
Adaptive Video Streaming over OpenFlow Networks with

Quality of Service

by

Hilmi Enes Eğilmez

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical and Electronics Engineering

Koç University

July, 2012

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Hilmi Enes Eğilmez

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Ahmet Murat Tekalp

Prof. Özgür Barış Akan

Assoc. Prof. Öznur Özkasap

Date:

To my beloved wife İlknur

To my parents Reyhan and Hulusi Eğilmez

To my grandfather Dr. Hilmi Eğilmez whom I’ve never met

iii

ABSTRACT

Multimedia streaming applications have stringent Quality of Service (QoS) re-

quirements which cannot be always met by the best-effort Internet. To provide QoS,

several QoS architectures have been explored over last two decades, but none of them

has been truly successful and globally implemented. This thesis presents a novel QoS

architecture for multimedia streaming based on OpenFlow, a Software Defined Net-

working (SDN) paradigm that has already attracted many commercial vendors and

recently being deployed throughout the world. We leverage off OpenFlow’s enhanced

network control capabilities to deliver multimedia with QoS. On top of OpenFlow,

we propose an optimization framework for dynamic QoS routing which fulfills the

required end-to-end QoS by dynamically optimizing the routes of the multimedia

traffic. Our extensive simulation results show that the proposed architecture and the

optimization framework on routing significantly improve the QoS of the multimedia

streaming compared to traditional shortest path routing in the Internet. In addition,

we extend our framework for large scale multi-domain OpenFlow networks. We pro-

pose a distributed control plane architecture and present new methods for dynamic

inter-domain QoS routing by addressing the messaging between OpenFlow controllers

and the network scalability. We show that the proposed solution to the distributed

routing closely approaches the globally optimal routing and nicely scales to large net-

works. We also implement a controller software to demonstrate the performance of

our approach over a real OpenFlow network deployed in our campus. Our experimen-

tal results on the real network acknowledge our simulation results and show that we

can guarantee seamless video delivery with little or no video artifacts experienced by

the end users.

iv

ÖZETÇE

Çokluortam akıtma uygulamalarının kaliteli servis ihtiyaçları en iyi çaba (best-

effort) mantığıyla çalışan internet tarafından her zaman karşılanamaz. Servis kalitesini

sağlamak amacıyla son yirmi yıl boyunca birçok ağ mimarisi ortaya atıldı, fakat şu

ana kadar hiçbiri başarılı olamadı ve yaygınlaşamadı. Bu tezde çokluortam akıtımı

için servis kalitesi sağlayan yeni bir mimari ortaya atıyoruz. Sunacağımız mimari bir

Yazılım-Tanımlı Ağ (Software-Defined Networking) örneği olan ÖzgürAkış (Open-

Flow) üzerine kurulmuştur. ÖzgürAkış’ın ileri ağ kontrol özelliğini kullanarak, mi-

marimiz üzerine dinamik olarak baştan sona kaliteli çokluortam servis yönlendimesini

eniyileyen bir çerçeve öneriyouz. Kapsamlı olarak gerçekleştirdiğimiz simulasyon

sonuçlarına göre önerdiğimiz mimari ve eniyileme çerçevesi günümüz internet mi-

marisinin en kısa yol yönlendirmesinden çok daha iyi performans gösteriyor. Buna ek

olarak, sunduğumuz çerçevenin büyük ağlarda ölçeklenebilir kılmak için ÖzgürAkış’a

yeni bir dağıtık sistem dizaynı ve buna bağlı dağıtık bir eniyileme çerçevesi öneriyoruz.

Yaptığımız çalışmalar gösteriyor ki, önerdiğimiz çözümümüz genel(global) eniyi çözüme

çok yaklaşıyor ve çok büyük, çoklu alanlı ağlara da uygulanabiliyor. Ayrıca bu fikir-

leri gerçek ağlar üzerinde uygulamak için bir kontrol edici (controller) yazılımı ürettik

ve üniversitemize gerçek bir ÖzgürAkış ağı kurduk. Gerçek ağ üzerinde yaptığımız

testler önceki simülasyonlarımızı doğruladı ve gösterdi ki, bu yeni mimari ile kesintisiz

ve kaliteli vidyo servisini garantileyebiliyoruz.

v

ACKNOWLEDGMENTS

I would like to express my endless gratitude to Prof. A. Murat Tekalp for his

excellent advisory, reliable guidance and full support. This thesis have not been

written without his profound knowledge. I thank to Dr. Seyhan Civanlar for her

guidance, constructive comments, and help in preparation of Chapter 2. She has been

like a co-advisor of me during my master’s work. Moreover, I would like to express

my special thanks to Prof. Alper T. Erdoğan who inspired me first to research. I

also thank to Prof. Özgür B. Akan and Prof. Öznur Özkasap for being in my thesis

committee and for their valuable time.

I thank to my friends Tolga Bağcı, the angry; Ümit Baş, the trojan brother; Enes

Özel, the other trojan brother; Yalçın Şadi, the reporter; Serkan Özkul, the acceptor;

Tuğtekin Turan, the office-boy; and Tahsin Dane, the contactless, for making these

two years enjoyable. I would like to show my thanks again to Tahsin and Tolga for

helping me in preparing Chapter 5.

Last but not least, I thank to my mother, Reyhan Eğilmez, my father Hulusi

Eğilmez and my brother Bedi Eğilmez for their everlasting love and support. Ob-

viously, I thank to the first light of my life, İlknur Eğilmez for her eternal love and

support.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Chapter 1: Introduction 1

Chapter 2: QoS Architectures 5

2.1 Review of QoS Architectures . 6

2.1.1 IntServ . 6

2.1.2 DiffServ . 8

2.1.3 MPLS . 10

2.2 The Proposed QoS Architecture . 11

2.2.1 OpenFlow and Its Benefits to the Proposed QoS Architecture 12

2.2.2 OpenFlow Controller Design Providing QoS 16

Chapter 3: Optimization of QoS Routing 21

3.1 Review of QoS Routing . 22

3.2 The Optimization Framework for QoS Routing 24

3.2.1 Optimization of Dynamic QoS Routing as a Constrained Short-

est Path Problem . 25

3.2.2 Solution to the Constrained Shortest Path Problem 29

3.3 Application of the Proposed Framework to Scalable Video Streaming 32

vii

Chapter 4: Distributed QoS Architecture for Multi-Domain Open-

Flow Networks 40

4.1 Review of Inter-Domain Routing . 41

4.2 The Proposed Distributed QoS Architecture 45

4.3 Distributed Control Plane Designs . 48

4.3.1 Fully Distributed Control Plane 48

4.3.2 Hierarchically Distributed Control Plane 48

4.4 Distributed Optimization of QoS Routing 49

4.5 Application of the Distributed Optimization Framework to Scalable

Video Streaming . 52

Chapter 5: OpenFlow Test Network and Controller Implementation 55

5.1 Test Network . 55

5.2 Controller Implementation: OpenQoS 56

5.2.1 Route Calculation . 56

5.2.2 Resource Management . 57

5.3 Test Results . 59

5.3.1 Streaming over UDP . 59

5.3.2 HTTP-based Adaptive Streaming 61

5.3.3 Interpretation of Test Results 62

Chapter 6: Future Directions and Application Areas 63

6.1 Koc-Ozyegin-Argela OpenFlow Test Network 63

6.2 Load Balancing in Content Distribution Networks (CDNs) 64

6.3 Multiple Description Coding . 66

6.4 Enabling Cross Layer Design in the Internet and OpenFlow Wireless 67

Chapter 7: Conclusions 69

Bibliography 71

viii

LIST OF TABLES

3.1 Performance Comparison of Proposed Approaches and Benchmarks . 38

4.1 Rate-Distortion values of the encoded sequences 53

ix

LIST OF FIGURES

1.1 (a) OpenFlow decouples control and forwarding layers. (b)Current

Internet operate both control and forwarding layers distributively . . 3

1.2 (a) An Internet router with embedded (default) control software. (b)

An OpenFlow-enabled router inter-operating with the default and Open-

Flow control software. 3

2.1 OpenFlow flow-based routing architecture 12

2.2 Flow tables and their pipelined processing 13

2.3 Main components of a flow entry in a flow table 14

2.4 Flow identification fields in OpenFlow 14

2.5 The proposed OpenFlow controller and interfaces 17

2.6 OpenFlow controller and forwarder interaction with n QoS-levels . . . 20

3.1 LARAC Algorithm . 31

3.2 Transit-Stub model . 34

3.3 Rate and quality measures for three different encoding configurations 36

3.4 Comparison of the proposed approaches and benchmarks obtained over

the network with 300 nodes by streaming Train1 under congestion

levels: (a)13, (b)14, (c)15 and Train2 under congestion levels: (d)13,

(e)14, (f)15. 39

4.1 Internet topology abstraction (a) as a cloud of routers , (b) as a col-

lection of a number of commercial entities 42

4.2 IGPs and EGPs in the Internet . 43

4.3 Establishment of iBGP and eBGP TCP sessions in BGP 43

x

4.4 A sample multi-domain OpenFlow network: (a) complete network

view, (b) aggregated version of the network 46

4.5 Fully distributed control plane design 48

4.6 Hierarchically distributed control plane design 49

4.7 Simulation results: (a) Train, (b) Big Buck Bunny 54

5.1 OpenFlow Testbed in our campus . 55

5.2 Best case result of UDP streaming . 60

5.3 One case result of UDP streaming . 61

5.4 Adaptive HTTP streaming result . 62

6.1 First OpenFlow test network deployed over three campuses 63

6.2 Load Balancer . 64

6.3 Load balancing (a) over the Internet is limited to server selection, (b)

over OpenFlow allows the joint selection of servers and routes 65

6.4 Streaming three MDC descriptions to a client (a) over the Internet

from multiple servers, (b) over OpenFlow from a single server 68

xi

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The Internet design is based on end-to-end arguments [1] where the network sup-

port is minimized and the end hosts are responsible for most of the communication

tasks. This design sufficiently covers two fundamental goals of the Internet architec-

ture [2]:

• Resiliency to failures: Internet communication must continue despite the loss of

networks or gateways.

• Unified service model: The Internet must support multiple types of communi-

cations service.

End-to-end principles of the Internet allow a unified best-effort service for any type

of data at the networking layer where service definitions are made at the upper lay-

ers (hosts), and it reduces the overhead and the cost at the networking layer without

losing reliability and robustness. This type of architecture fits perfectly to data trans-

mission where the primary requirement is reliability. Yet, in multimedia transmission,

timely delivery is preferred over reliability. Multimedia streaming applications have

stringent delay requirements which cannot be guaranteed in the best-effort Internet.

So, it is desirable that the network infrastructure supports some means to provide

Quality of Service (QoS) for multimedia traffic. Therefore, the Internet Engineering

Task Force (IETF) has proposed several QoS architectures such as IntServ [3] and

Diffserv [4], but none has been truly successful and globally implemented. This is

because of two main reasons:

Chapter 1: Introduction 2

• They require some fundamental changes on the Internet design.

• They are built on top of the current Internet’s completely distributed hop-by-

hop routing architecture lacking the end-to-end information of available network

resources.

Without requiring fundamental changes, Multi-protocol Label Switching (MPLS) [5]

provides a partial solution via its ultra-fast switching capability, but it lacks real-time

reconfigurability and adaptivity.

Software Defined Networking (SDN) [6] is a paradigm shift in network architecture

where the network control is decoupled from forwarding and is directly programmable.

This migration of control provides an abstraction of the underlying network for the

applications residing on upper layers, enabling them to treat the network as a logical

or virtual entity [7]. Among several attempts, OpenFlow is the first successful im-

plementation [8] of SDN which has recently started being deployed throughout the

world and has already attracted many commercial vendors [9]. As proposed in SDN,

OpenFlow moves the network control to a central unit, called controller while the for-

warding function remains within the routers, called forwarders. On the other hand,

in the Internet, the routers perform both routing control and packet forwarding func-

tions. Fig.1.1 illustrates the migration of the routing control function in OpenFlow

and its difference from the Internet.

The OpenFlow controller is the brain of the network where packet forwarding de-

cisions are made on per-flow basis and the network devices are configured accordingly

via the OpenFlow protocol, which defines the communication between the controller

and the underlying devices. We believe that this technology will lead to many inno-

vative networking solutions including new QoS mechanisms. The major advantage of

OpenFlow is that, unlike current QoS architectures, its implementation does not re-

quire fundamental changes on the Internet design. Many network device vendors have

already started to produce OpenFlow-enabled switches/routers which are backward

compatible and can also work in legacy mode. As depicted in Fig.1.2, these routers

Chapter 1: Introduction 3

(a) (b)

Figure 1.1: (a) OpenFlow decouples control and forwarding layers. (b)Current Inter-
net operate both control and forwarding layers distributively

(a) (b)

Figure 1.2: (a) An Internet router with embedded (default) control software. (b)
An OpenFlow-enabled router inter-operating with the default and OpenFlow control
software.

have an additional option for enabling the OpenFlow control on the network which

can be switched to default control (legacy) mode. Hence, inevitably, OpenFlow will

gradually spread throughout the world in the near future as new OpenFlow-enabled

routers are deployed in the Internet.

The state-of-the-art streaming multimedia applications are over the Internet Pro-

tocol (IP) [10], so they do not guarantee any QoS requirements. But, they are

managed to provide QoS with a high probability by exploiting application-layer

QoS control techniques [11–18] along with the sophisticated multimedia compression

schemes [19–24]. The application-layer techniques are well-studied in the literature

Chapter 1: Introduction 4

and the reader is referred to overview papers [25–28] for general information. In this

thesis our focus is on network-layer adaptation strategies for multimedia streaming

and application-layer QoS control techniques are not in our scope.

In this thesis, we propose a new QoS architecture by taking OpenFlow as a ba-

sis. On top of the OpenFlow controller, we construct an optimization framework

for dynamic QoS routing so that the multimedia traffic is dynamically rerouted to

provide required QoS while the other traffic packets follow the traditional shortest

path [29,30]. Then, we extend this framework to enable QoS over multi-domain large

scale OpenFlow networks which is not possible with a single controller. Since the cur-

rent OpenFlow [31] only supports a single controller, we also propose a distributed

control plane architecture supporting multiple controllers [32]. In addition, we im-

plement our dynamic QoS routing approach and test over a real OpenFlow network

deployed in our campus [33].

The remainder of this thesis is organized as follows: Chapter 2 reviews current

QoS architectures and presents the proposed QoS architecture. Chapter 3 provides

a review on QoS routing and discusses the proposed optimization framework for dy-

namic QoS routing which runs on top of our proposed QoS architecture. Chapter

4 proposes the distributed extension of our optimization framework for inter-domain

QoS routing and we also discuss the current Internet’s inter-domain routing which

is based on Border Gateway Protocol (BGP) in Chapter 4. The controller software

implementation and the real OpenFlow test network environment are presented in

Chapter 5. Chapter 6 includes some future directions and application areas of the

proposed QoS architecture. Finally, concluding remarks are given in Chapter 7.

Chapter 2: QoS Architectures 5

Chapter 2

QOS ARCHITECTURES

The Internet architecture is designed to provide a unified (i.e. classless) best-effort

service. So, it cannot make any promises about the end-to-end delay of a packet and

the delay variation between consecutive packets in a packet stream. Due to the lack of

support to deliver multimedia traffic within its timing constraints, it is an extremely

challenging task to develop successful streaming multimedia applications over the

Internet.

There is a continuing debate on how to evolve the Internet in order to provide QoS

for multimedia traffic. Some researchers argue that fundamental changes should be

done to fully guarantee QoS via end-to-end bandwidth reservations, while others think

moderate changes are enough to have soft guarantees via unequal treatment of packets

using new scheduling policies which will provide the requested QoS with very high

probability. Another group of researchers argue that best-effort service of the Internet

is adequate and networking solutions such as content distribution networks (CDNs),

peer-to-peer (P2P) systems and multicast overlay networks can provide sufficient

QoS. Even though multimedia applications such as YouTube and Skype have achieved

considerable success, during the peak usage times of the Internet, their performance

may be unsatisfactory due to variable queuing delays and congestion losses. Moreover,

according to recent studies, the amount of Internet traffic has already reached up to

its limits [34]. Hence, the Internet design will require new QoS mechanisms as the

demand on multimedia contents continue to grow. In this chapter, we first review

current QoS architectures in Section 2.1, then in Section 2.2 we present our proposed

QoS architecture which is based on OpenFlow.

Chapter 2: QoS Architectures 6

2.1 Review of QoS Architectures

In a nutshell, we can group the QoS architectures into two major categories:

• Integrated Services (IntServ) – provide hard QoS guarantees via resource reser-

vation (bandwidth, buffer) techniques. They require fundamental changes in

the network core.

• Differentiated Services (DiffServ) – provide soft QoS guarantees via scheduling

(priority queuing) techniques. Unlike IntServ-like architectures, they require

changes in the edge routers of the network.

Besides, Multiprotocol Label Switching (MPLS) [5] is a mechanism that allows ultra-

fast routing. By itself, MPLS is not a QoS architecture, but it benefits many QoS

architectures with its fast switching capability. In the subsequent sections, we discuss

these QoS mechanisms in detail.

2.1.1 IntServ

IntServ is an architecture that specifies the elements to guarantee QoS for individual

flows. In IntServ, a flow is defined as a unidirectional data stream between two

applications and is uniquely identified by source and destination address pair, port

numbers and the transport protocol. Intserv defines three classes of traffic (services)

based on application’s delay requirements (from highest to lowest priorities):

• Guaranteed service [35] – achieves firm (mathematically provable) bounds on

end-to-end datagram queuing delays and therefore provides hard (delay and

bandwidth) guarantees for each flow.

• Controlled Load service [36] – provides approximate QoS guarantees in a lightly

loaded network. The delay service agreement is made statistically which is not

violated under unloaded network conditions.

• Best-effort service – is similar to the service that the Internet offers.

Chapter 2: QoS Architectures 7

The guaranteed service and controlled load traffic classes are based on quantitative

service requirements, and both of them require signaling to reserve network resources

(e.g. link bandwidth and buffers). Even though the IntServ architecture is not tied to

any particular signaling protocol, Resource Reservation Protocol (RSVP) [37], is often

regarded as the signaling protocol in IntServ. RSVP is used to reserve bandwidth for

the applications requesting QoS for their unicast of multicast data flows. It is used

by a host to request specific QoS requirements from the network and also used by

routers to distribute the QoS requirements of the host. This mechanism is similar to

circuit switched networks (e.g. ATM [38]) where the data transmission starts after

an end-to-end connection is established. RSVP is not a routing protocol; it inter-

operates with any unicast/multicast routing protocol. Routing protocols determine

where packets get forwarded and RSVP is only concerned with the QoS management

of those packets that are forwarded in accordance with routing. It is important to

note that the routing protocol should be QoS-aware, so that the calculated routes

satisfy the QoS requirements.

An IntServ-based router has to implement following traffic control mechanisms to

satisfy appropriate QoS for each flow:

• Admission control – decide whether accept or reject an application’s request

depending on available resources. Admission control needs that the router un-

derstands the demands that are currently being made on its assets, so that it

can predict the worst-case bounds on each service.

• Packet scheduler – manages the forwarding of different packet streams using a

set of queues or other mechanisms such as timers.

• Packet classifier – To handle traffic control, each incoming packet must be

mapped into some traffic class. This mapping is performed by the classifier. A

class might correspond to a broad category of flows, e.g., all video flows or all

flows coming from a particular source. On the other hand, a class might hold

only a single flow.

Chapter 2: QoS Architectures 8

The advantages of IntServ can be summarized as follows,

• IntServ’s guaranteed service fully provides QoS with firm bounds on delay.

• It guarantees end-to-end QoS on per-flow basis.

However, IntServ architecture has the following drawbacks,

• Scalability; IntServ works well on small-scale networks, but it is difficult to keep

track of all reservations and end-to-end signaling in a large scale network, like

the Internet.

• IntServ requires fundamental changes in the network core, since all routers along

the traffic path have to support it.

2.1.2 DiffServ

DiffServ is an architecture that specifies the mechanisms for classifying, managing

data traffic and providing QoS for aggregated traffic classes. Unlike IntServ’s fine-

grained, flow-based mechanism, DiffServ is a coarse-grained, class-based mechanism

for traffic management. Packets are classified and marked to receive a particular

per-hop forwarding behavior on routers along their path. The main advantage of

DiffServ over IntServ is the scalability which is achieved by implementing operations

such as packet classification, packet marking, traffic shaping and policing at network

boundaries (edges) or hosts. It does not require fundamental changes in the network

core. Each router in the network only need to be configured to differentiate traffic

based on its class, so that each traffic class can be managed differently based on its

priority preferences. In a nutshell, a DiffServ-based network should implement,

• Packet classification and packet marking on the edge routers.

• Per-hop behaviours (PHBs) (e.g. priority queueing, traffic shaping) on all net-

work routers.

Chapter 2: QoS Architectures 9

Per-hop behaviours can only provide soft guarantees with statistical bounds on end-

to-end delay. Although, it does not fully guarantee end-to-end QoS, it provides the

requested QoS with high probability. Moreover, DiffServ does not define standard

traffic classes like IntServ does. This allows flexible class prioritization definitions

and service differentiation, therefore; differentiated pricing strategies to the Internet

Service Providers (ISPs). However, in practice, most networks use the following

commonly-defined per-hop behaviours (PHBs) in several RFCs (from highest to lowest

priorities):

• Expedited Forwarding (EF) PHB [39] – dedicated to low-loss, low-latency traffic

(e.g. video, VOIP). The mechanism is similar to RSVP via IntServ model. It is

implemented using priority queuing along with rate limiting on a traffic class.

• Assured Forwarding (AF) PHB [40] – gives assurance of delivery under pre-

scribed conditions. This is rough equivalent of IntServ’s controlled load service.

• Class Selector PHBs [41] – which maintain backward compatibility with the

IP Precedence field for network nodes implementing IP-based precedence based

classification and forwarding.

• Default PHB [41] – which is typically best-effort traffic

In summary, some major advantages of DiffServ are as follows,

• In contrast to IntServ, DiffServ achieves scalability in guaranteeing QoS by

implementing policing and classification functions at the boundaries of DiffServ

domains. So, it proposes minimal changes in the network core.

• DiffServ does not require advance setup, reservation and time consuming end-

to-end negotiation for each flow.

• DiffServ allows flexible class definitions and differentiated pricing of Internet

service.

Chapter 2: QoS Architectures 10

However, DiffServ architecture has following drawbacks,

• Since DiffServ-aware routers apply per-hop behaviours (PHBs) to traffic classes,

it is difficult to predict end-to-end behaviour of the network. The problem is

even more complicated if there are more than two DiffServ domains.

• Unlike IntServ, DiffServ does not provide hard guarantees for QoS requirements.

It can only promise statistical bounds on QoS parameters (e.g. delay, through-

put).

2.1.3 MPLS

MPLS is not a QoS architecture but its fast data switching capability for high speed

networks makes MPLS suitable for multimedia delivery. It is a hybrid mechanism that

combines the benefits of ATM’s circuit switching and IP’s packet routing. The fast

switching is achieved by assigning packets to short MPLS labels which avoids complex

routing table lookups. So, an MPLS labeled packet is switched after a label instead

of a lookup into the IP table. In conventional IP, the next hop is determined based on

packet’s long header information which requires more effort than short MPLS labels.

In addition, label lookup and switching is much faster than a routing table lookup

since it can take place directly within the switched fabric and not the CPU.

In MPLS, a packet is labeled by assigning that packet to a forwarding equivalent

class (FEC). This is done only once when an unlabeled packet enters to an MPLS

domain. The routing is performed by label switch routers (LSRs), and labeled packets

are routed according to label switched paths (LSPs). The route (LSP) selections can

be determined by hop-by-hop routing or explicit routing. Hop-by-hop routing allows

each LSR to independently choose the next hop for each FEC. This is the usual mode

today in existing IP networks. On the other hand, explicit routes can be determined

by specific LSRs via source routing or by the network operator manually. Explicit

routing may be useful for a number of purposes, such as policy routing or traffic

engineering [42].

Chapter 2: QoS Architectures 11

The main advantages of MPLS over IP can be summarized as follows:

• MPLS’s labeling mechanism avoids complex routing table lookups and provides

ultra-fast switching which is suitable for delay sensitive applications.

• MPLS is considered as a layer 2.5 protocol, lying between link layer (L2) and

network layer (L3). So, it can encapsulate various network layer protocols such

as IP, ATM, SONET [43] and inter-operate with both packet-switched and cir-

cuit switched networks.

In order to balance the network load, MPLS based traffic engineering, MPLS-

TE, [44, 45] is proposed for selecting most efficient paths across an MPLS network

based on bandwidth and administrative policies. In MPLS-TE, each LSR maintains a

traffic engineering (TE) state database with up-to-date network topology where any

change in the network is flooded to distribute over the network. Based on network

state information, constrained based routing is employed. The main advantage of

implementing MPLS-TE is that it provides a combination of ATM’s TE capabilities

along with the class of service differentiation of IP. Moreover, [46] defines flexible

solution for support of DiffServ over MPLS networks. Although this architecture is

completely different from IntServ, it uses RSVP’s traffic engineering extension RSVP-

TE [47] as signalling protocol. Its mechanism is very similar to DiffServ over IP

discussed in Section 2.1.2.

2.2 The Proposed QoS Architecture

In this section we present our proposed QoS architecture which is based on Open-

Flow. We first discuss OpenFlow and its beneficial functionalities for the proposed

architecture in Section 2.2.1 and then we present our controller design providing QoS

in Section 2.2.2.

Chapter 2: QoS Architectures 12

2.2.1 OpenFlow and Its Benefits to the Proposed QoS Architecture

In the current Internet architecture, it is not possible to change network routing on

a per-flow basis. When a packet arrives at a router, it checks the packet’s source

and destination address pair with the entries of the routing table, and forwards it

according to predefined rules (e.g. routing protocol) configured by the network oper-

ator. OpenFlow offers a new paradigm to mainly remedy this deficiency by allowing

us to define different routing rules associated with data flows so that the partitions

of the network’s layout and traffic flows can be instantly modified. The OpenFlow

controller is the key network element where routing decisions are made. Thus, dif-

ferent algorithms and rules in the controller associated with different data flows may

yield different routing choices. The controller provides access to flow tables, and the

rules that tell the network forwarders how to direct traffic flows. Fig.2.1 illustrates

the OpenFlow’s architecture where the controller makes per-flow decisions based on

network feedback coming from the forwarders and instantly modifies the forwarders’

flow tables accordingly.

Figure 2.1: OpenFlow flow-based routing architecture

In OpenFlow, network devices store the flow entries and their associated rules

in flow tables which are processed as a pipeline shown in Fig.2.2. The goal of

Chapter 2: QoS Architectures 13

the pipelined processing is to reduce the packet processing time. An OpenFlow

switch/router is required to have at least one flow table, and can optionally have more

flow tables. When a packet arrives to an OpenFlow switch/router, it checks whether

there exists a matching flow entry in flow table with index 0 or not. If a matching

flow entry is found, the instruction set included in that flow entry is executed. Those

instructions may explicitly direct the packet to another flow table by updating its

associated action set, where the same process is repeated again. If the matching flow

entry does not direct packets to another flow table, pipeline processing stops and the

packet is processed with its associated action set and usually forwarded. If the packet

does not match a flow entry in the table, the behaviour depends on the flow table

configuration. The default action may be to send the packet to the controller and ask

what to do via PACKET IN message.

Figure 2.2: Flow tables and their pipelined processing

Using the OpenFlow protocol’s flow modification messages (OFPFC), the controller

can add, update, and delete flow entries in flow tables, both reactively (in response

to packets, i.e. PACKET IN messages) and proactively. A flow table contains a set

of flow entries where each flow entry consists of match fields, counters, and a set of

instructions to be applied on matching packets as illustrated in Fig.2.3 [31]. In each

flow entry;

• Match fields – keep flow definitions to match against packets.

• Counters – hold the per-flow statistics (i.e. packet count, byte count)

• Instructions – keep actions associated to matching packets.

Chapter 2: QoS Architectures 14

Figure 2.3: Main components of a flow entry in a flow table

In OpenFlow, we can define flows in many ways. Flows can contain same type

or different types of packets. For example, packets with the TCP port number 80

(reserved for HTTP) can be a flow definition, or packets having RTP header may

indicate a flow which carries voice, video or both. In essence, it is possible to set flows

(i.e. matching fields) as a combination of header fields as illustrated in Fig.2.4, but the

network operator should also take into account the processing power limitations of the

network devices (routers or switches). In order to avoid complex flow table lookups,

flow definitions should be cleverly set and if possible aggregated. Multimedia flow

definitions may be determined by using the following packet header fields or values:

• Traffic class header field in MPLS,

• TOS (Type of Service) field of IPv4,

• Traffic class field in IPv6,

• If multimedia server is known, source IP address,

• Transport source and/or destination port numbers.

Figure 2.4: Flow identification fields in OpenFlow

Chapter 2: QoS Architectures 15

It is desirable to define flows according to lower layer (L2, L3) packet headers since

the packet parsing complexity is lower compared to processing up to upper layers

(L4). Therefore, we propose to define multimedia flows using fields in MPLS which

is considered in between data link and network layer (L2.5), and provides ultra-fast

switching capability. But, in some cases upper layer header fields may also be required

for better packet type discrimination, and OpenFlow allows the flexibility of defining

flows using upper layer (L4) header fields. Besides, flow definitions may not rely on

current IP. Any addressing scheme with service level information can be used to define

multimedia type flows.

Other than providing flexible flow (class) definitions, OpenFlow eases many other

QoS related problems existing in current architectures such as,

• Network resource monitoring and end-to-end QoS support : OpenFlow’s central-

ized control provides complete network resource visibility and instant manage-

ment over network devices to seamlessly adapt end-to-end network behaviour.

Therefore, any QoS mechanism/architecture deployed on top of OpenFlow will

have end-to-end QoS support.

• Application-layer aware QoS : By centralizing network control and making state

information available up to application layer, an OpenFlow-based QoS architec-

ture can better adapt dynamic user needs.

• Differential services : More granular network control with wide ranging policies

at session, user, device, application levels will allow service providers to apply

differential pricing strategies.

• Virtualization: OpenFlow enables to virtually slice a network for creating spe-

cial purpose networks, e.g. file transfer network, delay-sensitive multimedia

network.

• Packet type discrimination: The packet marking and the packet classification

functions, found in DiffServ, will not be required in an OpenFlow-based QoS

Chapter 2: QoS Architectures 16

architecture. The controller can easily classify and mark the packets by getting

PACKET IN messages from the forwarders and pushing new flow definitions to

the forwarders using OFPFC messages. If a forwarder encounters an unknown

packet type, a PACKET IN message is sent to the OpenFlow controller. The

controller parses the packet and informs the forwarder about what to do. If

the packet is a valid type, then the controller sets necessary flow tables’ entries

using flow modification messages.

• QoS routing : To find the QoS guaranteed routes, it is essential to collect up-

to-date global network state information, such as delay, bandwidth, and packet

loss rate for each link. The performance of any routing algorithm is directly

related to how precise the network state information is. Over large networks,

collecting the network state globally may be challenging due to the scale of the

network. The problem becomes even more difficult in the Internet because of

its completely distributed (hop-by-hop) architecture. OpenFlow eases this task

by employing a centralized controller. Instead of sharing the state information

with all other routers, OpenFlow forwarders directly send their local state in-

formation to the controller. Then, the controller collects the forwarders’ state

information and computes the best feasible routes accordingly.

2.2.2 OpenFlow Controller Design Providing QoS

The proposed controller, depicted in Fig.2.5, offers various interfaces and functions,

some of which have been part of a router in the classical Internet model.

The main interfaces of the controller are:

• Controller-Forwarder interface: This interface is defined by OpenFlow. The

controller attaches to forwarders with a secure channel using the OpenFlow

protocol to share necessary information. The controller is responsible to send

flow tables associated with data flows, to request network state information from

forwarders for discovering the network topology, and to monitor the network.

Chapter 2: QoS Architectures 17

Figure 2.5: The proposed OpenFlow controller and interfaces

• Controller-Controller interface: The single controller architecture does not

scale well when the network is large. As the number of the OpenFlow nodes

increases, multiple controllers are required. This interface allows controllers to

share the necessary information to cooperatively manage the whole network.

This interface will be further discussed in Chapter 4.

• Controller-Service interface: The controller provides an open, secure inter-

face for service providers to set flow definitions for new data partitions and even

to define new routing rules associated with these partitions. It also provides a

real-time interface to signal the controller when a new application starts a data

flow.

The controller manages several key functions:

• Topology Management : This function is responsible for discovering and main-

taining network connectivity through data received from forwarders.

Chapter 2: QoS Architectures 18

• Resource Management : This function is responsible for determining the avail-

ability and packet forwarding performance of forwarders to aid the route cal-

culation and/or queue management. This requires collecting the up-to-date

network state from the forwarders on a synchronous or asynchronous basis and

mapping the collected information based on a specified metric. When a forward-

ing decision is made for a flow, the associated flow tables are instantly modified

accordingly.

• Route Calculation: This function is responsible for calculating and determining

routes (e.g. shortest path and QoS routes) for different types of flows. Several

routing algorithms can run in parallel to meet the performance requirements

and objectives of different flows. This function interoperates with both topology

management and resource management functions where the network topology

and the network state information are input to this function.

• Queue Management : This function provides QoS support based on prioritiza-

tion of queues. One (or more) queues can be attached to a forwarder’s physical

port, and flows are mapped to pre-configured queues.

• Flow Management : This function is responsible for collecting the flow definitions

received from the service provider through the controller-service interface, and

may allow efficient flow management by aggregating flow definitions.

• Call Admission: This function denies/blocks a request when the requested QoS

parameters cannot be satisfied (e.g. there may be no feasible route), and informs

the controller to take necessary actions.

• Traffic Policing : This function is responsible for determining whether data flows

agree with their requested QoS parameters, and applying the policy rules when

they do not (e.g. pre-empting traffic or selective packet dropping).

Chapter 2: QoS Architectures 19

When a video service requests a QoS option from the network, it is initially received

by the call admission function of the controller and this function determines if the

requested service can be delivered based on other reservations being made. If the

reservation is accepted, the flow management function matches the data flow with pre-

defined multimedia flows definitions for the service starting. The data flow may start

when the controller is signalled with a PACKET IN message [31], at which time the

route calculation function computes the exact route and uploads new flow table entries

to appropriate forwarders. If the resource management function detects congestion

in the network, it reactivates the route calculation function to determine a new route

for the data flow. To mitigate network congestion, the service provider also has

another option of using queue management function that allows to prioritize flows.

It is important to note that the traffic policing function must also be implemented to

make sure the end points conform to their Service Level Agreements (SLAs) stated

in their QoS contract.

We can set up different rules for traffic coming from or going to a certain des-

tination (e.g. from a specific server to a client), or of certain type (e.g. video) or

protocol (e.g. RTP). The corresponding flow tables are dynamically uploaded to for-

warders by the controller. The route calculation function determines the QoS routing

by optimizing a different cost function other than the hop count. Routes that have

larger capacity (even with longer path lengths) may be more preferable to shorter

routes that cause packet loss. The QoS flows can be dynamically rerouted based on

performance indicators (such as packet loss) collected on the flows’ path.

When a QoS traffic is placed on a route, more packet losses may be observed on

other types of traffic on the shared route. Therefore, any performance optimization

process which cares about QoS flows must also consider the impact on other types of

traffic. In order to minimize the adverse effects of QoS provisioning on other flows, we

only propose to employ dynamic routing and to do not exploit resource reservation [3]

and/or priority queuing [4, 48] mechanisms. On the other hand, the service provider

may also want to have an option to set priorities to different flows. In this case,

Chapter 2: QoS Architectures 20

we propose to employ both priority queuing and dynamic QoS routing, so that the

dynamic routing should be triggered when the QoS requirements are not met by the

forwarders’ queues along the path. Hence, assuming the flow-queue mapping is static

we define flow types based on their QoS routing precedences as follows:

• QoS level-1: which will be dynamically rerouted first with highest priority

• QoS level-k (2 ≤ k ≤ n): which will be dynamically rerouted after the routes

of QoS level-1, ..., (k − 1) traffics are fixed

• Best-effort: with no dynamic rerouting (will follow shortest path)

where n is the number of QoS levels which is determined based on the application

requirements. Note that the flow priorities decrease in ascending order of QoS-levels.

The controller generates and sends (n + 1) sets of flow tables to the forwarders dis-

tinguishing the level-1,...,n QoS flows and the best-effort flow routing for the flows

between the same ingress and egress points, as illustrated in Fig.2.6. We discuss the

proposed optimization framework for routing of these n QoS-levels in Section 3.2 of

Chapter 3.

Figure 2.6: OpenFlow controller and forwarder interaction with n QoS-levels

Chapter 3: Optimization of QoS Routing 21

Chapter 3

OPTIMIZATION OF QOS ROUTING

The term QoS routing can be defined as selecting network routes with sufficient

resources which are determined according to requested QoS parameters. For mul-

timedia applications such QoS parameters are bandwidth, end-to-end delay, delay

variation (jitter), and reliability. In order to guarantee QoS, determining routes that

satisfy the QoS requirements is essential and therefore; performance of any QoS ar-

chitecture highly depends on its QoS routing implementation. This implementation

should cover following two major building blocks:

• A routing protocol that collects up-to-date network state information including

necessary QoS parameters from the network.

• A routing algorithm that is fast and closely approaches to the globally optimal

route satisfying QoS requirements.

where the routing protocol is replaced by the OpenFlow protocol in the proposed QoS

architecture (see Section 2.2 of Chapter 2). The OpenFlow controller is the network

unit that keeps the complete network state and the routing algorithm(s) calculating

QoS routes.

In this chapter, we provide a comprehensive study on QoS routing. Section 3.1

presents a review of QoS routing problems and algorithms. In Section 3.2, we propose

an optimization framework on QoS routing for our OpenFlow-based QoS architecture.

Then, we apply the proposed framework to scalable video streaming and give simu-

lation results in Section 3.3.

Chapter 3: Optimization of QoS Routing 22

3.1 Review of QoS Routing

In the literature many unicast/multicast QoS routing algorithms have been proposed.

The purpose of unicast QoS routing is to find a QoS optimized route between a source

and a destination node pair. On the other hand, the multicast QoS routing algorithms

try to find a QoS optimized tree between a source node and multiple destination

nodes. In this section, we restrict our attention to unicast QoS routing and multicast

QoS routing is not in our scope. For detailed discussion of multicast QoS routing

algorithms, we refer to references [49–51].

The problem of QoS routing can be posed as constrained-based path selection

problems where the requested QoS parameters determine the constraints. Accord-

ingly, we define three types of problems:

1. Multi-Constrained Path (MCP) problem: The network is represented as a di-

rected simple graph G(N,A), where N is the set of nodes and A is the set of all

links. Each link, (i, j) ∈ A, is specified by a link weight vector with m additive

weights wkij ≥ 0, k = 1, ...,m. Given m constraints Dk, k = 1, ...,m, the MCP

problem is finding a path (route) r ∈ Rst where Rst is the set of all paths from

the source node s to the destination node t such that,

r∗ =
{
r | fwk

(r) ≤ Dk
}

for k = 1, ...,m (3.1)

where fwk
(r) =

∑
(i,j)∈r

wkij and r∗ is the set of all feasible paths that satisfy m

constraints.

2. Multi-Constrained Optimal Path (MCOP) problem: Given a network is repre-

sented as a directed simple graph G(N,A), where N is the set of nodes and A is

the set of all links. Each link, (i, j) ∈ A, is specified by a link weight vector with

m additive weights wkij ≥ 0, k = 1, ...,m. Given m constraints Dk, k = 1, ...,m,

the MCP problem is finding a path (route) r ∈ Rst where Rst is the set of all

Chapter 3: Optimization of QoS Routing 23

paths from the source node s to the destination node t such that,

r∗ = arg min
r

{
fw(r) | fwk

(r) ≤ Dk
}

for k = 1, ...,m (3.2)

where fwk
(r) =

∑
(i,j)∈r

wkij, fw(r) is any function of weights (weight vector) and

r∗ is the best feasible path that minimizes the function fw(r) and satisfies m

constraints.

3. Constrained Shortest Path (CSP) problem: Given a network is represented as

a directed simple graph G(N,A), where N is the set of nodes and A is the set

of all links. Each link is specified. Each link, (i, j) ∈ A, is specified by two

nonnegative additive weights, w1
ij and w2

ij. The CSP problem is finding a path

(route) r ∈ Rst where Rst is the set of all paths from the source node s to the

destination node t such that,

r∗ = arg min
r
{fw1(r) | fw2(r) ≤ Dmax} (3.3)

where fw1(r) =
∑

(i,j)∈r
w1
ij, fw2(r) =

∑
(i,j)∈r

w2
ij and r∗ is the best feasible path that

minimizes the function fw1(r) and satisfies the constraint Dmax.

In the optimization problems above, all weights are additive which means the QoS

measure of a path is the sum of individual QoS weights of the link defining the path.

Fortunately, for multimedia most of the QoS parameters are additive such as delay,

jitter and the logarithm of packet loss (i.e. originally packet loss is multiplicative).

However, some of the QoS parameters such as bandwidth, buffer space and policy flags

are not additive. Therefore, a path’s QoS measure may be the minimum/maximum of

the QoS link weights along that path. The constraints on min./max. QoS measures

can be easily resolved by removing the the links that do not satisfy the requested

min./max. QoS constraints.

The MCP, MCOP and CSP problems are all known to be NP-complete problems

[52,53], so there are heuristic and approximation algorithms proposed in the literature.

Chapter 3: Optimization of QoS Routing 24

Kuipers et al. [54] present an overview of constraint-based path selection algorithms

for QoS routing. Chen and Nahrstedt [49] provide an overview of QoS routing over

next generation high-speed networks. They present different QoS routing problems,

their challenges, the QoS routing strategies and an evaluation of existing routing

algorithms. Masip-Bruin et al. [55] present an accurate description of the state-of-the-

art and outline research challenges in QoS routing. Wang and Crowcroft [56] propose

multi-constrained path computing algorithms and also discuss cost metric selections

for QoS routing. Xue et al. [57] discuss various approximation algorithms for MCP

problems and propose an improved approximation scheme. Juttner et al. [58] propose

a method for delay-constrained least cost QoS routing, which formulates aggregated

costs and finds the optimal Lagrange multiplier using the LARAC algorithm. This

method runs in polynomial time and produces a theoretical lower bound along with

the solution. More recently, Chen et al. [59] presents two approximation algorithms

for the CSP problem, which are alternatives to the LARAC algorithm. These two

algorithms achieve smaller average path cost than LARAC, but they run slower. There

are also several overview works in the literature related to QoS routing. However,

there is no technical problem formulation or solution methodology in their paper.

Note that references [56–59] only consider route calculation task of QoS routing and

do not address how to collect information about the state of the network and the

available network resources. Moreover, references [49, 54, 55] focus their attention

on resource reservation and Intserv-based architectures, and do not discuss either

dynamic QoS routing.

3.2 The Optimization Framework for QoS Routing

This section presents an optimization framework to design an OpenFlow controller

which provides QoS guarantees to designated streams, called QoS flows; that is, to

optimize routing dynamically to ensure delivery of QoS flows within specified con-

straints. To achieve this, we present a Constrained Shortest Path (CSP) routing

framework, instead of the classical Shortest Path (SP) routing. In Section 3.2.1, we

Chapter 3: Optimization of QoS Routing 25

pose dynamic rerouting as a CSP problem, and discuss cost metric and constraint

selections to support n QoS levels. Then, in Section 3.2.2, we apply the LARAC

algorithm [58] to solve the CSP problem for computing the optimized QoS routes.

3.2.1 Optimization of Dynamic QoS Routing as a Constrained Shortest Path Prob-

lem

We pose the dynamic QoS routing as a Constrained Shortest Path (CSP) problem.

For the CSP problem, it is crucial to select a cost metric and constraints where

they both characterize the network conditions and support QoS requirements. In

multimedia applications, the typical QoS indicators are packet loss, delay and delay

variation (jitter); therefore we need to determine the cost metric and the constraint

accordingly. Obviously, all applications require that the packet loss is minimized for

better QoS. However, some QoS indicators may differ depending on the type of the

application:

• Interactive multimedia applications have strict end-to-end delay requirements

(e.g. 150-200 ms for video conferencing). So, the CSP problem constraint

should be based on the total delay.

• Video streaming applications require steady network conditions for continuous

video playout; however, the initial start-up delay may vary from user to user.

This implies that the delay variation is required to be bounded, so the CSP

problem constraint should be based on the delay variation.

Since in this thesis our focus is on video streaming, we will employ delay variation as

the constraint in our problem formulation. Note that, it is straightforward to modify

the proposed problem formulation for interactive multimedia applications by using

the total delay as a constraint instead of delay variation.

In our formulation, a network is represented as a directed simple graph G(N,A),

where N is the set of nodes and A is the set of all arcs (also called links), so that arc

(i, j) is an ordered pair, which is outgoing from node i and incoming to node j. Let

Chapter 3: Optimization of QoS Routing 26

Rst be the set of all routes (subsets of A) from source node s to destination node t.

For any route r ∈ Rst we define cost fC(r) and delay variation fD(r) measures as,

fC(r) =
∑

(i,j)∈r

cij (3.4)

fD(r) =
∑

(i,j)∈r

dij (3.5)

where cij and dij are cost and delay variation coefficients for the arc (i, j), respectively.

The CSP problem can then be formally stated as finding

r∗ = arg min
r
{fC(r) | r ∈ Rst, fD(r) ≤ Dmax} (3.6)

that is, finding a route r which minimizes the cost function fC(r) subject to the

delay variation fD(r) to be less than or equal to a specified value Dmax. This CSP

problem (3.6) falls into the general category of integer linear program [60] which can

be represented as follows:

minimize
∑

(i,j)∈A

cijxij

subject to
∑

(i,j)∈A

dijxij ≤ Dmax

∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji =



1, if i = s

−1, if i = t

0, otherwise

(3.7)

where xij, ∀(i, j) ∈ A, is the flow variable, such that

xij =


1, if (i, j) ∈ r∗

0, otherwise

(3.8)

Chapter 3: Optimization of QoS Routing 27

where 1 and− 1, in the equality constraint, represent flow divergence on node i, cij is

the cost coefficient for the arc/link (i, j), dij is the delay variation coefficient for the

arc/link (i, j), Dmax is the maximum tolerable delay variation, s is the source node,

and t is the destination node. We select the cost metric as the weighted sum of packet

loss measure and delay variation as follows,

cij = (1− β)dij + βpij for 0 ≤ β ≤ 1,∀(i, j) ∈ A (3.9)

where pij denotes the packet loss measure for the traffic on link (i, j), and β is the

scale factor. The formula for pij is as follows,

pij =


Qt

ij+Tij−Bij

Qt
ij+Tij

, Bij < Qt
ij + Tij

0, Bij ≥ Qt
ij + Tij

(3.10)

where Bij is the bandwidth of the link (i, j), Tij is the amount of best-effort traffic

observed on the link (i, j) and Qt
ij is the total amount of QoS traffic (i.e. sum of

individual QoS level traffics: Qt
ij = Q1

ij +Q2
ij + ...+Qn

ij) on the link (i, j). It is crucial

that forwarders return accurate (up-to-date) estimates of pij and dij to determine

precise routes. In the proposed controller architecture (Section 2.2 of Chapter 2), the

routing management function collects data from forwarders (i.e., proper estimates of

pij and dij) and passes them to the route calculation function. At the forwarder level,

necessary parameters are estimated as follows:

• Packet loss measure (pij) is calculated using Eqn.3.10 where Bij, Q
1
ij, ..., Q

n
ij and

Tij are required parameters for the calculation. OpenFlow protocol enables us

to monitor the per-flow traffic amounts (i.e., Q1
ij,...,Q

n
ij and Tij) on each link.

This is done by per-flow counters maintained in the forwarders. The controller

can collect the per-flow statistics whenever it requests [31]. The link bandwidth,

Bij, is assumed to be known by experimenting or setting manually during the

network setup.

Chapter 3: Optimization of QoS Routing 28

• Delay is obtained by averaging the observed delay using time stamping (e.g.

RTP [61])

• Delay variation (dij) is measured as the first derivative (rate of change) of the

delay.

The weight β determines the relative importance of the delay variation and the packet

losses depending on network and traffic characteristics. For large β, route selection

would be more sensitive to packet losses on the QoS route. Vice versa, for small β

route selection would be more sensitive to delay variation.

In order to find n QoS routes for each flow, defined in Section 2.2.2 of Chapter 2,

we solve the proposed CSP problem (using the method in Section 3.2.2) successively

n times; we first find the QoS level-1 route (with highest priority) and then find the

QoS level-2 route by fixing the QoS level-1 route and modifying the cost parameters

accordingly. After first two QoS level flows are set, necessary cost parameters are

modified to calculate QoS level-3 flow’s route. This procedure continues up to reach

QoS level-n route. For the QoS level-1 route, r1, we directly use the estimated packet

loss measure (pij) and delay variation (dij) parameters to calculate cost coefficients

(cij in Eqn.3.9) and the CSP problem is solved accordingly to get the optimal route,

r∗1. Then, the QoS level-1 flows (Q1
ij) are rerouted to the optimal route, r∗1. The QoS

level-2 route, r2, is found after the route of the QoS level-1 flows is fixed. In order to

do this, we update the packet loss measure, denoted as p
(1)
ij , by removing the observed

Q1
ij traffic from its old route, r1old, and placing it to the optimal QoS level-1 route, r∗1,

which can be formulated as follows,

p
(1)
ij =



Q1
avg+Q

t
ij+Tij−Bij

Q1
avg+Q

t
ij+Tij

, Bij < Q1
avg +Qt

ij + Tij, (i, j) ∈ r∗1

0, Bij ≥ Q1
avg +Qt

ij + Tij, (i, j) ∈ r∗1
Qt

ij−Q1
ij+Tij−Bij

Qt
ij−Q1

ij+Tij
, Bij < Qt

ij −Q1
ij + Tij, (i, j) ∈ r1old

0, Bij ≥ Qt
ij −Q1

ij + Tij, (i, j) ∈ r1old

pij, otherwise

(3.11)

Chapter 3: Optimization of QoS Routing 29

where Q1
avg is the average QoS level-1 traffic on the route r1old. Then, we recalculate

the cost coefficients (cij in Eqn.3.9) using updated packet loss measure (p
(1)
ij) as pij

and estimated delay variation (dij). We solve the CSP problem using the new cost

coefficients to get the route, r∗2, for QoS level-2 (Q2
ij) flows and these flows are rerouted

to the route r∗2. The remaining n− 2 QoS level routes are calculated by following the

same procedure. The only difference is in the formulation of the packet loss measure

update which is generalized as follows, assuming QoS level-k route is calculated,

p
(k)
ij =



Qk
avg+Q

t
ij(k−1)+Tij−Bij

Qk
avg+Q

t
ij(k−1)+Tij

, Bij < Qk
avg +Qt

ij(k − 1) + Tij, (i, j) ∈ r∗k

0, Bij ≥ Qk
avg +Qt

ij(k − 1) + Tij, (i, j) ∈ r∗k
Qt

ij(k−1)−Qk
ij+Tij−Bij

Qt
ij(k−1)−Qk

ij+Tij
, Bij < Qt

ij(k − 1)−Qk
ij + Tij, (i, j) ∈ rkold

0, Bij ≥ Qt
ij(k − 1)−Qk

ij + Tij, (i, j) ∈ rkold

p
(k−1)
ij , otherwise

(3.12)

where r∗k is the optimal QoS route for level-k flow, p
(k−1)
ij is the packet loss measure

update from previous step, Qk
ij is the amount of QoS level-k traffic, Qk

avg is the average

QoS level-k traffic on its old route, rkold, andQt
ij(k−1) is the total amount of QoS traffic

after calculating and rerouting k − 1 QoS routes. The updated packet loss measure,

p
(k)
ij , is used as pij in Eqn.3.9, then QoS level-(k + 1) route (r∗k+1) is calculated by

solving the CSP problem according to new cost parameters.

3.2.2 Solution to the Constrained Shortest Path Problem

The solution of the CSP problem stated in (3.6) will give the minimum cost route

satisfying a pre-specified maximum delay variation from source to destination. How-

ever, the CSP problem is known to be NP-complete [56], so there are heuristic and

approximation algorithms as discussed in Section 3.1 . Here, we propose to use

the Lagrangian Relaxation Based Aggregated Cost (LARAC) algorithm since it is a

polynomial-time algorithm that efficiently finds a good route without deviating from

the optimal solution [58], [62].

Chapter 3: Optimization of QoS Routing 30

The LARAC algorithm solves the Relaxed CSP (RCSP) problem which is ob-

tained by replacing (relaxing) the condition xij = 0 or 1 (see Eqn.3.8) with xij ≥ 0.

Moreover, the LARAC algorithm exploits the dual of the RCSP problem, which is

defined as a maximization problem,

maximize L(λ)

subject to λ ≥ 0
(3.13)

where the Lagrangian dual function, L(λ), is defined as,

L(λ) = min{fλ(r)− λDmax | r ∈ Rst}

= {fλ(r) | r ∈ Rst} − λDmax

(3.14)

and

fλ(r) =
∑

(i,j)∈r

(cij + λdij) (3.15)

denotes the aggregated cost of a route r ∈ Rst with the Lagrange multiplier λ ≥ 0.

Note that, the minimization term in Eqn.3.14, {fλ(r) | r ∈ Rst}, can be easily

solved by using Dijkstra’s shortest path algorithm [63] on aggregated arc costs, for a

given λ. The Lagrangian dual function (3.14) gives the lower bound on optimal value

of the original RCSP problem for each λ ≥ 0. By maximizing the Lagrangian dual

function, L(λ), we can find the best lower bound for the optimal solution [64]. This

leads us to the solution of dual RCSP problem in (3.13). In order to solve the dual

problem given by (3.13), it is crucial to search for the optimal λ and to determine

the criteria for stopping the search. The LARAC algorithm, presented in Fig.3.1,

provides an efficient search procedure for λ.

In the LARAC algorithm of Fig.3.1, G denotes the network representation as

a directed simple graph, c is the vector of cost coefficients, cij, for all links, d is

the vector of delay coefficients, dij, for all links, cλ is the vector of aggregated link

costs coefficients, cij + λdij, for all links, Dmax is the maximum tolerable delay, s

is the source node, and t is the destination node. Furthermore, Dijkstra(G, s, t, c),

Chapter 3: Optimization of QoS Routing 31

procedure LARAC(G, s, t, c,d, Dmax)
rC ← Dijkstra(G, s, t, c)
if fD(rC) ≤ Dmax then return rC
else rD ← Dijkstra(G, s, t,d)

if fD(rD) > Dmax then return “no feasible solution”
else

while true do
λ← fC(rC)−fC(rD)

fD(rD)−fD(rC)

r ← Dijkstra(G, s, t, cλ)
if fλ(r) = fλ(rC) then return rD
else if fD(rC) ≤ Dmax then rD ← r
else rC ← r
end if

end while
end if

end if
end procedure

Figure 3.1: LARAC Algorithm

Dijkstra(G, s, t,d) and Dijkstra(G, s, t, cλ) procedures calculate shortest paths using

link costs, link delays and aggregated link costs, respectively. The functions fC(r),

fD(r) (see Eqns.3.4, 3.5) and fλ(r) (see Eqn.3.15) give the cost, delay and aggregated

cost of route, respectively.

In the first step, LARAC finds shortest path (route) rC using link costs. If rC

satisfies the delay constraint, then it is the optimal route. Otherwise, the algorithm

checks to determine if a feasible solution exists. To this effect, the algorithm calculates

the shortest path (route) rD using link delays. If the minimum delay route rD does not

satisfy the delay constraint, then a feasible solution does not exist, and the algorithm

stops. Otherwise, the algorithm finds the optimal solution by iteratively searching

for optimal λ (see while block in Fig.3.1). In [58], the authors provide an algebraic

approach to efficiently search for λ and to determine the stopping criterion. The

corresponding proofs are provided in [62].

It is shown that LARAC is a polynomial-time algorithm that efficiently finds a

good route without deviating from the optimal solution [58], [62] in O([n+mlogm]2)

Chapter 3: Optimization of QoS Routing 32

time [65], where n and m are the number of nodes and links, respectively. LARAC

also provides a lower bound for the theoretical optimal solution, which leads us to

evaluate the quality of the result. By further relaxing the optimality of routes, it

provides some flexibility to control the tradeoff between optimality and runtime of

the algorithm. Therefore, the LARAC algorithm is well suited for use in real-time

dynamic QoS routing.

3.3 Application of the Proposed Framework to Scalable Video Stream-

ing

In this section, we present methods for QoS-enabled streaming of videos, which are

scalable encoded in one base layer and one or more enhancement layers. Naturally,

there will be an extra cost for requesting QoS from the service provider. If the video

is encoded at a single layer, such as using H264/MPEG-4 AVC [19], the entire video

needs to be served with either QoS or best-effort. While serving the entire video

with QoS clearly provides the highest quality, it comes at a premium cost. On the

opposite end, streaming entire video with best-effort cannot provide any quality guar-

antee. Alternatively, scalable video coding, such as MPEG-4 SVC [20, 26], encodes

video in a base layer and one or more enhancement layers and thereby provides ability

to offer different grades of service at a trade-off point between reasonable guaranteed

quality and reasonable cost. In order to guarantee a reasonable quality, it is sufficient

to stream the base layer video without any packet loss or delay variation, while en-

hancement layers can be served with best-effort – or when capacity is available as a

QoS stream. Note that all enhancement layers are decoded with reference to the base

layer; hence, it is crucial that the base layer is streamed without any packet loss or

delay variation to guarantee continuous video playback at the receiving peer, while

the enhancement layers may be regarded as discardable, since loss of an enhancement

layer packet typically causes only small variation in the received video quality. In

the following, we propose two approaches to map the base and enhancement layers of

video to level-1 and level-2 QoS, defined in Section 2.2.2 of Chapter 2 where we set

Chapter 3: Optimization of QoS Routing 33

the number of QoS flows to 2 (n = 2).

Approach-1 : The video is MPEG-4 SVC (scalable) encoded, where the base layer

packets are sent as level-1 QoS flow, which ensures rerouting to avoid packet losses

and minimize delay variation, and the rest of the video (enhancement layer packets)

remain as best-effort flows. This approach implies the controller generates two flow

tables; one for the QoS flow (level-1); and one for the rest of the traffic (best-effort).

Approach-2 : The video is MPEG-4 SVC (scalable) encoded, where the base layer

packets are sent as level-1 QoS flow, while the rest of the video (enhancement layer

packets) are sent as level-2 QoS flow, which provides lower priority rerouting after

the routes of level-1 traffic are determined and fixed. This approach implies that

the controller generates three flow tables; one for level-1 QoS flow; one for level-2

QoS flow, and one for the best-effort flow for cross traffic. We assume that level-1

QoS will be the most expensive and best-effort will be the least expensive option,

and investigate whether rerouting of SVC enhancement layer in Approach-2 (more

expensive) results in noticeable video quality increase compared to Approach-1.

We will also evaluate the performances of the proposed two approaches against

three benchmarks :

Benchmark-1 : The video is H.264/AVC (not scalable) encoded, and all packets

are sent using level-1 QoS support. This approach is used as a benchmark to compare

the efficiency of layered coding (MPEG-4 SVC), and represents the highest quality

but also the highest cost solution.

Benchmark-2 : The video H.264/AVC (not scalable) encoded, and all packets are

sent using best-effort flows. This approach represents the least quality but also the

least cost solution.

Benchmark-3 : The video is SVC encoded, and all packets are sent using best-effort

flows.

We have simulated a comprehensive test network to evaluate the performance of

several variants of the proposed QoS routing architecture for Scalable Video Streaming

using an open-source network optimization tool, Library for Efficient Modeling and

Chapter 3: Optimization of QoS Routing 34

Optimization in Networks (LEMON) [66]. LEMON is a C++ template library which

solves combinatorial optimization problems with network graphs.

In order to generate a realistic large scale network, we employ the Transit-Stub

(TS) network model [67], implemented by the Georgia Tech. Internetwork Topology

Modeling Tool (GT-ITM) [68]. The TS model uses two types of routing domains,

called transit and stub domains, modeling the typical Internet backbone and local

networks attached to the backbone, respectively. By interconnecting these two types

of domains, GT-ITM generates a connected network according to given parameters.

Fig.3.2 illustrates a small cross-section of a network using the Transit-Stub model.

With GT-ITM, we generate two simulation networks with 100 nodes (5 Transit do-

mains) and 300 nodes (15 Transit domains), respectively. These networks are input

to LEMON. The two nodes that represent the video streaming server and client are

selected to be in different transit domains.

Figure 3.2: Transit-Stub model

We use the MPEG test video “Train” which is 704 × 576 pixels and 241 frames.

We loop original sequence 4 times to generate 900 frames lasting about 30 seconds.

This video is scalable encoded using the SVC reference software, Joint Scalable Video

Mode (JSVM 9.19), to obtain an SVC base layer stream and an enhancement layer

stream where the Group of Picture (GoP) size is set to 16. We set all link capacities

to be 15 Mbps and the cross traffic on each link is modeled as an independent Poisson

random process which is a good model for bursty nature of the Internet in sub-second

Chapter 3: Optimization of QoS Routing 35

small time scales [69]. The link delays are modeled as Γ-distributed random variables

with means 10 ms, 15 ms and 20 ms where we randomly assign these random variables

to each link. The maximum tolerable delay variation, Dmax, is set to 200 ms.

The proposed controller calculates new routes for the video stream by solving

the CSP problem posed in Section 3.2. To solve this optimization problem, the

controller uses the LARAC algorithm (see Section 3.2.2) implemented in LEMON.

Dynamic routing is performed at each second which corresponds to 2 GoPs of SVC

video approximately. In a nutshell, for each time interval (1 second) the proposed

controller method executes following steps:

• detects which video packets are lost on the previous route and calculates the

packet loss probability pij and delay variance dij;

• calculates the cost coefficients cij using pij and dij from previous step for given

β value (see Eqn.3.9);

• calculates necessary routes (QoS level-1 and level-2) by solving the CSP problem

stated in (3.6) using the LARAC algorithm (see Fig.3.1);

• reroutes the SVC video layers according to approaches (1 and 2) or benchmarks

(1, 2 and 3).

By matching the lost packets with the Network Access Layer (NAL) units of the SVC

video stream, we find which NAL units are lost in the received video stream and erase

them. Then, the manipulated video is decoded and the Peak Signal to Noise Ratio

(PSNR) is measured.

We execute 18 different test scenarios as combinations of the following simulation

parameters.

• Network size: We simulate two different networks with

1. 100 nodes;

Chapter 3: Optimization of QoS Routing 36

2. 300 nodes.

• Congestion Level : We model three congestion levels for shortest path links with

1. Poisson random processes with mean 13 Mbps;

2. Poisson random processes with mean 14 Mbps;

3. Poisson random processes with mean 15 Mbps.

while other links have less congestion (half of the congestion on the average).

• Video encoding : We encode the “Train” video in 3 different configurations (see

Fig.3.3)

1. Train1 : SVC base and enhancement layers are encoded at 0.5Mbps (31.61

dB) and 1.8Mbps (39.59 dB), respectively;

2. Train2 : SVC base and enhancement layers are encoded at 1.0Mbps (35.32

dB) and 1.3Mbps (39.85 dB), respectively;

3. Train3 : The video is encoded as single layer (non-scalable) at 2.3Mbps

(41.30 dB).

Figure 3.3: Rate and quality measures for three different encoding configurations

We perform Monte-Carlo simulations that is, we repeat each test scenario 25

times and evaluate the corresponding average PSNR values. For each test scenario,

we compare the performance of the traditional best-effort Internet routing and the

proposed dynamic QoS routing approaches. The results are depicted in Fig.3.4 in

Chapter 3: Optimization of QoS Routing 37

terms of received video quality by calculating the average PSNR values within each

GoP, and we observe that the proposed QoS routing approaches (Approach-1 and

Approach-2) significantly outperform the traditional Internet routing (Benchmark-

2 and Benchmark-3). In addition, Table 3.1 summarizes the performances of the

proposed approaches and benchmarks in terms of the overall average PSNR values.

All improvement values are given with respect to Benchmark-2.

Inspection of experimental results yields the following observations:

1. The proposed optimization scheme for dynamic rerouting of QoS streams over

OpenFlow networks improves the quality of scalable video streaming signifi-

cantly while causing minimum disturbance on best-effort traffic.

2. Dynamically rerouting the base layer only with QoS (Approach-1) attains in the

range of 6-12 dB overall PSNR improvement which is significant over sending

the entire video stream with best-effort.

3. Dynamically rerouting enhancement layers also (Approach-2) provides only

marginal improvement (max. 2 dB in overall PSNR) at higher congestion levels

given that the base layer bitrate is selected high enough to provide acceptable

video quality.

4. As base layer video coding rate increases, both approaches (1 and 2) get closer

to rerouting entire non-scalable coded video stream with QoS (Benchmark-1),

as expected.

Therefore, we conclude that in streaming scalable video over an OpenFlow net-

work, dynamic rerouting of base layer video only (Approach-1) is sufficient to at-

tain significant quality improvement over streaming scalable or non-scalable video

with best-effort if the network congestion level is low or base layer’s bitrate is high

enough to achieve high video quality. Further dynamic rerouting of enhancement

layer (Approach-2) pays off the cost of forwarding along QoS level-2 route if the net-

work congestion level is high and base layer’s bitrate is low compared to overall video

Chapter 3: Optimization of QoS Routing 38

bitrate. Moreover, since the proposed QoS provisioning scheme is only based on dy-

namic routing and built on top of OpenFlow’s flow reservation paradigm, it has no

adverse effect on any other type of flows.

Table 3.1: Performance Comparison of Proposed Approaches and Benchmarks

Network
Video rate (Mbps) Base=0.5, Enh.=1.8 Base=1.0, Enh.=1.3 Single=2.3

Method A1 A2 B3 A1 A2 B3 B1 B2

1
0
0

(n
o
d
e
s)

C
o
n
g
es
ti
o
n
L
ev

el

13

PLR 8% 5% 13% 7% 4% 12% 2% 13%

PSNR (dB) 34,30 35,04 29,29 34,30 36,44 29,43 39,53 28,59

Improv. (dB) 5,71 6,45 0,70 5,71 7,85 0,84 10,94 0

14

PLR 11% 5% 18% 10% 4% 18% 2% 18%

PSNR (dB) 33,79 35,06 26,51 35,76 36,57 26,44 39,60 25,62

Impr. (dB) 8,17 9,44 0,89 10,14 10,95 0,82 13,98 0

15

PLR 12% 4% 24% 14% 4% 23% 2% 22%

PSNR (dB) 33,72 35,36 24,17 35,90 36,81 24,14 39,72 23,87

Improv. (dB) 9,85 11,49 0,30 12,03 12,94 0,27 15,85 0

3
0
0

(n
o
d
e
s)

C
o
n
g
es
ti
o
n
L
ev

el

13

PLR 14% 8% 20% 14% 9% 19% 4% 20%

PSNR (dB) 31,75 32,40 25,20 32,87 33,49 25,65 38,77 24,32

Improv. (dB) 7,43 8,08 0,88 8,55 9,16 1,33 14,45 0

14

PLR 17% 8% 28% 18% 8% 28% 4% 29%

PSNR (dB) 31,59 32,99 23,17 33,27 33,91 22,89 38,14 22,38

Improv. (dB) 9,21 10,61 0,79 10,89 11,53 0,51 15,75 0

15

PLR 20% 8% 37% 20% 7% 35% 4% 36%

PSNR (dB) 31,40 33,62 21,64 33,20 34,25 21,65 37,93 21,27

Improv. (dB) 10,12 12,35 0,37 11,93 12,98 0,37 16,65 0

Abbreviations: A1 = Approach-1, A2 = Approach-2, B1 = Benchmark-1, B2 = Benchmark-2, B3 = Benchmark-3,
PLR = Packet Loss Rate,

Improv. = Improvement values with respect to Benchmark-2.

Chapter 3: Optimization of QoS Routing 39

(a) (d)

(b) (e)

(c) (f)

Figure 3.4: Comparison of the proposed approaches and benchmarks obtained over
the network with 300 nodes by streaming Train1 under congestion levels: (a)13,
(b)14, (c)15 and Train2 under congestion levels: (d)13, (e)14, (f)15.

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 40

Chapter 4

DISTRIBUTED QOS ARCHITECTURE FOR

MULTI-DOMAIN OPENFLOW NETWORKS

This chapter proposes a Quality of Service (QoS) optimized routing architecture

for video streaming over large-scale multi-domain OpenFlow networks managed by a

distributed control plane, where each controller performs optimal routing within its

domain and shares summarized intra-domain routing data with other controllers to

reduce problem dimensionality for calculating inter-domain routing. We apply the

proposed architecture to streaming of scalable (layered) videos, where the base layer

routes are dynamically optimized to fulfill a required QoS level, while enhancement

layers follow traditional shortest path. As we have showed in Chapter 3, rerouting

the base layer only is sufficient in most of the cases.

The current OpenFlow [31] only supports networks with a single controller which

is not scalable. FlowVisor [70] provides an interface for virtual multiple controllers

but it is for managing multiple network slices within the same network domain. As

the size/number of OpenFlow networks increase, the single controller architecture is

not scalable to manage the whole network because of two main reasons:

• a single controller may not be able to update flow tables of all forwarders in time

due to limited processing power and latency introduced by physically distant

forwarders;

• there would be a large volume of traffic towards the controller due to messaging

between controller and all forwarders.

Therefore, it is essential to implement a distributed control plane supporting multiple

controllers. In the literature, there are distributed control plane designs such as Onix

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 41

[71] and HyperFlow [72], but none provides an overall network-wide QoS architecture.

In Chapter 3, we have proposed dynamic QoS routing for scalable video stream-

ing over OpenFlow networks, but we have assumed that a single controller has full

access to all link state information (not feasible for large networks) to determine the

globally optimum routes. This chapter extends this to large-scale OpenFlow networks

managed by a distributed control plane in which each controller is responsible for its

dedicated intra-domain QoS routing and exchange messages with other controllers to

help inter-domain QoS routing decisions. In the remainder of this chapter, Section 4.1

provides a review of current inter-domain routing over Internet. In Section 4.2, the

distributed QoS architecture and the controller-controller interface is presented. Sec-

tion 4.3 offers two control plane designs. Section 4.4 defines the proposed distributed

dynamic QoS routing problem and introduces the proposed solution. Application of

the distributed routing framework to the scalable video streaming and the simulation

results are given in Section 4.5.

4.1 Review of Inter-Domain Routing

There is a common misconception that the general view of Internet topology can be

considered as a cloud of routers connecting end-hosts, as shown in Fig.4.1(a), where

the routers cooperatively make global routing decisions using routing protocols that

exchange shortest path or similar information. Unfortunately, the Internet routing

infrastructure is not that simple. The Internet service is provided by a large number

of commercial enterprises so called Internet Service Providers (ISPs) which are in

competition with each other. However, for the global connectivity cooperation is

preferred over competition. Therefore, ISPs have to set their routing policies based

on some agreements. The more accurate view of the Internet topology is illustrated

in Fig.4.1(b).

The current Internet routing architecture is divided into domains called Au-

tonomous Systems (ASes) where each AS is owned by a single commercial entity.

In essence, the Internet routing can be categorized into two classes:

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 42

(a)

(b)

Figure 4.1: Internet topology abstraction (a) as a cloud of routers , (b) as a collection
of a number of commercial entities

• Intra-AS Routing relies on Interior Gateway Protocols (IGPs) including proto-

cols such as RIP [73], OSPF [74], IS-IS [75] and Cisco’s EIGRP.

• Inter-AS Routing relies on Exterior Gateway Protocols (EGPs) such as Border

Gateway Protocol, Version 4 (BGP4), simply called BGP, [76].

IGPs are concerned with optimizing a path metric which requires the complete net-

work state information and therefore; IGPs are not scalable to wide-area networks.

On the other hand, an EGP, e.g. BGP, is concerned with reachability, and implements

AS-specific routing policies in a scalable manner. In the Internet, each AS can run a

different IGP protocol, but the routing between ASes is typically based on BGP, as

illustrated in Fig.4.2. BGP provides each AS

• to obtain subnet reachability information, i.e. IP-address prefixes, from its

neighbour ASes,

• to advertise the reachability information to all routers within the AS,

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 43

Figure 4.2: IGPs and EGPs in the Internet

• to determine routes to outer subnets based on reachability information and the

AS’s policies.

In BGP, the pairs of routers exchange routing information, e.g. reachability, over

TCP connections so called BGP sessions. There are two types of BGP sessions (see

Fig.4.3):

• To share inter-AS routing information, external BGP (eBGP) sessions are es-

tablished between the border routers of different ASes.

• To inform intra-AS routers about the reachability over neighbour ASes, each

border router in an AS establishes internal BGP (iBGP) sessions to the routers

within AS.

Figure 4.3: Establishment of iBGP and eBGP TCP sessions in BGP

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 44

BGP is a critical protocol that glues the whole thing in the Internet. Its mechanism

is extremely complex, so we only discuss some of its basics. For further details the

reader is referred to [76,77].

The Internet is composed of many different types of ASes, such as ISPs, universities

and companies, and naturally, they have different business relations among them.

The BGP routing policies are determined based on these relations where there are

two common forms of AS to AS interconnection:

• Transit is the provider-costumer relation where financial agreement is involved.

The provider charges its costumers for Internet access, in return for forwarding

the costumers’ packets to their destinations.

• Peering is the relation where two ASes have mutual gains. Typically, ISPs

make peering agreements on providing access to a subset of each others’ routing

tables. Like transit, peering is a business agreement but it usually does not

involve financial settlement.

BGP determines the routes according to some set of routing attributes. We can

summarize some of the important attributes as follows:

• Local Preference (LOCAL PREF): This attribute keeps the transit and peering

information between ASes. LOCAL PREF is the first criteria used for selecting

BGP routes.

• AS path (ASPATH): This attribute is the second important criteria for BGP

route selection. (ASPATH) is a vector that lists all the ASes that the route ad-

vertisement has traversed, and BGP selects the route with the shortest ASPATH

length among the routes having same LOCAL PREF. Note that, the route with

the shortest ASPATH length may not be the global shortest path.

• Multiple exit discriminator (MED): This attribute is used for comparing two or

more routes from the same neighbouring AS. The neighbouring AS can set the

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 45

MED value in order to determine which route it prefers to receive packets. BGP

prefer the route with the lowest MED among the routes having the same LOCAL

PREFs and ASPATH lengths.

Even though the Next Hop (NEXT HOP) attribute does not contribute to the route

decision process, it is an integral part of packet forwarding. (NEXT HOP) keeps the

IP address of the next hop router (border router of the next hop AS) along the path

to the destination.

In the context of QoS, the default BGP4 does not have any routing attribute that

reflects QoS-related parameters. Although there are some QoS extensions of BGP

proposed [78,79], due to the hop-by-hop nature of the BGP, it is still hard predict the

end-to-end behaviour of the QoS-related parameters. We further criticise this issue

and present an OpenFlow-based solution in the next section of 4.2.

4.2 The Proposed Distributed QoS Architecture

In order to ensure optimal end-to-end QoS, collecting up-to-date global network state

information, such as delay, bandwidth, and packet loss rate for each link, is essential.

Yet, over a large-scale network, this is a difficult task because of dimensionality. The

problem becomes even more difficult because of the distributed (hop-by-hop) archi-

tecture of the current Internet. The current Internet’s state-of-the-art inter-domain

routing protocols such as BGP4 and its QoS extensions [78, 79] are hop-by-hop, and

therefore not suitable for optimizing end-to-end QoS. OpenFlow eases this latter point

by employing a centralized controller (see Section 2.2 and Fig.2.1 in Chapter 2). In-

stead of sharing the state information with all other routers, OpenFlow forwarders

directly send their local state information to the controller using the OpenFlow proto-

col. Controller processes each forwarder’s state information and recomputes the best

feasible routes using up-to-date global network state information.

However, the single controller solution in the current OpenFlow specification is

not scalable to large scale multi-domain networks. Therefore, there is need for a

distributed control plane with multiple controllers so that each controller is responsible

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 46

(a) (b)

Figure 4.4: A sample multi-domain OpenFlow network: (a) complete network view,
(b) aggregated version of the network

for a part (domain) of the network. In addition, there is also need to implement

a controller-to-controller interface that allows a logically centralized control plane

managing the overall OpenFlow network.

We propose a new simplified (aggregated) architecture for QoS routing over multi-

domain OpenFlow networks. Fig.4.4(a) illustrates a sample OpenFlow network with

multiple domains. The filled and unfilled dots stand for forwarders (nodes) and

border forwarders (border nodes) respectively. There are two types of links which are

inter-domain, and intra-domain links. In order to reduce problem size, we propose

to aggregate the original network by replacing the intra-domain links by a set of

completely meshed virtual links between border forwarders that are also the end

points of inter-domain links as shown in Fig.4.4(b). The controller-controller interface

allows controllers to share necessary (possibly aggregated) routing information among

them and to help the inter-domain routing decision. Thus, although the controllers are

physically distributed, they form a logically centralized control plane. To support end-

to-end QoS, the controllers also shares necessary QoS parameters through controller-

controller interface.

The proposed controller–controller interface is based on the following premises:

• Each network domain’s size and each controller address (IP) are determined by

the network administrator, so they are known beforehand.

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 47

• Each domain is managed by a single controller which is responsible for intra-

domain routing and advertising its domain’s state information to other con-

trollers.

• Inter-domain routing is calculated over an aggregated version of the real network

by a logically centralized control plane.

• Before finding the inter-domain route, necessary cost parameters of each vir-

tual link summarizing the network state information has to be calculated, as

discussed in Section 4.4.

• After an inter-domain route is found, each controller optimizes its intra-domain

routing by replacing the virtual links with actual links.

• Both intra and inter domain QoS routes are found by solving the optimization

problems stated in Section 4.4.

The controller–controller interface has following features:

• It opens a semi-permanent TCP connection between controllers to share inter-

domain routing information (e.g. link up/down status, QoS parameters).

• In the case of drastic events such as network failure or congestion, the interface

informs other controllers actively.

• It periodically collects network topology/state information, distributes and keep

them in sync.

The key step that allows scalability is the proposed aggregation of the intra-domain

network information. Obviously, network aggregation introduces some imprecision on

the global network state information, but this is tolerable and necessary to obtain a

scalable routing solution. We implicitly evaluate the effect of topology aggregation in

Section 4.5.

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 48

4.3 Distributed Control Plane Designs

In the following, we present two design options for control plane where the controllers

communicate with each other through the controller–controller interface.

4.3.1 Fully Distributed Control Plane

Fig.4.5 illustrates the completely distributed control plane where each controller

• is responsible for both intra-domain and inter-domain routing,

• has a designated domain whose complete network topology view is only acces-

sible to that specific controller,

• uses controller–controller interface to advertise the aggregated routing informa-

tion of the designated domain to the other controllers.

• uses controller–controller interface to get aggregated routing information of all

other domains, and based on this knowledge the inter-domain route is deter-

mined.

Figure 4.5: Fully distributed control plane design

4.3.2 Hierarchically Distributed Control Plane

Fig.4.6 illustrates the hierarchically distributed control plane where each controller

• is only responsible for the intra-domain routing,

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 49

• has a designated domain whose complete network topology view is only acces-

sible to that specific controller,

• uses controller–controller interface to advertise the aggregated routing informa-

tion of the designated domain to the super controller,

• uses controller–controller interface to get inter-domain route(s) determined by

the super controller,

and the super controller

• is only responsible for the inter-domain routing,

• uses controller–controller interface to get aggregated routing information of all

controllers, and based on this knowledge the inter-domain route is determined,

• uses controller–controller interface to push inter-domain routing decisions to all

controllers.

Figure 4.6: Hierarchically distributed control plane design

4.4 Distributed Optimization of QoS Routing

In this section, we pose the general QoS routing problem as a Constrained Shortest

Path (CSP) problem and extend it for the proposed QoS routing architecture dis-

cussed in Section 3.2 of Chapter 3. For the CSP problem, it is crucial to select a

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 50

cost metric and constraints where they both characterize the network conditions and

support QoS requirements. Since our focus is video streaming, we choose our QoS

indicators as packet loss and delay variation (jitter).

In our formulation, the global network, aggregated network and the global network

without inter-domain links (i.e., union of domains) are represented as directed simple

graphs Gg(Ng, Ag), Ga(Na, Aa), Gd(Nd, Ad), respectively. Ng, Na, Nd are the set of

nodes and Ag, Aa, Ad are the set of arcs (links) in each graph. The set of virtual

links is defined as Av ⊂ Aa. Note that, Ng = Nd ⊃ Na. We define the arc (i, j) as

an ordered pair, which is outgoing from node i and incoming to node j and R(s, t)

(subset of set of arcs) denotes the set of routes from source node s to destination node

t. For any route r ∈ R(s, t) we define cost fC and delay variation fD measures as,

fC(r) =
∑

(i,j)∈r

cij, fD(r) =
∑

(i,j)∈r

dij (4.1)

where cij and dij are cost and delay variation coefficients for the arc (i, j), respectively.

With a slight change of notation in Section 3.2 of Chapter 3, the CSP problem is stated

as,

r∗ = arg min
r
{fC(r) | r ∈ R(s, t), fD(r) ≤ Dmax} (4.2)

that is, finding a route r which minimizes the cost function fC(r) subject to the delay

variation fD(r) to be less than or equal to a specified value Dmax. In our case, we

choose the cost metric as the weighted sum of packet loss measure and delay variation

as follows,

cij = (1− β)dij + βpij for 0 ≤ β ≤ 1,∀(i, j) ∈ Ag (4.3)

where pij denotes the packet loss measure for the traffic on link (i, j), β is the scale

factor. The parameters pij and dij are nothing but the network state information that

we discussed in Section 2. So, it is crucial that forwarders return up-to-date estimates

in order to find the precise QoS route. OpenFlow enables us to monitor the traffic

statistics on a per-flow basis and the controller can collect these statistics whenever

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 51

it requests [31].

In our proposed QoS routing framework, solution to intra-domain routing is straight-

forward. Since, each controller has full access to all physical links and their state

information, it directly solves the CSP problem using LARAC algorithm (see Sec-

tion 3.2 of Chapter 3) for given source and destination, then the QoS flows, SVC base

layer packets in our case, are forwarded accordingly. On the other hand, inter-domain

routing is not that trivial, because state information is not readily available for the

virtual links in the aggregated network. So, the QoS indicating network state param-

eters (i.e. cij and dij) of each virtual link has to be set cleverly so that it summarizes

the network state inside of each domain, which is not directly seen by the control

plane. Then, inter-domain routing with QoS becomes feasible.

For the distributed problem formulation, we modify the CSP problem and define

the CSP problem instance as follows,

P (G, (i, j)) = arg min
r
{fC(r) | r ∈ R(i, j) ⊆ A, fD(r) ≤ Dmax} (4.4)

where G and (i, j) are the arguments of the problem instance. G represents the

network and (i, j) is the ordered pair where i and j stand for source and destination

nodes. A is the set of all arcs in G and R(i, j) is the set of all paths from node i to

j. For example, P (Gg, (s, t)) is equal to the problem stated in (4.2). We propose two

methods to select required parameters for virtual links in the aggregated network:

• Method-1 : For every virtual link (i, j) ∈ Av, the controller finds the best feasi-

ble path r∗ij between border node pair (i, j) within the domain by solving the

problem instance P (Gd, (i, j)). Then, the total cost and the delay variation of

r∗ij are assigned to the corresponding parameters of the virtual link between

border node pair (i, j) that is cij = fC(r∗ij) and dij = fD(r∗ij).

• Method-2 : For every virtual link (i, j) ∈ Av ,the controller finds k-disjoint best

feasible paths r∗1, r
∗
2, . . . , r

∗
k between border node pair (i, j) within the domain

by solving CSP problem k times. Then, the average costs and delay variation

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 52

of paths r∗1, r
∗
2, . . . , r

∗
k are assigned to the corresponding parameters of virtual

link.

After setting the cost and delay variation parameters of virtual links using one of the

methods above, it is now possible to calculate QoS routes. We formulate the QoS

routing problem in two steps given in (4.5) and (4.6) in terms of the CSP problem

instances stated in (4.4),

First Step: r∗a = P (Ga, (s, t)) (4.5)

Second Step: r∗ =
⋃L
l=1 P (Gg, r

∗
a(l)) (4.6)

where the first step formulates the inter-domain QoS routing between source (s) and

destination (t) over the aggregated network. The route r∗a denotes the best feasible

inter-domain route. The second step uses the result from the first step and formulates

the end-to-end QoS routing. The route r∗ denotes the complete QoS route where r∗a(l)

is the lth arc (ordered pair) of the route, r∗a, and L is the number of arcs in r∗a. Note

that, each problem instance above can be solved using LARAC algorithm [58].

4.5 Application of the Distributed Optimization Framework to Scalable

Video Streaming

In order to simulate the proposed QoS routing optimization framework we imple-

mented a simulator by using the network optimization library LEMON [66] which

has efficient optimization algorithms (including LARAC) for combinatorial optimiza-

tion problems with graphs and networks.

The network topology we used in our simulations has 6 domains connected as

shown in Fig.4.4. Each domain has 30 nodes, which is randomly designed using GT-

ITM tool [68]. Hence, the overall network size is 180 nodes. The border nodes are

also selected randomly. We set all intra-domain link capacities as 150 Mbps and

inter-domain link capacities as 1 Gbps. The cross traffic (congestion) on each link is

modeled as an independent Poisson random process which is a good model for bursty

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 53

nature of the Internet. Also, during the simulation runtime the statistics of each link

may change depending on the state of the domain where it belongs. The state of each

domain is modeled as a two state Markov chain which decides whether the domain is

in good or bad state. The link delays are modeled as Γ-distributed random variables

with means 10 ms, 15 ms and 20 ms where we randomly assign these random variables

to each link. The maximum tolerable delay variation, Dmax, is set to 250 ms.

Throughout the simulations, we used MPEG test sequence Train and the anima-

tion video Big Buck Bunny (BBB) with resolutions 704×576 and 1280×720, respec-

tively. We loop both videos to obtain 900 frames lasting about 30 sec. We encode

them using SVC reference software JSVM 9.19 to obtain a base and an enhancement

layer (see Table 4.1).

Table 4.1: Rate-Distortion values of the encoded sequences

Video Total Rate Full PSNR Base Rate Base PSNR

Train 1.3Mbps 36.89dB 0.7Mbps 33.60dB

BBB 1.2Mbps 37.67dB 0.4Mbps 33.92dB

The simulator generates QoS routes only for the SVC base layer packets while

enhancement layer packets remain on their traditional shortest path. Dynamic routing

is also enabled and rerouting occurs when at least one domain goes into a bad state

from which SVC base layer packets are passing through. The simulator calculates the

QoS routes by following exactly the same procedure that we discussed above, that

is, it first updates the virtual link parameters in the aggregated network by using

Method-1 and Method-2, then solves the CSP instance stated in (4.5) to determine

inter-domain route and finally, finds the global route from source to destination by

solving CSP instances for each domain and combining the results as in (4.6).

The simulator provides us a trace driven simulation environment so that we can

track which specific video packets are lost. By matching those lost packets with the

Network Access Layer (NAL) units of the SVC video stream, we detect and erase

the NAL units that are lost. Then, the manipulated stream is decoded and the

PSNR values are measured. For each QoS routing scenario, we repeat our simula-

Chapter 4: Distributed QoS Architecture for Multi-Domain OpenFlow Networks 54

tions 50 times and the average PSNR values are calculated. The simulation results

are shown in Fig.4.7 and we observe that the proposed distributed approaches us-

ing aggregation Method-1 (Distr(M1)) and Method-2 (Distr(M2)) closely approach

to the globally optimum QoS routing(Global) and significantly outperforms tradi-

tional shortest path(SP). In comparison of network aggregation methods, Method-2

performs slightly better than Method-1 on the average. This is because, Method-

2 provides intra-domain summarization based on multiple candidates of QoS routes

while Method-1 is based on single but best QoS route which may not exist after its

calculation.

(a) (b)

Figure 4.7: Simulation results: (a) Train, (b) Big Buck Bunny

The proposed network aggregation method significantly reduces the problem size

down to the order of number of border nodes. Comparing the link summarization

methods, we observed that Method-2 is slightly better (less than 0.5dB) and pro-

vides more stable intra-domain summarization than Method-1. We show that the

proposed distributed optimization of QoS routing closely approaches the non-scalable

globally optimum solution and the discrepancy between them in terms of end-user

video quality of experience is less than 1dB on the average.

Chapter 5: OpenFlow Test Network and Controller Implementation 55

Chapter 5

OPENFLOW TEST NETWORK AND CONTROLLER

IMPLEMENTATION

5.1 Test Network

We deployed the OpenFlow test network composed of three OpenFlow enabled Pronto

3290 switches, one controller and 3 host computers. As shown in Fig.5.1, the switches

are connected in a triangular shape to ensure path diversity. The video stream-

ing server and the client are connected to different switches, while the traffic loader

is connected to same switch that the server connects, generating cross-traffic into

the network. Each switch initiates a secure connection to the controller using the

OpenFlow protocol (see dashed lines in Fig.5.1). The controller runs our OpenFlow

controller implementation which is described in detail in Section 5.2.

Figure 5.1: OpenFlow Testbed in our campus

Chapter 5: OpenFlow Test Network and Controller Implementation 56

5.2 Controller Implementation: OpenQoS

We implement our controller, OpenQoS, over a standard OpenFlow controller, Flood-

light [80]. There are also several standard controller alternatives such as NOX [81],

Beacon [82], Maestro [83] to implement a controller, but currently Floodlight is the

most stable one. Floodlight is an open source controller written in Java. It provides

a modular programming environment so that we can easily add new modules on top

and decide which existing modules to be run.

In our implementation of OpenFlow controller (OpenQoS), we add two major

modules to enable route calculation and resource management functions discussed in

Section 2.2 of Chapter 2. The topology management function has already been imple-

mented in Floodlight and we directly used that module. These functions are essential

building blocks of our controller design which makes dynamic QoS routing possi-

ble. Yet, the our implementation is still incomplete. First, controller-to-controller,

controller-to-service interfaces must be deployed, and then the functions using those

interfaces (flow management, call admission, traffic policing) must be implemented.

Since we concentrate on QoS routing in this thesis, we left them as open issues due

to limited time.

5.2.1 Route Calculation

In Floodlight, route calculation is done when a PACKET IN message arrives to the

controller. It calculates the shortest path route and pushes flow definitions to the

switches along that path accordingly. In addition to that, OpenQoS first checks if

it is a multimedia packet or not, based on pre-defined flow definitions. Then, the

route calculation module calculates two paths between the source and destination

pair of the incoming packets. One path is the QoS optimized path and the other is

the shortest path. A QoS route is found by solving a CSP problem as stated in (3.6)

in Section 3.2 of Chapter 3:

r∗ = arg min
r
{fC(r) | r ∈ Rst, fD(r) ≤ Dmax} (5.1)

Chapter 5: OpenFlow Test Network and Controller Implementation 57

that is, finding a route r which minimizes the cost function fC(r) subject to the delay

parameter fD(r) to be less than or equal to a specified value Dmax. We select the cost

metric as the sum of congestion and delay measures,

cij = gij + dij ,∀(i, j) ∈ A (5.2)

where gij denotes the congestion measure (similar to the packet loss measure in Section

3.2) for the link (i, j) and dij is the delay parameter for each link (i, j). We discuss

how we choose gij and dij in the next section (Section 5.2.2). As we have already

mentioned in Chapter 3, we propose to use LARAC algorithm to solve CSP problem

stated in (5.1). So, in OpenQoS, we implement the LARAC for finding QoS optimized

routes. Currently, we employ QoS routing on multimedia packets only, but OpenQoS

can be easily modified to add new routing policies to new type of services.

5.2.2 Resource Management

The resource management module provides one of the key functions in the OpenQoS

controller. It collects the up-to-date network state information such as link speed,

available bandwidth and packet drop counts from the forwarders. The controller re-

quests various statistics from forwarders by sending FEATURE REQUEST messages,

and in return forwarders send FEATURE REPLY messages containing requested statis-

tics. These messaging mechanisms are described in detail in OpenFlow specification

v1.0 [84].

In order to support dynamic QoS, it is essential to keep the network state informa-

tion up-to-date. The performance of the route calculation depends on the accuracy of

the collected data. So, OpenQoS controller periodically collects available bandwidth

for each link. The period is set to 1s since in the literature it has been shown that

the Internet traffic behaves like independent Poisson distribution in sub-second time

scales [69]. After receiving the available bandwidth measures from the forwarders,

the resource management module

Chapter 5: OpenFlow Test Network and Controller Implementation 58

• detects whether there is a congestion event in any of the links.

• determines link cost parameters to be used in the optimization problem stated

in (5.1).

Each link can be in two states: congested or non-congested. In practice, a link is

assumed to be congested if the utilization of that link exceeds 75% - 85% . In our

setup, we consider that a link is congested if that link is 70% bandwidth utilized.

The link costs are determined by using the exact same formula in (5.2), where the

congestion measure is found as,

gij =


Tij−0.7×Bij

Tij
, 0.7×Bij < Tij

0, 0.7×Bij ≥ Tij

(5.3)

where Tij is the total measured traffic amount in bps and Bij is the maximum achiev-

able bandwidth in bps on link (i, j). Note that, in (5.3), the non-congested links have

0 congestion measure value. The delay parameter dij in (5.2) is set to 1 which simply

corresponds to hop-count. This is because the current OpenFlow switch implemen-

tations do not have any support on collecting delay related statistics (total delay,

jitter).

In order to add an event based dynamicity to the QoS routing, the route manager

signals forwarders when QoS routes need to be rerouted. This signalling can be

achieved by deleting a specific flow entry. After a QoS flow entry is deleted, the

forwarders cannot match newly coming packets, therefore they ask the controller to

define new flow entries which causes multimedia packets to be rerouted. The flow

deletion is triggered in two cases:

1. If a link previously non-congested is now congested, we delete the flow entries

matching multimedia (QoS) packets in the flow tables of the forwarders.

2. If a link previously congested is non-congested in the last 3 periods, we again

delete the flows accordingly. We require 3 periods of non-congested state to

Chapter 5: OpenFlow Test Network and Controller Implementation 59

ensure there are no fluctuations in the traffic rate on the links.

5.3 Test Results

To demonstrate the performance of our OpenQoS implementation, we built a video

streaming environment over a real OpenFlow test network shown in Fig.5.1. Through-

out the tests, we used a well-known test sequence “in to tree” having 500 frames with

the resolution of 1280×720. We looped the raw video sequence reversely once to have

1000 frames lasting about 40s. We then encoded the looped sequence in H.264 format

using the ffmpeg encoder (v.0.7.3) [85] at three different average bit-rates to have

• Stream 1 at 1800 kbps (32.55dB),

• Stream 2 at 900 kbps (30.57dB),

• Stream 3 at 450 kbps (28.75dB).

These three H.264 video streams are used in two test scenarios presented in the next

subsections.

5.3.1 Streaming over UDP

We created a scenario where two copies of the Stream 1 are sent from the server

residing at 192.168.110.100 to the client with the IP address 192.168.110.101 (see

Fig.5.1). The server uses VLC media player [86] to stream videos using RTP/UDP.

One copy of the video is sent to the destination port 5004 while the other copy is sent

to port 5005. To show the performance difference in terms of QoS, we matched the

multimedia flows (QoS flows) to the transport port number, 5004. Thus, the video

packets destined to port 5004 are identified as being part of a multimedia flow by

the OpenQoS controller and routed accordingly, while the other video (destined to

port 5005) is considered as a data flow which has no QoS support (i.e. best-effort).

In each test, 10 second long cross-traffic is sent from the loader (192.168.110.102) to

the client once at a random time. The client runs two VLC player sessions, listening

Chapter 5: OpenFlow Test Network and Controller Implementation 60

RTP/UDP packets at ports 5004 and 5005, to save the received videos. We expect

to see distortions in the video received on port 5005 during the cross-traffic while the

other video received on port 5004 will be rerouted and affected little or not at all in

terms of video quality.

We decode the received videos using ffmpeg and measure their qualities using the

peak signal to noise ratio (PSNR) values with respect to the original raw video. The

results are given in Figs.5.2 and 5.3 which are in terms of received video quality

(PSNR) versus time. The vertical dashed lines mark the start and end times of the

cross-traffic.

The best case result is shown in Fig.5.2 where the video with QoS support (w/

QoS) is not affected from the cross traffic and approaches full video quality, while

the video without QoS support (w/o QoS) has significant amount of quality loss.

However, in Fig.5.3, the video with QoS also suffers, it is recovered in less than 1s.

After repeating the scenario 20 times, we observed that the average loss recovery

period is 0.76s. Most of the time the user watching the video is not disturbed from

the quality loss in such a small interval even if we use UDP which does not guarantee

reliable delivery at all.

Figure 5.2: Best case result of UDP streaming

Chapter 5: OpenFlow Test Network and Controller Implementation 61

Figure 5.3: One case result of UDP streaming

5.3.2 HTTP-based Adaptive Streaming

We built a test scenario similar to the one discussed in Section 5.3.1 where TCP is

employed as a transport protocol instead of UDP. The server sends

• Stream 1 with QoS support,

• a video without QoS support chosen adaptively among Stream 1, 2 and 3.

For adaptive video streaming we used Adobe Flash Media Server 4.5 [87]. At the

server side, each video stream (Stream 1, 2 and 3) is fragmented into 4 second long

sub-streams and an associated m3u8 playlist is created. At the client side, the VLC

player first downloads the m3u8 playlist and then selects an appropriate sub-stream

rate-adaptively. While the loader (see Fig.5.1) applies 10 second cross-traffic, the

the video with QoS (i.e. Stream 1) is rerouted, and the video without QoS is rate

adapted. Fig.5.4 illustrates the quality difference between the rate adaptation (w/o

QoS) and the QoS rerouting (w/ QoS) of a sample test. We repeat the same test

scenario over 30 times, and we do not observe any quality loss in the video with QoS.

Chapter 5: OpenFlow Test Network and Controller Implementation 62

Figure 5.4: Adaptive HTTP streaming result

5.3.3 Interpretation of Test Results

OpenQoS is a novel approach to stream video over OpenFlow networks with QoS. It is

different from the current QoS mechanisms since we propose dynamic QoS routing to

fulfill end-to-end QoS support which is possible with OpenFlow’s centralized control

capabilities over the network. Unlike other QoS architectures, OpenQoS minimizes

the adverse effects (such as packet loss and latency) on other types of flows. Inspection

of our experimental results yields the following observations:

• OpenQoS working along with TCP outperforms the state-of-the-art, HTTP-

based multi-bitrate adaptive streaming, under network congestion.

• OpenQoS can guarantee seamless video delivery with little or no disturbance

experienced by the end users even if an unreliable transport protocol, such as

UDP, is used.

• If a reliable transport protocol, such as TCP, is used, OpenQoS can guarantee

full video quality.

Chapter 6: Future Directions and Application Areas 63

Chapter 6

FUTURE DIRECTIONS AND APPLICATION AREAS

In this chapter, we present some possible application areas of the proposed Open-

Flow based architecture in the following sections.

6.1 Koc-Ozyegin-Argela OpenFlow Test Network

We have initiated a multi-domain OpenFlow test network deployment for the first time

in Turkey. The Fig.6.1 depicts the OpenFlow network deployed over three campuses,

Koç University, Özyeğin University and Argela company. Currently, the communica-

tion between the domains are provided via VPN connections, and we can efficiently

control the overall network from a single controller at Koç University.

Figure 6.1: First OpenFlow test network deployed over three campuses

Chapter 6: Future Directions and Application Areas 64

As future directions,

• the realizations of distributed QoS architecture, distributed control plane and

controller-controller interface discussed in Chapter 4 can be implemented,

• for better forwarding performance VPN connections between domains can be

converted to dedicated lines by requesting from the service provider.

6.2 Load Balancing in Content Distribution Networks (CDNs)

Load balancing is a networking methodology that distributes the workload across the

network elements. The purpose of load balancing is providing a service from multiple

servers by choosing an appropriate server. Therefore, it is essential for networking

technologies such as content delivery networks (CDN), domain name systems (DNS)

and newly emerging cloud services. It is usually implemented by a load balancing

switch (i.e. load balancer) which forwards a request coming from a client to one of

the servers which, in general, replies to the load balancer, as illustrated in Fig.6.2.

This operation is done without the client which is unaware of the presence of load

balancer and backend servers. A load balancer selects a server by using a variety

of scheduling algorithms which may consider factors such as servers’ reported load,

servers’ up/down frequencies, location of the servers (i.e. propagation delay), type of

the requested content and the amount of traffic assigned to a server.

Figure 6.2: Load Balancer

Chapter 6: Future Directions and Application Areas 65

(a)

(b)

Figure 6.3: Load balancing (a) over the Internet is limited to server selection, (b)
over OpenFlow allows the joint selection of servers and routes

Content delivery networks are distributed system of servers that serve contents

such as web objects, documents and multimedia to end-users with high availability

and high performances. Especially, most of the current state-of-the-art multimedia

streaming applications (e.g. live and on-demand streaming) over the Internet rely on

CDNs, and load balancing is the integral part of the CDN. However, in the Internet,

only server-based load balancing is possible. We can overcome this deficiency by us-

ing OpenFlow. In OpenFlow load balancing can be considered as a network primitive

which does not require additional equipment that implements load balancing func-

tions. Also, OpenFlow (Aster*x controller [9]) enables joint optimization of server

Chapter 6: Future Directions and Application Areas 66

and route selection which is not possible in the Internet, as illustrated in Fig.6.3.

6.3 Multiple Description Coding

Multiple description coding (MDC) is a coding technique [21, 88, 89] that encodes

a source into multiple bitstreams (descriptions) supporting multiple quality levels

of decoding. The packets of each description are independently decodable, i.e. any

description can be used, however, the quality improves with the number of descriptions

received. The main objective of MDC is to provide error resilience to multimedia

delivery. Since an arbitrary subset of descriptions can be used to decode the original

stream, in the case of network congestion or packet loss which are common in best-

effort networks (e.g. the Internet) MDC is more robust than single description (SD)

coding. However, the loss of compression efficiency, the transmission overhead and

high encoder/decoder complexity are the major drawbacks of MDC.

The idea of MDC is different than scalable (layered) coding. In scalable coding,

a base and one or more enhancement layers are generated where the base layer is

necessary to decode the multimedia stream and enhancement layers are applied to

improve stream quality. Each enhancement layer cannot be decoded independently,

since it depends on subordinate quality layer (base layer or previous enhancement

layer).

To gain robustness to the loss of descriptions and to reduce communication over-

head, MDC must embrace channel and/or path diversity. In wireless networks, both

channel and path diversity can be exploited, but in the Internet we can only employ

path (route) diversity, since all packet transmissions are delivered on the same chan-

nel. In the Internet, each description should be sent over different routes; because, in

general, average route behaviour provides better performance than the behaviour of

any individual random route. For example, the probability that all of the multiple

routes are simultaneously congested is much less than the probability that a single

route is congested. However, current Internet determines a single route (or single

multicast tree) for source and destination pairs, so MDC cannot be applied when

Chapter 6: Future Directions and Application Areas 67

there is a single multimedia source (server). In order to take advantage of MDC in

the Internet, different descriptions have to be distributed over different sources to

enable multi-path diversity. Hence, current MDC-based multimedia delivery propos-

als are limited to peer-to-peer (P2P) and content distribution networks (CDNs) (see

Fig.6.4(a)). On the other hand, OpenFlow removes this limitation with its per-flow

routing capability. In OpenFlow, each MDC description can be defined as a different

flow and therefore, descriptions can be placed on disjoint or partially disjoint routes

even if there is a single multimedia server (see Fig.6.4(b)). The routes of each descrip-

tion can be found using k-disjoint shortest path or can be further optimized by using

constrained based disjoint routing algorithms [49,65,90]. Unlike current MDC-based

multimedia systems, MDC streaming over OpenFlow does not require distributing

descriptions among servers placed around the network, as illustrated in Fig.6.4.

6.4 Enabling Cross Layer Design in the Internet and OpenFlow Wire-

less

In the literature there are cross-layer designs for QoS routing over wireless networks

(e.g. ad-hoc and sensor networks) [91–93], but they cannot be implemented on wired

networks. The Internet is a closed environment where researchers cannot easily ex-

periment their ideas related to the core network such as routing. This is because,

current Internet router vendors provide a hardware and associated software which is

not open to its users. OpenFlow removes the boundaries of the traditional Internet;

it provides completely open and programmable networking environment to the opera-

tors, enterprises, independent software vendors and users. It also allows researchers to

develop their ideas similar to the cross-layer approaches as in wireless networks. Even

though our focus is on wired networks in this thesis, there is an initial implementation

of wireless extension of OpenFlow (OpenRoads) [94] on which our framework can be

implemented with a little effort.

Chapter 6: Future Directions and Application Areas 68

(a)

(b)

Figure 6.4: Streaming three MDC descriptions to a client (a) over the Internet from
multiple servers, (b) over OpenFlow from a single server

Chapter 7: Conclusions 69

Chapter 7

CONCLUSIONS

In this thesis, we have presented a novel Quality of Service (QoS) architecture and

an associated optimization framework for QoS routing. We have also presented an

extension of the proposed architecture that is scalable to large-scale networks. The

main contributions of this thesis can be summarized as follows:

• We have proposed a QoS architecture that fulfills end-to-end QoS by dynami-

cally optimizing QoS routes. This is the first OpenFlow-based QoS architecture

in the literature.

• On top of our architecture we have built an optimization framework for QoS

routing; we have designed an OpenFlow controller that enables end-to-end QoS.

• We have posed the dynamic QoS routing problem as a Constrained Shortest

Path (CSP) and have proposed a novel QoS metric selection. The CSP problem

has well established solutions in the literature and we have proposed to use a

Lagrangian relaxation based algorithm, called LARAC, to solve the problem.

• Since the proposed QoS architecture does not scale to large-networks, we have

presented a distributed extension of the architecture where we have designed

a distributed control plane to manage large-scale multi-domain OpenFlow net-

works. Then, we have redefined the CSP problem for the distributed architec-

ture.

• We have applied our approaches to scalable (layered) video streaming that allows

different grades of video streaming service to service providers.

Chapter 7: Conclusions 70

• We have deployed an OpenFlow test network which is the first OpenFlow net-

work in our country.

• We have developed a controller software, called OpenQoS, that implements the

proposed dynamic routing framework and manages the OpenFlow test network

we deployed.

Bibliography 71

BIBLIOGRAPHY

[1] J. H. Saltzer, D. P. Reed, and D. Clark, “End-to-End Arguments in System

Design,” ACM Transactions on Computer Systems, vol. 2, no. 4, Nov. 1984.

[2] D. Clark, “The design philosophy of the DARPA internet protocols,” in SIG-

COMM ’88: Symposium proceedings on Communications architectures and pro-

tocols. ACM, 1988, pp. 106–114.

[3] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet archi-

tecture: an overview,” RFC 1633, Internet Engineering Task Force, June 1994.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An archi-

tecture for differentiated services,” RFC 2475, Internet Engineering Task Force,

Dec. 1998.

[5] E. Rosen and Y. Rekhter, “BGP/MPLS VPNs,” RFC 2547, Internet Engineering

Task Force, 1999.

[6] Open Networking Foundation. [Online]. Available: http://opennetworking.org

[7] Open Networking Foundation (ONF), “Software defined network-

ing: the new norm for networks,” 2012. [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/openflow/wp-sdn-

newnorm.pdf

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus

networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

Bibliography 72

[9] OpenFlow Consortium. [Online]. Available: http://openflowswitch.org

[10] “Internet protocol,” RFC 791, Internet Engineering Task Force, September 1981.

[11] Z. He, J. Cai, and C. W. Chen, “Joint source channel rate-distortion analysis

for adaptive mode selection and rate control in wireless video coding,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 12, no. 6, pp.

511 –523, jun 2002.

[12] Q. Zhang, W. Zhu, and Y. Zhang, “End-to-end qos for video delivery over wireless

internet,” Proceedings of the IEEE, vol. 93, no. 1, pp. 123 –134, jan. 2005.

[13] R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptation for internet

video streaming,” IEEE Journal on Selected Areas in Communications, vol. 18,

no. 12, pp. 2530 –2543, dec 2000.

[14] Z. Miao and A. Ortega, “Proxy caching for efficient video services over the in-

ternet,” in 9th International Packet Video Workshop (PVW ’99), 1999.

[15] K. Stuhlmuller, M. Link, B. Girod, and U. Horn, “Scalable internet video stream-

ing with unequal error protection,” in Proc. of Packet Video Workshop, 1999.

[16] H. Radha, M. van der Schaar, and Y. Chen, “The mpeg-4 fine-grained scalable

video coding method for multimedia streaming over ip,” IEEE Transactions on

Multimedia, vol. 3, no. 1, pp. 53 –68, mar 2001.

[17] M. Kalman, E. Steinbach, and B. Girod, “Adaptive media playout for low-delay

video streaming over error-prone channels,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 14, no. 6, pp. 841 – 851, june 2004.

[18] R. Puri, K. Ramchandran, K. Lee, and V. Bharghavan, “Forward error correction

(fec) codes based multiple description coding for internet video streaming and

Bibliography 73

multicast,” Signal Processing: Image Communication, vol. 16, no. 8, pp. 745 –

762, 2001.

[19] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

h.264/avc video coding standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 13, no. 7, pp. 560 –576, july 2003.

[20] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video cod-

ing extension of the h.264/avc standard,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 17, no. 9, pp. 1103 –1120, sept. 2007.

[21] V. Goyal, “Multiple description coding: compression meets the network,” IEEE

Signal Processing Magazine, vol. 18, no. 5, pp. 74 –93, sep 2001.

[22] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video

compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23 –50, nov

1998.

[23] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-

constrained coder control and comparison of video coding standards,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.

688 – 703, july 2003.

[24] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arith-

metic coding in the h.264/avc video compression standard,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620 – 636, july

2003.

[25] D. Wu, Y. Hou, W. Zhu, Y.-Q. Zhang, and J. Peha, “Streaming video over

the internet: approaches and directions,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 11, no. 3, pp. 282–300, mar 2001.

Bibliography 74

[26] H. Sun, A. Vetro, and J. Xin, “An overview of scalable video streaming,” Wireless

Communications and Mobile Computing, vol. 7, pp. 159–172, Feb. 2007.

[27] B. Girod, M. Kalman, Y. J. Liang, and R. Zhang, “Advances in channel-adaptive

video streaming,” Wireless Communications and Mobile Computing, vol. 2, no. 6,

pp. 573–584, 2002.

[28] B. Li and J. Liu, “Multirate video multicast over the internet: an overview,”

IEEE Network, vol. 17, no. 1, pp. 24 – 29, jan/feb 2003.

[29] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable video

streaming over OpenFlow networks: an optimization framework for QoS rout-

ing,” in Proc. IEEE International Conference on Image Processing (ICIP), Sept.

2011, pp. 2241–2244.

[30] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization framework for

qos-enabled adaptive video streaming over OpenFlow networks,” unpublished.

[31] OpenFlow Switch Specification v1.1.0. [Online]. Available:

http://www.openflow.org/wp/documents/

[32] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “A distributed QoS routing archi-

tecture for scalable video streaming over multi-domain OpenFlow networks,” to

appear, 2012.

[33] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: An

OpenFlow controller design for multimedia delivery with end-to-end quality of

service over software-defined networks,” unpublished.

[34] Cisco, “Cisco visual networking index: Forecast and methodology, 20102015,”

2011. [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/

Bibliography 75

[35] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed Quality

of Service,” RFC 2212, Internet Engineering Task Force, September 1997.

[36] J. Wroclawski, “Specification of the Controlled-Load Network Element Service,”

RFC 2211, Internet Engineering Task Force, September 1997.

[37] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVa-

tion Protocol (RSVP) – Version 1 Functional Specification,” RFC 2205, Internet

Engineering Task Force, September 1997.

[38] M. de Prycker, Asynchronous transfer mode: solution for broadband ISDN. Up-

per Saddle River, NJ, USA: Ellis Horwood, 1991.

[39] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB,” RFC

2598, Internet Engineering Task Force, June 1999, obsoleted by RFC 3246.

[40] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB

Group,” RFC 2597, Internet Engineering Task Force, June 1999.

[41] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated

Services Field (DS Field) in the IPv4 and IPv6 Headers,” RFC 2474, Internet

Engineering Task Force, Dec. 1998.

[42] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Ar-

chitecture,” RFC 3031, Internet Engineering Task Force, January 2001.

[43] R. Ballart and Y.-C. Ching, “Sonet: now it’s the standard optical network,”

Communications Magazine, IEEE, vol. 27, no. 3, pp. 8 –15, march 1989.

[44] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “Require-

ments for Traffic Engineering Over MPLS,” RFC 2702 (Informational), Internet

Engineering Task Force, September 1999.

Bibliography 76

[45] C. Srinivasan, A. Viswanathan, and T. Nadeau, “Multiprotocol Label Switching

(MPLS) Traffic Engineering (TE) Management Information Base (MIB),” RFC

3812, Internet Engineering Task Force, June 2004.

[46] F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval,

and J. Heinanen, “Multi-Protocol Label Switching (MPLS) Support of Differen-

tiated Services,” RFC 3270, Internet Engineering Task Force, May 2002.

[47] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP-

TE: Extensions to RSVP for LSP Tunnels,” RFC 3209, Internet Engineering

Task Force, December 2001.

[48] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P. Yalagan-

dula, “Automated and scalable qos control for network convergence,” in Proc.

INM/WREN’10, 2010, pp. 1–1.

[49] S. Chen and K. Nahrstedt, “An overview of quality of service routing for next-

generation high-speed networks: problems and solutions,” IEEE Network, vol. 12,

no. 6, pp. 64–79, Nov/Dec 1998.

[50] H. F. Salama, D. S. Reeves, and Y. Viniotis, “Evaluation of multicast routing

algorithms for real-time communication on high-speed networks,” IEEE Journal

on Selected Areas in Communications, vol. 15, pp. 332–345, 1997.

[51] B. Wang and J. C. Hou, “Multicast routing and its qos extension: Problems,

algorithms, and protocols,” IEEE Network, vol. 14, pp. 22–36, 2000.

[52] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[53] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory, algorithms,

and applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

Bibliography 77

[54] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz, “An overview of

constraint-based path selection algorithms for QoS routing,” IEEE Communica-

tions Magazine, vol. 40, no. 12, pp. 50–55, Dec 2002.

[55] X. Masip-Bruin, M. Yannuzzi, J. Domingo-Pascual, A. Fonte, M. Curado,

E. Monteiro, F. Kuipers, P. V. Mieghem, S. Avallone, G. Ventre, P. Aranda-

Gutirrez, M. Hollick, R. Steinmetz, L. Iannone, and K. Salamatian, “Research

challenges in QoS routing,” Computer Communications, vol. 29, no. 5, pp. 563–

581, 2006.

[56] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia

applications,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 7,

pp. 1228–1234, Sep. 1996.

[57] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial time approxi-

mation algorithms for multi-constrained QoS routing,” IEEE/ACM Transactions

on Networking, vol. 16, no. 3, pp. 656–669, June 2008.

[58] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, “Lagrange relaxation based

method for the QoS routing problem,” in Proc. IEEE INFOCOM, vol. 2, Apr.

2001, pp. 859–868.

[59] S. Chen, M. Song, and S. Sahni, “Two techniques for fast computation of con-

strained shortest paths,” IEEE/ACM Transactions on Networking, vol. 16, no. 1,

pp. 105–115, Feb. 2008.

[60] D. P. Bertsekas, Network Optimization: Continuous and Discrete Models. Bel-

mont Mass., USA: Athena Scientific, 1998.

[61] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, “RTP: a transport

protocol for real-time applications,” RFC 3550, Internet Engineering Task Force,

Jul. 2003.

Bibliography 78

[62] Y. Xiao, K. Thulasiraman, G. Xue, and A. Juttner, “The constrained shortest

path problem: algorithmic approaches and an algebraic study with generaliza-

tion,” AKCE J. Graphs. Combin, vol. 2, no. 2, pp. 63–86, 2005.

[63] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[64] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:

Cambridge University Press, 2004.

[65] Y. Xiao, K. Thulasiraman, and G. Xue, “Gen-larac: a generalized approach to

the constrained shortest path problem under multiple additive constraints,” in

Proc. ISAAC, 2005, pp. 92–105.

[66] LEMON, Library for Efficient Modeling and Optimization in Networks. [Online].

Available: http://lemon.cs.elte.hu

[67] K. Calvert, M. Doar, and E. Zegura, “Modeling internet topology,” IEEE Com-

munications Magazine, vol. 35, no. 6, pp. 160–163, June 1997.

[68] GT-ITM, Georgia Tech Internetwork Topology Models. [Online]. Available:

http://www.cc.gatech.edu/projects/gtitm/

[69] V. Frost and B. Melamed, “Traffic modeling for telecommunications networks,”

IEEE Communications Magazine, vol. 32, no. 3, pp. 70–81, Mar. 1994.

[70] R. Sherwood, G. Gibb, K. K. Yap, M. Casado, N. Mckeown, and G. Parulkar,

“Can the production network be the testbed,” in OSDI’10, 2010.

[71] T. Koponen and et.al., “Onix: a distributed control platform for large-scale

production networks,” in OSDI’10, 2010, pp. 1–6.

[72] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane for

OpenFlow,” ser. INM/WREN’10, 2010, pp. 3–3.

Bibliography 79

[73] C. L. Hedrick, “Routing information protocol,” RFC 1058, Internet Engineering

Task Force, United States, 1988.

[74] J. Moy, “OSPF Version 2,” RFC 1583, Internet Engineering Task Force, March

1994.

[75] D. Oran, “OSI IS-IS Intra-domain Routing Protocol,” RFC 1142, Internet Engi-

neering Task Force, February 1990.

[76] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” RFC

4271, Internet Engineering Task Force, January 2006.

[77] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach,

5th ed. USA: Addison-Wesley Publishing Company, 2009.

[78] L. Xiao, K.-S. Lui, J. Wang, and K. Nahrsted, “Qos extension to bgp,” in Pro-

ceedings of the 10th IEEE International Conference on Network Protocols, ser.

ICNP’02. IEEE Computer Society, 2002, pp. 100–109.

[79] T. Zhang, Y. Cui, Y. Zhao, L. Fu, and T. Korkmaz, “Scalable bgp qos exten-

sion with multiple metrics,” in Proceedings of the International conference on

Networking and Services, ser. ICNS’06. IEEE Computer Society, 2006.

[80] Floodlight. [Online]. Available: http://floodlight.openflowhub.org

[81] Nox. [Online]. Available: http://noxrepo.org

[82] Beacon. [Online]. Available: http://openflow.stanford.edu/display/Beacon/

[83] Z. Cai, A. L. Cox, and T. S. Eugene Ng, “Maestro: balancing fairness, latency and

throughput in the OpenFlow control plane,” Rice University Technical Report

TR11-07, 2011.

Bibliography 80

[84] Openflow switch specification v1.0. [Online]. Available:

http://openflow.org/wp/documents/

[85] ffmpeg. [Online]. Available: http://ffmpeg.org

[86] VLC media player. [Online]. Available: http://videolan.org/vlc

[87] Flash Media Streaming Server 4.5. [Online]. Available:

http://www.adobe.com/products/flash-media-streaming.html

[88] Y. Wang, A. Reibman, and S. Lin, “Multiple description coding for video deliv-

ery,” Proceedings of the IEEE, vol. 93, no. 1, pp. 57 –70, Jan. 2005.

[89] J. Apostolopoulos, “Reliable video communication over lossy packet networks

using multiple state encoding and path diversity,” in Visual Communications

and Image Processing (VCIP), 2001, pp. 392–409.

[90] D. Sidhu, R. Nair, and S. Abdallah, “Finding disjoint paths in networks,” SIG-

COMM Comput. Commun. Rev., vol. 21, no. 4, pp. 43–51, 1991.

[91] S. Misra, M. Reisslein, and G. Xue, “A survey of multimedia streaming in wireless

sensor networks,” IEEE Communications Surveys Tutorials, vol. 10, no. 4, pp.

18 –39, quarter 2008.

[92] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput

path metric for multi-hop wireless routing,” Wirel. Netw., vol. 11, no. 4, pp.

419–434, Jul. 2005.

[93] Q. Zhang and Y.-Q. Zhang, “Cross-layer design for qos support in multihop

wireless networks,” Proceedings of the IEEE, vol. 96, no. 1, pp. 64 –76, jan. 2008.

[94] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol,

and N. McKeown, “Openroads: empowering research in mobile networks,” SIG-

COMM Comput. Commun. Rev., vol. 40, no. 1, pp. 125–126, Jan. 2010.

