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Analyzing the Evolutionary Pressures in XCSMartin V. ButzInstitute for Psychology IIIUniversity of W�urzburgW�urzburg, 97070, Germanybutz@psychologie.uni-wuerzburg.de Martin PelikanIllinois Genetic Algorithms LaboratoryUniversity of Illinois at Urbana-ChampaignUrbana-Champaign, IL, USApelikan@illigal.ge.uiuc.eduAbstractAfter an increasing interest in learning classi�er systems and the XCS classi�er system inparticular, this paper locates and analyzes the distinct evolutionary pressures in XCS. Combiningseveral of the pressures, an equation is derived that validates the generalization hypothesiswhich was stated by Wilson (1995). A detailed experimental study of the equation exhibitsits applicability in predicting the change in speci�city in XCS as well as reveals several otherspeci�city in
uences.1 INTRODUCTIONThe accuracy based �tness approach in XCS (Wilson, 1995) results in a learning classi�er system(LCS) that evolves not only classi�ers for best actions, but a complete payo� map of the problem.This means that the system evolves an internal representation that can determine the quality ofeach possible action in each possible state of the encountered environment. Several studies showedthat the payo� map in XCS is compact, complete, and accurate.The aim of this paper is to clarify and analyze the evolutionary pressures in XCS. The combina-tion of several pressures develops a formula that predicts the change in speci�city in the population.This formula validates the generalization hypothesis (Wilson, 1995), which was experimentally in-vestigated in Kovacs (1997). Providing experimental evidence, the formula proves its applicabilityin an over-general population as well as an accurate one.The paper starts with an overview over XCS with all involved processes relevant for the paper.Next, the evolutionary pressures in XCS are �rst analyzed separately and then in interaction.Section 5 provides experimental validation of the claimed pressures, interactions, and parameterdependencies. Finally, a conclusion is provided.2 XCS OVERVIEWThe XCS classi�er system, as it is explained and used herein, incorporates the basics published byWilson (1995) and the further enhancements in Wilson (1998) and Kovacs (1999). An algorithmicdescription of the used system can be found in Butz and Wilson (2001). This section gives anoverview of XCS emphasizing the formulas and methods important in the remainder of the paper.For further details the interested reader should refer to the cited literature.As all LCSs the XCS interacts with an environment. The environment provides situations orproblem instances � coded as binary strings of length L (i.e. � 2 f0; 1gL). Furthermore, actions1



� 2 �1; :::; �n are executable in the environment. Finally, the environment provides a scalar reward� 2 < re
ecting the correctness or quality of the last applied action.As all LCSs, XCS consists of a population [P ] of classi�ers which is of �xed length N . Thestructure of a classi�er in XCS is as follows. The condition part C speci�es where the classi�eris applicable. It is coded as a string over the ternary alphabet f0; 1;#g of length L (i.e. C 2f0; 1;#gL). The action/classi�cation part A speci�es the action/classi�cation of the classi�er. Itcan specify any action executable in the environment (A 2 �1; :::; �n). The reward prediction pestimates the payo� encountered after the execution of the speci�ed action. The prediction error� estimates the current error of p and is essentially used for the accuracy and resulting �tnessdetermination. The �tness F is a measure of the accuracy of p with respect to all competingclassi�ers. The experience exp counts how often the parameters of the classi�er were updated. Thetime stamp ts stores the time when last the classi�er was in a set where a GA was applied. Theaction set size estimate as approximates the average size of the action sets the classi�er belongsto. The numerosity num re
ects how many micro-classi�ers (usual classi�ers) this macroclassi�errepresents. This notation is only important for e�ciency purposes.At the beginning of an experiment the population of XCS is usually empty. Sometimes though,the population is initialized with randomly generated classi�ers. Each attribute in the condition ofsuch classi�ers is set to a #-symbol (a \don't care"-symbol) with a probability p# and to zero orone (chosen randomly) otherwise. The action is chosen randomly among all possible actions.A learning cycle at time step t starts with the perception of the actual problem �(t) and theconsequent formation of the match set [M ]. If less than �mna actions are represented in [M ], coveringoccurs. In covering, a matching classi�er is created similar to the procedure when initializing thepopulation. Next, an action a is selected randomly with a probability of pexplr and deterministicotherwise. Out of [M ] an action set [A] is formed consisting of all classi�ers that specify actiona. The action is executed in the environment and a reward �(t) is perceived. With respect to theperceived reward (and the maximal reward prediction in the successive match set in multi-stepproblems), the reward prediction p, the error measure �, and the action set size estimate as of allclassi�ers are updated using the Widrow-Ho� delta rule (Widrow & Ho�, 1960).pcl = pcl + � � (�� pcl) (1)�cl = �cl + � � (j�� pclj � �cl) (2)ascl = ascl + � � (Xc2[A]numc � ascl) (3)Parameter � 2 (0; 1) denotes the learning rate. If the experience of a classi�er is still less than 1=�,p, �, and as are updated with the MAM technique (\moyenne adaptive modi��ee") which sets thevalues to the averaged actual values encountered so far. The �tness is updated in three steps.�cl = (1 if �cl < �0� � (�cl=�0)�� otherwise (4)�0cl = �cl � numclPc2[A] �c � numcFcl = Fcl + � � (�0cl � Fcl) (5)First, the accuracy � is calculated according to the current prediction error �. Next, the relativeaccuracy �0 is calculated with respect to the current action set. Finally, the �tness is updatedaccording to �0. Note that the �tness is calculated in terms of macroclassi�ers while the value2



of all other measures speci�es the micro-classi�er value. After all updates and the increase of theexperience counter exp of each classi�er, a GA may be applied.The GA is only applied if the average time in the action set [A] since the last GA application,recorded by the time stamp ts, is greater than the threshold �GA. If a GA is applied two classi�ersare selected in [A] for reproduction using a roulette wheel selection with respect to the �tness ofthe classi�ers in [A]. Next, the classi�ers are reproduced and the children undergo mutation andcrossover. In mutation, each attribute in C of each classi�er is changed with a probability �. Twomutation types are investigated herein. In niche mutation classi�ers are only mutated in such away that they still match the current state after mutation (i.e. #-symbols are mutated to thecurrent corresponding input value and 1s and 0s are mutated to #-symbols. In free mutation anattribute is mutated to the two other possibilities equal probable. Regardless of the mutation type,the action is mutated to any other possible action with a probability �. For crossover, two-pointcrossover is applied with a probability �. The parents stay in the population and compete withtheir o�spring. The classi�ers are inserted applying a subsumption deletion method. If a classi�ercl exists in the population that is more general in the condition part, experienced (i.e. expcl < �sub),and accurate (i.e. �cl < �0), then the o�spring classi�er is not inserted but the numerosity of thesubsumer cl is increased. Finally, if the number of micro-classi�ers in the population exceeds themaximal population size N , excess classi�ers are deleted. A classi�er is chosen for deletion withroulette wheel selection proportional to its action set size estimate as. Further, if a classi�er issu�ciently experienced (exp > �del) and signi�cantly less accurate than the average �tness in thepopulation (f < � �Pcl2[P ] fcl=Pcl2[P ] numcl), the probability of being selected for deletion isfurther increased. Note that the GA is consequently divided into a reproduction process and aseparate deletion process.Finally, action set subsumption may be applied. This method searches in each action set [A]for the classi�er that is (1) accurate, (2) experienced, and (3) most general among the ones thatsatisfy (1) and (2). If such a classi�er exists, it subsumes all classi�ers in [A] that are more speci�c(i.e. specify proper subsets in the condition). The more speci�c classi�ers are deleted and thenumerosity of the subsumer is increased accordingly.3 DISTINCT PRESSURESAlthough the description above explains the functioning of the system, it does not become clearwhy it is any good. To reveal the strength of XCS, this section analyzes the distinct evolutionarypressures separately. Section 4 reveals the interactions between the pressures.3.1 FITNESS PRESSUREThe parameter update of prediction p, prediction error � and action set size estimate as representedin formulas 1, 2, and 3 assures that the values are an average over all encountered states so far withemphasis on the recently encountered states. The �tness of a classi�er is derived from its relativeaccuracy in [A]. It represents the proportional accuracy with respect to all other classi�ers in [A].Thus, the selection pressure is a pressure towards accurate classi�ers in each environmental niche.The existence and amount of pressure towards accurate classi�ers is highly dependent on problemand parameter settings. Note, that in the case when all classi�ers in an action set [A] are accurateor similarly inaccurate, the �tness does not directly distinguish the classi�ers anymore. In this casethe selection process is similar to a random selection in [A]. However, an experimental validation insection 5 shows that the noise in the values of non-experienced classi�ers can in
uence the selection3



process.3.2 SET PRESSUREWith respect to the population the application of reproduction in the action set results in anotherpressure. This pressure towards generality was stated by Wilson (1995) in his generality hypothesisand was later re�ned to an optimality hypothesis and further experimentally investigated by Kovacs(1997). The basic idea is that classi�ers that are more often part of an action set are more oftenpart of the GA and consequently reproduced more often as long as they are as accurate as morespeci�c classi�ers. Thus, if all classi�ers are accurate or if all classi�ers are similarly inaccurate,reproduction in action sets causes an intrinsic pressure towards generality. The amount of expected(lower) speci�city of classi�ers in an action set is determined by the following formula:s([A]) =PLk=0 �Lk�( s([P ])2 )k(1� s([P ]))n�k � kn �PLk=0 �Lk�( s([P ])2 )k(1� s([P ]))n�k (6)Where s denotes the average proportion of speci�c values in the conditions of the classi�ers in thereferred set. Considering a speci�city of [P ] in the population the formula determines the resultingspeci�city in the action set assuming a binomial speci�city distribution in the population. Thisassumption is certainly valid in the beginning of an experiment if the population is initialized withrespect to p#. In this case the average speci�city will be 1� p#. It can be observed that k in thenumerator and n in the denominator cause the speci�city in [A] to be smaller than the speci�city in[P ]. This con�rms the proposition of the additional generality pressure mentioned above since theselection takes place in the action set, while deletion takes place in the more speci�c population.Without �tness pressure, the formula provides an estimate of the di�erence in speci�city of selectedclassi�ers and deleted classi�ers as long as a binomial distribution is present. The above equationis enhanced in section 4.1 and experimentally validated in section 5.3.3 MUTATION PRESSUREAlthough mutation can be neglected in many investigations with GAs, in LCSs mutation appearsto have a stronger impact. Generally, a random mutation process causes a tendency towards anequal number of symbols in a population. Thus, applying random mutations in a population ofindividuals or in particular classi�ers, the result will be a population with an approximately equalproportion of zeros and ones or essentially 0, 1, and # in a classi�er system. The free mutationdescribed above pushes towards a distribution of 1 : 2 general:speci�c while niche mutation pushestowards 1 : 1. The average change in speci�city of the condition of a mutated o�spring classi�erfor the niche mutation case can be written as�mn = s(cl(t+ 1)) � s(cl(t)) =s(cl(t)) � (1� �) + (1� s(cl(t)) � �� s(cl(t)) =�(1� 2s(cl(t))) (7)and for the free mutation case as�mf = s(cl(t+ 1)) � s(cl(t)) =s(cl(t)) � (1� �=2) + (1� s(cl(t)) � �� s(cl(t)) =0:5�(2 � 3s(cl(t))): (8)4



Thus, mutation alone pushes the population towards a speci�city of 0:5 and 0:66 applying nichemutation and free mutation, respectively. The strength of the pressure depends on the mutationtype, the frequency of the GA application (in
uenced by the parameter �ga), and the probability� of mutating an attribute.3.4 DELETION PRESSUREDue to its proportionate selection method with respect to the action set size estimate as andpossibly the �tness F of a classi�er, the deletion pressure is di�cult to formalize. Generally, theselection of deletion classi�ers in the population does not result in any set bias as encountered inthe selection method. Thus, without any bias the average speci�city of deleted classi�ers is equalto the average speci�city in the population s([P ]).Due to the bias towards selecting classi�ers that occupy larger action sets, deletion stressesan equal distribution of classi�ers in each environmental niche. The further bias towards low-�tclassi�ers was investigated and optimized by Kovacs (1999) in that a low �tness is only consideredif the classi�er has a su�cient experience assuring that the classi�er is indeed inaccurate.3.5 SUBSUMPTION PRESSUREThe �nal pressure in XCS is the pressure induced by the subsumption deletion method. Due tothe experience and accuracy requirement it is assured that subsumption only applies to accurateclassi�ers. Once accurate classi�ers are found subsumption deletion pushes towards maximal syn-tactic generality in di�erence to the set pressure above which only pushes towards generality ifgenerality also assures a higher applicability rate. GA subsumption deletion hinders the insertionof more speci�c classi�ers once an accurate, more general one evolved. Action set subsumption ismuch stronger since an accurate, more general classi�er actually absorbs all more speci�c classi�ersregardless if it already existed or was just generated.To summarize, the subsumption pressure is an additional pressure towards accurate, maximallygeneral classi�ers (i.e. classi�ers that are still accurate and in the mean time as general as possible).It is independent of the speci�city of the accurate, maximally general classi�ers and becomes onlyactive once accurate classi�ers are found.4 PRESSURE INTERACTIONAfter we analyzed the various evolutionary pressures separately in the last section, this sectionputs the pressures together and analyzes their interaction. First, the interaction of set, mutation,and deletion pressure is formulated. Next, the e�ect of subsumption pressure is discussed. Finally,we provide a visualization of the interaction of all the pressures. The theoretical analyzes areexperimentally validated in section 5.4.1 SPECIFICITY PRESSUREWhen analyzing the interaction of set, mutation, and deletion pressure described above, we realizethat all three pressures in
uence the average speci�city in the population. Thus, the three pressurestogether result in a speci�city pressure in the population.Due to the problem dependence of the �tness pressure, we cannot formulate the pressure andconsequently need to assume a similar �tness of all classi�ers in our analysis. As it will be shown5



in section 5, this assumption holds when all classi�ers are accurate and nearly holds when all aresimilarly inaccurate. The addition of subsumption pressure is discussed in section 4.2.Despite the �tness irrelevance assumption, deletion pressure is also dependent on the actionset size estimate as of a classi�er. In accordance with Kovacs's insight in the relatively smallin
uence of this dependence (Kovacs, 1999), we assume a random deletion from the population inour formulation. Thus, as stated above, a deletion results on average in the deletion of a classi�erwith a speci�city equal to the speci�city of the population s([P ]). The generation of an o�spring,on the other hand, results in the insertion of a classi�er with an average speci�city of s([A])+�fmor s([A]) + �nm dependent on the type of mutation used. Putting the observations together, wecan now calculate the average speci�city of the resulting population after one learning cycle:s([P (t+ 1)]) =s([P (t)]) + fga � 2 � (s([A]) + �m � s([P (t)]))N (9)The parameter fga denotes the frequency of the GA application in XCS. The formula adds tothe current speci�city in the population s([P (t)]) the expected change in speci�city calculated bythe di�erence between the speci�city of the two reproduced and mutated classi�ers s([A]) � �mand s([P (t)]). Although the frequency fga is written as a constant in the equation, it is actuallydependent on s([P (t)]) as well as the speci�city distribution in the population. Thus, fga cangenerally not be written as a constant. By setting �ga to one, it is possible, though, to force fgato be one since the average time since the last GA application in an action set (not generated bycovering) will always be at least one.4.2 ADDING SUBSUMPTIONAlthough we revealed the cause and existence of the set pressure that pushes the population towardsmore general classi�ers once all are accurate, we also showed that this pressure is somehow limited.Equation 9 shows that without subsumption the convergence of the population towards accurate,maximally general classi�ers is not assured. Essentially, if the speci�city of the accurate, maximallygeneral classi�ers in a problem is lower than the value of the converged equation 9, then thepopulation will not completely converge to those classi�ers. Another reason for a lack of convergencecan be that the set pressure is not present at all. This can happen, if XCS encounters only a subspaceof all possible examples in the universe f0; 1gL. In this case, the subsumption pressure results in afurther convergence to the intended accurate, maximally general classi�ers.4.3 ALL PRESSURESFinally, �tness can in
uence several other pressures as mentioned above. Generally, the �tnesspushes from the over-general side towards accuracy as long as the environment provides helpful,layered payo� or the consistency of predicting an outcome is biased in over-general classi�ers asrevealed in Butz, Kovacs, Lanzi, and Wilson (2001). Thus, in terms of speci�city �tness results ina pressure towards the speci�city of maximally general classi�ers from the over-general side. Thepressures are visualized in �gure 1. While set and mutation pressure (free mutation is visualized)are accuracy independent, subsumption and �tness pressure are guided by accuracy. Due to itsdistinct in
uences, deletion pressure is not visualized.
6



ac
cu

ra
cy

specificity

0 1maximal generality
0

1

fitn
ess

pressure

set pressure

mutation pressure

subsumption pressure

Figure 1: Together, the evolutionary pressures lead the population towards the accurate, maximallygeneral classi�ers.5 EXPERIMENTAL VALIDATIONIn order to validate the proposed pressures and the speci�city behavior formulated in equation 9we apply XCS to boolean strings of length L = 20 with di�erent settings. The following �guresshow runs with varying mutation from 0:02 to 0:20. In each plot the solid line denotes the formulaand the dotted lines represent the XCS runs. All curves are averaged over 20 experiments. If notstated di�erently, the population is initially �lled up with randomly generated classi�ers with don'tcare probability p# = 0:5. Niche mutation is applied. The remaining parameters are set as follows:N = 2000, � = 0:2, � = 1, �0 = 0:001, � = 5, 
 = 0:95, �ga = 1, � = 0:8, �del = 20, � = 0:1,�sub =1, and pexplr = 1.5.1 FIXED FITNESSIn order to validate the di�erent assumptions in the theory, we start by examining runs where the�tness in
uence is eliminated. That is, each time a classi�er is updated, its �tness is not updatedas usual but is simply set to its numerosity. The same is done in covering. Moreover, we eliminatedthe distinct deletion pressure in
uences by deleting classi�ers proportionally to their numerositynum regardless of their value of as or F . This section investigates the in
uence caused by thetwo mutation types. Moreover, we investigate the in
uence of the GA threshold �ga as well as thein
uence of an initialization of the population.With the restrictions, the runs exactly match the theory as shown in �gure 2. The initialspeci�city of 0:5 drops o� quickly in the beginning due to the strong set pressure. However, soonthe e�ect of mutation becomes visible and the speci�city in the population converges as predicted.The higher the mutation rate �, the stronger the in
uence of mutation pressure, which is manifestedin the higher convergence value in the curves with higher �.Although the mutation pressure becomes visible in the variation of �, �gure 3 further revealsthe in
uence caused by mutation. As formulated in equation 8 the mutation pressure is slightlyhigher when applying the free mutation type. When directly comparing �gure 2 and �gure 3 onecan observe that the higher the parameter �, the higher the di�erence in the mutation pressure.As stated earlier, we set the GA threshold �ga to one to assure a GA frequency fga of one.When altering �ga setting it to the common value of 25 �gure 4 reveals what has been suspected7



XCS with fixed fitness, random deletion, L=20
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Figure 2: Eliminating the �tness in
uence, the speci�city in XCS behaves exactly like the theory.
XCS with fixed fitness, random deletion, free mutation, L=20
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Figure 3: As predicted is the pressure caused by free mutation higher than the one by nichemutation. 8



XCS with fixed fitness, random deletion, theta_ga=25, L=20
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Figure 4: When increasing the threshold �ga the GA frequency and consequently the speci�citypressure decreases once the speci�city drops.before. For equation 9 to exactly match the speci�city change, fga cannot be denoted by a constantbut is actually dependent on the current speci�city in the population. Once the speci�city in thepopulation has dropped, the action set sizes increase since more classi�ers match a speci�c state.Consequently, more classi�ers take part in a GA application, more time stamps ts are updated,the average time since the last GA application in the population and in the action sets drops,and �nally the GA frequency drops which is observable in the graph. However, as predicted byequation 9, despite its dependence on the actual speci�city, fga does not in
uence the convergencevalue.Although we decided to initially �ll up the population with classi�ers to assure a perfect binomialspeci�city distribution in the beginning of the run, this appeared not to be necessary as shown in�gure 5. The �gure shows runs in which the population is initially empty. The only e�ect observableis that the speci�city drops o� slightly faster in the beginning of a run. Since the population doesinitially not contain 2000 classi�ers, the generality pressure is stronger which is also expressed inequation 9.5.2 CONSTANT FUNCTIONWhile the �tness in
uence was intentionally eliminated above, this and the next section are ded-icated to determine the actual �tness in
uence. This section applies XCS to a constant booleanfunction which always returns a reward of 1000. The result is that all classi�ers are accuratesince the prediction error will be zero. However, an in
uence could be possible due to the �tnessdetermination according to the relative accuracy.Figure 6 exhibits that this in
uence can be neglected when the random deletion method isapplied as before. It shows that the assumption of a binomial distribution indeed holds later in therun or is at least not too harsh since the speci�city exactly behaves as predicted.When applying the usual deletion method in XCS, however, the behavior of the speci�city9



XCS with fixed fitness, random deletion, population not initialized, L=20
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Figure 5: Without initializing the population, the generality drops slightly faster in the beginning.
XCS in a constant function, random deletion, L=20
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Figure 6: When applied to a constant function, the changing speci�city still matches the proposedtheory. 10



XCS in a constant function, L=20
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Figure 7: As expected, the e�ect caused by the deletion method is minor.changes. Figure 7 shows that the slope of the curves decreases. In the end, though, the convergencevalue is reached what is predicted by the theory. Since the observable in
uence can only be causedby the bias of the deletion method towards deleting classi�ers in larger niches, the reason for thisbehavior follows. Since the speci�city drops, the action set size increases as noted before. Thus,since more general classi�ers are more often present in action sets, their action set size estimate asis more sensible to the change in the action set size and consequently, it is larger in more generalclassi�ers while speci�city drops. Eventually, all as values will have adjusted to the change and thepredicted convergence value is achieved. This proposition is further validated by the fact that thedi�erence in the runs and the theory are smaller and become equal faster with a higher mutationrate � since the speci�city slope is not as steep as in the curves with lower � values.5.3 RANDOM FUNCTIONWhile the �tness in
uence remained small in the case of a constant function, much more noise isintroduced when applying XCS to a random function. The �nal two curves reveal the behavior ofXCS in a random boolean function that randomly returns rewards of 1000 and 0.Figure 8 exhibits that in the case of a random function the �tness in
uences the speci�cityslope as well as the convergence value. The convergence takes longer and, moreover, the conver-gence value stays larger. Since again random deletion is applied, the �tness pressure is the onlypossible in
uence. Although we don't have a proof in hand we believe the following. Since theencountered rewards are 0 and 1000, the reward prediction of the classi�ers 
uctuates around 500and consequently the prediction error around 500 as well. As in the case of the more sensible ac-tion set size estimates above, here the sensibility manifests in the prediction error �. More speci�cclassi�ers have a less sensible � and consequently a higher variance in the � values. This by itselfdoes not cause any bias, however, since the accuracy calculation expressed in equation 4 scales theprediction error to the power �, which is set to the usual value �ve, the higher variance causes anon average higher �tness. 11



XCS in a random function, random deletion, L=20
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Figure 8: Applied to a random function, the speci�city stays on a higher level due to the strongernoise in more speci�c classi�ers.When applying the normal deletion method, the deletion method causes a further increase inspeci�city as shown in �gure 9. Since the speci�cities do not converge to those in �gure 8, the causemust lie in the bias towards deleting experienced, low-�t classi�ers. Interestingly, this pressure isstrongest when � is set to approximately 0:1. A more detailed analysis showed that this is thecase because the variance in the �tness values is high as well as the more general classi�ers aresu�ciently experienced so that their possible low �tness value may be considered during deletion.When the speci�city drops further due to a lower �, the variance in �tness decreases signi�cantlyand the e�ect diminishes. On the other hand, when increasing � further, the average experience inthe population decreases under the crucial value of �ga = 20 and consequently, the additional biastowards low-�t classi�ers applies decreasingly often.6 SUMMARY AND CONCLUSIONThis paper has investigated various evolutionary pressures in XCS. By analyzing the pressuresseparately and next investigating their interactions, we were able to derive a formula that canpredict the speci�city change in the population of XCS. While this change has been hypothesizedlong ago, we are now able to con�rm the hypothesis mathematically and use the derived formulato explain and predict the behavior of the population in XCS. Although the �tness in
uence is notincorporated in the formula we showed that the formula is applicable in the case of all accurate andall similarly inaccurate. Essentially, the formula can predict how the speci�city in a population willevolve once accurate but possibly over-speci�c classi�ers are found. Moreover, it can also predicthow the population evolves if there are only inaccurate classi�ers and the �tness pressure towardsaccuracy from the over-general side is very weak.A �nal important insight is that regardless of the initial speci�city introduced by the don't careprobability P#, we now know how the speci�city changes and to which value it converges. Future12
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