
Hardware Support for Secure Processing in Embedded
Systems ∗

Shufu Mao and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA
{smao,wolf}@ecs.umass.edu

ABSTRACT
The inherent limitations of embedded systems make them particu-
larly vulnerable to attacks. We have developed a hardware monitor
that operates in parallel to the embedded processor and detects any
attack that causes the embedded processor to deviate from its orig-
inally programmed behavior. We explore several different char-
acteristics that can be used for monitoring and quantitative trade-
offs between these approaches. Our results show that our pro-
posed hash-based monitoring pattern can detect attacks within one
instruction cycle at lower memory requirements than traditional ap-
proaches that use control-flow information.

Categories and Subject Descriptors
C.3 [Special purpose and application-based systems]: Real-time
and embedded systems.

General Terms
Design, Security.

Keywords
Embedded system security, processing monitor, hardware monitor.

1. INTRODUCTION
Embedded systems are widely deployed and used in application

domains ranging from cellular phones to smart cards, sensors, net-
work infrastructure components, and a variety of control systems.
Two key characteristics make these systems particularly vulnera-
ble to attacks. First, the embedded nature of the processing system
limits the complexity of the device in terms of processing capabil-
ities and power resources. It also exposes the device to a number
of potential physical attacks. Second, as a direct result of the lim-
ited processing capabilities, embedded systems are limited in their
capabilities to run software to identify and mitigate attacks. Un-
like workstation computers that can afford to run virus scanners
and intrusion detection software, embedded systems typically only
∗This work was supported in part by NSF Grant CNS-0447873.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

run the target application. Thus, embedded systems are inherently
more vulnerable to attacks than conventional systems.

Attacks on embedded systems can be motivated by a number of
different goals. The following list illustrates this point (but is not
meant as a complete enumeration of all possible scenarios): (1)
Extraction of secret information (e.g., reading of cryptographic key
material from a smart card); (2) Modification of stored or sensed
data (e.g., tampering with utility meter readings); (3) Denial of ser-
vice attack (e.g., reducing the functionality of a sensor network);
and (4) Hijacking of hardware platform (e.g., reprogramming of
TV set-top box). In each of the cases, the attack relies on the abil-
ity to get access to the embedded system and change its behavior
(i.e., change in instruction memory) or its data (i.e., change in data
memory). It is important to note that in most attack scenarios a
modification of behavior is necessary even when modification of
or access to data is the ultimate goal of the attack. Therefore, we
focus on the security of processing in this paper.

When proposing our security mechanism for embedded systems
we take into consideration the following important observations:

• Independence: A monitoring subsystem should use indepen-
dent system resources that overlap as little as possible with
the target of a potential attack. In particular, using a single
embedded Processor for processing applications and security-
related software is a bad choice. If an intruder can access the
processor, then the security-related software is just as vulner-
able to attacks.

• Low Overhead: Embedded systems require a lightweight se-
curity solution that considers the limitations of embedded
systems in terms of adding additional logic and memory for
monitoring.

• Fast Detection: A monitoring subsystem should be able to
react as quickly as possible to an attack. In particular, attacks
on embedded systems that simply change memory state or
extract private data may require only a few instructions to
cause damage. Therefore it is important to be able to detect
an attack within a few instructions.

Our proposed secure monitoring system takes these design goals
into account and achieves the required performance in terms of low
system complexity and fast detection speed.

The main idea behind our monitoring system is to analyze the
binary code of an embedded system application and derive an aug-
mented control flow graph. During run-time, the embedded pro-
cessor reports on the progress of application processing by sending
a stream of information to the monitoring system. The monitoring
system compares the stream to the expected behavior of the pro-
gram as derived from the executable code. If the processor deviates

from the set of possible execution paths, then it is assumed that an
attacker has altered the instruction store or program counter to alter
the behavior of the system. Our evaluations on an embedded sys-
tem benchmark show that the proposed monitoring technique can
detect deviations from expected program behavior within the time
of a single instructions while only requiring a small amount of addi-
tional logic and memory in the order of one tenth of the application
binary size.

The remainder of this paper is organized as follows. Section 2
discusses related work. The overall system architecture and details
on the monitored information stream are presented in Section 3.
Section 4 presents an extensive evaluation of the proposed archi-
tecture. Section 5 summarizes and concludes this paper.

2. RELATED WORK
The term “embedded system” covers a broad range of possi-

ble system designs, processor architectures, and performance and
functionality characteristics. In our work, we focus on embedded
systems that can be broadly characterized as middle to lower end
in the performance spectrum. Their main characteristics are: (1)
Medium to low-performance embedded processor core (e.g., sin-
gle RISC processor); (2) Targeted use for one or only a handful of
applications; and (3) Typically used in a networked setting. Ex-
amples for practical embedded systems that fit these characteristics
are: cell phones, networked sensors, smart cards (typically not net-
worked, though), low-end network routers (e.g., home/small office
gateway), networked printers, etc.

Attacks on embedded system can have a wide range of approaches.
Ravi et al. describe mechanisms to achieve physical security by
employing tamper resistant designs [9]. Wood et al. consider a
networked scenario where systems are exposed to additional re-
mote attacks [11]. Embedded systems are also susceptible to side-
channel attacks (e.g., differential power analysis [8]). Solutions to
this problem have been proposed [4], and we do not consider this
aspect in our work.

In terms of developing a general, hardware-based architecture
to protect embedded systems against a range of attacks, Gogniat
et al. have proposed such in [6]. This work does not give details
on what the proposed monitors would look like. Our work can be
seen as one example of how to monitor processing to ensure secure
execution of applications.

In the context of monitoring processing on embedded systems,
Arora et al. have proposed a system [2] that is conceptually similar
to our work. The main difference is that their finest granularity of
monitoring is the basic-block level due to the use of per-block hash
values, and deviations in the program execution are detected when
the hash value at the end of a basic block does not match. In our
work, deviations from the binary can be determined within a single
(or a few) instructions. Also, Arora et al. use control flow informa-
tion to track program execution. As we discuss in Section 4, our
proposed hash-based monitoring performs significantly better (i.e.,
faster detection) than control-flow based monitoring.

Another work about control flow integrity is from Abadi et al. [1],
control flow graph is also used for monitoring in their approach.
The main difference between their approach and ours is that, Abadi
et al. rewrite the machine code to implement the necessary checks,
while binaries do not need to be modified in our work. We also
believe it is important to separate the processor from the monitor
by using separate system resources to reduce vulnerability. Suh et
al. use the concept of “information flow” to track if data is consid-
ered authentic or spurious (i.e., potentially malicious) [10]. This
system requires a much more complex design that needs to be inte-
grated with the processor.

embedded
processor

processing
monitor

memory

comparison
logic

Embedded
System

monitoring
stream

general-purpose
processing subsystem

monitoring subsystem

off-line

run-time

off-line program
analysis

call
stackinterrupt /

recovery action

application
binary monitoring

graph

Figure 1: System Architecture for Secure Embedded Process-
ing.

A completely different approach to ensuring secure execution of
programs is to identify non-instruction memory pages with an NX
(No eXecute) or XD (eXecute Disable) bit. The idea is to avoid
a change of control flow to a piece of code that belongs to data
memory. This mechanism is useful to avoid, for example, buffer
overflow attacks. It does not consider a scenario where an attacker
overwrites instruction memory.

Anomaly and intrusion detection by comparing behavior against
a model is also used in other domains (e.g., mobile ad-hoc networks
[5]). In our case, we have a simpler problem since our model is
derived from the actual binary of the application. Thus, there is no
guess-work on how accurate the model is – it is exactly the same as
the application.

3. PROCESSING MONITOR
To achieve secure processing on an embedded system, we pro-

pose a monitoring system that verifies that the processor indeed
performs the operations that it was intended to. In order for an at-
tacker to abuse an embedded system, it is necessary to modify its
operation in some way: either by adding a new piece of instruction
code that performs malicious operations or by modifying the exist-
ing application to execute malicious code. In this work we assume
that the embedded system workload is “secure” when the applica-
tions are executed correctly without any deviation from their binary
code. Execution of any instruction that is not part of that binary or
that is executed not in the correct order is considered an attack.

3.1 System Architecture
To detect an attack, we employ the system architecture shown in

Figure 1. The system architecture consists of two major compo-
nents operating in parallel, the conventional embedded processing
subsystem and the security monitoring subsystem.

The conventional embedded processing subsystem consists of
a general-purpose processor, memory, I/O, and any other compo-
nents that are necessary to execute the embedded system applica-
tion. The only addition is an extension to the processor core that
continuously sends a stream of information to the monitoring sub-
system. There is also a feedback component from the monitoring
system to the processor. In the case an attack is detected, the mon-
itor can halt the processor and initiate a recovery attempt.

The security monitoring subsystem implements the monitoring
capability that compares the stream of information sent from the
processor with the expected behavior derived from the off-line anal-
ysis of the binary. A “monitoring graph” represents the sequence
of possible control flows between basic blocks. More detailed in-
formation about the processing steps within each basic blocks is
also maintained. In order to be able to keep track of all permissi-
ble control flows, a call stack is necessary. If the comparison logic
determines that there is a discrepancy between the stream of infor-
mation from the processor and the monitoring graph, it determines
that an attack occurred and initiates an interrupt to the processor.

As indicated in the figure, the monitoring graph is generated in
an off-line process, where the binary of the application is simulated
and analyzed. The simulation is necessary to resolve some branch
targets that cannot be determined statically. It is important to note
that this process indeed only requires the binary and not the source
code of the application.

This system architecture reflects the design goals of a secure pro-
cessing system that we have discussed in Section 1: The monitor-
ing component uses system resources that are independent from the
embedded processor (Independence). Thus, an attacker would need
to attack the general-purpose processor and the monitoring system
(at the same time) to avoid detection. The monitoring component
operates in parallel with the embedded system processor. Since it
does not replicate the data path of the processor, but solely monitors
the control flow, it is considerably less complex (Low Overhead).
We propose a number of different alternatives for the information
stream below. In most cases, this stream contains information about
individual instructions, or a block of a few instructions. This fine
level of granularity allows the monitor to react quickly when pro-
cessing deviates from what is expected (Fast Detection).

The complexity of the monitoring graph and the ability to detect
attacks clearly depend on the choice of information that is passed
between the processor and the monitoring system.

3.2 Information Stream Alternatives
There are endless choices of what characteristics to monitor with

when attempting to detect attacks. We consider several alternatives
of information streams that reflect various “processing patterns”
that occur when executing an application. When implementing se-
cure processing and monitoring on an actual system, only one such
pattern would be used. Also, the off-line analysis and the monitor-
ing graph representation discussed in Figure 1 need to change with
different pattern. All of the information required for each pattern
can be obtained from the application binary. Figure 2 illustrates
examples for each of the five patterns:

• Address Pattern: The idea behind using the instruction ad-
dress as an indicator for monitoring processing is that each
instruction address is unique. Assuming instruction mem-
ory cannot be corrupted, a program must follow exactly the
same sequence of instructions as it had been programmed to
do. Using addresses, however, is vulnerable for the same rea-
son. If an attacker can replace parts of the application code
with a sequence of instructions that has the same basic block
structure as the original, this change goes undetected. This
vulnerability is due to the pattern using no information on
what instructions are actually executed on the processor.

• Opcode Pattern: In contrast to the address pattern, the op-
code pattern focuses solely on the operations that are per-
formed on the processor. The intuition behind using this in-
formation for monitoring processing is that the sequence of
operations parallels the underlying functionality of the pro-

gram. An attacker would need replace instructions with ma-
licious instructions that use the same opcodes (but possibly
different operands) in the same sequence. This type of at-
tack is likely to be more challenging than in the case of the
address pattern.

• Load/Store Pattern: A pattern that considers the operands
in instructions to monitor processing is the load/store pattern.
In this pattern, only load and store instructions and their tar-
get register are considered. Instructions that are not memory
accesses are ignored (shown as wildcard in the figure) and
only the number of wildcards between memory accesses is
stored in the pattern graph. The reason for considering the
target register rather than the target address in memory is that
the memory address cannot be determined statically.

• Control Flow Pattern: Another intuitive pattern is the con-
trol flow pattern. In this pattern, all control flow operations
are stored (e.g., branches, calls, returns) including their branch
targets if applicable. It allows the monitor to track any change
in the program counter, but exhibits a similar vulnerability as
address patterns since there is no information exchange on
the actual operation of the processor. In related work, similar
information is used to monitor processing [2]. In some cases
the control flow information is limited to system calls. We
consider control flow at the level of basic blocks.

• Hashed Pattern: Another pattern we propose to use for
monitoring is the hashed pattern. In this case, several pieces
of information (in our case instruction address and instruc-
tion word) can be compacted to a smaller hash value. This
is particularly useful since opcode, operands, etc. can con-
sume a lot of memory space. This pattern can be used with
different lengths of hash functions. We us the function name
hashn to indicate that n-bit hash function is used.

3.3 Monitoring Graph and Comparison Logic
Given the monitoring graph that matches one of the patterns from

above, the comparison logic can verify that the processing on the
embedded system follows a possible path of execution.

When monitoring within a basic block, the comparison logic
simply follows the sequence of patterns that is stored in the mon-
itoring graph. For example, in the case of the opcode pattern, the
monitor compares the opcodes reported by the processor to those
in the current basic block of the monitoring graph. If wildcards
are used (e.g., for the load/store pattern), any instructions reported
by the processor can match the wildcard, except those that are part
of the pattern (loads and stores in this case). The necessary logic
is straightforward to implement since it comes down to a simple
comparison between what the processor reports and what is stored
in the monitoring graph.

When the end of a basic block is reached, control flow branches
to one of up to two targets. The monitoring logic does not replicate
the data path of the processor and thus cannot determine which
branch is taken. Instead, the comparison logic allows for multi-
ple parallel execution paths. That is, the monitor allows the cur-
rent state of execution to be in multiple locations in the monitoring
graph at the same time. As monitoring progresses, some of these
states turn out to be invalid and thus are pruned from the set of
concurrent states. If all states lead to invalid comparisons, then an
attack is detected.

To illustrate this process, consider an opcode monitor at the end
of a basic block where the current instruction is a conditional branch.
In the next instruction, the processor either jumps to the branch

...

020004d0 str r0, [sp]

020004d4 str r0, [sp, #4]

020004d8 ldr r1, [pc, #1c4]

020004dc sub r4, r11, #2080

020004e0 ldr r3, [pc, #1c0]

020004e4 sub r4, r4, #8 ; 0x8

020004e8 ldr r2, [r11, -#2136]

020004ec mov r0, r4

020004f0 bl 02091aa0

020004f4 mov r0, r4

020004f8 mov r1, #0 ; 0x0

020004fc bl 020905dc

...

sample object code

...

020004d0

020004d4

020004d8

020004dc

020004e0

020004e4

020004e8

020004ec

020004f0

020004f4

020004f8

020004fc

...

address

...

str

str

ldr

sub

ldr

sub

ldr

mov

bl

mov

mov

bl

...

opcode

...

str r0

str r0

ldr r1

*

ldr r3

*

ldr r2

*

*

*

*

*

...

load/store

...

*

*

*

*

*

*

*

*

bl 02091aa0

*

*

bl 020905dc

...

control flow

...

0011

0001

0001

0110

1001

0010

1010

1111

0011

1010

0111

1100

...

hash4

monitoring graph

Figure 2: Examples of Monitoring Graphs for Different Information Streams.

target (e.g., an add instruction) or continues with the following
instruction (e.g., a sub instruction). After validating the branch,
the opcode monitors allows both following instructions to be valid
states. If either an add or a sub is reported by the processor, the
monitor accepts it as correct. At the same time, the path that does
not match gets pruned. Depending on the code of the application,
the duration for which the monitor is in an ambiguous state varies.
As a result, detection of possible attacks can be drawn out until
all ambiguity is removed and the monitor is certain that a reported
processing sequence is invalid.

In addition to a data structure to maintain parallel state in the
monitoring graph, the comparison logic also needs to maintain par-
allel call-stacks for each state. A call-stack is necessary since most
instruction set architectures provide call and return instruc-
tions. The return instruction has an unknown target unless a
stack of previously observed call instructions is maintained. Since
different execution paths may traverse a different sequence calls
and returns, these call stacks need to be maintained independently
for each monitoring state.

4. RESULTS
We present a number of results on the performance and resource

requirements of the proposed monitoring system for the five dif-
ferent information stream patterns. The setup to obtain results is
as follows: We simulate the behavior of the monitoring system us-
ing an embedded system application workload on an ARM instruc-
tion set architecture. We use the MiBench benchmark suite [7]
to generate realistic workloads. This suite encompasses over two
dozen applications from six different application domains (automo-
tive/industrial, consumer, office, network, security, and telecomm).
These application domains match very well with the embedded
systems complexity that our research targets and thus can be con-
sidered a representative workload. We employ the SimpleScalar
simulator [3] to extract relevant monitoring information and the
objdump utility for binary analysis to generate monitoring graphs.
A 4-bit hash function is used as a representative of hashed pattern.

The first important results is that our implementation of the mon-
itoring system performs application monitoring correctly for all ap-
plication. That is, no false positives are reported by the monitor
when executing the applications on the given benchmark inputs.
To quantify the trade-offs between different monitoring patterns,
we consider two performance metrics: (1) memory requirement for

10MB

5MB

2MB

1MB

500kB

200kB

100kB

50kB

20kB

ty
pe

se
t

tif
fm

ed
ia

n
tif

fd
ith

er
tif

f2
rg

ba
tif

f2
bw

su
sa

n
st

rin
gs

ea
rc

h
sp

hi
nxsh
a

rs
yn

th
rij

nd
ae

l
qu

ic
ks

or
t

pa
tr

ic
ia

m
ad

la
m

e
jp

eg
is

pe
ll

gs
mfft

di
jk

st
racr
c

bl
ow

fis
h

bi
tc

ou
nt

ba
si

cm
at

h
ad

pc
m

si
ze

 o
f m

on
ito

rin
g

gr
ap

h

application

application binary
address
opcode
load/store
control flow
hash4

Figure 3: Size of Monitoring Graph for Different Benchmarks
and Information Streams.

the monitoring graph and (2) duration of monitoring ambiguity.

4.1 Monitoring Graph Size
The size of the monitoring graph that was generated from the bi-

nary of each application is shown in Figure 3. Each pattern is rep-
resented in a different shading. We assume a 32-bit address space
and an efficient coding of the monitoring graph (e.g., run-length
coding of sequences of wildcards, efficient coding of consecutive
addresses). Each monitoring graph stores the patterns for each ba-
sic block as well as the branch pointer at the end of each basic
block.

Figure 3 shows also the size of the application binary, which is 1–
5MB in most cases. In comparison, the size of the monitoring graph
is only around 100kB with the exception of two applications. This
shows that the memory requirements for the processing monitor is
only in the order of one tenth of the memory requirements of the
application.

When comparing the monitoring graph sizes of different moni-

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

address

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

opcode

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

load/store

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

control flow

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

hash4

Figure 4: Snapshot of Monitoring of 1000 Instructions in pa-
tricia Application.

toring patterns, address is consistently the largest, while hash4 is
the smallest. The difference is approximately a factor of two across
all benchmarks.

4.2 Monitoring Ambiguity
To illustrate how ambiguity in the monitoring system occurs, we

show a snapshot of a monitoring trace for a thousand instructions
for one application in Figure 4. In most cases, applications alternate
between 1 and 2 parallel states. The second parallel state is typi-
cally generated by a control flow operation where the actual path is
uncertain for a few instructions. In some cases, the program causes
to spawn a large number of parallel states, which can be caused by
a loop or similar code that has a very regular pattern. The three pat-
terns opcode, load/store, and control flow are particularly affected
by this behavior.

The average number of parallel states in the monitoring logic is
shown in Figure 5. The closer the values is to 1, the less frequently
ambiguous states occur. With larger values, the chances that the
monitoring system could be circumvented increases. The address,
opcode, and hash4 patterns are all very close to the ideal for all
benchmarks. The control flow pattern shows slightly higher aver-
ages for some applications. Large outliers occur for the load/store
pattern for five applications.

To further compare control flow with our proposed hash4 moni-
toring pattern, Figure 6 shows a comparison of the size of the mon-
itoring graph with the 95 percentile of ambiguous path length. The

10

1

ty
pe

se
t

tif
fm

ed
ia

n
tif

fd
ith

er
tif

f2
rg

ba
tif

f2
bw

su
sa

n
st

rin
gs

ea
rc

h
sp

hi
nxsh
a

rs
yn

th
rij

nd
ae

l
qu

ic
ks

or
t

pa
tr

ic
ia

m
ad

la
m

e
jp

eg
is

pe
ll

gs
mfft

di
jk

st
racr
c

bl
ow

fis
h

bi
tc

ou
nt

ba
si

cm
at

h
ad

pc
m

av
er

ag
e

nu
m

be
r

of
 a

m
bi

gu
ou

s
st

at
es

application

address
opcode
load/store
control flow
hash4

Figure 5: Average Length of Ambiguous Execution Paths for
Benchmark Applications.

1MB

500kB

200kB

100kB

50kB
 1 10 100 1000 10000

si
ze

 o
f m

on
ito

rin
g

gr
ap

h

95 percentile ambiguous path length

control flow
hash4

Figure 6: Monitoring Graph Length Compared to 95 Per-
centile Ambiguous Path Length. All 25 benchmark applica-
tions are plotted for each monitoring pattern.

shorter the ambiguous path length and the smaller the monitoring
graph size, the better the overall performance. Clearly, the hash4
results cluster in the lower left corner. The control flow monitoring
graphs are only slightly larger in size, but perform much worse than
hash4 in terms of ambiguity. Again, this indicates that our proposed
monitoring approach that uses a hash pattern to report processor in-
formation is a suitable approach to ensuring secure processing on
an embedded system.

4.3 Evaluation with Random Attacks
To put the above results in context, we show the monitoring per-

formance of our system when using “attacks” where the random
bit flips are introduced into the application binary. The bit flips
represent the smallest possible change an attacker could apply to a
binary in order to change program behavior. Of course not all bit
flips change program behavior (e.g., bit flip in unused portion of in-
struction word, change of register value that is never read, etc.) and
thus may not be detected by some monitoring approaches. Thus it
is important to consider what fraction of bit flips can be detected
and how long it takes from the execution of the modified instruc-
tion to the point where the monitor is aware of the change. For our
results, we choose one application (gsm) from MiBench and show
the fraction of undetected bit flip attacks and the speed at which

Table 1: Performance of Monitor to Detect Bit Flip Attacks.
The results are based on 100 simulations using the gsm appli-
cation.

Monitoring undetected avg. no. of
pattern bit flips instr. to

detection

address 87% 49.1
opcode 60% 1.2
load/store 76% 15.8
control flow 74% 23.6
hash4 6% 1
hash16 1.5 · 10−3%† 1†
hash32 2.3 · 10−8%† 1†
Arora et al. [2] 2.3 · 10−8%† approx. 6†

† Results estimated and not simulated due to extremely small
probability of occurrence of event in experimental setup.

detected attacks are noticed in Table 4.3.
We find that the hashed pattern has the lowest percentage of un-

detected bit flips and the fastest possible detection speed. Other
patterns can not detect a larger fraction of the attacks (e.g., the op-
code pattern can only detect the attacks if the opcode of the instruc-
tion is changed or the control flow is changed) and take a long time
until the program execution shows deviation from expected behav-
ior (e.g., due to wildcards). The percentage of undetected attacks
in the hash pattern depends on the size of the hash. When only 4
bits are used, the hash has 16 potential values and thus there is a
1
16

= 6.25% probability that the hash value does not change de-
spite a bit flip. With larger hashes (e.g., hash16 or hash32 pattern),
this probability decreases significantly (at the cost of larger moni-
toring graphs and more computational overhead).

We compare our results to the performance of control-flow based
monitors as they have been proposed by Arora et al. [2]. The moni-
tor used in that work compares the hash of all executed instructions
at the end of a basic block. Thus, the detection speed can be as
slow as average basic block length (which is reported to be ap-
proximately 6 instructions for gsm [7]). The probability for not
detecting a bit flip attack is again based on the length of the hash
used, which is 32 bits. Thus, the monitor in [2] can detect the same
number of attacks as our hash32 pattern, but requires six times as
much time to respond.

The ability of our monitor to detect attacks within the execution
time of a single instruction is an important distinction. Embedded
systems attacks can be launched using just a few instructions (e.g.,
writing a secret key to I/O, modifying or erasing stored data, etc.)
and thus immediate response is crucial for successful defenses.

5. SUMMARY
In this paper, we have presented a novel architecture for secure

processing in embedded systems. The key idea is to use a monitor-
ing subsystem that operates in parallel with the embedded proces-
sor. The monitor verifies that only processing steps are performed
that match up with the originally installed application. Any attack
would disturb the pattern of execution steps and thus alert the mon-
itor.

We have shown the operation and performance of the proposed
monitoring system on the MiBench embedded systems benchmark
suite. We have determined the monitoring graph size and monitor-
ing detection speed for five patterns. Our results show that solely
relying on control flow information – as it has been done in the

past – is not an efficient way of detecting attacks. Instead, we have
proposed a hash-based pattern that uses less memory and can de-
tect deviations from intended processing within a single instruction
cycle. This novel approach to monitoring processing on an em-
bedded system presents a significant improvement over prior ap-
proaches. We believe this work is an important step towards pro-
viding hardware-based security solutions in embedded systems that
address the inherent limitations of these architectures.

6. REFERENCES
[1] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI,

J. Control-Flow Integrity Principles, Implementations, and
Applications. In ACM Conference on Computer and
Communication Security (CCS) (Alexandria, VA, Nov.
2005), pp. 340–353.

[2] ARORA, D., RAVI, S., RAGHUNATHAN, A., AND JHA,
N. K. Secure embedded processing through
hardware-assisted run-time monitoring. In Proc. of the
Design, Automation and Test in Europe Conference and
Exhibition (DATE’05) (Munich, Germany, Mar. 2005),
pp. 178–183.

[3] BURGER, D., AND AUSTIN, T. M. The SimpleScalar tool
set, version 2.0. Tech. Rep. 1342, Department of Computer
Science, University of Wisconsin in Madison, June 1997.

[4] CHARI, S., JUTLA, C. S., RAO, J. R., AND ROHATGI, P.
Towards sound approaches to counteract power-analysis
attacks. In Proc of the 19th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO ’99)
(London, United Kingdom, 1999), vol. 1666 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 398–412.

[5] CRETU, G. F., PAREKH, J. J., WANG, K., AND STOLFO,
S. J. Intrusion and anomaly detection model exchange for
mobile ad-hoc networks. In Proc. of 3rd IEEE on Consumer
Communications and Networking Conference (CCNC 2006)
(Las Vegas, NV, Jan. 2006), pp. 635–639.

[6] GOGNIAT, G., WOLF, T., AND BURLESON, W.
Reconfigurable security primitive for embedded systems. In
Proc. of International Symposium on System-on-Chip (SOC)
(Tampere, Finland, Nov. 2005).

[7] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D.,
AUSTIN, T. M., MUDGE, T., AND BROWN, R. B.
MiBench: A free, commercially representative embedded
benchmark suite. In Proc. of IEEE 4th Annual Workshop on
Workload Characterization (Austin, TX, Dec. 2001).

[8] KOCHER, P., JAFFE, J., AND JUN, B. Differential power
analysis. In Proc of the 19th Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO ’99)
(London, United Kingdom, 1999), vol. 1666 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 388–397.

[9] RAVI, S., RAGHUNATHAN, A., AND CHAKRADHAR, S.
Tamper resistance mechanisms for secure, embedded
systems. In Proc. of 17th International Conference on VLSI
Design (VLSI Design 2004) (Mumbai, India, Jan. 2004),
pp. 605–611.

[10] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S.
Secure program execution via dynamic information flow
tracking. In ASPLOS-XI: Proceedings of the 11th
international conference on Architectural support for
programming languages and operating systems (Boston,
MA, Oct. 2004), pp. 85–96.

[11] WOOD, A., AND STANKOVIC, J. A. Denial of service in
sensor networks. IEEE Computer 35, 10 (Oct. 2002), 54–62.

