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Abstract. The pattern of aquaporin-1 water channel protein

(AQP1) expression in the human kidney was analyzed by
immunocytochemistry using semi-thin and optimized high-

resolution immunoelectron microscopy based on freeze-substi-

tuted and Lowicryl HM2O embedded tissue. In addition, in situ

hybridization was used to determine AQP1 mRNA distribu-

tion. Immunoblots revealed a 28-kd band and a 35- to 45-kd

band corresponding to unglycosylated and glycosylated AQP1.

Glomerular capillary endothelium exhibited extensive AQP1

labeling, whereas glomerular podocytes and Bowman’s cap-

sule epithelium were unlabeled. AQP1 was localized in the

proximal tubule, including the neck region directly connected

to the glomerulus. However, there was a marked difference in

the level of expression between cross-sections of the convo-

luted part and the proximal straight tubules, the latter display-

ing the most intense labeling. AQP1 labeling continued unin-

terrupted from the proximal straight tubule into descending

thin limbs in outer medulla. Abrupt transitions from heavily

labeled to unlabeled segments of thin limbs were observed,

primarily in the inner medulla. This may represent the transi-

tion from the water-permeable thin descending limb to the

water-impermeable thin ascending limb. In addition, heavy

labeling of fenestrated endothelium was also observed in pen-

tubular capillaries in cortex, outer medulla, and inner medulla.

Immunolabeling controls were negative. In situ hybridization

documented a marked difference in AQP1 mRNA levels within

the proximal tubule, with the greatest AQP1 mRNA expression

in straight proximal tubules. Glomeruli also showed marked

signals, and descending thin limbs exhibited extensive expres-

sion in exact concordance with the immunocytochemical re-

sults. It was concluded that: (1) AQP1 is present in all proximal

tubule segments, including segment 1 and the neck region, but

there is a pronounced difference in expression levels with

respect to both protein and mRNA levels; (2) AQP1 labeling is

observed in the endothelium of fenestrated peritubular capil-

lanes, as well as fenestrated glomerular capillaries; (3) AQP1
labeling continues directly from proximal tubules to descend-

ing thin limbs; and (4) abrupt transitions from labeled to

unlabeled thin limb epithelium are noted. (J Am Soc Nephrol

8: 1-14, 1997)

The aim of the study presented here was to investigate the

localization of aquaporin-1 water channel protein (AQP1) in

the human kidney and thereby to obtain information about the

potential role of this water channel in human renal physiology.

Particular emphasis has been placed on a comparison with the

distribution of AQP1 in the rat kidney, where detailed studies

have been performed (5,17,18,22; for recent reviews, see Ref-

erences 7 and 16). This seems particularly important because

the architectural and ultrastructural organization of the human

kidney-especially in the outer and inner medulla-is com-

plex, and detailed electron microscopical analyses (4,15,24,25)

have revealed ultrastructural characteristics that differ in many

respects from the ultrastructural organization of the rat nephron

(for reviews, see References 9, 12, 14, and 26). To achieve a

precise cellular localization of AQP1 in the human kidney,

immunoelectron microscopic analyses were performed using
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Lowicryl sections of cryosubstituted tissue, which retain anti-

genicity and give uniform labeling efficiency combined with

optimal ultrastructural preservation. This allowed direct corn-

pai-ison of the expression of AQP1 from segment to segment,

and from cell to cell. To further substantiate the expression of

AQP1 in different nephron segments AQP1 mRNA was local-

ized by in situ hybridization.

AQP1 is the first molecular water channel to have been

identified (20,27) and its discovery has led to the characteriza-

tion of a family of membrane water channels, the aquaporins

(1,7,16). The cellular and subcellular localization of AQP1 in

the rat kidney has been thoroughly examined by immunoper-

oxidase, immunofluorescence, and immunoelectron micros-

copy using cryosections and Lowicryl sections. AQP1 is ex-

pressed abundantly in the proximal tubule, although the initial

portion of the proximal tubule exhibits substantially lower

immunolabeling signals ( 1 8). The expression continues into

descending thin limbs of both short loops and long loops in the

renal medulla (17,18). There is an abrupt transition from la-

beled cells in the descending thin limb to unlabeled cells in the

ascending thin limb, consistent with the water-permeability

characteristics of thin limb segments (17,18). Thus, AQP1 has
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a distribution in concordance with the known water permeabil-

ity of the nephron (17,18), with the exception of the initial

portions of the proximal tubule. It remains to be established

whether another aquaporin homologue is expressed at this site.

Initial studies (5) have shown that AQP1 is expressed in the

human proximal tubule. However, the exact localization pat-

tern in the human nephron has not been determined.

In the rat, AQP1 is also present in plasma membranes of

various secretory and reabsorptive epithelia (3,19) as well as in

nonfenestrated endothelium of capillaries (19). The localiza-

tion in capillary endothelium has also been characterized in the

rat kidney, where AQP1 is expressed in descending vasa recta,

a site at which mercurial chloride treatment of isolated per-

fused descending vasa recta revealed significant impairment in

water permeability (12). These studies underscore the hypoth-

esis that AQP1 plays a major role in transepithelial water

movement at multiple sites.

The importance of examining the expression pattern of

AQP1 in the human kidney is further accentuated by the recent

report that rare human individuals apparently lacking AQP1 do

not show major clinical abnormalities (21). Thus, it is impor-

tant to determine the precise expression pattern along the

human nephron to allow correlations between the presence (or

absence) of AQP1 and water transport in the different segments

of the human nephron. Moreover, the recent demonstration of

aquaporin excretion in human urine (6,21) and the discussion

of a potential use of this for diagnosing urinary concentrating

defects (8) also emphasize the need to characterize the local-

ization of aquaporins in the human kidney tubule to enable

interpretation of such information.

Methods
Preparation of Membrane Vesicles from Human

Kidney

Cortex, outer medulla, and inner medulla were dissected from
surgical specimens of human kidney, minced finely, and homogenized

in dissecting buffer (0.3 M sucrose, 25 mM imidazole, 1 mM EDTA,

pH 7.2, and containing the following protease inhibitors: 8.5 �M

leupeptin, 1 mM phenylmethyl sulfonyifluoride), with five strokes of

a motor-driven Potter-Elvehjem homogenizer (Bie and Berntsen,

R#{216}dovre,Denmark) at 1250 rpm. The homogenates were centrifuged

in a Beckman L8 M centrifuge (Beckman Instruments Inc., Palo Alto,

CA) at 4000 g for 15 mm at 4#{176}C.The supernatants were centrifuged

at 200,000 g for 1 h. The resultant pellets were resuspended in

dissecting buffer, and assayed for protein concentrations by using the

method of Lowry.

Antibodies

Two polyclonal antibodies raised in rabbits were used in this study
to label AQP1. The first, called anti-AQP1, was raised against purified

human AQPI isolated from red blood cells, and the second was raised

against a peptide corresponding to the 10 amino-terminal amino acids

of AQP1 (5,23). Both have previously been described for immuno-

cytochemical analysis (5,17-19).

Electrophoresis and Immunoblotting

The membrane samples were solubilized in Laemmli sample buffer

containing 2.5% sodium dodecyl sulfate (SDS). Samples were loaded

at 10 pg/lane onto 12% SDS/polyacrylamide gel electrophoresis gels,

run on a BioRad minigel system (BioRad, Hercules, CA), and proteins

were transferred to nitrocellulose paper by electroelution. The blots

were blocked for 1 h with 5% skimmed milk in phosphate-buffered

saline-T (PBS-T; 80 mM Na2HPO4, 20 mM NaH2PO4, 100 mM
NaCl, 0.1% Tween-20, pH 7.5), and then washed with PBS-T. The

blots were then incubated overnight at 4#{176}Cwith antibody in PBS-T

with 0.1% BSA at the following dilutions: anti-AQP1 (0.01 �g

immunoglobulin G [IgG]/mL) and affinity-purified anti-N peptide

(5, 1 8,23) (0.05 j��g IgG/mL). After being washed, the blots were

incubated for 1 h at room temperature with horseradish peroxidase-

conjugated goat-anti-rabbit secondary antibody (P448; DAKO,

Glostrup, Denmark; 1 :3000). After the final washing, antibody bind-

ing was visualized using the ECL system (enhanced chemilumines-

cence; Amersham International, Little Chalfont, U.K.). Controls using

affinity-purified antibody preadsorbed with excess purified AQP1, or

omission of primary or secondary antibody, revealed no labeling.

Immunocytochemistry

Preparation of tissues for immunolocalization of AQP1. Sur-
gical specimens of nonpathological human kidney tissue (from kid-

neys with tumors at the opposite pole) were fixed either by immersion

fixation or by partial immersion fixation and partial simultaneous

vascular perfusion of the excised kidney tissue with 8% paraformal-

dehyde in 0.1 M sodium cacodylate buffer, pH 7.2. Tissue blocks

were prepared from outer cortex, outer and inner stripe of the outer

medulla, and from different levels of the inner medulla. The blocks

were postfixed in the same fixative for 2 h, infiltrated for 30 mm with

2.3 M sucrose containing 2% paraformaldehyde, mounted on holders,

and rapidly frozen in liquid nitrogen, essentially as described previ-

ously (17,18). The frozen tissue blocks were either cryosectioned for

light microscope immunohistochemistry, or were freeze-substituted

and embedded in Lowicryl for immunoelectron microscopy.

Freeze-substitution of kidney tissue. The frozen samples were

freeze-substituted in a Reichert AFS (Reichert, Vienna, Austria) as

described before ( 13, 17). In brief, the samples were sequentially

equilibrated over 3 days in methanol containing 0.5% uranyl acetate

at temperatures gradually increasing from -85#{176}Cto -70#{176}C,and then

rinsed in pure methanol for 24 h while the temperature was increased

from -70#{176}Cto -45#{176}C.At -45#{176}C,the samples were infiltrated with

Lowicryl HM2O (Polysciences Ltd., Eppelheim, Germany) and meth-

anol 1 : 1, 2: 1 and, finally, pure Lowicryl HM2O before ultraviolet-

polymerization for 2 days at -45#{176}Cand 2 days at 0#{176}C.
Immunohistochemistry and immunoelectron microscopy.

The use of anti-AQP1 antibodies for immunocytochemistry has been

thoroughly described previously (17,18). Affinity-purified polyclonal

anti-AQP1 recognizing the COOH terminal part of AQP1 was used at

0.1 to 0.2 �g/mL.

For light microscopical analysis, cryosections approximately 0.8

p�m in thickness were obtained with a Reichert Ultracut S Cryoultra-

microtome (Leica Aktiengesellschaft, Vienna, Austria) and were

placed on gelatin-coated glass slides. After preincubation for 5 mm

with PBS containing 1% BSA and 0.05 M glycine, the sections were

incubated overnight at 4#{176}Cwith anti-AQP1 antibodies diluted in PBS

with 0.1% BSA or 0.1% skimmed milk. The labeling was visualized

by incubation for 1 h at room temperature with horseradish peroxi-

dase-conjugated secondary antibody (P448, 1 : 100; DAKO, Glostrup,

Denmark), followed by incubation with diaminobenzidine for 10 mm.

Sections were counterstained with Meier counter stain.

For electron mmcroscopy, immunolabeling was performed on ultra-
thin Lowicryl HM2O sections (40 to 60 nm), which were incubated

overnight at 4#{176}Cwith anti-AQP1 diluted in PBS with 0.1% BSA or

0.1% skimmed milk. The labeling was visualized with goat-anti-rabbit
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ctx ctx im im
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Figure 1. Immunoblots of membrane preparations from human kidney cortex and inner medulla. Samples were run on 12% polyacrylamide

gels using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. (A) Immunoblot of crude membrane fractions of kidney cortex (ctx, 10
�tg/lane) and inner medulla (im, 20 �gRane) labeled with affinity-purified anti-AQP1 antibody. A strong 28-kd band corresponding to

nonglycosylated AQP1 is seen in both cortex and inner medulla. The 35- to 50-kd band, corresponding to the glycosylated species, is faintly

visible in cortex but distinct in the inner medulla. (B) Negative control. Immunoblot of crude membrane from kidney cortex ( I 0 �gIlane) was

incubated with affinity-purified antibody previously reacted with purified AQPI . The signal is completely ablated. (C) Immunoblot of crude

membrane fraction of kidney cortex (ctx, 10 �gIlane) and inner medulla (im, 10 j�g#{241}ane)labeled with affinity-purified antibody raised against
a peptide corresponding to the ten N-terminal amino acids of AQP1 . The 28-kd band corresponding to nonglycosylated AQPI comigrates with

the band seen in the left panel. The glycosylated band varied in intensity from preparation to preparation and was not visible in the exposure

illustrated.

IgG conjugated to 10-nm colloidal gold particles (GAR.EM1O; Bio-

Cell Research Laboratories, Cardiff, UK) diluted 1:50 in PBS with

0. 1% BSA or 0.1% skimmed milk. The sections were stained with

uranyl acetate for 10 mm before examination in a Philips 208, a

Philips CM 100 (both from Philips, Eindhoven, The Netherlands), or a

Zeiss 912 Omega electron microscope (Zeiss, Oberkochen, Germany).

Immunolabeling controls. The following controls were per-

formed at the light and electron microscopical levels: (1) The primary

antibody was substituted with non-immune rabbit IgG prepared by

protein-A-purification; (2) adsorption controls were made by incuba-

tion with affinity-purified anti-AQPI (0.1 �g/mL) previously reacted

with purified AQPI (10 �g/mL); (3) incubation without use of pri-

mary antibody or without primary and secondary antibody. All con-

trols revealed a complete absence of labeling.

In Situ Hybridization

In situ hybridization for AQP1 was performed as previously de-

scribed (2). Fresh human kidneys were obtained from patients under-

going nephrectomy for renal tumors at the National Institutes of

Health (NIH) Clinical Center. Patients gave informed consent to the
disposition of their surgically removed tissues under a protocol ap-

proved by the NIH Clinical Center Institutional Review Board. Aside

from the diagnosis of renal tumor, the patients were free of systemic

or renal disease, including hypertension and diabetes, and were 43 to

48 yr of age. The half of the kidney appearing to be tumor-free was

quickly cut into blocks and frozen over dry ice.

Frozen sections, l0-p�m thick, were cut at - 15#{176}C,thaw-mounted

on poly-L-lysine-coated slides, and stored at -70#{176}Cuntil hybridiza-

tion. Tissue sections were prepared in the following manner: before
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Figure 2. Immunocytochemical localization of AQP1 in thin cryosections (0.8 �m) of human kidney cortex (Panels A through D), outer

medulla (Panels E through F), and inner medulla (Panels G through I). Sections were immunolabeled with affinity-purified anti-AQP1, and
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hybridization, sections were warmed to 25#{176}C,fixed in 10% formal-

dehyde and soaked for 10 mm in 0.25% acetic anhydride/0.l M

triethanolamine hydrochlonde/0.9% NaC1. The tissue was then dehy-

drated through an ethanol series, delipidated in chloroform, rehy-

drated, and air-dried.

An exonuclease III fragment corresponding to nucleotides + 15 to
+451 of the human CHIP28 (AQPI) cDNA was subcloned into

pBluescript II (Stratagene, Inc., La Jolla, CA) for transcription of both
antisense (using T7 RNA polymerase) or sense (using T3 RNA

polymerase) 35S-labeled cRNA probes.
The 35S-labeled probes (107 dpm/mL or approximately 50 ng/mL)

were added to hybridization buffer composed of 50% formamide, 0.3

M NaC1, 20 mM Tris HC1, pH 8, 5 mM EDTA, 500 jag tRNA, 10%

dextran sulfate, 10 mM dithiothreitol, and 0.02% each of BSA, ficoil,
and polyvinylpyrrolidone. After the 35S-labeled probe in hybridization

buffer was added to the sections, coverslips were placed over the

sections and the slides were incubated in humidified chambers over-

night (14 h) at 55#{176}C.Slides were washed several times in 4X SSC

(sodium chloride/sodium citrate) to remove cover slips and hybrid-

ization buffer, dehydrated, and immersed in 0.3 M NaCl, 50% form-

amide, 20 mM Tris HC1, and 1 mM EDTA at 60#{176}Cfor 10 mmn.
Sections were then treated with RNase A (20 .tg/mL) for 30 mmn at

room temperature, followed by a 15-mm wash in 0.lX SSC at 55#{176}C.

Slides were air-dried and apposed to Hyperfilm-�Max (Amersham)

and then dipped in KOdak NTB2 nuclear emulsion (Eastman Kodak,
Rochester, NY), stored with desiccant at 4#{176}C,developed, and coun-

terstained with Meier’s hematoxylin and eosin for microscopic eval-

uation.

Results
Immunoblotting of Human Kidney Membrane Fractions

Using Anti-AQPJ Antibodies

Immunoblotting using crude membrane fractions of human

kidney cortex (Figure 1) demonstrated the 28-kd and the 35- to

50-kd bands, corresponding to nonglycosylated and glycosy-

lated AQP1, as previously shown in human red blood cells as

well as kidney and other tissues from rat (5,18). The 35- to

50-kd had a weaker appearance in cortex, compared with inner

medulla (Figure lA). Both the antibody raised against highly

purifiedhuman AQP1 from red blood cells and the one raised

against a peptide corresponding to the 10 N-terminal amino

acids of AQP1 labeled bands that comigrated, confirming the

selectivity of labeling (Figure 1 C). Immunolabeling controls

were negative (Figure 1 B). Immunoblots using membrane frac-

tions from outer (not shown) and inner medulla (Figure 1 A)

gave similar labeling patterns.

immunocytochemical Localization of AQPI in Semi-

Thin Cryosections of Human Kidney

Detailed immunolocalization of AQP 1 was performed on

semithin cryosections from different regions of the human

kidney (Figure 2). In the glomerulus, immunoperoxidase la-

beling revealed the presence of AQP1 in the endothelium of

glomerular capillaries (Figure 2A). In contrast, podocytes were

unlabeled. Labeling for AQP1 was also present in mesangial

regions and was associated with mesangial cells. Epithelial

cells of Bowman’s capsule showed no labeling, except where

it was continuous with the very beginning of the proximal

tubule. Immunolabeling controls performed with affinity-pun-

fled antibody previously preadsorbed with excess purified

AQP1 showed a complete absence of labeling (Figure 2B).

Proximal tubules revealed strong staining of the brush bor-

der and basolateral plasma membranes (Figure 2C) consistent

with the labeling pattern in rat (17, 18), except that in some

nephrons weak labeling was present in the initial part of the

proximal tubule (arrow in Figure 2D). Pronounced differences

in the intensities of labeling between different cross-sections of

proximal tubules were apparent. Straight proximal tubules gen-

erally exhibited the most intense labeling but marked differ-

ences were also encountered between different parts of the

convoluted proximal tubule (see the Discussion section).

Descending thin limbs labeled distinctly for AQP1 in the

inner stripe of the outer medulla (Figure 2E). In regions with

vascular bundles, several thin-walled thin limb structures were

labeled corresponding to descending thin limbs of short loops

(Figure 2E). Furthermore, in the periphery of the bundles,

tubules with tall epithelial cells were extensively labeled. On

the basis of their location in relation to the bundles, their cell

height, and their multiple, dilated intercellular spaces and lu-

minal cell-to-cell contacts, they were identified as descending

thin limbs of long loops (9). In contrast, thick ascending limbs

labeling was visualized with peroxidase-conjugated secondary antibody. (A) Glomerular capillaries exhibit significant labeling (arrowheads),
whereas podocytes are completely unlabeled. Mesangial regions (asterisks) exhibit weak labeling. The capsule of Bowman is unlabeled except

for minor areas (upper left) that presumably correspond to regions forming the neck of the proximal tubule. Proximal tubules also exhibit
extensive labeling, whereas distal tubules are unlabeled. (B) Immunolabeling control. Use of affinity-purified antibody previously reacted with

purified AQP1 reveals absence of labeling. (C) Convoluted proximal tubules display marked labeling of both brush border and basolateral
plasma membrane foldings. (D) In some nephrons, the initial part of the proximal tubule (arrow) exhibits significant labeling, although
generally it is substantially weaker than in more distal segments. Peritubular capillaries are also labeled (arrowheads). (E) Section from outer

medulla, revealing extensive labeling of thin limb segments. Most are thin-walled segments, whereas others display a characteristic thick-walled
structure with labeling of both apical and basolateral domains (asterisk), interpreted as a descending thin limb of a long loop nephron. (F)

Section from the junction between outer and inner medulla. In the periphery of the vascular bundles, several thin limbs with characteristic thick

walls with distended intercellular spaces are seen to be heavily labeled. These were interpreted as descending thin limbs. Collecting ducts and

distal tubules are unlabeled (asterisks). (0) Section from kidney inner medulla. Strong labeling is seen of structures interpreted as thin

descending limbs of the loop of Henle. Notice the abrupt transition from immunoreactive to immunonegative cells (arrows). Also note that some

thin limbs are unlabeled. These were interpreted as ascending thin limbs. (H) Strong labeling of some thin limbs is seen, whereas other thin

limb structures are completely unlabeled. A very faint labeling is observed on the luminal surface of the collecting duct cells (arrowheads). (I)

Immunolabeling control. Use of affinity-purified antibody previously reacted with purified AQP1 reveals absence of labeling. (Original
magnification, X 800).
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Figure 5. Anti-AQP1 labeling of epithelial cell of a descending thin limb in the inner stripe of the outer medulla. This thick-walled nephron

segment, with characteristic small microvilli, represents a descending thin limb, presumably of a long nephron. Both cell surfaces, including

the microvilli, are labeled. (Original magnification, X60,000).

were unlabeled. In the inner medulla, strong labeling was seen

in cross-sections of tubules with low epithelium, which typi-

cally had dilated intercellular spaces (Figure 2F). These tubule

segments were identified as the inner medullary part of the

descending thin limbs. Tubules of comparable structure, but

typically without dilated intercellular spaces, were unlabeled

(Figure 20) and interpreted as cross-sections of ascending thin

limbs. In addition, there were tubular profiles with an abrupt

transition from labeled to unlabeled cells (arrows in Figure 2G)

consistent with the transition between descending and ascend-

ing thin limb epithelium. Collecting duct cells were generally

unlabeled, except that a very faint reaction was present on the

luminal surface of some tubule cells (arrowheads in Figure

2H). Although crossreactivity with AQP2 in the collecting duct
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Figure 6. Anti-AQP1 labeling of cells in descending thin limb of inner medulla. The cells exhibit strong labeling of both apical and basal plasma

membranes. Adjacent interstitial cells are unlabeled. (Original magnification, X60,000).
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cannot be excluded, this very faint staining might represent an

artifact. Immunolabeling controls from outer medulla (not shown)

as well as inner medulla (Figure 2!) were completely negative.

Immunoelectron Microscopical Localization of AQPJ

in the Glomerulus

In contrast to the rat glomerulus (18,22), endothelial cells in
the human glomerulus exhibited extensive AQP1 -immunola-

beling in ultrathin Lowicryl sections (Figure 3A). The labeling

was associated both with the luminal and abluminal cell mem-

branes, which appeared equally labeled (Figure 3A). The la-

beling was predominantly associated with the nonfenestrated

plasma membrane regions, including that part covering the cell

body with the nucleus, whereas fenestrae showed no distinct

labeling. In contrast to the extensive labeling of the endothe-

hum, glomerular podocytes were unlabeled. Mesangial cells,

including their long projections, also showed plasma-mem-

brane labeling (Figure 3B), although generally less intense than

the labeling of the endothelial cell membranes (Figures 2 and

3).

Immunoelectron Microscopical Localization of AQPJ

in Tubules

Proximal tubules in human kidneys showed distinct labeling

of both the apical and the basolateral plasma membranes (Fig-

ure 4), but the labeling density varied between different prox-

imal tubule cross-sections as observed by light microscope

immunocytochemistry. The labeling was associated with the

microvilli of the brush border and the labeling density was

similar along the length of the microvilli. Endocytic invagina-

tions and vesicles were less heavily labeled or unlabeled (Fig-

ure 4A). Both the lateral and basal domains of the basolateral

plasma membrane were labeled (Figure 4B), and the labeling

extended all the way to the junctional complex. Thus, the

labeling pattern of individual cells was very similar to that

observed in the rat (17).

Ultrathin Lowicryl sections of tubules in the inner stripe of
the outer medulla displaying the characteristic tall cells (seen in

Figure 2F) revealed intense labeling of apical and basolateral

plasma membranes (Figure 5). These tubules displayed ultra-

structural characteristics of descending thin limbs of long loops

in rat outer medulla, further substantiating that these tubules

corresponded to the descending thin limb. The thin-walled

tubules seen in Figure 2E also displayed significant labeling

and a simplified ultrastructure similar to the descending thin

limb of short loops in the rat (not shown). In the inner medulla,

labeled tubules with thin epithelium (Figure 2G and H) were

similar in ultrastructure to tubules identified as descending thin

limbs by Bulger et al. (4). They showed an extensive gold

labeling of both the luminal and abluminal plasma membranes

(Figure 6A and B). Occasional cytoplasmic vesicles were also

labeled (Figure 6A). The ultrastructural characteristics of the

labeled tubules were also similar to the descending thin limbs

in the rat inner medulla, further supporting their identity as

descending thin limbs.

Immunolabeling performed with the anti-N-peptide anti-

body gave labeling similar to that seen with the anti-AQP1

(raised against the purified AQP1 protein), although the label-

ing intensity was much weaker (not shown).

Immunoelectron Microscopical Localization of AQPJ

in Capillary Endothelium

In the peritubular and periglomerular interstitium in cortex,

the endothelium of the fenestrated capillaries showed marked

AQP1-immunolabeling (Figure 7). Higher magnifications re-

vealed labeling of both luminal and abluminal plasma mem-

brane domains (Figure 7B). Capillary endothelium in outer

medulla (Figure 8) and inner medulla (not shown) also dis-
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Figure 7. Anti-AQPI labeling of penitubular capillary endothelium. (A) Low magnification showing capillary adjacent to proximal tubule (PT).

(Original magnification, X 15,000). (B) Higher magnification of area shown above (asterisk in Panel A) shows intense AQP1 labeling of
luminal and abluminal membranes of the fenestrated endothelium. (Original magnification, X60,000).
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played significant labeling. The labeling density of the endo-

thelium appeared to be similar in cortical and outer and inner

medullary capillaries (Figure 7 and 8). In addition to the

labeling of the plasma membranes, vesicular profiles in the

cytoplasm of the endothelial cells were also labeled (arrow-

heads in Figure 8).

Segmental Differences in AQPJ Expression in
Proximal Tubule

As shown in Figure 2, proximal tubules exhibited differ-

ences in labeling intensity, as observed in semi-thin cryosec-

tions. The extent of this difference was further analyzed by

immunolabeling of survey paraffin sections (Figure 9A). These

sections revealed a marked difference in labeling intensity

between cross-sectioned proximal tubules, with some display-

ing very intense labeling and again others displaying little or

even no labeling (Figure 9A). The glomerulus also showed a

distinct labeling, confirming the observations shown in Figure

2.
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Distribution ofAQPJ mRNA Revealed by In Situ
Hybridization

The distribution of AQP1 mRNA was analyzed by in situ

hybridization in frozen sections of cortex and outer and inner

medulla. In cortex, the proximal tubules exhibited significant

signals, but with varying intensity. Some tubules revealed very

strong signals (Figure 9B and C), whereas others showed low

or virtually no signals. Thus, both the in situ hybridization and

immunolabeling documented extensive differences in AQP1

expression within different segments of the proximal tubule.

Furthermore, strong signals were observed in positively

identified glomeruli (Figure 9B and C). Higher magnification

of the glomerular region (Figure 9C) showed the signals asso-

ciated with the capillary loops and (to some extent) mesangial

regions, whereas no detectable signals were associated with

Bowman’s capsule. In the inner medulla (Figure 9D), thin limb

structures were either very intensely labeled or unlabeled. The

labeled thin limbs, on the basis of their distribution in cross-

sections, presumably corresponded to descending thin limbs
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Figure 8. Anti-AQP1 labeling ofendothelial cells (in other regions showing fenestrae) in the inner stripe ofthe outer medulla. Both cell surfaces

are labeled, as well as some internal vesicular and tubular profiles (arrowheads). (Original magnification, X60,000.)

and the unlabeled to ascending thin limbs, respectively. Col-

lecting ducts and thick ascending limbs showed no signals

whereas detectable signals were seen in regions containing

capillaries. Thus, the in situ hybridization revealed exactly the

same general expression pattern as did immunocytochemical

analysis at the light and electron microscopical levels.

Discussion
Expression ofAQPJ in the Human Proximal Tubule

The AQP1 expression pattern in the human kidney is similar

to that observed in the rat kidney, but with some notable

differences. The study presented here demonstrates that AQP1

water channel protein is expressed heavily in the human prox-

imal tubule, consistent with initial studies (5). Labeling was

found both in proximal convoluted tubules and in proximal

straight tubules, segments that exhibit distinctly different ul-

trastructural features (24). An important observation is the

uneven distribution of AQP1 along the human proximal tubule,

extending initial observations (5). The expression is most in-

tense in the pars recta, with low levels in the initial portions of

some, but not all, proximal tubules. The striking difference in

levels of expression was observed both by immunohistochem-

istry and immunocytochemistry at the light and electron mi-

croscopical level and, in addition, by in situ hybridization.

Because functional studies in the rat kidney ( 1 1) have revealed

an equally high water permeability in the initial and later

segments of the proximal tubule, the absence or reduction in

AQP1 expression in some part of the human proximal tubule is

notable. Because such tubules, examined both by immunocy-

tochemistry and by in situ hybridization, were localized adja-

cent to tubules displaying very high levels of AQP1 protein or

mRNA, it is highly unlikely that the differences in the labeling

occur because of methodological factors. Instead it is a possi-

bility that another aquaporin homologue may be expressed in

these segments without or with very low levels of AQP1

protein and mRNA, i.e., the initial portion of the proximal

tubule. It may be speculated that this possibility is consistent

with the recent report of a few individuals with low or zero

expression of AQP1 who did not show any apparent polyunia

or impairment of renal function (2 1 ). It should, however, be

pointed out that the absence of AQP1 may not necessarily lead

to major concentrating defects, because this could theoretically

be overcome by establishing a slightly higher gradient across

the proximal tubule and descending thin limbs to drive water

reabsorption across the epithelial plasma membranes. This

would represent an energetically unfavorable situation, but

would allow water to be reabsorbed.

Expression ofAQPJ in the Thin Limb Epithelia

Immunocytochemistry and in situ hybridization revealed a

very intense labeling of some thin limbs in the human kidney,

whereas others were unlabeled. This is similar to the abundant

AQP1 labeling of rat and chinchilla descending thin limb

epithelium and absence of AQP1 labeling in ascending thin

limbs (17, 18). As in the rat, there was an abrupt transition from

strongly labeled thin limb epithelial cells to unlabeled cells.

However, in contrast to the situation in the rat, in which

descending thin limb epithelium (short and long loops) display

marked ultrastructural differences from ascending thin limb

epithelium (9), thin limb epithelium in the human kidney has a
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Figure 9. AQP1 expression in human kidney demonstrated by immunohistochemistry in survey paraffin sections (Panel A) and by in situ
hybridization in unfixed frozen cryostat sections (Panels B through D). (A) AQP1 labeling varies greatly between different proximal tubule

cross-sections (P), some being extensively stained whereas others are unstained or only weakly stained. Glomeruli (G) are weakly stained.
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much less complex ultrastructure (4). The distinct labeling

pattern with labeled and unlabeled thin limbs suggests that the

structural organization of the thin limbs share both functional

and structural similarities with the rodent kidneys most often

used for physiological and pathophysiological experiments.

Moreover, AQP1 may represent a marker for descending thin

limbs and help distinguish those from the ultrastructurally very

similar ascending thin limbs in the human kidney.

Localization ofAQPJ in Human Glomerulus

In the rat glomerulus, anti-AQP1 did not label any of the cell

types (18). However, in the human glomerulus, distinct AQP1

protein and mRNA were demonstrated by immunocytochem-

istry and in situ hybridization, respectively. Immunoelectron

microscopy revealed labeling of the endothelium, on both the

luminal and abluminal plasma membranes.

The glomerular filtration barrier consists of capillary endo-

thelium, basement membrane, and glomerular epithelial cells

(podocytes). It has generally been believed that in the endo-

thelium, water and solute transport occurs via the fenestrae.

The observations from this study suggest that this view may

have to be modified, and that water transport may also cross

the endothelium via a transcellular route, i.e., mediated via

AQP1 water channels in the luminal and abluminal plasma

membranes.

Within the glomerulus, mesangial cells also exhibit distinct

immunoreactivity, thus providing further evidence for their

ontogenic relationship to endothelial cells. The presence of

aquaporin in the mesangial cell plasma membranes suggests

that these cells have the capacity to change their volume

rapidly during physiological or pathological conditions, con-

sistent with other ultrastructural characteristics of the mesan-

gial cells, including their well-developed cytoskeleton. Indeed

it has been pointed out that mesangial cells seem to swell more

readily than endothelial cells in human and experimentally

induced disease, and that swollen mesangial cells, together

with swollen endothelial cells, may account for much of the

ischemia seen in many glomerular diseases (10).

Peritubular Capillaries Express AQPJ

In kidney cortex and medulla, fenestrated peritubular capil-

lanes showed strong labeling for AQP1.This finding is consis-

tent with recent preliminary evidence that AQP1 is also ex-

pressed in fenestrated capillaries outside the kidney (e.g.,

human thyroid and pancreas; Elkjaer, Marples, Maunsbach,

Agre and Nielsen, unpublished observations). The localization

of AQP1 in fenestrated capillaries is different from rat kidney,

in which virtually no labeling was associated with penitubular

capillaries. This may reflect absence of AQP1 , or the presence

only of levels that are below the detection limit, in rat fenes-

trated capillaries. However, the nonfenesterated capillary en-

dothelium in rat kidney and extrarenal organs express AQP1

(19). Although functional studies (17) have documented HgC12

inhibition of water transport in isolated perfused descending

vasa recta (nonfenestrated endothelium), the physiological role

of aquaporins in transendothelial water transport in capillaries

and venules remains unknown.

Conclusions
This study demonstrates that AQP1 is present in all proximal

tubule segments, including segment 1 and the neck region.

However, there are pronounced differences in expression 1ev-

els with respect to both protein and mRNA levels, raising the

possibility that additional aquaporin(s) may be present, notably

in the initial part of the proximal tubule. AQP1 labeling con-

tinues directly from proximal tubules to descending thin limbs

with a distinct transition from labeled to unlabeled thin limb

epithelium, suggesting an abrupt transition between water-

permeable descending thin limb and water-impermeable as-

cending thin limb in human kidney. AQP1 labeling is also

observed in the endothelium of fenestrated glomerular capil-

lanes, as well as fenestrated peritubular capillaries, suggesting

the existence of a putative additional water conductive pathway

in the glomerular filtration barrier.
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