
DyAD – Smart Routing for

Networks-on-Chip∗

Jingcao Hu Radu Marculescu

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA
e-mail: {jingcao, radum}@ece.cmu.edu

April 25, 2004

The performance of Networks-on-Chip (NoC) is highly dependent on the throughput
and latency properties of the on-chip routers. Deterministic routing gives better latency at
low packet injection, however, the performance degrades quickly when the network becomes
congested. Compared to deterministic routing, adaptive routing alleviates the congestion
problem at higher packet injection rates by distributing packets across multiple routing
paths. However, it suffers from higher latency at low injection rates due to the extra logic
needed to perform the routing path selection.

In this paper, we present and evaluate a novel routing scheme called DyAD which com-
bines the advantages of both deterministic and adaptive routing schemes. More precisely,
we envision a new routing technique which judiciously switches between deterministic and
adaptive routing based on the network’s congestion conditions. The simulation results
show the effectiveness of DyAD by comparing it with purely deterministic and adaptive
routing schemes under different traffic patterns. Moreover, a prototype router based on
the DyAD idea has been designed and evaluated. Compared to purely adaptive routers,
the overhead of implementing DyAD is negligible (less than 7%), while the performance is
consistently better.

1 Introduction

With the advances in the semiconductor technology, the huge number of transistors avail-
able on a single chip allows designers to integrate tens of IP blocks together with large
amounts of embedded memory. These IPs can be CPU or DSP cores, video stream pro-
cessors, high-bandwidth I/O, etc. This richness of the computational resources places

∗Research supported by NSF CCR-00-93104 and Marco Gigascale Research Center (GSRC)



CSSI Technical Report

tremendous demands on the communication resources as well. Additionally, the shrinking
feature size in the deep-submicron (DSM) domain makes interconnect delay and power
consumption the dominant factors in the optimization of modern systems. Another con-
sequence of the DSM effects is the difficulty in optimizing the interconnect because of the
worsening effects such as crosstalk, electro magnetic interference, etc [13].

The regular tile-based NoC architecture was recently proposed as a solution to the
complex on-chip communication problems [3][6][8]. As shown in Fig. 1, such a chip consists
of a grid of regular tiles where each tile can be a general-purpose processor, a DSP, a
memory subsystem, etc. A router is embedded within each tile with the objective of
connecting it to its neighboring tiles. Thus, instead of routing design-specific global on-
chip wires, the inter-tile communication can be achieved by routing packets.

Network
Logic

A Tile

RouterProcessing
Element

(0,0) (0,1) (0,3)

(1,3)

(2,3)

(3,3)(3,2)(3,0)

(2,0)

(1,0) (1,1) (1,2)

(0,2)

(2,2)(2,1)

(3,1)

Figure 1: Regular tile-base NoC architecture

The performance and the efficiency of the NoC highly depends on the underlying com-
munication infrastructure; this, in turn, relies on the performance (in terms of latency and
throughput) of the on-chip routers. Thus, the design of efficient, high performance, on-chip
routers represents a critical issue for the success of the NoC approach.

Depending on the routing mode, routers can be generally classified into two types:
deterministic and adaptive [10]. In deterministic routing (also called oblivious routing),
the path is completely determined by the source and the destination address. On the other
hand, a routing technique is called adaptive if, given a source and a destination address, the
path taken by a particular packet depends on dynamic network conditions (e.g. congested
links due to traffic variability).

One main advantage of using deterministic routing is its simplicity in terms of routers
design. Because of the simplified logic, the deterministic routing provides low routing
latency when the network is not congested. However, as the packet injection rate increases,
the deterministic routers are likely to suffer from throughput degradation as they can not
dynamically respond to network congestion. In contrast, adaptive routers increase the
chances of packets to avoid congested links by using alternative routing paths; this leads to
higher throughput. However, because of the extra logic needed in order to decide on a good

2



CSSI Technical Report

routing path, adaptive routing has a higher routing latency compared to the deterministic
routing, at low levels of network congestion.

In this paper, we present a novel routing scheme which combines the advantages of
both deterministic and adaptive routing schemes. The proposed routing scheme, which
is dubbed as DyAD, from Dynamically switching between Adaptive and Deterministic
modes, is based on the current network congestion situation. More precisely, in DyAD each
router in the network continuously monitors its local network load and makes decisions
based on this information. When the network is not congested, a DyAD router works
in a deterministic mode and thus enjoys the low routing latency enabled by deterministic
routing. On the contrary, when the network becomes congested, the DyAD router switches
back to the adaptive routing mode and thus avoids the congested links by exploiting
other routing paths; this leads to higher network throughput which is highly desirable for
applications implemented using a NoC.

In order to propose a valid approach, we also show how the freedom from deadlock and
livelock [10] can be guaranteed when mixing deterministic and adaptive routing modes
into the same NoC. Experimental results show that, compared to both deterministic and
adaptive routing, significant performance improvements can be achieved by using the DyAD
approach. By designing a prototype DyAD router based on a typical adaptive router, we
show that the overhead in terms of chip area is marginal (typically less than 7%), while
its performance consistently outperforms the purely adaptive router. We believe that the
proposed scheme based on combining the deterministic and adaptive routing modes has
great potential for future NoC implementations.

The paper is organized as follows. In Section. 2, we first give a brief review of the
related work. Following that, in Section 3, we present the DyAD router architecture and an
implementation which fulfills the DyAD concept. Experimental results in Section 4 validate
the performance improvement which can be achieved with DyAD routers. More than this,
the prototype design (Section 5) shows that the implementation overhead compared to a
traditional adaptive router is negligible.

2 Related Work

There has been significant work published on efficient routing schemes in parallel and dis-
tributed computing areas. Glass and Ni in [5] propose a turn-model for designing wormhole
routing algorithms that are deadlock and livelock free. This model has been later utilized
by Chiu in [1] to develop an odd-even adaptive routing algorithm for meshes without virtual
channels. However, to the best of our knowledge, there is no work which tries to exploit
the combined advantages of deterministic and adaptive routing when implementing NoCs.
Because of limited space, the reader is referred to [10] for a survey on routing techniques
developed for direct networks.

In [14], Shin et al. propose a hybrid switching scheme that dynamically combines both
virtual cut-through [7] and wormhole switching [2] to provide higher achievable throughput
values compared to wormhole switching alone, while reducing the buffer space required at

3



CSSI Technical Report

the intermediate nodes when compared to virtual cut-through. In this paper, we are looking
at the router design from another perspective; that is, we try to combine the advantages
provided by deterministic and adaptive routing instead of relying on different switching
schemes. Thus, the work presented here is orthogonal to that in [14]. Interestingly enough,
they can be combined, if needed.

From another perspective, several on-chip routers have been proposed for NoC (e.g.
[12][9][11]). However, none of this previous work has addressed the issue of combining
deterministic and adaptive routing into a new routing scheme. As we will see later in this
paper, our proposed routing scheme achieves significant better performance compared to
purely adaptive routers only with negligible implementation overhead.

3 The DyAD Router Architecture

Instead of proposing a detailed implementation, DyAD proposes a new paradigm for NoC
router design which exploits the advantages of deterministic and adaptive routing. Indeed,
based on this idea, any suitable deterministic and adaptive routing scheme can be combined
to form a DyAD router (although care must be taken to issues such as deadlock freedom,
as it will be discussed in Section 3.3). Nevertheless, in what follows, we focus on discussing
an implementation instance which targets the NoC domain. Similar ideas can be extended
to other routers (e.g. routers for multi-computer networks) as well.

3.1 Platform Description

The platform under consideration is composed of a n × n array of tiles which are inter-
connected by a 2D mesh network. We choose the 2D mesh network mainly because of
two reasons: it naturally fits the tile-based architecture and because it has been frequently
discussed in other NoC work (e.g. [3][9][11]). However, we emphasize that our algorithm
can be easily extended for other topologies.

Fig. 2 shows an abstract view of a tile in this architecture. As shown, each tile is
composed of a processing element (PE) and a router. The router embedded onto each tile
is connected to the four neighboring tiles and its local PE via channels. Each channel
consists of two directional point-to-point links between two routers or a router and a local
PE.

Because of the limited silicon resources and the low-latency requirements for typical
NoC applications, wormhole switching is used as the switching scheme for the on-chip
routers. Under this scheme, a packet is split into so-called flits (flow control digits), which
are then routed in a pipelined fashion. To minimize the implementation costs, the on-chip
network should be implemented with very little silicon area overhead. This is especially im-
portant for those architectures composed of tiles at fine-level of granularity. Thus, instead
of having huge memories (e.g. SRAM or DRAM) as buffering space for routers/switches
in the macro-network, it’s more reasonable to use registers. For the architecture in Fig. 2,

4



CSSI Technical Report

Crossbar
Switch

South
Output

East
Input

Input
North
Input

West

Output
PE

South
Input

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

East
Output

Output
North
Output

West

PE
Input

Arbiter

RouterProcessing
Element

Figure 2: The typical structure of a tile

a 5× 5 crossbar switch is used as the switching fabric because of its nice cost/performance
trade-offs for switches with small number of ports.

In our experiments, the XY routing scheme is picked up as a representative determin-
istic routing scheme because of its simplicity and wide popularity. In short, for 2D mesh
networks, the XY routing first routes packets along the X -axis. Once the packets reach the
column wherein lies the destination tile, they are then routed along the Y -axis. Obviously,
XY routing is a minimal path routing algorithm and is free of deadlock and livelock [10].

Unlike the deterministic routing where the routing path is fixed once the source and
the destination addresses are given, the adaptive routing offers packets more flexibility in
choosing their routing paths, if multiple routing paths exist. However, when using adaptive
routing, caution must be taken in order to solve the deadlock problem, which may be caused
by packets waiting for each other in a cycle. One way to achieve deadlock-free adaptive
routing is by using virtual channels (e.g. [4]). However, adding virtual channels does not
come for free, as it requires extra buffering spaces and complex control logic to routers.
These pose serious problems on applying the virtual channel approach to NoCs.

Starting from these observations, we instead use routing algorithms that require no
virtual channels for NoC. To be deadlock free, the routing algorithm needs to prohibit
at least one turn in each o the possible routing cycles. In addition, in order to preserve
the adaptiveness, it should not prohibit more turns than necessary. Several deadlock-free
adaptive routing algorithms have been proposed [5], including west-first, north-last and
negative-first. In [1], Chiu proposed the odd-even turn model which restricts the locations
where some types of turns can take place such that the algorithm remains deadlock-free.
More precisely, the odd-even routing prohibits the east→north and east→south turns at any
tiles located in an even column. It also prohibits the north→west and south→west turns at
any tiles located in an odd column. Compared to other adaptive routing algorithms without
virtual channel support (e.g. [5]), the degree of the adaptiveness provided by the odd-even
routing is distributed more evenly across the network. Thus, in this paper, we choose the

5



CSSI Technical Report

minimal1 odd-even routing as the adaptive routing scheme for on-chip routers. The use
of minimal routing helps not only in reducing the energy consumption of communication,
but also to keeping the network free from the livelock.

3.2 Motivation for the DyAD Approach

Intuitively, because of its simplicity, the deterministic routing provides lower routing la-
tency compared to adaptive routing when the network is not really congested. On the
other hand, the deterministic routing is more susceptible to congested links as it provides
no choice for alternative routes when network becomes congested. As a motivational exam-
ple, Fig. 3 shows how the performance of the deterministic and adaptive routing changes
with respect to the network load for a 6× 6 mesh under transpose1 traffic pattern (please
refer to Section 4 for detailed description of the simulation setup and the traffic pattern’s
characteristics).

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

100

200

300

400

500

600

Packet injection rate (packets/cycle)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
Odd−Even

(a)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

40

50

60

70

80

Packet injection rate (packets/cycle)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
Odd−Even

(b)

Figure 3: Performance Comparison between XY and Odd-even

In Fig. 3 , we report the measured average communication latency of the packets and
the average sustainable network throughput in terms of packet injection rates at each node.
Compared to Fig. 3(a), Fig. 3(b) uses a smaller Y-axis scale to show the magnified view of
the average packet latency at low injection rates. These figures clearly show the trade off
between deterministic (XY ) and adaptive (odd-even) routing. More precisely, the odd-even
is able to achieve much higher saturation throughput compared to XY routing (more than
60% in this experiment). However, at a low network work load (below 0.023 packets/cycle
in this case), XY beats the odd-even routing in terms of average packet latency2. This is
exactly the trade off that motivated us to develop the DyAD routing, which tries to combine

1A minimal adaptive routing algorithm routes all packets through the shortest paths to the destination.
2Of course, in order to fairly compare different routing schemes, more traffic load/patterns and network

configurations need to be tested, which will be shown in Section 4.

6



CSSI Technical Report

the advantages of both deterministic and adaptive routing by judiciously choosing the right
routing mode under different traffic load.

3.3 DyAD-OE: a DyAD Implementation of Adaptive Odd-even

Routing

We would like to emphasize again that DyAD stands for a routing concept rather than a
particular combination of a deterministic and an adaptive routing mode. In principle, any
combination of deterministic and adaptive routing scheme can be used to construct a DyAD
router (providing that the resulted network meets other constraints, such as freedom from
deadlock, etc.). The choice of the “best” combination depends on factors such as resources
available and the application requirements/characteristics, etc.

Congestion Flag of West Neighbor
Congestion Flag of South Neighbor
Congestion Flag of West Neighbor
Congestion Flag of East Neighbor

Port ControllerAddr Decoder

West Input FIFO

East Out Port

West Out Port

Local Out Port

North Out Port

South Out Port

Port ControllerAddr Decoder

North Input FIFO

Congestion Flag to North Neighbor

Port ControllerAddr Decoder

East Input FIFO

Congestion Flag to East Neighbor

Port ControllerAddr Decoder

South Input FIFO

Congestion Flag to South Neighbor

Congestion Flag to West Neighbor

Port ControllerAddr Decoder

Local Input FIFO

Crossbar Arbiter

Crossbar
Swtich

Mode Controller

Figure 4: The DyAD-OE Router Architecture

In this subsection, we present the actual router design, DyAD-OE, which implements
the concept of DyAD for odd-even routing. Combining odd-even and XY to form a DyAD

7



CSSI Technical Report

router may lead to deadlock problem. Thus, we develop a new routing scheme, called oe-
fixed, as the deterministic routing mode in DyAD-OE. Oe-fixed is indeed a deterministic
version of odd-even based on removing the odd-even’s adaptiveness. For instance, in odd-
even mode, if a packet with a given source and destination can be routed to both output
p1 and p2, it will always be routed to p1 in oe-fixed. Fig. 4 illustrates the architecture of
the DyAD-OE implementation.

Each input controller in Fig. 4 has a separate FIFO (typically the size of several flits
and implemented by registers for performance and power efficiency) which buffers the
input packets before delivering them to the output ports. When a new header flit is
received, the address decoder processes that flit and sends the destination address to the
port controller; this determines which output port the packet should be delivered to. When
the router works in the odd-even mode, there can be more than one output direction to
route packets. In this case, the port controller will choose the direction in which the
corresponding downstream router has more empty slots in its input FIFO. For instance,
let us suppose the router located in the position of (1, 1) as in Fig. 1 receives a packet from
router (1, 0) with the destination address (3, 3). Under odd-even node, the packet can be
routed either to north or to east in this router. In this case, the port controller compares
the occupancy of the south input FIFO at router (2, 1) with that of the west input FIFO
at router (1, 2). If the former has more flits in the FIFO, then the packet will be routed
to the east to router (1, 2); otherwise, it will be routed to the north to router (2, 1). Once
the router has made its decision on which direction to route, the port controller sends the
connection request to the crossbar arbiter in order to set up a path to the corresponding
output port.

Except for the local input controller, each input port controller also monitors its FIFO
occupation ratio. If the ratio reaches the specified congestion threshold, a value 1 will be
asserted on the corresponding congestion flag wire. Otherwise, a value of 0 will be asserted.
Intuitively, a value of 1 in the congestion flag indicates to the upstream router that the
downstream router is congested, and it is better to use adaptive routing in this case in
order to avoid possible congested links. On the other hand, a value of 0 tells the upstream
router that congestion is not an issue and it should dump the packets out as fast as possible
for minimum latency.

The use of the FIFO is regulated by back-pressure mechanism. Under this scheme,
a flit will be held in the buffer until the downstream router has empty space in the cor-
responding input FIFO. Thus, the network will not drop any packet in transit. This is
extremely important for NoC architectures which may not implement very advanced end-
to-end protocol.

The crossbar arbiter maintains the status of the current crossbar connection and de-
termines whether to grant connection permission to the port controller. When there are
multiple input port controllers requests for the same available output port, the crossbar
arbiter uses the first-come-first-served (FCFS) policy to decide which input port to grant
the access, such that the starvation on a particular port can be avoided.

The mode controller continuously monitors its neighboring congestion to determine
whether the deterministic or the adaptive routing mode should be used. Although more

8



CSSI Technical Report

advanced techniques can be used to determine the optimal routing mode, we use the
following simple policy to demonstrate the idea of DyAD. If any congestion flag from
its neighboring routers are asserted, then the mode controller commands all the input
port controllers to work at the adaptive (odd-even) mode; otherwise, it switches the port
controllers to deterministic (oe-fixed) mode.

4 Experimental Results

To evaluate the performance gains that can be achieved with DyAD, we simulate several
square mesh networks with different routing schemes and design parameters under different
traffic patterns. Under each load and configuration, four types of mesh networks are
simulated, which use XY, odd-even, oe-fixed and DyAD-OE, respectively. The efficiency
of each type of routing is evaluated through latency-throughput curves. Similar to other
work in the literature, we assume that the packet latency spans the instant when the first
flit of the packet is created, to the time when last flit is ejected to the destination node,
including the queuing time at the source. We also assume that the packets are consumed
immediately once they reach their destination nodes. Each simulation is run for a warm-up
period of 2000 cycles. Thereafter, performance data are collected after 20,000 packets are
sent.

4.1 Worm sim Simulator

A cycle-accurate interconnection network simulator (named as worm sim) was implemented
in C++ based on standard template libraries (STL). Worm sim supports 2D mesh net-
works with wormhole switching and is designed with flexibility in mind so that it can be
customized to simulate different designs under different traffic patterns. Since many factors
(e.g. routing path selection delay, crossbar arbitration delay, etc.) have a significant impact
on the NoC performance, worm sim models all these factors accurately with their actual
values taken from our prototype router designs3. More specifically, for different types of
routers (e.g. XY, odd-even, etc.), their performance related delays are modeled differently
as parameters in worm sim by accurately mimicking our prototype circuit design.

4.2 Performance Evaluation under Random Traffic

In this set of experiments, we used the random traffic model to simulate the performance
of the networks which use different routing strategies. In this case, the processing elements
(PEs) generate messages at time intervals chosen with exponential distribution, as com-
monly reported in the literature. Each message is assumed to be a 5-flit packet. Similar
to the work presented in [1], three traffic patterns, namely uniform, transpose and hot
spot are used in the simulation. Under the uniform traffic pattern, a PE sends a message
to any other node with equal probability. Two types of the transpose patterns are used

3Details of these designs of the routers will be presented in Section 5.

9



CSSI Technical Report

for the transpose traffic. Let E to be the edge size of the square mesh under simulation.
Under the pattern transpose1 (also called matrix-transpose in some publications), a PE at
(i, j) (i, j ∈ [0, E)) only sends messages to node (E − 1 − i, E − 1 − j); under the pattern
transpose2, a node (i, j) only sends messages to node (j, i). Transpose1 and transpose2
correspond to reflections of the source about the lines y = −x and y = x, respectively,
given a coordinate system through the center of the network. Finally, under the hot spot
traffic pattern, one or more nodes are chosen as hot spots which receive an extra proportion
of traffic in addition to the regular uniform traffic.

Fig. 5(a-d) show the latency/throughput figures under uniform, transpose1, transpose2
and hot spot traffic patterns, respectively. The network size during simulation is fixed to be
6× 6 tiles. All of the input ports have a FIFO size of 5 flits, with the congestion threshold
set at 60% of the total FIFO capacity.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

20

40

60

80

100

120

Packet injection rate (packets/cycle)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
OE−fixed
Odd−Even
DyAD−OE

(a) Uniform Traffic

0.005 0.01 0.015 0.02 0.025 0.03
0

50

100

150

200

250

300

Packet injection rate (packets/cycle)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
OE−fixed
Odd−Even
DyAD−OE

(b) Transpose1 Traffic

0.005 0.01 0.015 0.02 0.025 0.03
0

50

100

150

200

250

300

Packet injection rate (packets/cycle)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
OE−fixed
Odd−Even
DyAD−OE

(c) Transpose2 Traffic

6 8 10 12 14
x 10

−3

0

50

100

150

200

Packet injection rate (packets/cycle)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
OE−fixed
Odd−Even
DyAD−OE

(d) Hot Spot Traffic

Figure 5: Performance Evaluation under Random Traffic Patterns

As shown in Fig. 5(a), XY routing performs better than both odd-even and DyAD-OE
routing under uniform traffic load. This result is consistent with other results reported

10



CSSI Technical Report

in the literature (e.g. [5][1]). The reason why XY performs best under uniform traffic is
that it embodies global, long-term information about this traffic pattern. From a global,
long-term point of view, the uniform traffic pattern starts with message traffic spread
evenly across the mesh; later on the XY routing strategy maintains that evenness. On
the other hand, the adaptive algorithms select the routing paths based on local, short-term
information. The decision benefits only the packets in the immediate future, which tend
to interfere with other packets. Thus, the evenness of uniform traffic is not necessarily
maintained in the long run [5].

However, for most of the applications in real world, each node will communicate with
some nodes much more compared to others. XY routing has serious deficiency in dealing
with such non-uniform traffic patterns because of its determinism. More precisely, XY
routing blindly maintains the unevenness of the nonuniform traffic, just as it maintains
the evenness for the uniform traffic. In this spirit, Fig. 5 (b-d) shows that XY routing
is clearly outperformed by odd-even and DyAD-OE. Taking the results using transpose1
traffic for instance (Fig. 5(c)), the network using XY saturates at an injection rate of
0.0167 packets/cycle. On the other hand, odd-even and DyAD-OE are able to achieve
a throughput of 0.0256 packets/cycle and 0.027 packets/cycle, respectively. This gives a
53.3% and 61.7% improvement in terms of sustainable throughput.

The effectiveness of DyAD-OE is confirmed by the fact that it continuously outperforms
odd-even in terms of sustainable throughput in all these experiments. In fact, for the same
traffic pattern and the injection rate, DyAD-OE achieves shorter average packet latency
compared to odd-even throughout the experiments.

Another interesting fact to observe is that DyAD-OE does keep the advantage of de-
terministic routing when network is not congested. As shown in Fig. 5, DyAD-OE has the
same average packet latency when network is not congested. On the other hand, compared
to DyAD-OE, the average latency a packet experiences in odd-even is 14% higher compared
to that in DyAD-OE, when the network is lightly loaded.

We also simulated the network under different network sizes (ranging from 4 × 4 to
8 × 8 tiles) and different FIFO sizes (ranging from 3 to 8 flits); all the results reflect the
same characteristic as in Fig. 5 and are not included here due to space limitation.

4.3 Performance Evaluation under Multimedia Traffic

Real world traffic (both in macro and on-chip networks) frequently exhibits patterns with
self-similarity and long-range dependencies [15][16]. This can be quite a different scenario
compared to the traffic patterns used in subsection 4.2. In what follows, we present some
experimental results when the network is simulated under realistic traces which exhibit
self-similarity.

We first profiled an H263 video decoder using different video clips to retrieve 9 traces
and recorded the arrival data at the motion compensation module in the decoder. A 4× 4
network is then constructed in which nine PEs are randomly picked to generate the packets
according to the corresponding input trace files. The remaining PEs in the network use
uniform traffic which sends packets to other PEs with equal probability. We incrementally

11



CSSI Technical Report

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

200

400

600

800

1000

Normalized video playing speed

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
OE−fixed
Odd−Even
DyAD−OE

(a)

0 0.005 0.01 0.015 0.02 0.025
50

100

150

200

Normalized video playing speed

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (c
yc

le
s)

XY
OE−fixed
Odd−Even
DyAD−OE

(b)

Figure 6: Performance Evaluation under Multimedia Traffic

increase the packet injection rates to mimic the case when the system increase its speed of
playing the video clips. The results are shown in Fig. 6.

Plotted in Fig. 6(a) is the measured average communication latency of the packets and
video playing speed. As we can see, the results show the same trend as those derived under
the non-uniform traffic patterns in subsection 4.2. DyAD-OE always performs the best
under all playing rates, while odd-even performs second best.

Fig. 6(b) shows a magnified view of Fig. 6(a) for the low speed region (that is, the
region corresponding to 0.01 to 0.025 playing speed). It is interesting to note that unlike
the simulation results using random traffic patterns where DyAD-OE has the same latency
as XY and oe-fixed, DyAD-OE enjoys now a such shorter latency compared to that of XY
and oe-fixed, even at very low playing speeds. Indeed, even odd-even has a better latency
than XY and oe-fixed. This behavior is due to the bursty nature of the multimedia traces.

5 Prototype Router Designs

Since a DyAD-OE router actually combines oe-fixed and odd-even routing schemes, the
silicon resources needed to construct it are larger than those needed by oe-fixed and odd-
even alone. To evaluate the overhead of DyAD-OE, we decided to implement several
designs to check the actual performance/area trade off.

The overhead mainly comes from two source: the mode controller and the port con-
troller. The mode controller is extremely simple as it can be simply implemented by
OR-ing the congestion flags. Compared to those in odd-even routers, the port controllers
in DyAD-OE need not only to generate the congestion flag, but also to perform the routing
decision in the oe-fixed mode. Given the fact the output directions of the oe-fixed are just
a subset of those in the odd-even, it is not necessary to duplicate the logic for the oe-fixed
mode routing decision, as it has already been implemented by the odd-even and only one
mode will be active at any time. What remains is the logic inside the port controller which

12



CSSI Technical Report

generates the congestion flag. The cost of implementing it is actually also very small, as
only a comparator is really needed to check whether or not the number of the flits in the
FIFO has reached the specified threshold; this cost is almost negligible.

Based on the above discussion, it appears that implementing a DyAD-OE router re-
quires an almost negligible additional cost compared to an odd-even router. To justify
our claim, we actually implemented all four versions of routers (XY, oe-fixed, odd-even and
DyAD-OE ) using a 0.16µm technology, with a clock rate of 333MHz. In our design, FIFOs
are implemented using registers in order to achieve better performance/power efficiency.
Their respective area (in gates) is shown in Fig. 7 for different FIFO capacity. In all the
designs, each input port has a fixed link width of 32 bits. The flit size is set to be 32 bits
as well.

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

x 10
4

FIFO capacity (flits)

R
ou

te
r a

re
a 

(g
at

es
)

XY
OE−fixed
Odd−Even
DyadOE

(a) Even Column Router Size

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

x 10
4

FIFO capacity (flits)

R
ou

te
r a

re
a 

(g
at

es
)

XY
OE−fixed
Odd−Even
DyadOE

(b) Odd Column Router Size

Figure 7: Router Sizes with Different FIFO Capacity

Except for XY routing, the routers in odd and even columns need to perform differ-
ent routing decisions. Thus, the implementations are divided into even-column routers and
odd-column routers, with their sizes shown in Fig. 7(a) and Fig. 7(b), respectively. Fig. 8(a)
and Fig. 8(b) give the actual layout for an even-column and odd-column routers, respec-
tively, when a FIFO capacity of 8 flits is used. The area occupied by FIFO is highlighted
in Fig. 8; this clearly shows that the FIFO area takes the majority of the resources.

As shown in Fig. 7, the overhead of implementing the extra logic for DyAD-OE is indeed
negligible compared with odd-even implementation. For instance, for odd column routers
with FIFO size of 8 flits, DyAD-OE requires 25,971 gates, while odd-even router requires
25,891 gates, the overhead is indeed negligible (less than 1%). For all the configurations
shown in Fig. 7, the overhead compared to odd-even is below 7%.

13



CSSI Technical Report

(a) Even Column Router Layout (b) Odd Column Router Layout

Figure 8: Layout of the DyAD-OE Router

6 Conclusion and Future Work

We presented a novel NoC routing concept (called DyAD) which combines the low latency
of the deterministic routing (at low network load) and the high throughput of the adaptive
routing. An instance of the DyAD-OE based on this new concept was designed based
on minimum odd-even routing. The simulation results show that DyAD-OE consistently
outperforms odd-even under different traffic loads/patterns and different network configu-
rations. At the same time, DyAD-OE enjoys the same low packet latency as deterministic
routing when the network is not heavily loaded.

The preference for DyAD-OE over odd-even is justified by our prototype DyAD-OE
router which adds less than 7% overhead to the corresponding odd-even router design in
terms of used gates but performs much better in handling various traffic characteristics.

As explained in the paper, DyAD routing is a new concept rather than a particular de-
sign or implementation choice. In order to achieve the best performance, the configuration
of DyAD (e.g. which adaptive/deterministic routing should be used, the mode switching
policy, etc.) should be carefully customized to match the given application traffic char-
acteristics. This remains to be done as future work. We also plan to prototype other
applications in order to evaluate DyAD with various real world traffic patterns.

References

[1] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE Tran. on Parallel
and Distributed Systems, 11(7):729–738, July 2000.

[2] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing, 1(3):187–
196, 1986.

[3] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection net-
works. In Proc. DAC, pages 684–689, June 2001.

14



CSSI Technical Report

[4] J. Duato. New theory of deadlock-free adaptive routing in wormhole networks. IEEE
Tran. on Parallel and Distributed Systems, 4(12):1320–1331, Dec. 1993.

[5] C. J. Glass and L. M. Ni. The turn model for adaptive routing. In 25 Years ISCA:
Retrospectives and Reprint, pages 441–450, 1998.

[6] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and
D. Lindqvist. Network on a chip: an architecture for billion transistor era. In Proc.
of the IEEE NorChip Conf., Nov. 2000.

[7] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer communication
switching technique. In Computer Networks, volume 3, pages 267–286, Sept. 1979.

[8] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell, K. Tiensyrj,
and A. Hemani. A network on chip architecture and design methodology. In Proc.
Symposium on VLSI, pages 117–124, April 2002.

[9] J. Liang, S. Swaminathan, and R. Tessier. aSOC: a scalable, single-chip communi-
cation architectures. In IEEE Int. Conf. on Parallel Architectures and Compilation
Techniques, pages 37–46, Oct. 2000.

[10] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct
networks. IEEE Tran. on Computers, 26:62–76, Feb. 1993.

[11] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. Load distribution with the prox-
imity congestion awareness in a network on chip. In Proc. DATE, pages 1126–1127,
March 2003.

[12] E. Rijpkema, K. G. Gossens, A. Radulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander. Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip. In Proc. DATE, March 2003.

[13] Semiconductor Association. The International Technology Roadmap for Semicondu-
tors (ITRS), 2001.

[14] K. G. Shin and S. W. Daniel. Analysis and implementation of hybrid switching. IEEE
Tran. on Computers, 45(6):684–692, 1996.

[15] G. Varatkar and R. Marculescu. On-chip traffic modeling and synthesis for MPEG-2
video application. IEEE Tran. on VLSI, 12(1), Jan. 2004.

[16] W. Willinger, V. Paxson, and M. S. Taqqu. A Practical Guide to Heavy Tails: Statis-
tical Techniques and Applications, chapter Self-similarity and Heavy Tails: Structural
Modeling of Network Traffic. Birkhauser Verlag, 1998.

15


