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Abstract

After an increasing interest in learning classifier systems and the XCS classifier system in
particular, this paper locates and analyzes the distinct evolutionary pressures in XCS. Combining
several of the pressures, an equation is derived that validates the generalization hypothesis
which was stated by Wilson (1995). A detailed experimental study of the equation exhibits
its applicability in predicting the change in specificity in XCS as well as reveals several other
specificity influences.

1 INTRODUCTION

The accuracy based fitness approach in XCS (Wilson, 1995) results in a learning classifier system
(LCS) that evolves not only classifiers for best actions, but a complete payoff map of the problem.
This means that the system evolves an internal representation that can determine the quality of
each possible action in each possible state of the encountered environment. Several studies showed
that the payoff map in XCS is compact, complete, and accurate.

The aim of this paper is to clarify and analyze the evolutionary pressures in XCS. The combina-
tion of several pressures develops a formula that predicts the change in specificity in the population.
This formula validates the generalization hypothesis (Wilson, 1995), which was experimentally in-
vestigated in Kovacs (1997). Providing experimental evidence, the formula proves its applicability
in an over-general population as well as an accurate one.

The paper starts with an overview over XCS with all involved processes relevant for the paper.
Next, the evolutionary pressures in XCS are first analyzed separately and then in interaction.
Section 5 provides experimental validation of the claimed pressures, interactions, and parameter
dependencies. Finally, a conclusion is provided.

2 XCS OVERVIEW

The XCS classifier system, as it is explained and used herein, incorporates the basics published by
Wilson (1995) and the further enhancements in Wilson (1998) and Kovacs (1999). An algorithmic
description of the used system can be found in Butz and Wilson (2001). This section gives an
overview of XCS emphasizing the formulas and methods important in the remainder of the paper.
For further details the interested reader should refer to the cited literature.

As all LCSs the XCS interacts with an environment. The environment provides situations or
problem instances o coded as binary strings of length L (i.e. o € {0,1}%). Furthermore, actions



a € ay, ..., oy are executable in the environment. Finally, the environment provides a scalar reward
p € R reflecting the correctness or quality of the last applied action.

As all LCSs, XCS consists of a population [P] of classifiers which is of fixed length N. The
structure of a classifier in XCS is as follows. The condition part C specifies where the classifier
is applicable. It is coded as a string over the ternary alphabet {0,1,#} of length L (i.e. C €
{0,1,#}%). The action/classification part A specifies the action/classification of the classifier. Tt
can specify any action executable in the environment (A € a1, ...,ap). The reward prediction p
estimates the payoff encountered after the execution of the specified action. The prediction error
€ estimates the current error of p and is essentially used for the accuracy and resulting fitness
determination. The fitness F' is a measure of the accuracy of p with respect to all competing
classifiers. The experience exp counts how often the parameters of the classifier were updated. The
time stamp ts stores the time when last the classifier was in a set where a GA was applied. The
action set size estimate as approximates the average size of the action sets the classifier belongs
to. The numerosity num reflects how many micro-classifiers (usual classifiers) this macroclassifier
represents. This notation is only important for efficiency purposes.

At the beginning of an experiment the population of XCS is usually empty. Sometimes though,
the population is initialized with randomly generated classifiers. Each attribute in the condition of
such classifiers is set to a #-symbol (a “don’t care”-symbol) with a probability px and to zero or
one (chosen randomly) otherwise. The action is chosen randomly among all possible actions.

A learning cycle at time step ¢ starts with the perception of the actual problem o(¢) and the
consequent formation of the match set [M]. If less than 6,,,, actions are represented in [M], covering
occurs. In covering, a matching classifier is created similar to the procedure when initializing the
population. Next, an action a is selected randomly with a probability of p.;p;, and deterministic
otherwise. Out of [M] an action set [A] is formed consisting of all classifiers that specify action
a. The action is executed in the environment and a reward p(t) is perceived. With respect to the
perceived reward (and the maximal reward prediction in the successive match set in multi-step
problems), the reward prediction p, the error measure ¢, and the action set size estimate as of all
classifiers are updated using the Widrow-Hoff delta rule (Widrow & Hoff, 1960).
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Parameter § € (0,1) denotes the learning rate. If the experience of a classifier is still less than 1/,
p, €, and as are updated with the MAM technique (“moyenne adaptive modifiée”) which sets the
values to the averaged actual values encountered so far. The fitness is updated in three steps.
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First, the accuracy « is calculated according to the current prediction error e. Next, the relative
accuracy ' is calculated with respect to the current action set. Finally, the fitness is updated
according to x’. Note that the fitness is calculated in terms of macroclassifiers while the value



of all other measures specifies the micro-classifier value. After all updates and the increase of the
experience counter exp of each classifier, a GA may be applied.

The GA is only applied if the average time in the action set [A] since the last GA application,
recorded by the time stamp ts, is greater than the threshold 6g4. If a GA is applied two classifiers
are selected in [A] for reproduction using a roulette wheel selection with respect to the fitness of
the classifiers in [A]. Next, the classifiers are reproduced and the children undergo mutation and
crossover. In mutation, each attribute in C' of each classifier is changed with a probability u. Two
mutation types are investigated herein. In niche mutation classifiers are only mutated in such a
way that they still match the current state after mutation (i.e. #-symbols are mutated to the
current corresponding input value and 1s and Os are mutated to #-symbols. In free mutation an
attribute is mutated to the two other possibilities equal probable. Regardless of the mutation type,
the action is mutated to any other possible action with a probability u. For crossover, two-point
crossover is applied with a probability y. The parents stay in the population and compete with
their offspring. The classifiers are inserted applying a subsumption deletion method. If a classifier
cl exists in the population that is more general in the condition part, experienced (i.e. expy < Osyp),
and accurate (i.e. €, < €p), then the offspring classifier is not inserted but the numerosity of the
subsumer ¢l is increased. Finally, if the number of micro-classifiers in the population exceeds the
maximal population size N, excess classifiers are deleted. A classifier is chosen for deletion with
roulette wheel selection proportional to its action set size estimate as. Further, if a classifier is
sufficiently experienced (exzp > 04.;) and significantly less accurate than the average fitness in the
population (f < § * che[P} fcz/Zcqu} nums), the probability of being selected for deletion is
further increased. Note that the GA is consequently divided into a reproduction process and a
separate deletion process.

Finally, action set subsumption may be applied. This method searches in each action set [A]
for the classifier that is (1) accurate, (2) experienced, and (3) most general among the ones that
satisfy (1) and (2). If such a classifier exists, it subsumes all classifiers in [A] that are more specific
(i.e. specify proper subsets in the condition). The more specific classifiers are deleted and the
numerosity of the subsumer is increased accordingly.

3 DISTINCT PRESSURES

Although the description above explains the functioning of the system, it does not become clear
why it is any good. To reveal the strength of XCS, this section analyzes the distinct evolutionary
pressures separately. Section 4 reveals the interactions between the pressures.

3.1 FITNESS PRESSURE

The parameter update of prediction p, prediction error € and action set size estimate as represented
in formulas 1, 2, and 3 assures that the values are an average over all encountered states so far with
emphasis on the recently encountered states. The fitness of a classifier is derived from its relative
accuracy in [A]. It represents the proportional accuracy with respect to all other classifiers in [A].
Thus, the selection pressure is a pressure towards accurate classifiers in each environmental niche.
The existence and amount of pressure towards accurate classifiers is highly dependent on problem
and parameter settings. Note, that in the case when all classifiers in an action set [A] are accurate
or similarly inaccurate, the fitness does not directly distinguish the classifiers anymore. In this case
the selection process is similar to a random selection in [A]. However, an experimental validation in
section 5 shows that the noise in the values of non-experienced classifiers can influence the selection



process.

3.2 SET PRESSURE

With respect to the population the application of reproduction in the action set results in another
pressure. This pressure towards generality was stated by Wilson (1995) in his generality hypothesis
and was later refined to an optimality hypothesis and further experimentally investigated by Kovacs
(1997). The basic idea is that classifiers that are more often part of an action set are more often
part of the GA and consequently reproduced more often as long as they are as accurate as more
specific classifiers. Thus, if all classifiers are accurate or if all classifiers are similarly inaccurate,
reproduction in action sets causes an intrinsic pressure towards generality. The amount of expected
(lower) specificity of classifiers in an action set is determined by the following formula:
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Where s denotes the average proportion of specific values in the conditions of the classifiers in the
referred set. Considering a specificity of [P] in the population the formula determines the resulting
specificity in the action set assuming a binomial specificity distribution in the population. This
assumption is certainly valid in the beginning of an experiment if the population is initialized with
respect to px. In this case the average specificity will be 1 —py. It can be observed that £ in the
numerator and n in the denominator cause the specificity in [A] to be smaller than the specificity in
[P]. This confirms the proposition of the additional generality pressure mentioned above since the
selection takes place in the action set, while deletion takes place in the more specific population.
Without fitness pressure, the formula provides an estimate of the difference in specificity of selected

classifiers and deleted classifiers as long as a binomial distribution is present. The above equation
is enhanced in section 4.1 and experimentally validated in section 5.

(6)

3.3 MUTATION PRESSURE

Although mutation can be neglected in many investigations with GAs, in LCSs mutation appears
to have a stronger impact. Generally, a random mutation process causes a tendency towards an
equal number of symbols in a population. Thus, applying random mutations in a population of
individuals or in particular classifiers, the result will be a population with an approximately equal
proportion of zeros and ones or essentially 0, 1, and # in a classifier system. The free mutation
described above pushes towards a distribution of 1 : 2 general:specific while niche mutation pushes
towards 1 : 1. The average change in specificity of the condition of a mutated offspring classifier
for the niche mutation case can be written as

Amn = s(cl(t +1)) — s(cl(t)) =
s(el(t)) * (1 —p) + (1 —s(cl(t)) *u— s(cl(t)) =
u(1 = 2s(cl(t))) (7)
and for the free mutation case as
A =s(c(t+1)) —s(cl(t)) =

s(el(t)) « (1 = pu/2) + (1 = s(cl(t) * p — s(cl(t)) =
0.5u(2 — 3s(cl(t))). (8)
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Thus, mutation alone pushes the population towards a specificity of 0.5 and 0.66 applying niche
mutation and free mutation, respectively. The strength of the pressure depends on the mutation
type, the frequency of the GA application (influenced by the parameter 6,,), and the probability
p of mutating an attribute.

3.4 DELETION PRESSURE

Due to its proportionate selection method with respect to the action set size estimate as and
possibly the fitness F' of a classifier, the deletion pressure is difficult to formalize. Generally, the
selection of deletion classifiers in the population does not result in any set bias as encountered in
the selection method. Thus, without any bias the average specificity of deleted classifiers is equal
to the average specificity in the population s([P]).

Due to the bias towards selecting classifiers that occupy larger action sets, deletion stresses
an equal distribution of classifiers in each environmental niche. The further bias towards low-fit
classifiers was investigated and optimized by Kovacs (1999) in that a low fitness is only considered
if the classifier has a sufficient experience assuring that the classifier is indeed inaccurate.

3.5 SUBSUMPTION PRESSURE

The final pressure in XCS is the pressure induced by the subsumption deletion method. Due to
the experience and accuracy requirement it is assured that subsumption only applies to accurate
classifiers. Once accurate classifiers are found subsumption deletion pushes towards maximal syn-
tactic generality in difference to the set pressure above which only pushes towards generality if
generality also assures a higher applicability rate. GA subsumption deletion hinders the insertion
of more specific classifiers once an accurate, more general one evolved. Action set subsumption is
much stronger since an accurate, more general classifier actually absorbs all more specific classifiers
regardless if it already existed or was just generated.

To summarize, the subsumption pressure is an additional pressure towards accurate, maximally
general classifiers (i.e. classifiers that are still accurate and in the mean time as general as possible).
It is independent of the specificity of the accurate, maximally general classifiers and becomes only
active once accurate classifiers are found.

4 PRESSURE INTERACTION

After we analyzed the various evolutionary pressures separately in the last section, this section
puts the pressures together and analyzes their interaction. First, the interaction of set, mutation,
and deletion pressure is formulated. Next, the effect of subsumption pressure is discussed. Finally,
we provide a visualization of the interaction of all the pressures. The theoretical analyzes are
experimentally validated in section 5.

4.1 SPECIFICITY PRESSURE

When analyzing the interaction of set, mutation, and deletion pressure described above, we realize
that all three pressures influence the average specificity in the population. Thus, the three pressures
together result in a specificity pressure in the population.

Due to the problem dependence of the fitness pressure, we cannot formulate the pressure and
consequently need to assume a similar fitness of all classifiers in our analysis. As it will be shown



in section 5, this assumption holds when all classifiers are accurate and nearly holds when all are
similarly inaccurate. The addition of subsumption pressure is discussed in section 4.2.

Despite the fitness irrelevance assumption, deletion pressure is also dependent on the action
set size estimate as of a classifier. In accordance with Kovacs’s insight in the relatively small
influence of this dependence (Kovacs, 1999), we assume a random deletion from the population in
our formulation. Thus, as stated above, a deletion results on average in the deletion of a classifier
with a specificity equal to the specificity of the population s([P]). The generation of an offspring,
on the other hand, results in the insertion of a classifier with an average specificity of s([A]) + Ay,
or s([A]) + Anm dependent on the type of mutation used. Putting the observations together, we
can now calculate the average specificity of the resulting population after one learning cycle:

s([P(t+1)]) =

S(P@)) + foo 2 UAD + ?vm — s([P(1))))

(9)

The parameter f,, denotes the frequency of the GA application in XCS. The formula adds to
the current specificity in the population s([P(¢)]) the expected change in specificity calculated by
the difference between the specificity of the two reproduced and mutated classifiers s([A]) — A,
and s([P(t)]). Although the frequency fy, is written as a constant in the equation, it is actually
dependent on s([P(t)]) as well as the specificity distribution in the population. Thus, f4, can
generally not be written as a constant. By setting 6,, to one, it is possible, though, to force fy,
to be one since the average time since the last GA application in an action set (not generated by
covering) will always be at least one.

4.2 ADDING SUBSUMPTION

Although we revealed the cause and existence of the set pressure that pushes the population towards
more general classifiers once all are accurate, we also showed that this pressure is somehow limited.
Equation 9 shows that without subsumption the convergence of the population towards accurate,
maximally general classifiers is not assured. Essentially, if the specificity of the accurate, maximally
general classifiers in a problem is lower than the value of the converged equation 9, then the
population will not completely converge to those classifiers. Another reason for a lack of convergence
can be that the set pressure is not present at all. This can happen, if XCS encounters only a subspace
of all possible examples in the universe {0,1}". In this case, the subsumption pressure results in a
further convergence to the intended accurate, maximally general classifiers.

4.3 ALL PRESSURES

Finally, fitness can influence several other pressures as mentioned above. Generally, the fitness
pushes from the over-general side towards accuracy as long as the environment provides helpful,
layered payoff or the consistency of predicting an outcome is biased in over-general classifiers as
revealed in Butz, Kovacs, Lanzi, and Wilson (2001). Thus, in terms of specificity fitness results in
a pressure towards the specificity of maximally general classifiers from the over-general side. The
pressures are visualized in figure 1. While set and mutation pressure (free mutation is visualized)
are accuracy independent, subsumption and fitness pressure are guided by accuracy. Due to its
distinct influences, deletion pressure is not visualized.
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Figure 1: Together, the evolutionary pressures lead the population towards the accurate, maximally
general classifiers.

5 EXPERIMENTAL VALIDATION

In order to validate the proposed pressures and the specificity behavior formulated in equation 9
we apply XCS to boolean strings of length L = 20 with different settings. The following figures
show runs with varying mutation from 0.02 to 0.20. In each plot the solid line denotes the formula
and the dotted lines represent the XCS runs. All curves are averaged over 20 experiments. If not
stated differently, the population is initially filled up with randomly generated classifiers with don’t
care probability p = 0.5. Niche mutation is applied. The remaining parameters are set as follows:
N = 2000, 8 =102, a=1,¢ = 0.001, v = 5, v =095, O4g = 1, x = 0.8, Oge; = 20, 6 = 0.1,
Osup = 00, and Peaplr = 1.

5.1 FIXED FITNESS

In order to validate the different assumptions in the theory, we start by examining runs where the
fitness influence is eliminated. That is, each time a classifier is updated, its fitness is not updated
as usual but is simply set to its numerosity. The same is done in covering. Moreover, we eliminated
the distinct deletion pressure influences by deleting classifiers proportionally to their numerosity
num regardless of their value of as or F. This section investigates the influence caused by the
two mutation types. Moreover, we investigate the influence of the GA threshold 6y, as well as the
influence of an initialization of the population.

With the restrictions, the runs exactly match the theory as shown in figure 2. The initial
specificity of 0.5 drops off quickly in the beginning due to the strong set pressure. However, soon
the effect of mutation becomes visible and the specificity in the population converges as predicted.
The higher the mutation rate p, the stronger the influence of mutation pressure, which is manifested
in the higher convergence value in the curves with higher p.

Although the mutation pressure becomes visible in the variation of u, figure 3 further reveals
the influence caused by mutation. As formulated in equation 8 the mutation pressure is slightly
higher when applying the free mutation type. When directly comparing figure 2 and figure 3 one
can observe that the higher the parameter p. the higher the difference in the mutation pressure.

As stated earlier, we set the GA threshold 6y, to one to assure a GA frequency f,, of one.
When altering 04, setting it to the common value of 25 figure 4 reveals what has been suspected
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Figure 2: Eliminating the fitness influence, the specificity in XCS behaves exactly like the theory.

XCS with fixed fitness, random deletion, free mutation, L=20
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Figure 3: As predicted is the pressure caused by free mutation higher than the one by niche
mutation.



XCS with fixed fitness, random deletion, theta_ga=25, L=20
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Figure 4: When increasing the threshold 6,, the GA frequency and consequently the specificity
pressure decreases once the specificity drops.

before. For equation 9 to exactly match the specificity change, f,, cannot be denoted by a constant
but is actually dependent on the current specificity in the population. Once the specificity in the
population has dropped, the action set sizes increase since more classifiers match a specific state.
Consequently, more classifiers take part in a GA application, more time stamps ts are updated,
the average time since the last GA application in the population and in the action sets drops,
and finally the GA frequency drops which is observable in the graph. However, as predicted by
equation 9, despite its dependence on the actual specificity, f,, does not influence the convergence
value.

Although we decided to initially fill up the population with classifiers to assure a perfect binomial
specificity distribution in the beginning of the run, this appeared not to be necessary as shown in
figure 5. The figure shows runs in which the population is initially empty. The only effect observable
is that the specificity drops off slightly faster in the beginning of a run. Since the population does
initially not contain 2000 classifiers, the generality pressure is stronger which is also expressed in
equation 9.

5.2 CONSTANT FUNCTION

While the fitness influence was intentionally eliminated above, this and the next section are ded-
icated to determine the actual fitness influence. This section applies XCS to a constant boolean
function which always returns a reward of 1000. The result is that all classifiers are accurate
since the prediction error will be zero. However, an influence could be possible due to the fitness
determination according to the relative accuracy.

Figure 6 exhibits that this influence can be neglected when the random deletion method is
applied as before. It shows that the assumption of a binomial distribution indeed holds later in the
run or is at least not too harsh since the specificity exactly behaves as predicted.

When applying the usual deletion method in XCS, however, the behavior of the specificity



XCS with fixed fitness, random deletion, population not initialized, L=20
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Figure 5: Without initializing the population, the generality drops slightly faster in the beginning.

XCS in a constant function, random deletion, L=20
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Figure 6: When applied to a constant function, the changing specificity still matches the proposed
theory.
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XCS in a constant function, L=20
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Figure 7: As expected, the effect caused by the deletion method is minor.

changes. Figure 7 shows that the slope of the curves decreases. In the end, though, the convergence
value is reached what is predicted by the theory. Since the observable influence can only be caused
by the bias of the deletion method towards deleting classifiers in larger niches, the reason for this
behavior follows. Since the specificity drops, the action set size increases as noted before. Thus,
since more general classifiers are more often present in action sets, their action set size estimate as
is more sensible to the change in the action set size and consequently, it is larger in more general
classifiers while specificity drops. Eventually, all as values will have adjusted to the change and the
predicted convergence value is achieved. This proposition is further validated by the fact that the
difference in the runs and the theory are smaller and become equal faster with a higher mutation
rate p since the specificity slope is not as steep as in the curves with lower p values.

5.3 RANDOM FUNCTION

While the fitness influence remained small in the case of a constant function, much more noise is
introduced when applying XCS to a random function. The final two curves reveal the behavior of
XCS in a random boolean function that randomly returns rewards of 1000 and 0.

Figure 8 exhibits that in the case of a random function the fitness influences the specificity
slope as well as the convergence value. The convergence takes longer and, moreover, the conver-
gence value stays larger. Since again random deletion is applied, the fitness pressure is the only
possible influence. Although we don’t have a proof in hand we believe the following. Since the
encountered rewards are 0 and 1000, the reward prediction of the classifiers fluctuates around 500
and consequently the prediction error around 500 as well. As in the case of the more sensible ac-
tion set size estimates above, here the sensibility manifests in the prediction error e. More specific
classifiers have a less sensible € and consequently a higher variance in the e values. This by itself
does not cause any bias, however, since the accuracy calculation expressed in equation 4 scales the
prediction error to the power v, which is set to the usual value five, the higher variance causes an
on average higher fitness.
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XCS in a random function, random deletion, L=20
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Figure 8: Applied to a random function, the specificity stays on a higher level due to the stronger
noise in more specific classifiers.

When applying the normal deletion method, the deletion method causes a further increase in
specificity as shown in figure 9. Since the specificities do not converge to those in figure 8, the cause
must lie in the bias towards deleting experienced, low-fit classifiers. Interestingly, this pressure is
strongest when g is set to approximately 0.1. A more detailed analysis showed that this is the
case because the variance in the fitness values is high as well as the more general classifiers are
sufficiently experienced so that their possible low fitness value may be considered during deletion.
When the specificity drops further due to a lower y, the variance in fitness decreases significantly
and the effect diminishes. On the other hand, when increasing p further, the average experience in
the population decreases under the crucial value of 6,, = 20 and consequently, the additional bias
towards low-fit classifiers applies decreasingly often.

6 SUMMARY AND CONCLUSION

This paper has investigated various evolutionary pressures in XCS. By analyzing the pressures
separately and next investigating their interactions, we were able to derive a formula that can
predict the specificity change in the population of XCS. While this change has been hypothesized
long ago, we are now able to confirm the hypothesis mathematically and use the derived formula
to explain and predict the behavior of the population in XCS. Although the fitness influence is not
incorporated in the formula we showed that the formula is applicable in the case of all accurate and
all similarly inaccurate. Essentially, the formula can predict how the specificity in a population will
evolve once accurate but possibly over-specific classifiers are found. Moreover, it can also predict
how the population evolves if there are only inaccurate classifiers and the fitness pressure towards
accuracy from the over-general side is very weak.

A final important insight is that regardless of the initial specificity introduced by the don’t care
probability Py, we now know how the specificity changes and to which value it converges. Future
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XCS in a random function, L=20
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Figure 9: The fitness biased deletion method further influences the specificity.

research should use this insight and proceed to control the changes in specificity where necessary.
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