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Abstract 

 

With the prosperity of the Digital Age, information is nowadays increasingly, if not 

exclusively, stored and treated digitally. With great advantages promised by digitalization of 

data, such as the possibility of incredibly massive storage, comes the challenge of classifying, 

retrieving and analyzing these massive data efficiently. In fact, collecting experimental data 

leads inevitably to the inclusion of some unnecessary information commonly known as “noise”. 

Filtering out the noise data in order to reduce the size of data is thus an important task. 

Wavelets are precisely a set of tools specially designed to solve this problem. 

 

Introduction 

 

Simply put, wavelets are a class of functions that are very efficient at discriminating 

actual data from noise data, hence their application in signal processing as filters. However, 

unlike other signal processing tools such as Fourier transforms, which only use a linear 

combination of sines and cosines to approximate a function (which are generally periodic), 

wavelets transforms use an infinite set of functions of different scales and at different locations 

to perform the same task. In fact, a family of wavelets is composed of an infinite set of functions 

generated by rescaling and translation of the scaling function, also known as the Father wavelet 

(phi) and the complementary function, the wavelet function, which is also known as the Mother 

wavelet (psi). The rescaled and translated functions are called son wavelets and daughter 

wavelets. 

 

Haar wavelets 

 

In order to have a better understanding of the notions, it is instructive to illustrate the 

situation with an actual family of wavelets. The Haar family, due to its simplicity, is often used as 

an illustrating example. However, because of its simplicity, it is not very useful when processing 

actual data. The Haar father wavelet is defined by: 

 

 
 

whereas the Haar mother wavelet is defined by: 
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Fig. 1. Haar  father and mother wavelets. 

 

Fig. 1. illustrates the father and mother wavelet functions of the Haar family. In addition, the son 

wavelets and the daughter wavelets are rescaled and translated according to parameter n and k 

as follows: 

 

 

   
 

A Very Large Toolbox 

 

The above definition of daughter wavelets clearly demonstrates the rescaling of the 

mother wavelet by the parameter n, whereas the translation is dictated by the parameter k. 

While a change of parameter n allows one to look at the function or signal to be analyzed at 

different resolutions  or scales (smaller n’s for longer, lower frequency wavelets and larger n’s 

for shorter, higher frequency wavelets), a change of parameter k allows one to localize the 

function at a desired position. Note that each daughter and son wavelet is an individual function 

that is part of the wavelet family.  A family of wavelet thus grant one the power to analyze the 

big picture and examine details at any desired resolution and position simultaneously through 

access of an incredibly large array of functions.  

 

 

Dilation Equation 

 

In addition, note that the first two sons are simply the father wavelet, but rescaled and 

translated to be supported in the [0, 1/2] and [1/2, 1] intervals, respectively. Consequently, the 

father wavelet can be expressed as a linear combination of the first two sons: 
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In this case,  =  = 1.This particular property is a very important relation known as the 

dilation equation. Although this relation seems trivial in the case of Haar wavelets, it is an 

important property that is shared by all wavelet families. In general, the dilation equation, or 

refinement equation in some of the literature, is as follows: 

 

 
 

Note that having a finite set of ’s implies that the scaling function has compact support, 

which means that the scaling function only exists for a finite interval and vanishes to zero 

outside this interval. For instance, the Haar wavelet, which only have two non-zero refinement 

coefficients, has compact support in the interval [0, 1]. In another case, the Daubechies 4 

wavelets, which has 4 refinement coefficients, are supported in the [0, 3] interval.  

 

Orthogonality and Nested Sequence of Spaces 

 

First, let us define  to be the set of functions which are piecewise constant on intervals 

of length , starting from zero. For instance,  is the inner product space spanned by the set 

of functions that are piecewise constant on quarters, and  is the space spanned by the set of 

functions that are piecewise constant on halves. If we let   be an orthonormal 

basis for . (This is a critical condition that most wavelets families must satisfy. It can be easily 

shown for Haar wavelets since the scaling function has compact support in the [0, 1] interval), 

then the set  is an orthogonal basis for the space . Again, this can be easily 

shown for the Haar wavelets since the son wavelets are in essence the standard orthogonal 

basis. Thus we obtain the following: 

 

 
 

    
 

and hence in general: 

 

  . 

 

Although this is an informal proof of orthogonality that only applies to Haar wavelet, the 

same spaces  thus defined are spanned by the son wavelets of appropriate generation of 

many other wavelet families. In other words, finding an appropriate basis that spans the spaces 

 is equivalent as defining an entire family of wavelets. In later discussion below, it will be 

shown how the refinement coefficients defining wavelet families are used to determine spanning 

basis. 

 



5 

Observe, in addition, that the dilation equation implies that  is a subset of  . Thus 

proceeding inductively, the nested sequence of spaces 

 

 
 

is obtained, where  is defined as follows 

 

 

Note that each space  is spanned by an orthogonal basis . In brief, as 

the value of n gets larger, the space spanned by the subsequent shorter and finer son wavelets 

are broader and include the spaces spanned by the previous son wavelets. Conversely, as the 

value of n gets more negative, the spanning wavelet sons are much longer and larger in size 

and can only span spaces of smaller dimension. The intersection of all  spaces for Haar 

wavelets is then the space spanned by a function that is constant all the time on the real line 

and also satisfy the condition for . Since any non-zero constant function, however close 

it is to zero, will pick up some distance and the length of the function will inevitably blow up to 

infinity when the function is extended from negative infinity to positive infinity, the only function 

satisfying the conditions is the 0 function. Thus we obtain the following: 

 

 
 

Again, this is a property that can be easily shown for Haar wavelets, but it is also shared by all  

wavelet families. 

 

 

Constraints Imposed on the Refinement Coefficients  

 

The orthogonality of the function set  will further establish a series of 

conditions that wavelet families must follow. For instance, since scaling functions satisfy the 

dilation equation 

 

 

 
 

the value of each  can be determined as the projection of  onto  for the same 

. 
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In addition, the orthogonality of the  functions further imposes another 

condition on the refinement coefficients . The following derivation leads to a relation known 

as Parseval’s formula:  

 

 
 

        
 

        
 

           
 

 

Moreover, for the wavelet sons to be orthogonal to their translates, the refinement coefficients 

 must also satisfy the condition derived below:  
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Relation Between Father and Mother Wavelets 

 

It is important to observe that not only does the father wavelet (scaling function) follow a 

dilation equation, the mother wavelet also satisfy a dilation equation. In general,  

 

 

In the case of Haar wavelets, =1, =-1 and the rest of the coefficients are 0. For simplicity of 

computation, we normalize the  functions to have dilation equations with normalized 

refinement coefficients for both the father and the mother wavelets to obtain the following: 

 

 

 

where    and . 

  

The orthogonality between the father and mother wavelet is a crucial condition to satisfy 

when creating wavelet families. Therefore, the dot product between father wavelet function and 

mother wavelet function must be zero. The following computation shows that, with the 

established orthogonality of the  wavelet sons, the condition of orthogonality of the 

father and mother wavelet simplifies to a condition on the normalized refinement coefficients 

since we have 
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Therefore the orthogonality condition becomes,  

 

 
 

In addition, in order to ensure a lossless signal decomposition and recomposition, a 

condition of orthogonality between the  functions must also be established. (The 

lossless signal processing will be further explored later).  

 

 
 

         
 

         
 

         
Since all terms disappear except for those where the son wavelets are not superposed (due to 

the orthogonality of the wavelet sons of the same generation), the condition becomes the above 

equation. 

Again, an orthogonality condition imposed upon the mother wavelet and its translates reduces 

to a condition on its refinement coefficients only: 

 

 
 

From the above two conditions, it is possible to establish a relation between the father 

and mother wavelet.  In particular, it is possible to establish a relation between their refinement 

coefficients. Although there are multiple possibilities, the generally adopted relation is described 

as follows: 
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Orthogonal Spaces - Parents Rivalry 

 

Note that the orthogonality and the nested sequence of spaces spanned by the 

 wavelet functions can be shown with the same procedure as for with the father 

and son wavelet functions. In addition, the orthogonality established and imposed between the 

father and mother wavelet carries to the sons and daughter wavelets. Consequently, the spaces 

spanned by the  wavelets will all be orthogonal to the spaces spanned by their 

counterpart siblings of the same generation. For instance, given that  is an 

orthogonal basis that spans the inner product space , is an orthogonal basis that 

spans a perpendicular inner product space . Consequently, since  is a subspace of  (as 

established previously via the nested sequence of spaces), it is possible to express  in terms 

of  with the knowledge of the Orthogonal Decomposition Theorem, which states that if 

is a finite-dimensional subspace of an inner product space , then  can be written uniquely as 

. 

In fact, the orthogonal decomposition of  is as follows: 

 

 

In general, for each vector space  spanned by the son wavelets , 

there is a perpendicular inner product space  spanned by daughter wavelets 

. Proceeding inductively, the general case can be established as the following: 

 

      
 

 
 

 
 

 
 

The most important piece of information from this analysis of spanning sets and spaces 

spanned by various wavelet generations is that with a family of wavelets, we have a complete 

set of orthogonal bases at our disposition. This orthogonality becomes particularly important 

when we need to decompose and recompose signals and data using wavelets. In fact, it will be 

shown further in discussion below that father and son wavelets handle the averaging of signals, 

whereas the mother and daughter wavelet handle the differencing of signals during the 

decomposition of the signals. Hence, the orthogonality between all the members of a wavelet 

family guarantees that during the decomposition of the signal, the data will be neatly cut into 
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orthogonal pieces instead of being intermingled at the endpoints of a truncation. This in turn 

guarantees a lossless recomposition of signal, which means that there isn’t any loss of 

information between the original signal and the processed signal, given that thresholding has 

not been applied to the decomposed data. 

 

High and Low Pass Filters 

 

Now that the fundamental properties of wavelet functions are settled, the discussion can 

now move onto the actual processing of signals using the wavelet functions. The sequences of 

refinement coefficients  and from the dilation equations     

 

 

    and    

 

play very important roles in wavelet transforms. In fact, the essence of wavelet processing lies 

in a sequence of weighted averaging and weighted differencing of the signals through filters 

defined by the refinement coefficients   and  . In particular, the k-th entry of the Low 

Pass filter, which performs the weighted averaging, is defined by 

 

, 

 

whereas the k-th entry of the High Pass filter, which performs the weighted differencing, is 

defined by 

 

. 

 

The name Low Pass Filter is given to the weighted averaging operator because it 

produces a smoother, shorter signal of lower frequency. The smoothed out information from the 

original signal is retained by the High Pass Filter, whose name is given for the higher frequency 

noise data it picks up. Note that these filters are defined for all families of wavelets. However, it 

is instructive to analyze them with simple wavelet families. For a signal  

 of length  , applying with Haar wavelets yields, in general: 
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The concept of “weighted averaging” is illustrated here, as we can see that the first term 

that comes out from the first Low Pass filter is the normalized arithmetic mean of the first two 

terms of the original signal, and the second term of the filtered signal is the normalized 

arithmetic mean of the third and fourth term of the original signal. However, the reason that 

makes the weighted average appear to be a simple arithmetic mean is that for the Haar wavelet, 

. In other words, although a weighted average is being taken, the weight that 

each component takes is the same. This is only true for the Haar wavelet. In general, depending 

on the values of the sequence  , each component of the original signal takes a different 

weight when the average is taken. Weighted averaging is particularly efficient when processing 

signals with lots of sharp signals since more weight will be allotted around the spike of the signal 

and less weight is assigned for the endpoints of the spike. Proceeding in such a way will allow 

preservation of a greater amount of information when taking averages.   

 

A similar situation occurs with the High Pass filters. For the Haar wavelet,  

 

 

 

 

 
 

Again, processed signal seems to be simple normalized averaged differences of the 

original signal. However, in general, depending on the sequence , the individual 

components will take different weights when the differences are taken. Note that the length of a 

signal will be halved after it passes through the High Pass filter. The same story goes for the 

Low Pass filter. Further signal processing is then done on the averaged signal only; the signal 

coming out of the High Pass filter is left as is. Newly averaged signals are then iteratively 

averaged and differences from that average is iteratively taken until the averaged signal is of 

length 1 (and thus of dimension 1), where no further averaging or differencing can be 

performed. This sequence of signal processing is known as the Pyramid algorithm and is 

illustrated by the following diagram 
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Fig. 2. Pyramid Algorithm Diagram 

 

where  is the weighted average taken at the n-th level, and  is the difference of the 

previous signal from the average of the same level. N indicates the number of terms (length) of 

 and  at each level. The concept of analyzing the signal with different resolution is 

clearly illustrated here, where the later applied filters analyze the signal at larger and larger 

scales, whereas the earlier applied filters analyze the signal in its minute details. Finally, 

thoroughly processed signals from each level are then assembled into a string of length  in 

the following fashion: 

 

  
 

In essence, wavelet forward transforms is implemented as the following:  

 

1) Take the weighted average of the signal 

2) Take the difference between the original signal and the averaged signal 

3) Treat the averaged signal as a new original signal (with halved length) and repeat 1) 

and 2) until the averaged and differenced signal is of length 1. 

 

The elements of the processed signal are also called wavelet coefficients. The first 

wavelet coefficient is the average of the average....of the average. The remaining coefficients 

indicate how far away the actual data is from the average taken at each individual level. 

Therefore, wavelet coefficients are indications of how much detail a particular element of the 

signal carries. Consequently, eliminating elements with smaller corresponding wavelet 

coefficients will be of little impact on the integrity of the signal. This process of eliminating 

smaller wavelet coefficients in order to make more of them 0 is called thresholding. Introduction 

of 0’s leads to significant compression of signal size since strings of 0’s can be easily and 

efficiently compressed. 

 

Thresholding 

 

There are 3 types of thresholding: hard thresholding, soft thresholding and quantile 

thresholding. 

 

Hard thresholding substitute all the coefficients whose absolute value is below the selected 

tolerance with zero. 
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Soft thresholding does the same as hard thresholding, but in addition, all the entries are shifted 

towards 0 by the same tolerance.  

 

Quantile thresholding ignores the smallest p percent of entries, where p is selected as 

tolerance. 

 

Dual Operators-Reverse High and Low Pass Filters 

 

After thresholding, wavelet coefficients must be recomposed into a new signal that 

should be highly similar to the original signal. The k-th entry of the reverse Pyramid algorithms 

for High Pass filter and Low Pass filter, called dual operators, are defined as follow,  

 

  

      
Again, an example is instructive. Applying the dual operators for the Haar wavelets, the last 

recomposition is as follows: 

 

 
 

where  are the elements from the first averaging and 

 are the elements from the first differencing from that 

average.  Note that the dual operators are applied backwards, therefore the  and the  terms 

are used last. In addition, note that for every k, the  and the  terms appear in two terms 

as the signal passes through the dual operators. Consequently, a signal’s length will be doubled 

after dual operators are applied. In general, for Haar wavelets, applying from ,which 

represents the last level of averaging and differencing,  therefore first signal to be recomposed, 

to , which represents the first level of averaging and differencing, therefore the last signal 

to be recomposed: 

 

 

 
 

Although from the processed signal there is only one term that represents the average 

whereas the rest of the elements represent differences, as the signal gets iteratively 

recomposed, the number of terms which represent averages will double at each step. This is 

shown as the length of  and the  doubles at each step from  to .The dual 

operators serve as reverse operators of the High and Low Pass filters in the sense that  they 

undo  the process of weighted averaging and weighted differencing according to the same 
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weight with which they were originally averaged and differenced. These backward processed 

averages and differences are then added together to recompose the signal for the averages of 

the previous level.   

 

Projection on Orthogonal Spaces 

 

Another way to look at the wavelet transforms is that the averages and differences are 

the projections and the residuals of when decomposing signal into orthogonal spaces. Recall 

that it is previously established that wavelet daughters occupy orthogonal spaces to their 

siblings of the same generation: 

 

 

 

 

 
 

With this approach, the decomposition of a signal located in the inner product space  

starts by projecting this signal onto the space  spanned by the son wavelets of the 

appropriate level. Since  is smaller and is subspace of , according to the Orthogonal 

Decomposition Theorem, there must be a residual that lies in the orthogonal space . This 

residual indicates how far away the projection onto  is from the actual signal in . In other 

words, the projection onto  consists of the first level of weighted averages, whereas the 

residual in the space   consists of the differences. The projection in  is then further 

projected onto a even smaller space  and another residual in  is obtained. The 

process is repeated iteratively until the dimension of both the projection and the residual is 1. It 

is clearly shown that all the perpendicular spaces  spanned by the daughter wavelets house 

the “differences”, whereas the averages are mapped onto the spaces  spanned by the son 

wavelets. This concurs with our previously association of the  sequence with the son 

wavelets and the averages and the association of the sequence with the daughter 

wavelets and the differences.  The idea of multiresolution analysis is again illustrated here, 

where the signal is analyzed at multiple resolutions simultaneously. 

 

Other Families of Wavelet 

 

There are currently a great variety of wavelet families readily available for application, 

such as the ones listed in Fig. 3. However, wavelets are in fact specifically crafted to suit the 

particular type of data to be processed. The folder Cranking_the_machine contains Maple files 

showing how wavelet functions are crafted according to particular specifications on the 

refinement coefficients. It is interesting to note that however diverse and different wavelet 

families appear to be from each other, they are in essence very similar one from another. In 



15 

fact, most wavelet families are crafted based on a trade-off between smoothness and compact 

support of the scaling/wavelet function. Put simply, the smoothness of a scaling function allows 

better approximation with polynomials, whereas the compact support condition ensures a 

simpler orthogonality relation. A balanced combination of the two criteria is thus necessary to 

create a well performing wavelet family. In Fig. 3, Haar is the family that demonstrates the 

compact support characteristic the most evidently. However, it lacks the smoothness 

characteristic completely. The Meyer family, on the other hand, is very smooth, but it does not 

go all the way to zero at its endpoints. 

 

 
Fig. 3. Wavelet Functions (Mother Wavelets) of Other Wavelet Families 

 

 

Crafting Wavelet Families 

 

In order to generate families of wavelets with desired properties, such as compact 

support and orthogonality of the functions, some criteria must be met for their refinement 

coefficients. Consider the case of 4 refinement coefficients, then the following procedure 

illustrates the crafting of wavelet families from the set requirements. 
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Given that   , a fact that can be proven with Fourier analysis, and the dilation 

equation, it can be shown that  for a wavelet function with 4 refinement coefficients.  

 

 
 

 
 

 
 

            
 

From this condition and the previously established two conditions on the refinement coefficient, 

 

 
 

a system of 3 equations with 4 unknowns is obtained. Solving the system of equations, the 4 

refinement coefficients can be expressed in terms of a parameter , as listed below: 

 

 

 

 

 
 

Therefore, by varying the value of , refinement coefficients of various wavelet families 

are obtained. In particular, the Haar wavelet is generated when the value of  corresponds to 

Pi/2, and the Daubechies 4 wavelet is generated when the value of  corresponds to Pi/3. The 

first animation in the Maple file theta_wave illustrates how the scaling function of a 4 coefficient 
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wavelet family changes as the value of  varies from 0 to 2Pi. Although the scaling functions 

adopt radically different shapes, varying from a simple box for Haar, to a almost fractal curve 

around Daubechies 4, to a box-shaped curve filled with sharp spikes when the value of  is at 

Pi, all of them perform a reasonably decent job when analyzing digital signals that are constant 

over small intervals. The compatibility of these wavelet families with digital signals is explained 

by a common characteristic shared amongst all these wavelet families: they all have a compact 

support. Therefore, these wavelet functions are expected to perform poorly when analyzing 

smoother analog signals that take shape of polynomials. The Maple files theta_test, 

D4_complete, and image_Haar illustrate how a 16 pixel by 16 pixel image is processed by these 

three different wavelet families. Although they perform very similarly when analyzing simple 

digital files like the ones generated by PixelImage, the Daubechies 4 wavelet is considered to 

be the most elegant and the most versatile of them all because it has the smoothest curve in 

addition of having a compact support. The above two properties grant the family the ability to 

approximate polynomials fairly well while keeping the decomposition orthogonal, therefore 

lossless. 

 

 In a similar fashion, the Daubechies 6 wavelet with 6 refinement coefficients can be 

determined. In fact, on top of the 3 conditions of orthogonality that the Daubechies 4 wavelet 

has to satisfy for orthogonality, the Daubechies 6 wavelet is designed to be able to process 

even smoother functions such as constant functions, linear functions and quadratic functions. 

Therefore, from the following three conditions and the dilation equation for the mother wavelet 

and the previously established 3 conditions, we obtain a system of 6 equations with 6 

unknowns. 

 

,  ,  

 

 

 

 

 

 

 

 
 

The derivation for the last three equations is omitted here. However, it is strongly 

advised to verify them using proper integration techniques and the dilation equation. Solving the 

system of equations numerically using Maple 16, the 6 refinement coefficients are obtained. 

Using these coefficients, it is then possible to again “crank up the machine” to determine the 

shape of the scaling function. Note that now since the D6 wavelets are defined in such a way 

that it is better at approximating quadratic functions, the curve of the scaling function is 

smoother than that of the D4 wavelet. Please consult the Maple file D6 in the file 

cranking_the_machine. 
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Processing with D6 wavelets essentially follows the same procedures as that of the D4 

wavelets. However, due to the extra 2 refinement coefficients, the D6 wavelets can only fully 

process signals of length or of sides that are multiple of 12. For this reason, it is impossible to 

fully process images generated by PixelImage, which are squares of 16 pixel on each side. An 

example can be shown for a 12 by 12 matrix or a 24 by 24 matrix, but due to the lack of 

program to display the image generated, this step is omitted in this article. 

 

Examples of Image Processing with Wavelets 

 

Given a one-dimensional signal of length , it is possible to describe all the Low and 

High Pass Filter processing by a series of matrix multiplication. Similarly, the same matrices can 

perform the processing on a two-dimensional signal (an image) with sides of length . This is 

shown in the Maple files D4_complete and Haar_image attached with the report. In addition, in 

the file Haar_wavelet_conversion_process, it is shown how the wavelet coefficients conversion 

matrix is obtained with the knowledge of the refinement coefficients. The same concept is then 

used to derive the wavelet coefficient conversion matrix for the Daubechies 4 wavelet in the 

beginning of the file D4_complete. However, due to the two extra overlapping refinement 

coefficients of the D4 wavelets (3rd and 4th coefficient), an additional shift operator must be 

considered and applied at each step of conversion. Please refer to the Maple files for further 

details.   

 

The folder “NewImages” contain images processed by different wavelets, namely Haar, 

Daubechies 4 and other 4 coefficients wavelets generated by the Maple file theta_wave. Note 

that all wavelets generated from theta_wave are able to process signals, except when theta is 

equal to Pi, in which case the conversion matrix becomes singular (noninvertible). To have a 

better idea of compression ratio differences between different wavelet families, the numbers of 

wavelet coefficients that are set to zero according to the family are listed below (for a hard 

thresholding of tolerance=10). For Haar, 33 wavelet coefficients are set to 0; for Daubechies 4, 

38; for wavelets generated with the algorithms in theta_wave with theta=Pi/4, 36 coefficients are 

eliminated; and for the wavelets generated with theta=0.99*Pi, 61 wavelet coefficients are set to 

0. Observe that all the the processed images have smoother, more homogenized tones in all its 

shades while preserving the shape of the flower quite accurately.   

 

 

 

Applications of Wavelets 

 

 Due to their powerful signal processing properties, wavelets are widely used in a great 

number of domains. For instance, wavelets can be used to denoise plots of stock prices in order 

to determine and predict future trends of the market; wavelets can be applied to multimedia files 

(audio or video recordings) to get rid of the background noise; wavelets can be used to 

compress file size of FBI fingerprints database, etc. In brief, wavelets are a fundamental and 

powerful tool that can find applications virtually anywhere, especially in this Digital Era.  
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Conclusion 

 

In summary, wavelets are a special class of functions that are specially crafted to filter 

noise data efficiently in order to compress the size of files. The efficiency of this processing is 

mainly attributed to 2 crucial properties of wavelets. The first characteristic is the virtually infinite 

set of functions at different resolutions and positions that wavelet families offer when analyzing 

signals. The second property is the orthogonality of these functions, which allows a lossless 

processing.  

 

In fact, not only do wavelets reduce the size of data considerably for easier storage, 

searching and retrieval, stripping the data from the random fluctuations that are generally known 

as noise exposes the “real” trend of time-series data, which is crucial for more accurate 

extrapolation and prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

References  

 

Aboufadel, Edward, and Steven Schlicker. Discovering Wavelets. New York: Wiley, 1999. Print. 

Graps, Amara. "An Introduction to Wavelets." Agua Sonic. N.p., n.d. Web. 16 May 2013. 

<http://aguasonic.com/Wavelets/Introductions/IEEEwavelet.pdf>. 

Kaplan, Ian. "Wavelets and Signal Processing." Wavelets and Signal Processing. N.p., n.d. Web. 

16 May 2013. <http://www.bearcave.com/misl/misl_tech/wavelets/>. 

 

 

 


