
THE EXPONENTIATED
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ABSTRACT

Gupta et al. [Communication in Statistics—Theory and Methods, 1998, 27, 887–904] in-
troduced the exponentiated exponential distribution as a generalization of the standard
exponential distribution. In this note we introduce a distribution that generalizes the
standard Fréchet distribution in the same way the exponentiated exponential distribu-
tion generalizes the standard exponential distribution. We refer to this new distribution
as the exponentiated Fréchet distribution. The aim of this note is to provide a compre-
hensive treatment of the mathematical properties of this new distribution. We derive
the analytical shapes of the corresponding probability density function and the hazard
rate function and provide graphical illustrations. We calculate expressions for the nth
moment and the asymptotic distribution of the extreme order statistics. We investigate
the variation of the skewness and kurtosis measures. We also discuss estimation by the
method of maximum likelihood.

1. INTRODUCTION

Gupta et al. (1998) introduced the exponentiated exponential (EE) distribution as a general-
ization of the standard exponential distribution. In particular, the EE distribution is defined by
the cumulative distribution function (cdf)

F (x) = {1− exp (−λx)}α (1.1)

(for x > 0, λ > 0 and α > 0), which is simply the α-th power of the cdf of the standard exponential
distribution. The mathematical properties of this EE distribution have been studied in detail by
Gupta and Kundu (2001) and Nadarajah and Kotz (2003). The aim of this note is to introduce a
distribution which generalizes the standard Fréchet distribution in the same way (1.1) generalizes
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the standard exponential distribution, and to study its mathematical properties. We know that
the cdf of the standard Fréchet distribution is:

F (x) = exp

{
−

(
σ

x

)λ
}

for x > 0, σ > 0 and λ > 0. We define the new distribution by the cdf:

F (x) = 1−
[
1− exp

{
−

(
σ

x

)λ
}]α

(1.2)

for α > 0. We refer to (1.2) as the exponentiated Fréchet (EF) distribution. The corresponding
pdf is:

f(x) = αλσλ

[
1− exp

{
−

(
σ

x

)λ
}]α−1

x−(1+λ) exp

{
−

(
σ

x

)λ
}

. (1.3)

The standard Fréchet distribution is the particular case of (1.3) for α = 1. Using the series
representation

(1 + z)a =
∞∑

j=0

Γ (a + 1)
Γ (a− j + 1)

zj

j!
,

(1.3) can be expressed in the mixture form

f(x) = Γ(α + 1)λσλ
∞∑

k=0

(−1)k

k!Γ(α− k)
x−(1+λ) exp

{
−(k + 1)

(
σ

x

)λ
}

.

Like the EE distribution, (1.2) shares an attractive physical interpretation. Suppose that the
lifetimes of n-components in a series system are independently and identically distributed according
to (1.2). Then it follows that the lifetime of the system also has the EF distribution. An additional
motivation comes from the multitude of applications of the Fréchet distribution (which is also
known as the extreme value distribution of type II). A recent book by Kotz and Nadarajah (2000),
which describes this distribution, lists over fifty applications ranging from accelerated life testing
through to earthquakes, floods, horse racing, rainfall, queues in supermarkets, sea currents, wind
speeds and track race records (to mention just a few).

In the rest of this note, we provide a comprehensive description of the mathematical properties
of (1.3). We examine the shape of (1.3) and its associated hazard rate function. We derive formulas
for the nth moment and the asymptotic distribution of the extreme order statistics. We also consider
estimation issues.

2. SHAPE

The first derivative of log f(x) for the EF distribution is:

d log f(x)
dx

=
λσλ

x1+λ



1 +

1− α

exp

{(
σ

x

)λ
}
− 1



− 1 + λ

x
.
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Standard calculations based on this derivative show that f(x) exhibits a single mode at x = x0 with
f(0) = f(∞) = 0, where x0 is the solution of d log f(x)/dx = 0. Furthermore, x0 > [αλσλ/{1 +
αλ}]1/λ if 0 < α ≤ 1 and x0 < σ(log α)−1/λ if α > 1. Figure 1 illustrates some of the possible
shapes of f for selected values of α and σ = 1, λ = 1.
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Figure 1. Pdf of the exponentiated Fréchet distribution (1.3) for selected values of α and σ = 1,
λ = 1.
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3. HAZARD RATE FUNCTION

The hazard rate function defined by h(x) = f(x)/{1− F (x)} is an important quantity charac-
terizing life phenomena. For the EF distribution, h(x) takes the form

h(x) =
αλσλx−(1+λ) exp

{
−

(
σ

x

)λ
}

1− exp

{
−

(
σ

x

)λ
} .

The first derivative of log h(x) with respect to x is:

d log h(x)
dx

=
λσλx−(1+λ)

1− exp

{
−

(
σ

x

)λ
} − 1 + λ

x
.

Standard calculations based on this derivative show that h(x) exhibits a single mode at x = x0

with h(0) = h(∞) = 0, where y0 = xλ
0 is the solution of

y

{
1− exp

(
−σλ

y

)}
=

λσλ

λ + 1
.

Figure 2 illustrates some of the possible shapes of h for selected values of α and σ = 1, λ = 1.
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Figure 2. Hazard rate function of the exponentiated Fréchet distribution (1.3) for selected values
of α and σ = 1, λ = 1.
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4. MOMENTS

If X has the pdf (1.3) then by using the well-known relationship

E (Xn) =
∫ ∞

0
xn−1 {1− F (x)} dx,

the nth moment can be written as

E (Xn) =
∫ ∞

0
xn−1

[
1− exp

{
−

(
σ

x

)λ
}]α

dx. (4.1)

On setting y = (σ/x)λ, (4.1) can be reduced to

E (Xn) =
σn

λ

∫ ∞

0
y−(n/λ+1) {1− exp(−y)}α dy. (4.2)

This integral converges if α > n/λ. However, it is not known how (4.2) can be reduced to a closed-
form. The skewness and kurtosis measures can be calculated using (4.2) for all α > 4/λ. Their
variation for α = 4.1, 4.2, . . . , 10 and σ = 1, λ = 1 is illustrated in Figure 3.
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Figure 3. Skewness and kurtosis measures versus α = 4.1, 4.2, . . . , 10 for the exponentiated Fréchet
distribution.

It is evident that (1.2) is much more flexible than the standard Fréchet distribution.
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5. ASYMPTOTICS

If X1, . . . , Xn is a random sample from (1.3) and if X̄ = (X1 + · · ·+ Xn)/n denotes the sample
mean then by the usual central limit theorem

√
n(X̄ − E(X))/

√
Var(X) approaches the standard

normal distribution as n → ∞. Sometimes one would be interested in the asymptotics of the
extreme values Mn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn). Note from (1.3) that

1− F (t) ∼
(

σ

t

)αλ

(5.1)

as t →∞ and that

F (t) ∼ α exp

{
−

(
σ

t

)λ
}

as t → 0. Thus, it follows that

lim
t→∞

1− F (tx)
1− F (t)

= x−αλ

and

lim
t→0

F
(
t + σ−λ(x/λ)t1+λ

)

F (t)
= exp(x).

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that there must be norming
constants an > 0, bn, cn > 0 and dn such that

Pr {an (Mn − bn) ≤ x} → exp
(
−x−αλ

)

and

Pr {cn (mn − dn) ≤ x} → 1− exp {− exp(x)}

as n →∞. The form of the norming constants can also be determined. For instance, using Corollary
1.6.3 in Leadbetter et al. (1987), one can see that bn = 0 and that an satisfies 1− F (1/an) ∼ 1/n
as n →∞. Using the fact (5.1), one can see that an = (1/σ)n−1/(αλ) satisfies 1− F (1/an) ∼ 1/n.
The constants cn and dn can be determined by using the same corollary.

6. ESTIMATION

We consider estimation by the method of maximum likelihood. The log-likelihood for a random
sample x1, . . . , xn from (1.3) is:

log L(σ, λ, α) = n log
(
αλσλ

)
+ (α− 1)

n∑

i=1

log

[
1− exp

{
−

(
σ

xi

)λ
}]

−(1 + λ)
n∑

i=1

log xi − σλ
n∑

i=1

x−λ
i . (6.1)
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The first order derivatives of (6.1) with respect to the three parameters are:

∂ log L

∂σ
=

nλ

σ
+ (α− 1)λσλ−1

n∑

i=1

exp

{
−

(
σ

xi

)λ
}

xλ
i

[
1− exp

{
−

(
σ

xi

)λ
}] − λσλ−1

n∑

i=1

x−λ
i ,

∂ log L

∂λ
=

n

λ
+ n log σ + (α− 1)σλ

n∑

i=1

log
(

σ

xi

)
exp

{
−

(
σ

xi

)λ
}

xλ
i

[
1− exp

{
−

(
σ

xi

)λ
}]

−
n∑

i=1

log xi −
n∑

i=1

log
(

σ

xi

) (
σ

xi

)λ

,

and

∂ log L

∂α
=

n

α
+

n∑

i=1

log

[
1− exp

{
−

(
σ

xi

)λ
}]

.

Setting these expressions to zero and solving them simultaneously yields the maximum likelihood
estimates of the three parameters.
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