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Abstract

In this paper we investigate the applicability of on-line
learning algorithms to the real-world problem of web search.
Consider that web documents are indexed using � Boolean
features. We first present a practically efficient on-line learn-
ing algorithm TW2 to search for web documents represented
by a disjunction of at most

�
relevant features. We then

design and implement WebSail, a real-time adaptive web
search learner, with TW2 as its learning component. Web-
Sail learns from the user’s relevance feedback in real-time
and helps the user to search for the desired web documents.
The architecture and performance of WebSail are also dis-
cussed.

1. Introduction

Nowadays there are a number of search engines for peo-
ple to search for their desired web documents. Each of the
existing search engines has a unique interface and an index
database covering a different portion of the web. They have
proved both useful and popular. In general, when using a
search engine the user needs to repeatedly refine her query as
she does not have enough knowledge to formulate the query
precisely. Usually the search engine returns tremendously
many urls of web documents that are irrelevant, forcing the
user to manually sift through the long list to locate the de-
sired documents.

The way the user uses a search engine is much like a
dialogue between the user and the engine: The user sends a
query to the engine, and the engine uses the query to search

the index database and returns a list of document urls. Then,
the user provides the engine relevance feedback, and the en-
gine uses the feedback to improve its next search and returns
a refined list of document urls. The dialogue ends when the
engine finds the desired documents for the user. Note that
conceptually a query entered by the user can be understood
as the logical expression of the collection of the documents
wanted by the user. A list of document urls returned by the
engine can be interpreted as an approximation to the col-
lection of the desired documents. This type of scenario is
very similar to the process of on-line learning with queries
[1, 17], when the user acts as a teacher and the engine as a
learner.

Unfortunately, in reality, the user is not qualified as a
teacher as modeled in on-learning [1, 17]. Although the
average user (at the common sense level) knows what kinds
of documents she wants, it is difficult, if not impossible, for
her to inform the search engine what is wanted in an easy
way so that the search engine understands. Even when dis-
junctions or conjunctions of keywords are chosen as the way
of expressing the search goal as existing search engines do,
the user may not know what set of keywords she should use
to define the collection of the desired documents precisely.
On the other hand, having received relevance feedback from
the user, the search engine needs to find an efficient way
to use the feedback so that it can, in real-time, improve the
result of its next search.

From the perspective of machine learning, the funda-
mental question about any learning algorithm is of course
its applicability to real-world problems. Especially when
the real-world problem of web search is concerned, few
theoretically well-established learning algorithms are ready
to use, not only because the user cannot be modeled as a



teacher, but also because the user may make mistakes and
has no patience to try more than a couple of dozens of inter-
actions. Other practical factors such as real-time computing,
indexing and ranking are involved as well.

In this paper, we first investigate the applicability of on-
line learning algorithms to web search. Since existing search
engines support queries represented by disjunctions or con-
junctions of features, we especially want to know how to
use on-line learning algorithms to search for a collection of
documents represented by a disjunction of at most

�
rel-

evant features. The conjunction case can be coped with
similarly. We choose Winnow2 [17] as the starting point of
our investigation because it has error-tolerant ability and an
inherent ranking mechanism (the inner product of the weight
vector and the document vector) as well as small updating
complexity. It also has the best known mistake bounds for
learning disjunctions of at most

�
relevant features for small

�
. However, the mistake bounds of Winnow are still too high

for practical use in web search. For example, with tuning
parameters ��� 1 � 5 and

� ���� , the mistake bound of Win-
now2 is 13

�	�
14

�
ln � � for learning a disjunction of at most

�
relevant features over the Boolean vector space 
 0 � 1 � � .

As it is known, usually a huge vocabulary of keywords is
used to index documents in web search. If, for example,
the vocabulary has just 10,000 keywords, then about 600 re-
finements (or mistakes) are needed when Winnow2 is used
to search for documents represented by a disjunction of at
most 5 relevant keywords. Obviously, these refinements are
too many for any user.

We examine the properties of document indexing, and
design a tailored version TW2 of Winnow2 in section 3 for
the real-world problem of web search. In search for a col-
lection of documents represented by a disjunction of at most

�
relevant features, the mistake bound of TW2 is at most�� 1

��� ��� � � 1 � �
log  ��� � , where � is the promotion

and demotion parameter,
�

is the threshold, and � is total
number of distinct features used to index all the positive ex-
amples (documents judged by the users as relevant) received
in the search process. Other bounds are also obtained for
tolerating feature errors and for the average number of rele-
vant features occurred in each positive example. In practice
� is very small, especially when meta-search is concerned.
For example, in the project Yarrow [7] that we have imple-
mented, � is usually smaller than 640 when the top 100
matches are needed. Even if we assume ��� 10 � 000 for the
purpose of comparison, for ��� 1 � 5 and

� � �5 , TW2 makes
about about 256 mistakes in the worst case for learning a
disjunction of at most 5 relevant features. For ��� 1 � 000,
the worst case mistake bound of TW2 is 194 for learning the
same disjunction.

We have implemented a real-time adaptive web search
learner WebSail [d] with TW2 as its learning component.
Interested readers can access WebSail via its url given at the

end of the paper. WebSail learns from the user’s relevance
feedback and helps the user to search for the desired doc-
uments with as little relevance feedback as possible. It is
implemented on a Sun Ultra one workstation with storage
of 27 Giga-bytes hard disk on an IBM R6000 workstation.
It has an internal index database and a meta-search compo-
nent through AltaVista [a]. Each document in the internal
database is indexed using about 300 keywords. When the
user performs a search process, WebSail first searches its
internal database. If no matches can be found for the query
within the internal database, then it turns to its meta-search
component to receive the matched documents through Al-
taVista [a] and then performs the learning process locally.

There have been considerable efforts applying machine
learning to web search related applications, for example, sci-
entific article locating and user profiling [3, 4, 15], focused
crawling [20], and collaborative filtering [19].

The remaining part of this paper is organized as follows.
In section 2, we examine the similarity between on-line
learning and web search, and discuss what properties a learn-
ing algorithm should have in order to be applicable to web
search. In section 3 we discuss some difference between on-
learning approach to web search and the similarity-based
relevance feedback algorithm in information retrieval. In
section 4, we examine the property of web document in-
dexing and design the learning algorithm TW2, a tailored
version of Winnow2 [17] for web search. In section 5,
we discuss practical issues such as document ranking and
equivalence query simulation regarding the actual employ-
ment of TW2 as a learning component in WebSail [d]. We
also discuss the architecture and performance of WebSail.
We conclude the paper in section 6.

2. On-Line Learning vs. Web Search

In the on-line learning model [1, 17] with equivalence
queries, the goal of a learner for learning a concept class
C over the domain Z is to learn any unknown target con-
cept ���� C that has been fixed by a teacher. In order to
obtain information about �!� , the learner can ask the teacher
equivalence queries by proposing hypotheses " from a fixed
hypothesis space H over # with $&%(' . If ")�*�!� , then the
teacher says “ +-,/. ”, so the learner succeeds. If "�0�1�2� , then
the teacher responds with an example 3 in

� �2� � "4�/5 � " � ���6�
for some 3� 7# . In such a case, we say that the algorithm
make a mistake. 3 is called a positive example if it is in
� � and a negative example otherwise. Each new hypothesis
issued by the leaner may depend on the earlier hypotheses
and the examples received so far. A learner exactly learns
$ , if for any target concept � �  8$ , it can learn � � . We say
that a class C is polynomial time learnable if a learner can
exactly learn any target concept in C and the time required
by the learner is polynomial in the size of the domain and



the size of the target concept. Besides the time complexity
of the algorithm, we are also interested in the total number
of mistakes the algorithm may make in order to learn any
target concept � �  $ . It is easy to see that the number
of equivalence queries needed by the learning algorithm to
learn the target concept is one plus the number of mistakes
the algorithm may make during its learning process.

We now consider how to use on-line learning from equiv-
alence queries to approach the problem of web search. We
use the vector space model [21, 22, 2] to represent docu-
ments. The vector space may consist of boolean vectors. It
may also consist of discretized vectors, for example the fre-
quency vector of the indexing keywords. A target concept
is a collection of documents, which is equivalent to the set
of vectors of the documents in the collection. The learner is
the search engine and the teacher is the user. The goal of the
search engine is to find the target concept in “real-time" with
a minimal number of mistakes (or equivalence queries).

Let us define an interaction between the user and the
search engine as the process that starts at the time the user
provides her feedback (or search query at the very beginning
of the search) to the search engine and ends at the time the
search engine displays the search result back to the user. At
each interaction, it is not unreasonable to assume that the
user can on the average judge five documents as relevant or
irrelevant to provide relevance feedback to the search en-
gine. On the average no user would like to perform more
than a dozen of interactions. Hence, we consider that on
the average the user may judge about 60 documents as rele-
vance feedback to the search engine during the entire search
process. Since existing search engines support disjunctions
or conjunctions of features as query formation that is prac-
tically acceptable by the average user, in this paper we will
focus on the problem of searching for collections of web
documents represented by disjunctions of relevant features.
Conjunctions can be coped with similarly. Based on the
above analysis, a learning algorithm L should have the fol-
lowing properties in order to be applicable to the real-world
problem of web search:

� L should have the ability to tolerate errors such as
feature errors and classification errors.

� L should have a “practically small" mistake bound.
For example, when used to search for documents rep-
resented by a disjunction of at most

�
relevant fea-

tures, its mistake bound should be very small, say,
about 60 for

� � 5.

� L should have a built-in ranking mechanism to move
the most relevant documents to the top and the least
relevant to the bottom.

� Finally, its computation for each interaction should be
performed in time linear in the dimensionality of the

vector space, or a few dozens of seconds in practice.

In reality, the user is definitely not qualified as a “teacher"
as modeled in on-line learning [1, 17]. She does not know
the logical representation of the target concept, nor how to
answer equivalence queries. However, it is reasonable to
assume that the user can judge whether a particular web
document is relevant or not to her search, though she may
also make mistakes in this aspect. It should be pointed out
that there are cases in which the user may not be able to
tell whether a web document is relevant or not. Such cases
are beyond the scope of this paper and should be studied in
future research.

3. On-Line Learning vs. Similarity-Based Rel-
evance Feedback

One should distinguish our on-line learning approach to
web search from the similarity-based relevance feedback al-
gorithm in information retrieval [21, 2, 12, 11, 13]. The
central idea of relevance feedback is to improve search per-
formance for a particular query by modifying the query step
by step, based on the user’s judgments of the relevance or
irrelevance of some of the documents retrieved. In the vec-
tor space model [21, 22], both documents and queries are
represented as vectors in a discretized vector space. In this
case, relevance feedback is essentially an on-line learning
algorithm: A query vector and a similarity measure are used
to classify documents as relevant and irrelevant; the user’s
judgments of the relevance or irrelevance of some the classi-
fied documents are used as examples for updating the query
vector as a linear combination of the initial query vector
and the examples judged by the user. Especially, when the
inner product similarity is used, relevance feedback is just a
Perceptron-like learning algorithm [16, 9].

There are many different variants of relevance feedback
in information retrieval. The most popular one is Rocchio’s
similarity-based relevance feedback algorithm [13, 11, 21],
which works in a step by step adaptive refinement fashion
as follows. Starting at an initial query vector � 1, the algo-
rithm searches for all the documents � such that � is very
close to � 1 according to the similarity � , ranks them by
� � �-���-� , and finally presents a short list of the top ranked
documents to the user. The user examines the returned list
of documents and judges some of the documents as relevant
or irrelevant. At step ��� 1, assume that the list of docu-
ments the user judged is 3 1 �!�2�!�2� 3 � � 1. Then, the algorithm
updates its query vector as � � �*� � 0 � 1

�
	 � � 1���
1 � �� 3 � � where

the coefficients � ��  �� for �8� 0 � 1 �2�!�!����� � 1. At step
� � 1, the algorithm uses the updated query vector � � and
the similarity � to search for relevant documents, ranks the
documents according to � , and presents the top ranked doc-
uments to the user. In practice, a threshold

�
is explicitly



(or implicitly) used to select the highly ranked documents.
Practically, the coefficients � �  may be fixed as 1 � � 1 or 0 � 5
[2, 21].

Some formal analysis about Rocchio’s similarity-based
relevance feedback was given in [9]. It was proved in [9] that
in the Boolean vector space model, for any of the four typi-
cal similarities (inner product, dice coefficient, cosine coef-
ficient, and Jaccard coefficient), Rocchio’s similarity-based
relevance feedback algorithm makes at least

� � � � �
3 ��� 2

mistakes when used to search for a collection of documents
represented by a monotone disjunction of at most

�
rele-

vant features over the � -dimensional Boolean vector space

 0 � 1 � � . The lower bounds are independent of the choices
of the threshold and coefficients that the algorithm may use
in updating its query vector and making its classification.

The lower bounds established in [9] for Rocchio’s
similarity-based relevance feedback algorithm is based on
the worst case analysis, hence they may not affect the al-
gorithm’s effective applicability to the real-world problems
despite of their theoretical significance. On the other hand,
the formal analysis motivates us to design new learning algo-
rithms for information retrieval. As the first step, we design
TW2 in the next section. TW2 has a provable better mis-
takes bounds for learning disjunctions of at most

�
relevant

features for very small
�

when the inner product similarity
measure is used.

4. The Algorithm TW2

When a set of � Boolean-valued features are used to
index web documents, a document is represented as a vector
in the � -dimensional space 
 0 � 1 � � . Given any document � ,
let ��� � 3 1 �!�!�2�!� 3 � � denote its vector representation. Define

���	� 3�
 1 �!�2�!� � 3�
��� � 
 ��� ��� � 3 1 �!�2�!� � 3 � ���� 3�
 1 ��������� 3�
��/������ � � � � 
 ���	� 3�
 1 �!�2�!�!� 3�
����� 1 � . � � ���
In other words,

����� 3�
 1 �2�!�!�2� 3�
���� is a collection of docu-
ments whose vectors satisfy the monotone disjunction of
3�
 1 �!�!�2� � 3�
�� , and

��� � � � is the class of all collections of
documents represented by monotone disjunctions of at most

�
relevant feature variables. Using machine learning tech-

niques, several efficient algorithms have been constructed in
[8] for searching any collection of documents in

��� � � � .
Many theoretically efficient algorithms exist for learn-

ing disjunctions of at most
�

relevant features. But few
meet the applicability requirements as discussed in section
2. Winnow2 [17] meets all the requirements except that its
mistake bound, though optimal within a constant factor, is
still too high for web search users. Because of the

�
log2 � �

lower bound [17] for learning a disjunction of
�

relevant
features in the � -dimensional Boolean vector space, it is

essentially impossible to improve the upper bound of Win-
now2 in general. However, we can exploit the properties of
web document indexing, and seek opportunities to reduce
the bound in the concrete case of web search.

Definition 4.1. Given any feature 3 and any document � ,
3 is said to be an indexing feature for the document � , if the
corresponding component of the feature 3 in the document
vector � � is 1.

Although a huge collection of features ( in the simplest
case, keywords) are needed and used to index web docu-
ments, for each particular document � , the number of its
indexing features is relatively small. One can easily note
that a web hypertext document may have several hundreds
of distinct keywords, while a good dictionary may have over
100,000 words. One may argue that there are long docu-
ments. This is certainly true. But as far as indexing is
concerned, not all words in a long document are needed to
index it. Instead, a small portion of the words may be used.
To the end, indexing is closely related to classification. The
depth of the Yahoo! [b] classification tree is about 30. Also
for the efficiency consideration of web crawling, normally
only the first a few kilobytes of a document is extracted,
when it is long. The current version of the http protocol
allows the creator of a web document to list keywords as
meta-attributes in a document for the purpose of indexing or
classification. People may list about a couple of dozens of
keywords. If everyone adds meta-attributes to her web doc-
uments, then the challenging problem of document indexing
or classification would be resolved with automatic extrac-
tion of those keywords. As far as the authors understand,
e-commerce related web documents tend to aggressively
employ those kinds of meta-attributes. This may influence
average web users to follow the practice.

When the user queries a search engine, the engine finds
the matched documents, ranks them and returns the top
ranked ones to the user. Various strategies have been stud-
ied for document ranking to move the most relevant docu-
ments to the top and the least relevant to the bottom. For
example, the classical tf-idf scheme, vector spread, or cited-
based rankings [23]; the algorithm for locating authorities
and hubs [14, 6, 10] which works effectively for document
ranking related to broad topic queries; and PageRank [5]
which is the key ranking method for Google [b]. A learn-
ing algorithm for web search should be constructed to take
advantage of the existing ranking mechanisms. More pre-
cisely, when the user queries a search engine, the learning
algorithm should use the list returned by the search engine
as its initial search space, it then uses relevance feedback
from the user to effectively propagate the user’s preference
within the initial list of documents returned and other doc-
uments in the database as well. Because the user is really
interested in a short list of the top matched (or relevant)
documents, the learning algorithm should at the beginning
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Figure 1. Architecture of WebSail

pay more attention to the propagation of the influence of the
relevant documents judged by the user.

We now design TW2, a tailored version of Winnow2, to
exploit the particular nature of web search. We also present
four mistake bounds for TW2 in this section. The actual
implementation of TW2 along with document ranking and
equivalence query simulation will be given in the next sec-
tion. The key difference between TW2 and Winnow2 is
that Winnow2 sets all initial weights to 1, while TW2 sets
all initial weights to 0 and thus it has a different promotion
strategy accordingly. The rationale behind setting all the ini-
tial weights to 0 is not as simple as it looks. The motivation
is to focus attention on the propagation of the influence of
the relevant documents, and use irrelevant documents to ad-
just the focused search space. Moreover, this approach can
be effectively implemented because existing effective docu-
ment ranking mechanisms can be coupled with the learning
process as discussed in next section.

The Algorithm TW2 (The Tailored Winnow2). TW2
maintains non-negative real-valued weights � 1 �2�!�!�!��� � for
features � � � 1 �!�!�2�!��� � � � , respectively. It also maintains a
real-valued threshold

�
. Initially, all weights have value

0. Let ��� 1 be the promotion and demotion factor. TW2
classifies documents whose vectors 3 � � 3 1 �!�2�!� � 3 � � satisfy	 �
 � 1 � 
 3 
 � � as relevant, and all others as irrelevant. If
the user provides a document that contradicts to the clas-
sification of TW2, then we say that TW2 makes a mistake.
Let � 
�� � and � 
�� 	 denote the weight � 
 before the current
update and after, respectively. When the user responds with
a document which contradicts to the current classification,
TW2 updates the weights in the following two ways:

� Promotion: For a document judged by the user as rel-
evant with vector 3 � � 3 1 �!�2�!�!� 3 � � , for 
 � 1 �!�2�!� � � ,
set

� 
�� 	 �
� � � 
�� �2� 
���3�
 � 0 �
� � 
���3�
 � 1 � � ��� 
�� � � 0 �
��� 
�� �2��
���3�
 � 1 � � ��� 
�� � 0� 0 �

� Demotion: For a document judged by the user as

irrelevant with vector 3 � � 3 1 �2�!�2�!� 3 � � , for 
 �
1 �2�!�2�!� � , set � 
�� 	 ������� � .

Let � denote the total number of distinct indexing fea-
tures of all the relevant documents that are judged by the
user during the learning process. The following theoretical
mistake bounds are obtained for TW2.

� To learn a collection of documents represented by a
disjunction of at most

�
relevant features over the

� -dimensional Boolean vector space, TW2 makes at
most

 2 ��  � 1 � � �*� � � 1 � �
ln  � � � mistakes.

� When on the average � out of
�

relevant features
appear as indexing features for any relevant docu-
ment judged by the user during the learning pro-
cess, the bound in Theorem 3.2 is improved to 2 ��  � 1 � � � � �� 1 � � ln  � � � on the average.

TW2 has the ability to tolerate feature errors and clas-
sification errors. Given an example 3 and a Boolean value!
, we say the example 3 paired with the classification value!
, denoted by "*3 � ! � , has � feature errors with respect to

a target concept � , if � is the minimal number of features
or bits of 3 that have to be changed so that

!
is true if and

only if 3* � . The number of feature errors with respect
to a target concept for a sequence of examples paired with
their classification values " 3 1 � ! 1 � �!�2�!� �#" 3�$ � ! $%� is
is simply the total number of feature errors for the all pairs" 3�
 � ! 
&� . When a learning algorithm learns a target con-
cept � , the feature errors occurred in the learning process
is the number of feature errors with respect to � for the se-
quence of pairs " 3 1 � ! 1 � �!�2�!� �#" 3 $ � ! $ � , where each
3�
 is an example received by the algorithm and

! 
 is the clas-
sification value of 3�
 judged by the user. Given an example
3 and a Boolean value

!
, a classification error for the pair" 3 � ! � with respect to the target concept � is that

!
is true

but 3�0 � or
!

is false but 3  � . As pointed out in [18],
a classification error can be compensated with at most

�

feature errors (or attribute errors in their term) for any target
concept represented by a disjunction of

�
relevant features.

Hence, we only state feature error-tolerant bounds for TW2.
The following error-tolerant mistake bound is obtained for
TW2.

� Let ' denote the total number of feature errors oc-
curred during the learning process of a collection of
documents represented by a disjunction of at most

�
relevant features over the � -dimensional Boolean

vector space, TW2 makes at most
 2 ��  � 1 � � � � � �

1 � �
ln  � �*� � � 1 ��' � � mistakes.

When the user judges a document example 3 as relevant,
the indexing features of 3 may contain more than one rel-
evant feature of the target concept. Thus, a better mistake
bound is also obtained for TW2 in the following.



Figure 2. Interface of WebSail

� When on the average � out of
�

relevant features
appear as indexing features for any relevant docu-
ment judged by the user during the learning pro-
cess, then TW2 has an improved mistake bound 2 ��  � 1 � � � �  � 1 � � ln  � �*� � � 1 � ' � � .

5. The WebSail

We now present the design and implementation of Web-
Sail and discuss how TW2 is used as its learning component.
As we mentioned in the previous section, TW2 must be used
with the help of document ranking and equivalence query
simulation.

5.1. Document Ranking

Let � � � � 1 �2�!�!�!��� � � be the weight vector maintained
by TW2. Let g be a ranking function independent of TW2.
We define the ranking function � for TW2 as follows: For
any web document � with vector 3 � � � 3 1 �!�!�2�!� 3 � � ,

� � �-� � � � � � � � � ��� � � � ��

 � 1

� 
 3�
 �
�

remains constant for each document � during the learning
process of TW2. Various strategies can be used to define�

, for example, PageRank [5], the classical tf-idf scheme,
vector spread, or cited-based rankings [23]. The two ad-
ditional tuning parameters are used to perform individual
document promotions or demotions of the documents that
have been judged by the user as relevance feedback during
the learning process of TW2. The motivation for individual
document promotions or demotion is that when the status of
a document is determined because of the user’s judgment, it
should be placed closer to the top than the rank supported by
the weighted sum of TW2 if it is relevant or placed closer to
the bottom otherwise. Initially, let

� � � 0 and � � � 1. � �
and
� � can be updated in the similar fashion as � 
 is updated

by TW2.

5.2. Equivalence Query Simulation

WebSail uses the ranking function � to rank the docu-
ments classified by TW2 and returns the top � relevant doc-
uments to the user. These top � ranked documents represent
an approximation to the classification made by TW2. The
user can examine this short list of the � documents. If she
feels satisfactory with the result then she can end the search
process. If she finds that some documents in the list are
misclassified, then she can indicate some of those misclas-
sified documents to TW2 as relevance feedback. Because
normally the user is only interested in the top 10 to 50 ranked
documents, � can be tuned between 10 and 50. In order to
provide a better view of the classification made by TW2,
sometimes the system may give the user a second list of �
documents which are ranked below top � . One way for
selecting documents in the second list is to randomly select
� documents ranked below top � . Another way is to select
the bottom ranked � documents.

5.3. The Architecture of WebSail

WebSail is a real-time adaptive web search learner we
designed and implemented during the winter break of 1999-
2000. It is implemented on a Sun Ultra-1 workstation with
storage of 27 Giga-bytes hard disk on an IBM R6000 work-
station. Our goal of the project is to show that TW2 not
only works in theory but also works in practice. WebSail
employs TW2 as its learning component and is able to help
the user to search for the desired documents with as little
relevance feedback as possible. Its architecture is given in
Figure 1. A demonstration version of WebSail is available
for interested readers to access via the url given at the end
of the paper.

5.4. How WebSail Works

WebSail has an interface as shown in Figure 2 to allow the
user to enter her query and to specify the number of the top
matched document urls to be returned. WebSail maintains an
internal index database of 834,000 documents. Each of those
documents is indexed with about 300 keywords. It also has
a meta-search component to query AltaVista [a] whenever
needed. When the user enters a query and starts a search
process, WebSail first searches its internal index database. If
no relevant documents can be found within its database then
it receives a list of top matched documents externally with
the help of its meta-search component. WebSail displays
the search result to the user in a format as shown in Figure
3.

Also as shown in Figure 3, at each interaction we provide
the top � (normally 10) and the bottom � ranked document
urls. Each document url is preceded by two radio buttons for



Figure 3. Initial Query Result for “Colt"

the user to indicate whether the document is relevant to the
search query or not1. The document urls are clickable for
viewing the actual document contents so that the user can
judge whether a document is relevant or not more accurately.
After the user clicks a few radio buttons, she can click the
feedback button to submit the feedback to TW2. WebSail
has a function to parse out the feedback provided by the
user when the feedback button is clicked. Having received
the feedback from the user, TW2 updates its weight vector� and also performs individual document promotions or
demotions. It then re-ranks the documents and displays the
top � and the bottom � document urls to the user.

At each interaction, the dispatcher of WebSail parses
query or relevance feedback information from the interface
and decides which of the following components should be
invoked to continue the search process: TW2, or Index
Database Searcher, or Meta-Searcher. When meta-search
is needed, Meta-Searcher is called to query AltaVista [a]
to receive a list of the top matched documents. the Meta-
Searcher has a parser and an indexer that work in real-time
to parse the received documents and to index each of them
with at most 64 keywords. The received documents, once
indexed, will also be cached in the index database. After this,
WebSail uses TW2 and the ranking function � to process
relevance feedback. This kind of real-time client side meta-
search learning feature has been expanded in our project
Yarrow [7].

5.5. The Performance

The actual performance of WebSail is promising. We use
the following relative Recall to measure the performance of

1The search process shown in Figures 3 and 4 was performed on January
25, 2000. The query word is “colt" and the desired web documents are
those related to “computational learning theory". After 3 interactions and 9
relevant and irrelevant documents judged by the user as relevance feedback,
all the colt related web documents among the initial 100 matched ones were
moved to the top 10 positions.

WebSail: For any query � , the relative Recall is

������� 	   � � � � � 20

� �
where � is the total number of relevant documents among
the list of � retrieved documents, and � 20 is the number
of relevant documents ranked among the top 20 positions
in the final search result of the search engine. We have
selected 100 queries to calculate the average relative Recall
of WebSail. Each query is represented by a collection of
at most 5 words. For each query, we tested WebSail with
the returning document number � as 50, 100, 150, 200,
respectively. For each test, we recorded the number of
interactions used and the number of documents judged by
the user. The relative Recall was calculated based on manual
examination of the relevance of the returned documents. Our
experiments reveal that WebSail achieves an average of 0 � 95
relative Recall with an average of 3.72 interactions and an
average of 13.46 documents judged as relevance feedback.

6. Concluding Remarks

Web search, an interface between the human users and
the vast information gold mine of the web, has come to
people’s daily life as the web evolves. Designing practi-
cally effective web search algorithms is a challenging task.
It calls for innovative methods and strategies from many
fields including machine learning. As we pointed out web
search can be understood in some sense as on-line learning
from queries. However, few learning algorithms are ready
to be used in web search because of a number of realistic re-
quirements. In general, the fundamental question about any
learning algorithm is certainly its applicability to the real-
world problems such as web search. Our goal in this paper
is to take Winnow2 [17] as a starting point to investigate, in
theory and in practice, the applicability of the well-studied
learning algorithms to the real-world problem of web search.
We design a tailored version TW2 of Winnow2, which has
small enough mistake bounds for practical application to
web search. We have designed and implemented a real-time
adaptive web search learner WebSail with TW2 as its learn-
ing component. WebSail shows that TW2 indeed works
effectively in practice.

Because on-line learning is incremental and depends on
the history of a learning process to improve learning perfor-
mance, WebSail creates and maintains a specific thread for
each web search process. When a search process is finished,
its related thread will be terminated. We believe from our
experience that on-line learning algorithms such as TW2 can
be well employed at the client side as a plug-in component of
the web browser to effectively help the user search the web.
However, it may not be very realistic to employ an on-line
learning algorithm at a popular web server side. Because a



Figure 4. Refined Result for “colt" after 3 In-
teractions and 9 Examples

popular web server may have thousands of users accessing
it in every single minute, it cannot afford to maintain too
many threads for individual search processes.

URL References:

[a] AltaVista: www.altavista.com.
[b] Yahoo!: www.yahoo.com.
[c] Google: www.google.com.
[d] WebSail:
www.cs.panam.edu/chen/WebSearch/WebSail.html.
[e] Yarrow:
www.cs.panam.edu/chen/WebSearch/Yarrow.html.

References

[1] D. Angluin. Queries and concept learning. Machine Learn-
ing, 2:319–432, 1987.

[2] R. Baeza-Yates and B. Riberiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[3] K. Bollacker, S. Lawrence, and C. L. Giles. Citeseer: An
autonomous web agent for automatic retrieval and identifi-
cation of interesting publications. In Proceedings of the Sec-
ond International Conference on Autonomous Agents, pages
116–113, New York, 1998. ACM Press.

[4] K. Bollacker, S. Lawrence, and C. L. Giles. A system for
automatic personalized tracking of scientific literature on
the web. In Proceedings of the Fourth ACM Conference on
Digital Libraries, pages 105–113, New York, 1999. ACM
Press.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine. In Proceedings of the Seventh World
Wide Web Conference, 1998.

[6] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan,
D. Gibson, and J. Kleinberg. Automatic resource compi-
lation by analyzing hyperlink structure and associated text.

In Proceedings of the Seventh World Wide Web Conference,
pages 65–74, 1998.

[7] Z. Chen and X. Meng. Yarrow: A real-time client site meta
search learner. Proceedings of the AAAI 2000 Workshop on
Artificial Intelligence for Web Search, July 2000.

[8] Z. Chen, X. Meng, and R. H. Fowler. Searching the web
with queries. Knowledge and Information Systems, 1:369–
375, 1999.

[9] Z. Chen and B. Zhu. Some formal analysis of the rocchio’s
similarity-based relevance feedback algorithm. Technical
Report CS-00-22, Dept. of Computer Science, University of
Texas-Pan American, March 2000.

[10] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. In Proceedings of the Ninth
ACM Conference on Hypertext and Hypermedia, 1998.

[11] E. Ide. Interactive search strategies and dynamic file or-
ganization in information retrieval. In G. Salton, editor,
The Smart System - Experiments in Automatic Document
Processing, pages 373–393, Englewood Cliffs, NJ, 1971.
Prentice-Hall Inc.

[12] E. Ide. New experiments in relevance feedback. In G. Salton,
editor, The Smart System - Experiments in Automatic Doc-
ument Processing, pages 337–354, Englewood Cliffs, NJ,
1971. Prentice-Hall Inc.

[13] J. J.J. Rocchio. Relevance feedback in information retrieval.
In G. Salton, editor, The Smart Retrieval System - Experi-
ments in Automatic Document Processing, pages 313–323,
Englewood Cliffs, NJ, 1971. Prentice-Hall, Inc.

[14] J. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. Journal of ACM, 46(5):604–632, 1999.

[15] S. Lawrence, K. Bollacker, and C. L. Giles. Indexing and
retrieval of scientific literature. In Proceedings of the Eighth
ACM International Conference on Information and Knowl-
edge Management, 1999.

[16] D. Lewis. Learning in intelligent information retrieval. In
Proceedings of the Eighth International Workshop on Ma-
chine Learning, pages 235–239, 1991.

[17] N. Littlestone. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learn-
ing, 2:285–318, 1988.

[18] W. Maass and M. Warmuth. Efficient learning with virtual
threshold gates. Information and Computation, 141(1):66–
83, 1998.

[19] A. Nakamura and N. Abe. Collaborative filtering using
weighted majority prediction algorithms. In Machine Learn-
ing: Proceedings of the Fifteenth International Conference,
1998.

[20] J. Rennie and A. McCallum. Using reinforcement learning
to spider the web efficiently. In Proceedings of the Sixteenth
International Conference on Machine Learning, 1999.

[21] G. Salton. Automatic Text Processing: The Transforma-
tion, Analysis, and Retrieval of Information by Computer.
Addison-Wesley, 1989.

[22] G. Salton, A. Wong, and C. Yang. A vector space model for
automatic indexing. Comm. of ACM, 18(11):613–620, 1975.

[23] B. Yuwono and D. Lee. Search and ranking algorithms for
locating resources on the world wide web. In Proceedings
of the International Conference on Data Engineering, pages
164–171, New Orleans, USA, 1996.


