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Abstract

In this paper we investigate the applicability of on-line
learning algorithmsto thereal -world problemof web search.
Consider that web documents are indexed using n Boolean
features. Wefirst present a practically efficient on-linelearn-
ing algorithm TW2 to search for web documentsrepresented
by a digunction of at most k£ relevant features. We then
design and implement WebSail, a real-time adaptive web
search learner, with TW2 as its learning component. Web-
Sail learns from the user’s relevance feedback in real-time
and helpsthe user to search for the desired web documents.
The architecture and performance of WebSail are also dis-
cussed.

1. Introduction

Nowadays there are a number of search engines for peo-
ple to search for their desired web documents. Each of the
existing search engines has a unique interface and an index
database covering a different portion of the web. They have
proved both useful and popular. In general, when using a
search enginetheuser needsto repeatedly refine her query as
she does not have enough knowledge to formul ate the query
precisely. Usually the search engine returns tremendously
many urls of web documentsthat are irrelevant, forcing the
user to manually sift through the long list to locate the de-
sired documents.

The way the user uses a search engine is much like a
dialogue between the user and the engine: The user sendsa
guery to the engine, and the engine uses the query to search
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theindex database and returnsalist of document urls. Then,
the user providesthe engine relevance feedback, and the en-
gine usesthefeedback to improveits next search and returns
arefined list of document urls. The dialogue endswhen the
engine finds the desired documents for the user. Note that
conceptually a query entered by the user can be understood
asthelogical expression of the collection of the documents
wanted by the user. A list of document urls returned by the
engine can be interpreted as an approximation to the col-
lection of the desired documents. This type of scenario is
very similar to the process of on-line learning with queries
[1, 17], when the user acts as a teacher and the engine as a
learner.

Unfortunately, in reality, the user is not qualified as a
teacher as modeled in on-learning [1, 17]. Although the
average user (at the common sense level) knowswhat kinds
of documents she wants, it is difficult, if not impossible, for
her to inform the search engine what is wanted in an easy
way so that the search engine understands. Even when dis-
junctionsor conjunctionsof keywordsare chosen astheway
of expressing the search goal as existing search engines do,
the user may not know what set of keywords she should use
to define the collection of the desired documents precisely.
On the other hand, having received rel evance feedback from
the user, the search engine needs to find an efficient way
to use the feedback so that it can, in real-time, improve the
result of its next search.

From the perspective of machine learning, the funda-
mental question about any learning algorithm is of course
its applicability to real-world problems. Especialy when
the real-world problem of web search is concerned, few
theoretically well-established learning algorithms are ready
to use, not only because the user cannot be modeled as a



teacher, but also because the user may make mistakes and
has no patience to try more than a couple of dozens of inter-
actions. Other practical factorssuch asreal-timecomputing,
indexing and ranking are involved as well.

In this paper, we first investigate the applicability of on-
linelearning algorithmsto web search. Sinceexisting search
engines support queries represented by disunctionsor con-
junctions of features, we especially want to know how to
use on-line learning algorithmsto search for a collection of
documents represented by a digunction of at most & rel-
evant features. The conjunction case can be coped with
similarly. We choose Winnow?2 [17] as the starting point of
our investigation because it has error-tolerant ability and an
inherent ranking mechanism (theinner product of theweight
vector and the document vector) as well as small updating
complexity. It aso has the best known mistake bounds for
learning digunctionsof at most & relevant featuresfor small
k. However, the mistakebounds of Winnow arestill too high
for practical use in web search. For example, with tuning
parametersa = 1.5and # = 7, the mistake bound of Win-
now2is 13k + 14k In 7 for learning adigunction of at most
k relevant features over the Boolean vector space {0, 1}”.
Asi it is known, usualy a huge vocabulary of keywords is
used to index documents in web search. If, for example,
the vocabulary hasjust 10,000 keywords, then about 600 re-
finements (or mistakes) are needed when Winnow?2 is used
to search for documents represented by a digunction of at
most 5 relevant keywords. Obviously, these refinementsare
too many for any user.

We examine the properties of document indexing, and
design atailored version TW2 of Winnow?2 in section 3 for
the real-world problem of web search. In search for a col-
lection of documentsrepresented by adigunction of at most
k relevant features, the mistake bound of TW2 is at most
24 4 (a+ 1)klog, § — a, where a is the promotion
and demotion parameter, 6 is the threshold, and A is total
number of distinct features used to index all the positive ex-
ampl es (documentsjudged by the usersasrelevant) received
in the search process. Other bounds are also obtained for
tolerating feature errors and for the average number of rele-
vant features occurred in each positive example. In practice
A isvery small, especially when meta-search is concerned.
For example, in the project Yarrow [7] that we have imple-
mented, A is usually smaller than 640 when the top 100
matchesare needed. Evenif weassume A = 10, 000for the
purposeof comparison, fora = 1.5and8d = %, TW2 makes
about about 256 mistakes in the worst case for learning a
digunction of at most 5 relevant features. For A < 1,000,
theworst case mistake bound of TW2is194 for learning the
same digunction.

We have implemented a real-time adaptive web search
learner WebSail [d] with TW?2 as its learning component.
Interested readers can access WebSail viaitsurl given at the

end of the paper. WebSail learns from the user’s relevance
feedback and helps the user to search for the desired doc-
uments with as little relevance feedback as possible. It is
implemented on a Sun Ultra one workstation with storage
of 27 Giga-bytes hard disk on an IBM R6000 workstation.
It has an internal index database and a meta-search compo-
nent through AltaVista [a]. Each document in the internal
database is indexed using about 300 keywords. When the
user performs a search process, WebSail first searches its
internal database. If no matches can be found for the query
within the internal database, then it turnsto its meta-search
component to receive the matched documents through Al-
taVista[a] and then performsthe learning processlocally.

There have been considerable efforts applying machine
learning to web search rel ated applications, for example, sci-
entific article locating and user profiling [3, 4, 15], focused
crawling [20], and collaborative filtering [19].

The remaining part of this paper is organized as follows.
In section 2, we examine the similarity between on-line
learning and web search, and discusswhat propertiesalearn-
ing algorithm should have in order to be applicable to web
search. In section 3 we discuss some difference between on-
learning approach to web search and the similarity-based
relevance feedback algorithm in information retrieval. In
section 4, we examine the property of web document in-
dexing and design the learning algorithm TW2, atailored
version of Winnow2 [17] for web search. In section 5,
we discuss practical issues such as document ranking and
equivalence query simulation regarding the actual employ-
ment of TW2 as alearning component in WebSail [d]. We
also discuss the architecture and performance of WebSail.
We conclude the paper in section 6.

2.0n-LineLearning vs. Web Search

In the on-line learning model [1, 17] with equivalence
gueries, the goal of a learner for learning a concept class
C over the domain Z is to learn any unknown target con-
cept ¢; € C that has been fixed by a teacher. In order to
obtain information about ¢;, the learner can ask the teacher
equivalence queries by proposing hypotheses h from afixed
hypothesisspace H over Z with C C H. If h = ¢, thenthe
teacher says“yes”, so the learner succeeds. If h # ¢, then
theteacher respondswith an examplez in (¢; — h)U (h—¢;)
for somex € Z. In such a case, we say that the algorithm
make a mistake. z is called a positive example if it isin
¢; and a negative example otherwise. Each new hypothesis
issued by the leaner may depend on the earlier hypotheses
and the examples received so far. A learner exactly learns
C, if for any target concept ¢; € C, it can learn ¢;. We say
that a class C is polynomial time learnable if a learner can
exactly learn any target concept in C and the time required
by the learner is polynomial in the size of the domain and



the size of the target concept. Besides the time complexity
of the algorithm, we are also interested in the total number
of mistakes the algorithm may make in order to learn any
target concept ¢; € C. It is easy to see that the number
of equivalence queries needed by the learning algorithm to
learn the target concept is one plus the number of mistakes
the algorithm may make during its learning process.

We now consider how to use on-linelearning from equiv-
alence queries to approach the problem of web search. We
use the vector space model [21, 22, 2] to represent docu-
ments. The vector space may consist of boolean vectors. It
may also consist of discretized vectors, for example the fre-
guency vector of the indexing keywords. A target concept
is a collection of documents, which is equivalent to the set
of vectors of the documentsin the collection. Thelearner is
the search engine and the teacher isthe user. Thegoal of the
search engineisto find thetarget concept in “real-time" with
aminimal number of mistakes (or equivalence queries).

Let us define an interaction between the user and the
search engine as the process that starts at the time the user
providesher feedback (or search query at thevery beginning
of the search) to the search engine and ends at the time the
search engine displays the search result back to the user. At
each interaction, it is not unreasonable to assume that the
user can on the average judge five documents as relevant or
irrelevant to provide relevance feedback to the search en-
gine. On the average no user would like to perform more
than a dozen of interactions. Hence, we consider that on
the average the user may judge about 60 documentsas rele-
vance feedback to the search engine during the entire search
process. Since existing search engines support diunctions
or conjunctions of features as query formation that is prac-
tically acceptable by the average user, in this paper we will
focus on the problem of searching for collections of web
documents represented by disunctions of relevant features.
Conjunctions can be coped with similarly. Based on the
above analysis, alearning algorithm L should have the fol-
lowing propertiesin order to be applicableto the real-world
problem of web search:

e L should have the ability to tolerate errors such as
feature errors and classification errors.

e L should have a “ practically small" mistake bound.
For example, when used to search for documents rep-
resented by a digunction of at most £ relevant fea-
tures, its mistake bound should be very small, say,
about 60 for k£ = 5.

e L should have a built-in ranking mechanism to move
the most relevant documents to the top and the least
relevant to the bottom.

o Finally, itscomputation for eachinteraction should be
performed in time linear in the dimensionality of the

vector space, or a few dozens of secondsin practice.

Inreality, the user isdefinitely not qualified asa*teacher"
as modeled in on-line learning [1, 17]. She does not know
the logical representation of the target concept, nor how to
answer equivalence queries. However, it is reasonable to
assume that the user can judge whether a particular web
document is relevant or not to her search, though she may
also make mistakes in this aspect. It should be pointed out
that there are cases in which the user may not be able to
tell whether aweb document is relevant or not. Such cases
are beyond the scope of this paper and should be studied in
future research.

3.0n-LineLearning vs. Similarity-Based Rel-
evance Feedback

One should distinguish our on-line learning approach to
web search from the similarity-based relevance feedback al-
gorithm in information retrieval [21, 2, 12, 11, 13]. The
central idea of relevance feedback is to improve search per-
formancefor a particular query by modifying the query step
by step, based on the user’s judgments of the relevance or
irrelevance of some of the documentsretrieved. In the vec-
tor space model [21, 22], both documents and queries are
represented as vectorsin a discretized vector space. In this
case, relevance feedback is essentialy an on-line learning
algorithm: A query vector and asimilarity measureare used
to classify documents as relevant and irrelevant; the user’s
judgmentsof therelevanceor irrelevance of sometheclassi-
fied documentsare used as examples for updating the query
vector as a linear combination of the initial query vector
and the examples judged by the user. Especialy, when the
inner product similarity is used, relevance feedback isjust a
Perceptron-like learning algorithm [16, 9].

There are many different variants of relevance feedback
ininformation retrieval. The most popular oneis Rocchio’'s
similarity-based relevance feedback agorithm [13, 11, 21],
which works in a step by step adaptive refinement fashion
as follows. Starting at an initial query vector q;, the algo-
rithm searches for all the documents d such that d is very
close to ¢; according to the similarity m, ranks them by
m(q, d), and finaly presents a short list of the top ranked
documentsto the user. The user examines the returned list
of documents and judges some of the documents as relevant
or irrelevant. At step ¢ > 1, assume that the list of docu-
ments the user judged is 1, - . ., z;—1. Then, the algorithm
updatesits query vector asg; = oy,q1 + ZE;i ay;zj, where
the coefficientsa;; € Rfor j = 0,1,...,t — 1. At gtep
t + 1, the algorithm uses the updated query vector ¢; and
the similarity m to search for relevant documents, ranksthe
documentsaccording to m, and presentsthetop ranked doc-
uments to the user. In practice, a threshold € is explicitly



(or implicitly) used to select the highly ranked documents.
Practically, the coefficients a;, may befixedas 1, —1or 0.5
[2, 21].

Some formal analysis about Rocchio’s similarity-based
relevancefeedback wasgivenin[9]. Itwasprovedin[9] that
in the Boolean vector space model, for any of the four typi-
cal smilarities (inner product, dice coefficient, cosine coef-
ficient, and Jaccard coefficient), Rocchio’s similarity-based
relevance feedback algorithm makes at least (n + k — 3)/2
mistakes when used to search for a collection of documents
represented by a monotone digunction of at most & rele-
vant features over the n-dimensional Boolean vector space
{0, 1}™. The lower bounds are independent of the choices
of the threshold and coefficients that the algorithm may use
in updating its query vector and making its classification.

The lower bounds established in [9] for Rocchio’'s
similarity-based relevance feedback algorithm is based on
the worst case analysis, hence they may not affect the al-
gorithm'’s effective applicability to the real-world problems
despite of their theoretical significance. On the other hand,
theformal analysismotivatesusto design new learning algo-
rithmsfor information retrieval. Asthefirst step, we design
TW2 in the next section. TW2 has a provable better mis-
takes bounds for learning digunctions of at most & relevant
features for very small & when the inner product similarity
measure is used.

4. The Algorithm TW2

When a set of n Boolean-valued features are used to
index web documents, adocument is represented as avector
inthen-dimensional space {0, 1}™. Given any documentd,
let vg(z1,. .., zy) denoteits vector representation. Define

MDlzi,...,xz;,] = {dva(z,-..,2zn)
:>331'1V---V$,'s},
MD(k) = {MDi|z;,...,z;,]|1<s <k},

In other words, M Dlx;,,...,z;,] is acollection of docu-
ments whose vectors satisfy the monotone disunction of
Ziy, .- Zi,, and M D(k) is the class of al collections of
documentsrepresented by monotone disjunctions of at most
k relevant feature variables. Using machine learning tech-
niques, severa efficient algorithms have been constructedin
[8] for searching any collection of documentsin M D(k).
Many theoretically efficient algorithms exist for learn-
ing digunctions of at most k relevant features. But few
meet the applicability requirements as discussed in section
2. Winnow2 [17] meets all the requirements except that its
mistake bound, though optimal within a constant factor, is
still too high for web search users. Because of the k log, 7
lower bound [17] for learning a digunction of &k relevant
features in the n-dimensional Boolean vector space, it is

essentially impossible to improve the upper bound of Win-
now?2 in general. However, we can exploit the properties of
web document indexing, and seek opportunities to reduce
the bound in the concrete case of web search.

Definition 4.1. Given any feature z and any document d,
z issaid to be an indexing feature for the document d, if the
corresponding component of the feature z in the document
vector vy is 1.

Although a huge collection of features ( in the simplest
case, keywords) are needed and used to index web docu-
ments, for each particular document d, the number of its
indexing features is relatively small. One can easily note
that a web hypertext document may have several hundreds
of distinct keywords, while agood dictionary may have over
100,000 words. One may argue that there are long docu-
ments. This is certainly true. But as far as indexing is
concerned, not al words in along document are needed to
index it. Instead, a small portion of the words may be used.
Totheend, indexing is closely related to classification. The
depth of the Yahoo! [b] classification treeis about 30. Also
for the efficiency consideration of web crawling, normally
only the first a few kilobytes of a document is extracted,
when it islong. The current version of the http protocol
allows the creator of a web document to list keywords as
meta-attributesin adocument for the purpose of indexing or
classification. People may list about a couple of dozens of
keywords. If everyone adds meta-attributesto her web doc-
uments, then the challenging problem of document indexing
or classification would be resolved with automatic extrac-
tion of those keywords. As far as the authors understand,
e-commerce related web documents tend to aggressively
employ those kinds of meta-attributes. This may influence
average web usersto follow the practice.

When the user queries a search engine, the engine finds
the matched documents, ranks them and returns the top
ranked onesto the user. Various strategies have been stud-
ied for document ranking to move the most relevant docu-
ments to the top and the least relevant to the bottom. For
example, the classical tf-idf scheme, vector spread, or cited-
based rankings [23]; the algorithm for locating authorities
and hubs [14, 6, 10] which works effectively for document
ranking related to broad topic queries, and PageRank [5]
which is the key ranking method for Google [b]. A learn-
ing agorithm for web search should be constructed to take
advantage of the existing ranking mechanisms. More pre-
cisely, when the user queries a search engine, the learning
algorithm should use the list returned by the search engine
asits initial search space, it then uses relevance feedback
from the user to effectively propagate the user’s preference
within the initial list of documents returned and other doc-
uments in the database as well. Because the user is really
interested in a short list of the top matched (or relevant)
documents, the learning algorithm should at the beginning
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Figure 1. Architecture of WebSail

pay more attention to the propagation of theinfluence of the
relevant documentsjudged by the user.

We now design TW2, atailored version of Winnow?2, to
exploit the particular nature of web search. We also present
four mistake bounds for TW2 in this section. The actual
implementation of TW2 aong with document ranking and
equivalence query simulation will be given in the next sec-
tion. The key difference between TW2 and Winnow?2 is
that Winnow?2 sets all initial weightsto 1, while TW2 sets
all initial weightsto 0 and thus it has a different promotion
strategy accordingly. Therationalebehind setting al theini-
tial weightsto O isnot assimple asit looks. The motivation
is to focus attention on the propagation of the influence of
the relevant documents, and useirrelevant documentsto ad-
just the focused search space. Moreover, this approach can
be effectively implemented because existing effective docu-
ment ranking mechanisms can be coupled with the learning
process as discussed in next section.

The Algorithm TW2 (The Tailored Winnow?2). TW2
maintains non-negative real-valued weights wy, . . . , wy, for
features atty, .. ., att,, respectively. It also maintains a
real-valued threshold 6. Initially, all weights have value
0. Let & > 1 be the promotion and demotion factor. TW2
classifiesdocumentswhosevectorsz = (z1, ..., z,) satisfy
E?:l w;x; > 6 asrelevant, and all othersasirrelevant. |If
the user provides a document that contradicts to the clas-
sification of TW2, then we say that TW2 makes a mistake.
Let w; , and w; , denote the weight w; before the current
update and after, respectively. When the user respondswith
a document which contradicts to the current classification,
TW2 updates the weights in the following two ways:

e Promotion: For adocument judged by the user asrel-
evant with vector = (x1,...,2,),fori=1,...,n,
Set

Wi,b, Zf Ti = 07

Wiq = a, ifx; =1andw;p =0,
ow;p, ifx;=1andw;p # 0.

e Demation: For a document judged by the user as

irrelevant with vector z = (z1,...,z,), for i =

_ Wi
1,...,n,setw;, = .

Let A denote the total number of distinct indexing fea-
tures of all the relevant documents that are judged by the
user during the learning process. The following theoretical
mistake bounds are obtained for TW2.

e To learn a collection of documents represented by a
digunction of at most k£ relevant features over the
n-dimensional Boolean vector space, TW2 makes at

most (224 + (o + 1)k Ing 8 —  mistakes

e \When on the average ! out of k relevant features
appear as indexing features for any relevant docu-
ment judged by the user during the learning pro-
cess, the bound in Theorem 3.2 is improved to

(aa_z‘f)e + (&Dk 10 6 — o on the average.

TW2 has the ability to tolerate feature errors and clas-
sification errors. Given an example z and a Boolean value
b, we say the example z paired with the classification value
b, denoted by < z,b >, hast feature errors with respect to
a target concept ¢, if ¢ is the minima number of features
or bits of z that have to be changed so that b is true if and
only if z € ¢. The number of feature errors with respect
to atarget concept for a sequence of examples paired with
their classification values < z1,b1 >,...,< X, by, > IS
is simply the total number of feature errorsfor the al pairs
< z;,b; >. When alearning agorithm learns a target con-
cept ¢, the feature errors occurred in the learning process
is the number of feature errors with respect to ¢ for the se-
guence of pairs < z1,b1 >,...,< Zm, by >, Where each
x; isan examplereceived by thealgorithmand b; istheclas-
sification value of z; judged by the user. Given an example
z and a Boolean value b, a classification error for the pair
< x,b > with respect to the target concept c isthat b istrue
butz & corbisfasebut z € ¢. Aspointed outin[18],
a classification error can be compensated with at most &
feature errors (or attribute errorsin their term) for any target
concept represented by a digunction of & relevant features.
Hence, we only state feature error-tolerant boundsfor TW2.
The following error-tolerant mistake bound is obtained for
TW2.

e Let Z denote the total number of feature errors oc-
curred during the learning process of a collection of
documents represented by a digunction of at most
k relevant features over the n-dimensional Boolean

vector space, TW2 makes at most - (a +

(a—1)6
DkIng 6 + (o + 1) Z — a mistakes.

When the user judges adocument example x asrelevant,
the indexing features of z may contain more than one rel-
evant feature of the target concept. Thus, a better mistake
bound is also obtained for TW2 in the following.
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¢ When on the average [ out of k relevant features
appear as indexing features for any relevant docu-
ment judged by the user during the learning pro-
cess, then TW2 has an improved mistake bound

A+ R g+ (a+1)Z - o

5. The WebSail

We now present the design and implementation of Web-
Sail and discusshow TW2isused asitslearning component.
Aswe mentioned in the previous section, TW2 must be used
with the help of document ranking and equivalence query
simulation.

5.1. Document Ranking

Let w = (ws,...,w,) bethe weight vector maintained
by TW2. Let g be aranking function independent of TW2.
We define the ranking function f for TW2 as follows: For
any web document d with vector x4 = (21, - - ., Z,),

£(d) = valg(d) + Ba) + 3 wias.

=1

g remains constant for each document d during the learning
process of TW2. Various strategies can be used to define
g, for example, PageRank [5], the classical tf-idf scheme,
vector spread, or cited-based rankings [23]. The two ad-
ditional tuning parameters are used to perform individual
document promotions or demotions of the documents that
have been judged by the user as relevance feedback during
the learning process of TW2. The motivation for individual
document promotionsor demotion isthat when the status of
adocument is determined because of the user’s judgment, it
should be placed closer to the top than the rank supported by
theweighted sum of TW2if it isrelevant or placed closer to
the bottom otherwise. Initialy, let 33 > Oand vy = 1. 4
and 3, can be updated in the similar fashion asw; isupdated
by TW2.

5.2. Equivalence Query Simulation

WebSail uses the ranking function f to rank the docu-
ments classified by TW2 and returnsthe top R relevant doc-
umentsto the user. Thesetop R ranked documentsrepresent
an approximation to the classification made by TW2. The
user can examine this short list of the R documents. If she
feels satisfactory with the result then she can end the search
process. If she finds that some documents in the list are
misclassified, then she can indicate some of those misclas-
sified documents to TW2 as relevance feedback. Because
normally theuser isonly interested in thetop 10 to 50 ranked
documents, R can be tuned between 10 and 50. In order to
provide a better view of the classification made by TW2,
sometimes the system may give the user a second list of R
documents which are ranked below top R. One way for
selecting documentsin the second list is to randomly select
R documents ranked below top R. Another way is to select
the bottom ranked R documents.

5.3. The Architecture of WebSail

WebSail is a real-time adaptive web search learner we
designed and implemented during the winter break of 1999-
2000. It isimplemented on a Sun Ultra-1 workstation with
storage of 27 Giga-byteshard disk on an IBM R6000 work-
station. Our goal of the project is to show that TW2 not
only works in theory but also works in practice. WebSail
employs TW2 asitslearning component and is able to help
the user to search for the desired documents with as little
relevance feedback as possible. Its architectureis given in
Figure 1. A demongtration version of WebSail is available
for interested readers to access via the url given at the end
of the paper.

5.4. How WebSail Works

WebSail hasaninterfaceasshownin Figure2to allow the
user to enter her query and to specify the number of the top
matched document urlsto bereturned. WebSail maintainsan
internal index database of 834,000 documents. Each of those
documentsis indexed with about 300 keywords. It also has
a meta-search component to query AltaVista [a] whenever
needed. When the user enters a query and starts a search
process, WebSail first searchesitsinternal index database. If
no relevant documents can be found within its database then
it receives alist of top matched documents externally with
the help of its meta-search component. WebSail displays
the search result to the user in aformat as shown in Figure
3.

Also asshownin Figure3, at each interaction we provide
thetop R (normally 10) and the bottom R ranked document
urls. Each document url is preceded by two radio buttonsfor
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Figure 3. Initial Query Result for “Colt"

the user to indicate whether the document is relevant to the
search query or not®. The document urls are clickable for
viewing the actual document contents so that the user can
judgewhether adocument isrel evant or not more accurately.
After the user clicks a few radio buttons, she can click the
feedback button to submit the feedback to TW2. WebSail
has a function to parse out the feedback provided by the
user when the feedback button is clicked. Having received
the feedback from the user, TW2 updates its weight vector
w and aso performs individual document promotions or
demotions. It then re-ranksthe documents and displays the
top R and the bottom R document urlsto the user.

At each interaction, the dispatcher of WebSail parses
guery or relevance feedback information from the interface
and decides which of the following components should be
invoked to continue the search process. TW2, or Index
Database Searcher, or Meta-Searcher. When meta-search
is needed, Meta-Searcher is called to query AltaVista [d]
to receive a list of the top matched documents. the Meta-
Searcher has a parser and an indexer that work in real-time
to parse the received documents and to index each of them
with at most 64 keywords. The received documents, once
indexed, will also becachedintheindex database. After this,
WebSail uses TW2 and the ranking function f to process
relevance feedback. Thiskind of real-time client side meta-
search learning feature has been expanded in our project
Yarrow [7].

5.5. The Performance

Theactual performanceof WebSail ispromising. We use
thefollowing relative Recall to measure the performance of

1The search process shown in Figures 3 and 4 was performed on January
25, 2000. The query word is “ colt" and the desired web documents are
thoserelated to “computational learning theory”. After 3interactions and 9
relevant and irrelevant documentsjudged by the user as relevance feedback,
dl thecolt related web documents among theinitial 100 matched oneswere
moved to the top 10 positions.

WebSail: For any query ¢, therelative Recall is

Ry

R b
where R is the total number of relevant documents among
the list of m retrieved documents, and Ry is the number
of relevant documents ranked among the top 20 positions
in the final search result of the search engine. We have
selected 100 queriesto calculate the average relative Recall
of WebSail. Each query is represented by a collection of
at most 5 words. For each query, we tested WebSail with
the returning document number m as 50, 100, 150, 200,
respectively. For each test, we recorded the number of
interactions used and the number of documents judged by
theuser. Therelative Recall was cal cul ated based on manual
examination of therelevanceof thereturned documents. Our
experimentsreveal that WebSail achievesan averageof 0.95
relative Recall with an average of 3.72 interactions and an
average of 13.46 documents judged as relevance feedback.

RrRecant (q) =

6. Concluding Remarks

Web search, an interface between the human users and
the vast information gold mine of the web, has come to
people's daily life as the web evolves. Designing practi-
cally effective web search algorithmsis a challenging task.
It calls for innovative methods and strategies from many
fields including machine learning. As we pointed out web
search can be understood in some sense as on-line learning
from queries. However, few learning algorithms are ready
to be used in web search because of anumber of realistic re-
guirements. In general, the fundamental question about any
learning algorithm is certainly its applicability to the real-
world problems such as web search. Our goal in this paper
isto take Winnow?2 [17] as a starting point to investigate, in
theory and in practice, the applicability of the well-studied
learning algorithmsto the real-world problem of web search.
We design atailored version TW2 of Winnow?2, which has
small enough mistake bounds for practical application to
web search. We have designed and implemented area-time
adaptive web search learner WebSail with TW2 asitslearn-
ing component. WebSail shows that TW2 indeed works
effectively in practice.

Because on-line learning is incremental and depends on
the history of alearning processto improvelearning perfor-
mance, WebSail creates and maintains a specific thread for
each web search process. When asearch processisfinished,
its related thread will be terminated. We believe from our
experiencethat on-linelearning algorithmssuch as TW2 can
bewell employed at the client side asaplug-in component of
the web browser to effectively help the user search the web.
However, it may not be very redlistic to employ an on-line
learning algorithm at a popular web server side. Because a
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Figure 4. Refined Result for “colt" after 3 In-
teractions and 9 Examples

popular web server may have thousands of users accessing
it in every single minute, it cannot afford to maintain too
many threads for individual search processes.

URL References:

[a] AltaVistas www.altavista.com.

[b] Yahoo!: www.yahoo.com.

[c] Google: www.google.com.

[d] WebSail:
www.cs.panam.edu/chen/WebSearch/WebSail .html.
[€] Yarrow:
www.cs.panam.edu/chen/WebSearch/Yarrow.html .
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