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Abstract. With the proliferation of physical attacks that may compromise even the theoretically
strongest cryptographic schemes, the need for affordable physical protection of cryptographic de-
vices becomes more visible by each day. In this context, Physically Unclonable Functions (PUFs),
a promising new technology, provide a low cost technique to realize tamper-resilient storage for
secret keys in integrated circuits (ICs). However, PUFs possess some unusual properties that set
them apart from ordinary hardware components: their responses are noisy and tend to change when
PUFs are manipulated through external influences. These properties have limited the applications
of PUFs so far to only physically protecting stored key material. This raises the question as to
what extent PUFs can be used to construct other cryptographic schemes.
In this paper, we take the first step towards answering this question and place PUFs in the core of
a pseudorandom function (PRF) construction. PRFs are one of the most important cryptographic
primitives used to design various cryptographic schemes such as stream or block ciphers. We first
give a theoretical model for PUFs and justify it by real-life PUF-implementations. Then, we show
how to use PUFs to construct tamper-resilient PRFs, termed as PUF-PRFs.
However, for several reasons that we outline in this work, PUF-PRFs cannot directly replace PRFs.
Nevertheless, we show that PUF-PRFs represent a new cryptographic primitive with very useful
properties: they are inherently resilient to tampering attacks and allow for generating (almost)
uniformly distributed values.
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1 Introduction

Modern cryptography provides a variety of useful tools and methodologies to analyze and to prove the
security of cryptographic schemes such as in [3, 4, 2, 7]. These theoretical frameworks focus mainly on the
algorithmic aspects under the so-called black-box assumption. Here it is assumed that security-critical
information, e.g., key material, can be kept secret. However, real world cryptographic applications are
embedded in physical environments that may leak information, e.g., about the cryptographic key material
being processed.

A large body of literature has therefore explored various forms of passive and active side-channel
attacks, e.g. [24, 23, 1]. This motivated new security definitions to capture the effect of (physical) in-
formation leakage or tampering. The concept of Physically Observable Cryptography [29] considers a
physical leakage channel, however, under some (unavoidable) assumptions that idealize this channel.
The Algorithmic Tamper Proof (ATP) model [13], establishes the conditions under which cryptographic
primitives such as signature schemes with black-box security reductions may be converted to primitives
secure against a tampering adversary, however, under the strong assumption that tamper-proof and
read-proof storages are necessary. In [22, 30, 8], it was discussed how tamper-proof tokens can be used to
relax setup assumptions that in practice require some trusted party for the system initialization.

It may be argued that the biggest threat on cryptographic devices stems from tampering attacks. In
these attacks, the adversary is playing an active role, i.e., he injects faults into the device and observes
their manifestations with the goal of deducing internal secrets. For instance, the attack in [5] recovers the
RSA factors by introducing an arbitrary fault in one of two RSA signature computations. Another fault
injection attack on AES requires only two faulty ciphertexts to retrieve the 128-bit secret key [34]. In an
even more sobering attack it was shown that an arbitrary bit location in memory could be modified by
optical induction [36].



A straightforward tamper detection approach is to integrate on-chip sensors. However, it is difficult
to assess the strength of this technique since the sensitivity depends on the type of sensors and their
exact placement. Another tamper detection technique is to employ a protective coating layer [35]. The
coating approach provides comprehensive protection. However, it requires the manufacturing process to
be modified and hence is more costly. A number of process agnostic techniques based on recoding operands
using error detection codes (EDCs) were proposed [21, 12]. For EDCs one may precisely quantify the error
detection performance. Unfortunately, to achieve an acceptable degree of protection these techniques
commonly require in the order of 200%-300% area overhead. Moreover, for highly non-linear components
it is very difficult to design a protection network.

A recent line of work proposes tamper-detection at the physical level. More precisely, deep submicron
and nano-scale physical phenomena are used to build low-cost tamper-evident key storage devices [32, 37].
The most promising approach in this context is to use hardware primitives called Physically Unclonable
Functions (PUFs) introduced in [32, 33] and further developed, e.g., in [18]. A PUF is a primitive that
maps challenges to responses which are highly dependent on the physical properties of the device in
which the PUF is embedded. PUFs are based on the subtleties of the operating conditions as well
as random variations that are imprinted into an integrated circuit during the manufacturing process.
This phenomenon, i.e., manufacturing variability, creates minute differences in circuit parameters, e.g.,
capacitances, line delays, threshold voltages etc., in chips which otherwise were manufactured to be
logically identical. Manufacturing variability requires additional margins to be implemented. There are
numerous references modeling manufacturing variability and proposing techniques to mitigate its effects,
e.g., [9, 6, 19]. However, it is well known that in smaller technology nodes (below .18µm technology), the
relative impact of deep submicron process variations becomes larger and larger and cannot be removed
anymore [38]. These random variations vary from chip to chip and cause it to be physically unique. For
some PUF instantiations it is assumed that copying (cloning) of these random structures is infeasible or
prohibitively costly.

PUFs are extremely powerful tools for tamper detection. In contrast to the previously introduced
techniques, PUFs combine the storage, detection, and secret destruction features within a single unit. The
storage itself is sensitive to tampering. Typically, with other techniques one must ensure that the error
detection or secret destruction hardware are also protected from tampering. The arbiter-PUF approach
proposed in [11, 25], for instance, provides secure key storage and protection of circuit components placed
sufficiently close to PUF. The number of possible challenges is exponential in the arbiter-PUF size, but
since it is susceptible to linear modelling attacks [31], the number of challenge-response pairs that can
actually be used is limited. Another PUF construction derives a secret key directly from a protective
coating layer [37]. When the coating is disturbed via a tampering attack the derived secret key is also
modified. Despite the comprehensive protection it provides, similar to the protective layer approach
discussed in [35], this technique requires modifications to the manufacturing process. A more recently
introduced promising technique is the SRAM PUF [16]. Since SRAM cells are standard components
used in chips, they do not require expensive modifications to the manufacturing process. SRAM PUFs
are built from standard semiconductor components which are available early in a new manufacturing
technology and do not require changes to design rules or processing. When uniformly placed throughout
the device, the SRAM PUF cells protect the other components placed in close distance to the PUF as
well, hence providing comprehensive protection.
Our contribution. In this paper, we place the PUFs in the core of a pseudorandom function (PRF)
construction that meets well-defined properties. We provide a formal model for this new primitive that we
refer to as PUF-PRFs. PRFs [15] are fundamental primitives in cryptography and have many applications
(see, e.g., [14, 26, 27]).

To the best of our knowledge, all construction methods for PRFs so far are purely software-based and
hence would require additional measures for tamper-resilience.4 The tight integration of PUFs as PRFs
into a cryptographic construction improves the tamper-resilience of the overall design. Any attempt at
accessing the internals of the device will result in change of the pseudorandom functions. Hence, no
costly error detection networks or alternative anti-tampering technologies are needed. The unclonability

4 Note that although True Random Number Generators (TRNGs) also exploit physical phenomena to generate
randomness they cannot be used as functions since challenging a TRNG twice with the same input does
not yield the same (or at least) similar outputs. This disqualifies TRNGs for the considered cryptographic
applications.
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and tamper-resilience properties of the underlying PUFs allow for elegant and cost-effective solutions to
specific applications such as software protection or device encryption.

Similar to PRFs, PUF-PRFs generate almost uniform outputs. However, as opposed to PRFs, they
require some additional data for correct execution which in turn possibly leaks side information.
Organization. This paper is organized as follows. In Section 2, we give a formal model for certain types
of PUFs and explain how these can be turned into a new cryptographic primitive, termed PUF-PRFs.
In Section 3, we provide a practical instiation of a PUF that meets the conditions of the previously
proposed model: the SRAM PUF. Finally, in Section 4 we present the conclusions.

2 Physically Unclonable Functions and Pseudorandom Functions

The notion of pseudorandom functions (PRFs) [15] is established since long in cryptography and many
important cryptographic schemes can be constructed from them (see, e.g., [14, 26, 27]). In the following,
we will sketch how to use PUFs for realizing PRFs (more precisely, a variant of it). Due to the lack of
space, many technical details are omitted and also the definitions are only given informally.

Let F`,n denote the set of all Boolean functions {0, 1}` → {0, 1}n. Roughly said, a function f ∈ F`,n

is pseudorandom if the advantage of winning the following game is negligible. A distinguisher has black-
box access to an orcale which on inputs x ∈ {0, 1}` returns values y ∈ {0, 1}n. These values are either
y = f(x) (case 0) or y is uniformly random chosen from {0, 1}n (case 1). The distinguisher has to decide
between both cases.

As told in the introduction, the behaviour of PUFs is highly dependent on its physical structure at
the deep submicron and nano-scale level. For several PUF types, this makes it difficult to predict its be-
haviour even if some challenge-response pairs are already sampled. Given their natural protection against
tampering attacks, PUFs are ideal candidates for realizing PRFs with inherent physical protection.

However, PUFs differ in two aspects from PRFs: (i) the outputs are noisy and (ii) usually not
uniformly distributed. This is captured by the following model:

Definition 1 (Physically Unclonable Functions). A (`,m, δ, q, µ, ε′)-family of PUFs is a set of
functions P with the following properties:

Noise: Every Π ∈ P is a probabilistic algorithm where
1. Π accepts inputs (challenges) x ∈ {0, 1}` and generates outputs (responses) y ∈ {0, 1}m.
2. There exists a Boolean function f : {0, 1}` → {0, 1}m such that for each query x ∈ {0, 1}`, the

response y ∈ {0, 1}m has the form y = f(x)⊕e where e ∈ {0, 1}m is some random (noise) vector.
In other words, the responses can be interpreted as being the outputs of f transmitted via an
additively noisy channel. The vector e is called the noise vector.

3. All noise vectors have a Hamming weight of δ or less.
Output distribution: There exists a distribution D on {0, 1}m with a min-entropy H∞(D) ≥ µ such

that it holds for every sequence of vectors x1, . . . , xq ∈ {0, 1}` with xi 6= xj for i 6= j that the following
two distributions have a statistical distance of at most ε′:
1. (Π(x1), . . . ,Π(xq)) where Π is uniformly chosen from P.
2. (y1, . . . , yq) with q independent samples yi ← Dq.

A (`,m, δ, q, µ, ε′)-PUF is a member of a (`,m, δ, q, µ, ε′)-family of PUFs.

Given the observations made above, the main obstacle in creating a PRF from a PUF is to convert noisy
non-uniform inputs into reliably reproducible, uniformly distributed random strings. For this purpose,
fuzzy extractors (FE), e.g., see [10], are an established tool in cryptography. First recall the definition of
FE:

Definition 2 (Fuzzy Extractor). A (m,n, δ, µ, ε)-fuzzy extractor E is a pair of randomized procedures,
“generate” (Gen) and “reproduce” (Rep), with the following properties:

1. The generation procedure Gen on input y ∈ {0, 1}m outputs an extracted string z ∈ {0, 1}n and a
helper string (also called helper data) ω ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element y′ ∈ {0, 1}m and a bit string ω ∈ {0, 1}∗ as inputs.
The correctness property of fuzzy extractors guarantees that if the Hamming distance dist(y, y′) ≤ δ
and z, ω were generated by (z, ω)← Gen(y), then Rep(y′, ω) = z. If dist(y, y′) > δ, then no guarantee
is provided about the output of Rep.
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3. The security property guarantees that for any distribution D on {0, 1}m of min-entropy µ, the
string z is nearly uniform even for those who observe ω: if (z, ω) ← Gen(D), then it holds that
SD((z, ω), (Un, ω)) ≤ ε.

In [10], several constructions for efficient fuzzy extractors have been presented. PUFs are most commonly
used in combination with fuzzy extractors based on error-correcting codes and universal hash functions.
In that case, the helper data consists of a code-offset, which is of the same length as the PUF output,
and the seed for the hash function, which is in the order of 100 bits and can often be reused for all
outputs. To construct a PRF from PUFs, one first invokes the PUF and then applies an appropriate FE
afterwards. This will be formalized in the following definition:

Definition 3 (PUF-PRFs). A (`, n, q, ε, ε′)-PUF-PRF is a composition (E ◦Π) where

– Π is a (`,m, δ, q, µ, ε′)-PUF and
– FE is a (m,n, δ, µ, ε)-fuzzy extractor.

More precisely, a PUF-PRF can be used to either generate or to reproduce values. For generating values
from an input x ∈ {0, 1}`, first the PUF is executed on it and afterwards the Gen algorithm is run to
produce a tuple (z, ω). To reproduce the value z in later executions, one first applies the PUF Π to x
and then uses the Rep algorithm together with the previously generated helper data ω.

Using the theory of fuzzy extractors, one can show that the values z are almost uniformly distributed,
even if the helper data ω is known. That is, PUF-PRFs and “traditional” PRFs have in common that
(part of) the output cannot be distinguished from uniformly random values. In that sense, the output
of PUF-PRFs can be used as a replacement for PRF outputs and one might be tempted to plug in
PUF-PRFs wherever PRFs are required. Unfortunately, things are not that simple since the information
saved in the helper data is also needed for correct execution. It is a known fact that the helper data of
a fuzzy extractor always leaks some information about the input, e.g., see [20]. Hence, extra attention
must be paid when deploying PUF-PRFs in cryptographic schemes. In the following section, we discuss
possible theoretical and practical applications of PUF-PRFs.

3 Practical Instantiation: SRAM PUF

In this section, a practical instantiation of a Physically Unclonable Function is discussed: the SRAM
PUF. We will explain the SRAM PUF operation and further on show that it meets the PUF conditions
from Definition 1.

During the manufacturing process, subtleties of the operating conditions as well as random varia-
tions are imprinted into an integrated circuit. This phenomenon, i.e. manufacturing variability, creates
minute differences in circuit parameters, e.g. capacitances, line delays, threshold voltages etc., in chips
which otherwise were manufactured to be logically identical. Manufacturing variability requires addi-
tional margins to be implemented. There are numerous references modeling manufacturing variability
and proposing techniques to mitigate its effects, e.g., [9, 6, 19]. However, it is well known that in smaller
technology nodes (below .18µm technology), the relative impact of deep sub-micron process variations
becomes larger and larger and cannot be removed anymore [38]. These random variations vary from chip
to chip and cause it to be physically unique.

A number of PUFs, including SRAM PUFs, have been proposed that exploit the uniqueness of an IC
due to these process variations. Basically, an SRAM cell is a physical realization of a bistable memory
element that is able to store one binary digit.

Definition 4 (SRAM). A (`,m)-Static Random Access Memory (SRAM) is defined as a 2`×m matrix
of physical SRAM cells, each storing an element from {0, 1}. Let M̃ ∈ {0, 1}2`×m denote the state of the
SRAM matrix immediately after a particular power-up of the memory. Each row of M̃ is uniquely labeled
with an element x from {0, 1}`, and a specific row vector is denoted as M̃x.

An SRAM cell is volatile by nature, meaning that it only stores a bit when powered. The value of its
state right after power up is undefined by its electrical characteristics. In practice, the power up state of
an SRAM cell is a random variable. In the full paper we demonstrate by experiments, simulations and
models that:
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– The noise-free power up state Mx,j of an SRAM cell is fixed for a specific instantiation, but in-
dependently and uniformly distributed over {0, 1} for a randomly sampled instantiation from the
statistical SRAM cell population.

– The actual noisy power up state of an SRAM cell is given by M̃x,j = Mx,j ⊕ e, with e a Bernoulli
distributed random variable with probability of succes pe < 1

2 . e is drawn independently at the
powerup of every SRAM cell.

From these observations, we show that:

Theorem 1. Let M̃ be the noisy powerup state matrix that arises after a specific powerup of a specific
physical SRAM realization. The procedure that accepts as input a challenge x ∈ {0, 1}` and thereupon
returns the row vector y = M̃x as response, is a realization of an (`,m, δ, q, µ, ε′)-PUF as defined by
Definition 1 and is called an SRAM PUF.

In [18] an SRAM PUF was constructed on an FPGA and the theoretical values for the min-entropy
and the average bit error probability were experimentally verified. The performed experiments indicate
that the average bit error probability of the response bits is bounded by 4% when the temperature is
kept constant at 20◦C, and by 12% at large temperature variations between −20◦C and 80◦C. The
probability of more than δ bit errors occurring decreases exponentially with increasing δ according to
the Chernoff bound. δ is chosen high enough such that in practice, more than δ bit errors will never
be observed. Accurately determining the min-entropy from a limited amount of PUF instances and
responses is unattainable. In [28] it was shown that the mean smooth min-entropy of a stationary
ergodic process is equal to the mean Shannon entropy of that process. Since the SRAM PUF responses
are distributed according to such a stationary distribution (as they result from a physical phenomenon)
it was estimated in [17] that its Shannon entropy equals 0.95 bit/cell. Because the mean smooth min
entropy converges to the mean Shannon entropy, it follows that Hε

∞(Mx) is close to H(Mx). Therefore
we put Hε

∞(Mx) = 0.95 · m ≈ µ. Since the power up states are independently distributed, the min-
entropy of a response does not decrease after multiple queries, i.e. ε′ = 0 even after q = 2`. The number
of SRAM cells required to construct the PUF rises linearly in the output size m, but exponentially in
the input size `. Therefore, SRAM PUFs more naturally yield an expanding PUF: `� m.

4 Conclusions

In this work, we presented a method for constructing PRFs from physically unclonable functions. The
method is based on a theoretical model for PUFs. We provided arguments that showed that certain
classes of PUFs are adequately captured by this model. Moreover, we demonstrated a practical PUF
construction and determined its parameters for the model from experiments and simulations. Hence the
proposed construction technique allows real-life instantiations of PUF-PRFs where the security can be
proven under some reasonable physical assumptions.

Of course, any physical model can only approximately describe real life. Although experiments support
our model for the considered PUF implementations, more analysis is necessary. In this context it would
be interesting to consider other types of PUFs which fit into our model or might be used for other
cryptographic applications. Applications based on PUF-PRFs need to take the helper data leakage into
account. We hope to provide cryptographic schemes based on PUF-PRFs soon.
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