dysfunction in AD, which is a major
symptom of AD linked to cognitive decline [113, 114]; and
thirdly, the elevation of ACh in early AD may be beneficial
through the interplay of the cholinergic system with
noradrenergic and serotonergic systems, APP and trophic
factors in AD pathogenesis.

RELEVANCE TO THE AMYLOID CASCADE

It has long been proposed that the neurodegeneration in
AD may be caused by the deposition of Aβ in plaques found
in brain tissue [115, 116], although an objection to this hy-
pothesis rests in the fact that the number and localization of
amyloid deposits in the brain do not correlate well with the
degree of cognitive impairment [117], an observation reca-
pitulated in transgenic mouse models of AD. Recent cogni-
tion studies on hAPP transgenic mice have shown that cog-
nition deficits precede amyloid deposition and correlate with
small soluble forms of Aβ [118-120]. supporting a role in
memory failure in AD for small, soluble oligomers of Aβ
[121]. Inhibition of amyloid deposition in AD remains a
major drug target, including approaches directed at reducing
aggregation and increasing clearance of Aβ1-42 [122].
Blocking Aβ production has targeted BACE [123], γ-
secretase inhibitors [124], modulating APP synthesis, [125]
and the upregulation of α-secretase [126]. However, the role
of APP, Aβ1-40, and the secretases in normal physiological
function [127-130] presents a problem in providing effective
and safe approaches to AD therapy. As we have described
above, APP has neuroprotective properties that may be me-
diated by cGMP/PKG signaling [50].
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It has been commented that the pattern and progression
of memory impairment and cognitive decline seen in AD, in
particular the early loss of short term and recent memory, is
not typical of that following neuronal cell death [131, 132];
instead, loss of synapses leading to degradation of synaptic
plasticity [133, 134], counterbalanced by synaptic scaling, is
proposed as a causal mechanism [135], prevalent in MCI and
early stage AD. Memory formation through synaptic scaling
is strengthened by increased cholinergic activity, and this
may occur in early progression of AD, since ChAT levels
increase whereas AChE levels are generally normal in MCI
and early AD [107, 136, 137]. However, Aβ may elevate
AChE levels in early stage AD through binding to α7-
nicotinic ACh receptors (nAChRs) [138, 139], and there is
evidence for upregulation of the nAChR in AD from animal
models and clinical data [140, 141]. The proposal of eleva-
tion of ChAT, AChE, and nAChRs in early AD, associated
with Aβ toxicity, is compatible with the observed efficacy of
ACIs in early AD, where AChE inhibition supports synaptic
scaling [135]. However, after early stage AD, the degenera-
tion and loss of cholinergic neurons greatly reduces the po-
tential efficacy of the ACI therapeutic approach.

The nAChR may act as a receptor for Aβ (1-42), eliciting
responses including deranged ERK signaling, and conse-
quent downregulation of ERK2 and disruption of down-
stream events including CREB phosphorylation [142]. The
interplay of Aβ with the nAChR couples the amyloid cas-
cade to the cholinergic hypothesis in the hippocampus in
pathways that impact synaptic plasticity and memory and
operate via the MAPK cascade and CREB phosphorylation.
Interestingly, compromised CREB signaling has been re-
ported in AD and in cell culture in response to Aβ [143,
144].

AMYLOID CASCADE, CHOLINERGIC HYPO-
THESIS AND TROPHIC FACTORS

A transgenic mouse deficient in nerve growth factor
(NGF) has been shown to exhibit more typical AD neuropa-
thologies than the “amyloid cascade models” (viz the mutant
hAPP and presenelin transgenics), including: amyloid
plaques, hyperphosphorylated tau, neurofibrillary tangles in
cortical and hippocampal regions, and marked cholinergic
neuron degeneration [110, 145]. The APP and presenelin
animal models of AD have often been criticized because of
the uncertain causal connection between observed abnormal
protein deposits on the one hand and cognition deficits and
degeneration of the cholinergic neurons on the other [146].
Depletion of NGF in rats leads to deterioration of cholinergic
CNS basal forebrain neurons and synapses, decreased ChAT
levels, and elevated APP [101, 108]. Conversely, mice which
exhibit deficits in both basal forebrain cholinergic neurons
and hippocampal terminal cholinergic axonal fields have
impaired retrograde transport of NGF from hippocampus to
the basal forebrain. Individuals with AD show signs of im-
paired NGF transport with NGF levels in the basal forebrain
decreased compared with age-matched controls [147]. Inter-
relationships between APP and NGF have been described
[148-150]. Links between the cholinergic system and APP
are seen in the high affinity binding of Aβ1-42 to α7-nicotinic
ACh receptors, leading to decreased Ca2+ influx [151].

Cholinergic neurons and synapses associated with cho-
linergic nerve terminals rely on the trophic action of NGF for
their function [152-155]. A pathological cascade in AD
memory impairment is suggested linking aberrant APP/Aβ
processing, cholinergic neuronal dysfunction, and trophic
factor loss in target regions, leading to degeneration of cho-
linergic nerve terminal function in the hippocampus and
cerebral cortex, and thence both decreased NGF re-
lease/uptake and degradation of cholinergic neurons [156].
LTP is seen as central to synaptic plasticity and learning in
the hippocampal formation [151]. Significant release of both
NGF and brain-derived neurotrophic factor (BDNF) after
LTP induction in the hippocampus has been reported [157-
159]. Enhanced LTP and afferent synaptic strength via cho-
linergic and other transmitter systems in the hippocampus
has been shown to enhance memory function, whereas im-
pairment of these transmitter systems reduces LTP and
memory function in hippocampal-dependent tasks [160].
Taken together, these observations support the concept that
perturbation of the homeostasis between hippocampal, neu-
rotrophic factors, APP and ACh-mediated activity will pro-
gressively lead to memory impairment via imbalances in
neurotransmission, synaptic damage, neuronal dysfunction,
and consequently neuronal cell loss [156]. This concept
holds the corollary that inhibition of amyloid deposition
alone will not be a successful therapeutic strategy without
maintenance of cholinergic and synaptic function.

BDNF, NO AND OXIDATIVE STRESS

Neurotransmitters and neurotrophic factors are funda-
mental to regulation of synaptic plasticity and neuronal ad-
aptation, for example in response to aging. In particular,
BDNF activates genes that regulate neurogenesis, neuronal
plasticity and survival, preventing cell death caused by
stress, ischemia and trauma. The action of BDNF at synapses
is to enhance LTP via the MAPK cascade and activation of
the transcription factor CREB, which regulates genes con-
trolling LTP and memory formation [161-163]. BDNF itself
is a gene product of CREB, as are other proteins important to
cell survival and synaptic function, including nNOS, anti-
apoptotic Bcl-2, and glutamate receptor subunits [152, 164-
167]. Aged rats show decreased levels of both BDNF and
CREB in cortical and hippocampal formations, leading to
age-related susceptibility to neurodegenerative factors [168-
170].

Excitatory amino acid receptor activation increases
CREB activity and upregulation of BDNF [171]. The inter-
action of 5HT receptors with BDNF has been proposed to
have an important role in age-related changes in neuronal
plasticity and neurodegeneration. 5-HT is important in regu-
lation of neurite growth, synaptogenesis and cell survival,
with specific receptors (5HT2A, 5HT2C) mediating memory
formation [172]. 5HT and BDNF activate genes that serve
complementary functions in neuronal plasticity and survival,
with 5HT signal transduction utilizing PKA and PKC sig-
naling cascades. Stimulation of 5HT receptors and activation
of CREB induces transcription of the BDNF gene, providing
a mechanism of interaction with the cholinergic system in
facilitating learning and memory [173]. Reduced levels of
5HT and degradation of serotoninergic neurons accompany
cognitive decline in AD and major depression is a symptom
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of AD [174]. It is possible that 5HT and BDNF work coop-
eratively to suppress age-related oxidative stress, and thus
that reduced levels of either will lead to increased suscepti-
bility to oxidative stress and neuronal degeneration [175,
176].

In cell culture, Aβ induces oxidative stress, triggering
upregulation of BDNF as a stress response [177, 178], and
the neuroprotective actions of BDNF are argued to be medi-
ated by NO [179]. BDNF and NO share neurological actions,
including promoting neuronal survival and enhancing syn-
aptic plasticity [180-184]. Furthermore, the interplay of
BDNF with NO is central to the activity of BDNF since NO
provides a positive feedback loop that regulates neurogene-
sis: NO regulates BDNF production; and, BDNF induces
nNOS expression [166]. BDNF has been shown to induce
the upregulation of nNOS in newly generated neuronal cells
and mature cerebrocortical neurons [166, 185]. Elevation of
BDNF and NO plays an important role in attenuating neu-
rodegeneration resulting from stress including oxidative
stress, but it has also been proposed recently, in light of
studies linking neurogenesis to learning and memory [186],
that upregulation of BDNF and NO signaling plays an im-
portant role in enhancing learning and memory in response
to environment [166]. Therefore, elevation of NO levels in
the aging brain is likely to be essential to both synaptic and
neuronal survival and function, including learning and mem-
ory, that may be compromised in response to oxidative
stress.

NITRATES AS NO MIMETIC THERAPEUTICS IN AD

Classical nitrates have been in clinical use since the in-
troduction of nitroglycerin (GTN) for treatment of angina
pectoris in the 1870’s, and continue to make headlines as
novel therapeutic agents, most recently in the halting by the
FDA of a successful 2004 Phase III clinical trial for prophy-
lactic treatment of heart failure in African-Americans with
isosorbide dinitrate. Although the most studied, GTN is
somewhat atypical in being much more potent hypotensive
agent than most other classical nitrate vasodilators [187-
189]. GTN shows serendipitous venodilator selectivity and
displays NO mimetic cardiovascular activity, with a clinical
safety record proven over 130 years. However, GTN is con-
traindicated for CNS indications, such as cerebral ischemia,
because of peripheral hypotension and tolerance [190, 191].
GTN and other nitrates are often described as NO donors,
requiring bioactivation to NO, but no protein capable of bio-
activation of GTN to NO is known [192], and at pharmacol-
ogical concentrations, NO release in target tissues can be at a
level too low to measure [193].

The biological and medicinal chemistry of nitrates has
recently been thoroughly reviewed [189]. The biological
activity of nitrates is NO mimetic: nitrates may exploit bio-
activation pathways for selectivity, but importantly in con-
trast to true NO donors such as nitrosothiols, nitrates at
therapeutic doses, will not release large, potentially harmful
fluxes of NO. With over a century of human clinical experi-
ence, nitrates represent ideal NO mimetic therapeutics. Hy-
brid nitrates, which consist of a classical nitrate grafted onto
a primary drug pharmacophore, have received much atten-
tion recently. These molecules have yielded exciting data,

but in most cases it is difficult to dissect and attribute the
observed activity to the pharmacophore versus the nitrate
moiety. Of relevance to this present paper, in animal studies
on hybrid nitrates, both microglial activation and accompa-
nying amyloid clearance [194, 195], and inhibition of neu-
rotoxin induced microglial activation by a hybrid nitrate
have been reported [196]. Hybrid nitrate therapeutics, in
particular the so called NO-NSAIDs (NO donor non-
steroidal anti-inflammatory drugs), have received regulatory
approval and completed human clinical trials [197].

Novel nitrates in which the neuromodulatory activity and
systemic hypotensive effects can be dissociated represent
good candidates for NO mimetic therapeutic agents in AD,
because the nitrate functional group is inherently lipophilic
supporting satisfactory CNS bioavailability. The novel ni-
trate, GT 715, represents a prototype for one such approach
[198, 199]. GTN and GT715 were shown to exert differential
effects on cardiovascular function, with GT715, being a
weaker vasodilator with minimal effects on mean arterial
pressure in the whole animal compared to GTN [190].
GT715 was both more potent and more effective as an acti-
vator of sGC in the brain, and more effective in elevating
cGMP levels in hippocampal brain slices, compared to GTN,
whereas GTN produced a much greater accumulation of
cGMP in vascular tissue [200]. GT 715 supported the postu-
late that neuromodulatory and hypotensive effects of nitrates
can be dissociated. Demonstration of the neuromodulatory
effects of GT 715 was observed in a variety of models of
neuroprotection: (a) in the middle cerebral artery occlusion
(MCAO) rat model of focal ischemic stroke [201], (b) in the
6-hydroxydopamine-lesion rat model of Parkinson’s Disease,
and (c) in the malonate-lesion rat model of excitotoxic neu-
rodegeneration [202].

Intrastriatal injection of malonate, a mitochondrial succi-
nate dehydrogenase inhibitor, into the brain of rats produces
energy depletion, secondary excitotoxicity, and free radical
production that ultimately leads to neuronal cell death [203].
In this model of neuronal injury [204] GT 715 was observed
to significantly decrease the brain injury induced by the
malonate neurotoxin at both the behavioural and neuro-
chemical levels. Preservation of GABA levels in the striatum
after malonate injection, measured as an index of the neu-
ronal cell population, and a markedly decreased response to
apomorphine in ipsolateral turning indicated that neuronal
injury was significantly inhibited by GT 715 administration,
and that normal function within the neostriatum was main-
tained [202]. These results reinforce our previous unpub-
lished observations in a Parkinson’s animal model and re-
ported observations on the neuroprotective activity of GT
715 in the rat transient MCAO model of ischemic stroke
wherein s.c. delivery of drug 2h or 4h after ischemia pro-
duced a significant reduction in infarct volume (58% reduc-
tion in total and 72%reduction in cortical infarct volumes at
4h) [190].

The novel nitrate GT 715 represents a prototype for neu-
romodulatory novel nitrates that have been studied in a num-
ber of behavioral tests used to demonstrate memory im-
provement and the reversal of cognition deficits in rat mod-
els of dementia. In AD, loss of cholinergic neurons and sub-
sequent deficits in cholinergic neurotransmission in the hip-
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pocampus and cerebral cortex, are strongly correlated with
clinical signs of cognitive impairment and dementia. Central
cholinergic muscarinic receptor blockade produces profound
cognitive impairments in human and animal subjects, thus
the use of cholinergic muscarinic antagonists, such as sco-
polamine, in animal models to mimic the cognitive impair-
ment observed in AD is well established, and has proven to
be a useful model system for understanding and developing
treatment strategies for neurodegenerative diseases in hu-
mans [205]. Data have been published for the novel nitrates,
GT 715 and GT 061, demonstrating the reversal of cognitive
deficits produced by scopolamine in rats tested in the MWT
[200, 202]. All members of this class tested to date in be-
havioural models of dementia show cognition enhancing
activity, and various members manifest additional biological
activity, including anticonvulsant and analgesic activity, and
AMPA receptor modulation [206]. GT 1061 is a salt form of
GT 061, which was selected as a drug candidate based upon
CNS activity ancillary to ability to reverse cognition deficits
in a variety of models.

GT 1061 has been studied in a variety of experimental
paradigms where cognition deficits are induced, including:
(a) injection of the muscarinic receptor antagonist scopola-
mine [200]; (b) administration of the cholinergic neurotoxin
192 IgG-saporin via intracerebroventricular infusion and
other routes [98]; and (c), chronic, daily, bilateral, intracere-
broventricular infusion of β-amyloid peptide (Aβ1-40) [207].
The behavioural models used to measure reduction of cogni-
tion deficits have included the MWT (both fixed and moving
platform versions), step-through passive avoidance test
(STPA), contextual memory after STPA, and visual delayed
matching to sample (DMTS), in all of which tacrine and
donepezil ACIs were used for validation and comparison.

That dysfunction in the rat hippocampus causes spatial
learning deficits in tasks such as the MWT is well estab-
lished [208, 209], however, the role of the hippocampus in
visual memory and recognition has not been proven until
recently [210]. The observation of similarities between cog-
nitive processing in the rat and man is important, since visual
association tests are reported to reliably detect a substantial
proportion of AD patients up to a year before diagnosis
[211], and further to distinguish against non-Alzheimer’s
dementia (including vascular dementia, frontotemporal de-
mentia, subcortical dementia [211]. A reliable rat model of
visual recognition memory deficit has been reported [210].
In this model a lesion induced by intracerebroventricular
infusion of 192 IgG-saporin induced a deficit in visual rec-
ognition memory that was completely reversed in a dose
dependent manner by oral administration of GT 1061, which
proved superior to donepezil: moreover, drug administration
was observed to elevate levels of phosphorylated ERK in the
hippocampus [212].

SUMMARY

AD is a multifactorial disease, with contributions from
synaptic, dendritic and neuronal damage and dysfunction,
and the formation of abnormal protein aggregates throughout
the brain. The interlinked, contributing factors to AD are
complex and regulate the timeline of disease progression via
processes including inflammation, oxidative stress, apop-

tosis, and aberrant kinase signalling. NO mimetics are likely
to impact multiple factors responsible for synaptic and
neuronal dysfunction in AD. The combination of neuropro-
tection with cognition enhancement demonstrated by novel
nitrates represents exciting potential for new approaches to
AD therapy.
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