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How might one account for the organization in behavior without attributing it to an internal control
structure? The present article develops a theoretical framework called behavioral dynamics that inte-
grates an information-based approach to perception with a dynamical systems approach to action. For a
given task, the agent and its environment are treated as a pair of dynamical systems that are coupled
mechanically and informationally. Their interactions give rise to the behavioral dynamics, a vector field
with attractors that correspond to stable task solutions, repellers that correspond to avoided states, and
bifurcations that correspond to behavioral transitions. The framework is used to develop theories of
several tasks in which a human agent interacts with the physical environment, including bouncing a ball
on a racquet, balancing an object, braking a vehicle, and guiding locomotion. Stable, adaptive behavior
emerges from the dynamics of the interaction between a structured environment and an agent with simple
control laws, under physical and informational constraints.
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The organization of behavior has been a central concern of
psychology for well over a century. How is it that humans and
other animals can generate behavioral patterns that are tightly
coordinated with the environment, in the service of achieving a
specific goal? This ability to produce stable yet adaptive behavior
raises two constituent issues. On the one hand, it implicates the
coordination of action, such that the many neuromusculoskeletal
components of the body become temporarily organized into an
ordered pattern of movement. On the other, it implicates percep-
tion, such that information about the world and the body enables
appropriate actions to be selected and adapted to environmental
conditions. At a basic level, the problem of the organization of
behavior is thus synonymous with the problem of perception and
action. Moreover, an adequate theory of perceptually controlled
action would provide a platform for understanding more “cogni-
tive” behavior such as extended action sequences, anticipatory
behavior oriented to remote goals, or predictive behavior that takes
account of hidden environmental properties.

It seems natural to presume that observed organization in be-
havior implies ipso facto the existence of a centralized control-
ler—a pattern generator, action plan, or internal model that is
responsible for its organization and regulation. Such an assumption
has been commonplace in psychology, cognitive science, neuro-
science, and robotics. In each domain, organization in behavior has
been attributed to prior organization in the structure of the nervous

system (the neuroreductionist view), the structure of internal rep-
resentations (the cognitivist view), or in the contingencies pre-
sented by the environment (the behaviorist view). This is unsatis-
fying because it merely displaces the original problem of
behavioral organization to a preexisting internal or external struc-
ture, begging the question of why that particular organization
obtains and how that specific structure originated.

The challenge of accounting for organized behavior without
resorting to an a priori controller was articulated by Gibson (1979):

Locomotion and manipulation . . . are controlled not by the brain but
by information. . . . Control lies in the animal–environment system. . . .
The rules that govern behavior are not like laws enforced by an
authority or decisions made by a commander; behavior is regular
without being regulated. The question is how this can be. (p. 225)

Although the quotation asserts Gibson’s belief that behavior is
regular without being centrally controlled, the question of how this
can be remains open. His suggestion is that, rather than being
localized in an internal (or external) structure, control is distributed
over the agent–environment system. I interpret this statement to
imply that biology capitalizes on the regularities of the entire
system as a means of ordering behavior. Specifically, the structure
and physics of the environment, the biomechanics of the body,
perceptual information about the state of the agent–environment
system, and the demands of the task all serve to constrain the
behavioral outcome. Adaptive behavior, rather than being imposed
by a preexisting structure, emerges from this confluence of con-
straints under the boundary condition of a particular task or goal.
In the present article, I attempt to synthesize recent ideas to show
how the organization of behavior can be attributed to the dynamics
of the agent–environment interaction under such constraints and
seek to develop a coherent theoretical framework for understand-
ing perception and action.

Human and animal behavior exhibits two complementary at-
tributes that need to be accounted for: stability and flexibility. On
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the one hand, behavior is characterized by stable and reproducible
low-dimensional patterns.1 These patterns are stable in the sense
that the functional form of movement is consistent over time and
resists perturbation and reproducible in that a similar pattern may
recur on separate occasions. On the other hand, behavior is not
stereotyped and rigid but flexible and adaptive. Although action
patterns exhibit regular morphologies, the agent is not locked into
to a rigidly stable solution but can modulate the behavioral pattern.
To the extent that such flexibility is tailored to current environ-
mental conditions or task demands, it implicates perceptual
control.

Let me state the proposal intuitively at the outset. Adaptive
behavior can be characterized on (at least) two levels of analysis.
At the level of perception and action, the agent and the environ-
ment can be treated as a pair of mutually coupled dynamical
systems.2 They are coupled mechanically, through forces exerted
by the agent, and informationally, through sensory fields that are
structured by the environment (optic, acoustic, haptic, olfactory,
etc.). Agent–environment interactions give rise to emergent be-
havior that has a dynamics of its own, which I call the behavioral
dynamics. At this second level of analysis, the time evolution of
behavior can be formally described by a dynamical system, which
may represented as a vector field. The core claim is that stable
behavioral solutions correspond to attractors in the behavioral
dynamics, and transitions between behavioral patterns correspond
to bifurcations. Such stabilities do not inhere a priori in the
structure of the environment or in the structure of the agent but are
codetermined by the confluence of task constraints and
perceptual–motor control laws. It is in this sense that, as Gibson
(1979) proposed, control lies in the agent–environment system.

One consequence of this account is that behavior can be under-
stood as self-organized, in contrast to organization being imposed
from within or without. Behavior patterns emerge in the course of
learning, development, and even evolution through a bootstrapping
process in which agent–environment interactions give rise to the
behavioral dynamics, and stabilities in these dynamics in turn act
to capture the behavior of the agent. During bootstrapping, the
agent actively explores the vector field for a task, both contributing
to and locating its stabilities; to express this combination of cre-
ation and discovery, one might say that stable solutions are enacted
by the agent (Varela, Thompson, & Rosch, 1991). Reciprocally,
attractors in the behavioral dynamics feed back to fix the agent’s
action patterns and control laws, in a form of circular causality.
Thus, rather than a central controller dictating the intended behav-
ior, the agent develops perceptual–motor mappings that tweak the
dynamics of the system in which it is embedded so that the desired
behavior arises from the entire ensemble. From the agent’s point of
view, the task is to exploit physical and informational constraints
to stabilize the intended behavior. As shown below, the solution
may rely more or less upon physical or informational regularities,
depending on the nature of the task. Consequently, behavior is not
prescribed by internal or external structures, yet within the given
constraints there are typically a limited number of stable solutions
that achieve the desired outcome.

The study of adaptive behavior can, of course, be extended to
more micro (e.g., neuromuscular) levels of analysis but at the price
of introducing a higher dimensional and hence less tractable de-
scription. The approach taken here is to adopt a scale of description

that is commensurate with the scale of observed regularity. Sys-
tematicity in goal-directed behavior is manifested in low-
dimensional action patterns directed at medium-scale features of
the environment and guided by higher order informational vari-
ables, whereas at the level of neuromuscular degrees of freedom,
such behavior exhibits considerable contextual variation. Although
it is important to study the correlates between the neural support
for action and observed behavioral patterns, I would argue that this
relationship is complementary rather than reductive. A theoretical
account of behavior must incorporate goals, information, physics,
and properties of the world that are not directly reducible to a
neural level (Koenderink, 1999). Thus, the aim of this article is to
seek a lawful account of behavior at a functional level.

Background

Explaining behavioral organization by postulating an antecedent
internal representation that specifies the movement pattern has a
long history in theories of motor control and has also been influ-
ential in recent theories of perception and action. In this section, I
cursorily review the major modern approaches, including the re-
cent disenchantment with a representational view.

Model-Based Approaches

Beginning in the 1960s and 1970s, the motor programming
approach attributed movement patterns to motor plans that speci-
fied a sequence of muscle commands (Keele, 1968) or to more
abstract motor schemata that specified the form of a class of
movements, with the details filled in through a hierarchical control
scheme (Greene, 1972; R. A. Schmidt, 1975). Environmental and
biomechanical constraints played little role in the formulation of
such programs, and perception was simply assumed to deliver the
required input, such as the coordinates of a target. This approach
essentially redescribed the organization of action in the form of a
time-independent internal representation, without resolving the
question of how that representation was arrived at to begin with. A
related problem was that motor programs tended to ignore the
time-dependent kinematics and dynamics of the peripheral mus-
culoskeletal system involved in the execution of movement (Bern-
stein, 1967), one that became apparent with the advent of robotic
control. Specifically, because the relation between a motor com-
mand or muscle activation and the resulting movement is nonlinear
and context dependent, the motor system must somehow determine
the command that is required to achieve a desired outcome.

To address this problem, work in computational motor control
increased the demands on representation, introducing internal
models of the controlled system or “plant” (M. I. Jordan & Wol-
pert, 1999; Kawato, 1999). First, inverse models of the dynamics

1 One indication of their low dimensionality is that principal-
components analysis of the kinematics of whole-body movements with
many degrees of freedom reveals that the variability can be largely ac-
counted for by the first several modes (Daffertshofer, Lamoth, Meijer, &
Beek, 2004; Hollands, Wing, & Daffertshofer, 2004).

2 Exactly where lines between agent and environment are drawn is
largely a matter of convenience, because in the end this analysis applies to
the coupled system.
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of the musculoskeletal system were proposed to compute the
command that, given the current state of the system, will produce
the desired movement (Kawato, Furawaka, & Suzuki, 1987; Shad-
mehr & Mussa-Ivaldi, 1994). More recently, forward models of the
musculoskeletal system have been proposed to compensate for
sensory delays by rapidly predicting the movement outcome, given
the current state of the system and an efference copy of the motor
command (Wolpert, Ghahramani, & Jordan, 1995). As M. I. Jor-
dan and Wolpert (1999) put it, the controller in effect controls the
internal model, not the physical body. Finally, because both types
of models depend on knowing the current state of the musculo-
skeletal system, a process of state estimation based on a Kalman
filter has also been proposed (Wolpert et al., 1995).

This control engineering approach is committed to particular
mechanisms at Marr’s (1982) algorithmic level of description that
represent prior knowledge on the part of the nervous system about
the motor apparatus and its context, which must ultimately be
accounted for by the theory. To the extent that internal models can
be learned on the basis of motor practice alone (M. I. Jordan &
Wolpert, 1999), they gain in plausibility. For example, forward
models might be learned by comparing the predicted movement
outcome for a given motor command with the actual outcome and
using the difference as an error signal. Inverse models, by contrast,
are more difficult to learn because of nonlinearities in the input–
output mapping and the absence of a “correct” motor command to
serve as a teaching signal, although Kawato et al. (1987; Wolpert
& Kawato, 1998) developed a feedback error learning scheme to
do so. For the most part, motor theories have not addressed
agent–environment interactions. One exception is the recent ex-
tension of forward models to anticipate the weight of environmen-
tal objects (Wolpert & Ghahramani, 2000). Whether these partic-
ular architectures and assumptions offer an appropriate description
of biological systems remain an open question.

Recent work within an optimal control framework (Engelbrecht,
2001; Todorov & Jordan, 2002) considers the problem at the level
of computational theory (Marr, 1982). Optimal control is a set of
techniques for determining the control signals for a system with
given dynamics that will minimize an objective or cost function
while satisfying specified constraints (Kirk, 1970). In this ap-
proach, movement trajectories are not explicitly planned but are a
consequence of the objective function and the system’s dynamics.
Most work in this vein has focused on the nature of the objective
function, such as minimizing jerk, energy, motor variance, or
performance error (Flash & Hogan, 1985; C. M. Harris & Wolpert,
1998). But Berthier, Rosenstein, and Barto (2005) pointed out that
taking full advantage of the natural dynamics of the task is often
the essence of the problem. Indeed, using a method such as
reinforcement learning (Kaelbling, Littman, & Moore, 1996; Sut-
ton & Barto, 1998) to acquire a sensor–effector mapping that
exploits the natural dynamics can yield stable movement patterns
without explicit internal models (Berthier et al., 2005; Collins,
Ruina, Tedrake, & Wisse, 2005; Ng, Kim, Jordan, & Sastry, 2004).
This points theorists toward a richer analysis of the natural dy-
namics and other task constraints as a basis for understanding the
structure of behavior.

A reliance on internal models has recurred in theories of per-
ception and action, which seek to account for adaptive behavior as
an agent interacts with its environment. Consistent with this view,

the function of perception is commonly taken to be the construc-
tion of an internal 3-D representation of the environment from
inadequate sensory data (Knill & Richards, 1996; Marr, 1982).
This representation is thought to be sufficiently rich and general
purpose to provide the basis for any action, such that neither the
relevant information nor the structure of the representation de-
pends on the particular task. In robotics, for example, a standard
control architecture has used what Brooks (1995) called the
“sense–model–plan–act” framework, in which sensor input is used
to construct a 3-D model of the immediate environment. This
world model provides the basis for computing an explicit action
plan, which is finally executed by the robot’s effector system.

An analogous model-based framework has recently been ap-
plied to perception and action in biological systems. Loomis and
Beall (2004) argued that the control of complex action requires
both a perceptual representation of the surrounding environment
and an internal model of the plant dynamics—including the body,
manipulated objects, controlled vehicles, and other aspects of the
physical world with which the agent interacts. The primary evi-
dence for a perceptual representation is that “visually directed”
actions, such as blind walking to a previously viewed target, can be
performed for a short time after vision is removed, implying a
persisting representation of the spatial layout. However, such
off-line behavior might also be supported by partial, task-specific
knowledge of a few target locations rather than a world model
(Ballard, Hayhoe, & Peltz, 1995), and in either case, it does not
follow that representations are invoked in ordinary online control
when occurrent information is available. In an interactive task such
as steering a slalom course, accurate performance actually depends
on seeing the next upcoming target, and error increases dramati-
cally if it goes out of sight (Duchon & Warren, 1997). Similarly,
Loomis and Beall (2004) argued that an internal model of plant
dynamics would be supported by successful control of a vehicle
after vision is removed, but current evidence shows that driving
performance degrades sharply under these conditions (Hildreth,
Beusmans, Boer, & Royden, 2000; Wallis, Chatziastros, &
Bulthoff, 2002).

A middle path has been proposed in the form of the two visual
systems hypothesis (Milner & Goodale, 1995; Norman, 2002). In
this view, online, visual–motor behavior is ascribed primarily to
the dorsal visual pathway, whereas off-line, model-based behavior
is ascribed to the ventral visual pathway. However, positing neural
loci for these functions does not constitute a theory of either one,
and an account of the informational and dynamical bases of
perception and action is still called for. Another sort of compro-
mise might be to accept a role for inverse and forward models in
low-level motor control, for example to solve the inverse dynamics
problem, without generalizing them to world and plant models in
perception and action.

The model-based approach leads to a somewhat solipsistic view
of perception and action, in which the perceiver is not actually in
contact with the environment but only an internal representation
thereof (Fodor, 1980), and the actor does not actually control his or
her own body but only an internal model thereof (M. I. Jordan &
Wolpert, 1999). The fact that behavior is generally effective and
adaptive is attributed to the functional fidelity of these represen-
tations, which presumes they are grounded in the physical world.
However, this reliance on internal representations in cognitive
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theory faces numerous conceptual and philosophical obstacles
(Bickhard & Terveen, 1995; Searle, 1980; Shannon, 1993; Shaw,
2003). For instance, one must account for the origin of represen-
tational content without appealing in circular fashion to the very
perception and action abilities they purport to explain. If percep-
tual states are representations, how is it possible for the agent to
know what they stand for without presuming some other direct
access to the world? Similarly, invoking representations in action
also runs the risk of an explanatory regress, accounting for orga-
nization in behavior by attributing it to prior organization in the
representational realm. Such considerations have led other re-
searchers to seek an account of behavior that minimizes the role of
internal representations.

Non-representational Approaches

The dynamical approach to human movement developed in the
1980s and 1990s and has had a significant impact in the motor
control literature (Kelso, 1995; Kugler, Kelso, & Turvey, 1980;
Kugler & Turvey, 1987; Saltzman & Kelso, 1987). This view
emphasizes physical principles and concepts from nonlinear dy-
namics to explain interlimb coordination as a natural process of
pattern formation. One strength of the approach is its promotion of
dynamics as a common theoretical language for describing the
world, the body, and the neural and sensory couplings involved in
coordination.

In his seminal research on coordination, Kelso and his col-
leagues (Haken, Kelso, & Bunz, 1985; Kelso, Scholz, & Schöner,
1986; Scholz, Kelso, & Schöner, 1987) found that two oscillating
limbs are stably entrained at phase relations of 0° and 180° and
undergo a spontaneous phase transition from an antiphase to an
in-phase pattern as the frequency of movement is increased. Bor-
rowing from the analysis of physical systems (Haken, 1977), Kelso
and colleagues refer to phase as an order parameter, because it
indexes the order or organization of the movement, and refer to
frequency as a control parameter, because it induces a qualitative
change in phase at a critical value. Kelso and colleagues christened
the formal analysis of such coordination phenomena coordination
dynamics.

The observation that similar coordination phenomena occur
between perceptually coupled oscillators, such as a swarm of
Malaysian fireflies (Ermentrout & Rinzel, 1984), the limbs of two
people (R. C. Schmidt, Carello, & Turvey, 1990), and even the
perceived stability of two moving lights (Bingham, Zaal, Shull, &
Collins, 2001), led Kelso to view coordination dynamics as fun-
damentally informational rather than physical (Kelso, 1994, 1995;
Schöner & Kelso, 1988a). Information can serve as a coupling
medium and can specify required coordinative relations (i.e., the
desired limb phasing) but must be expressed in the same dimen-
sions as the order parameter itself (i.e., phase). This view of
informational variables emphasizes their mirroring of coordination
dynamics rather than their specification of environmental condi-
tions. The varied interactions an agent has with a complex envi-
ronment call for a richer account of the information that guides
behavior.

In addition, most research on coordination dynamics to date has
focused on fairly simple tasks with stationary dynamics, such as
rhythmic movement or interlimb coordination. For perception and

action in a complex world, the dynamics are often nonstationary,
evolving as the interaction between agent and environment un-
folds. The present article thus shifts emphasis from the dynamics
of movement coordination to the behavioral dynamics—the dy-
namics of temporal and spatial coordination between an agent and
its environment. Although this bears similarities to what Saltzman
and Kelso (1987) have called “task dynamics,” I use the term
behavioral dynamics to emphasize adaptive behavior by an agent
in an environment, coupled by perceptual information.

Alongside the dynamical approach to movement there devel-
oped the ecological perception–action approach to the control of
behavior (Gibson, 1958/1998, 1979; Lee, 1976, 1980; Shaw, Ku-
gler, & Kinsella-Shaw, 1990; Turvey & Carello, 1986; Warren,
1988, 1998). This view emphasizes the role of occurrent informa-
tion in guiding behavior, in the form of optic, acoustic, haptic, or
olfactory fields that are structured by and are specific to the state
of the agent–environment system. The research program involves
determining what informational quantities govern naturalistic be-
haviors like reaching, catching, hitting, standing posture, or loco-
motion. Information is viewed as regulating action directly, in a
task-specific manner, rather than contributing to a general-purpose
world model for the planning of action. The strength of this
information-based approach is its analysis of action-relevant in-
formational variables, but it has yet to show how they can be
integrated with the dynamics of action (Beek & van Wieringen,
1994). That is a central aim of the present article.

Related developments also transpired in artificial intelligence,
with the questioning of model-based vision and model-based con-
trol. The active vision approach (Bajcsy, 1988; Ballard, 1991)
sought alternatives to the difficulty of computing a sufficiently
detailed general-purpose world model and instead advocated tak-
ing advantage of task constraints to arrive at simple, special-
purpose solutions for specific tasks. To steer a robot vehicle, for
example, several groups developed visual servoing systems that
exploited specific image features, such as the boundary corre-
sponding to the edge of the road, to directly control the vehicle,
rather than computing a 3-D reconstruction of the scene (Raviv &
Herman, 1993). As Brooks (1991a) put it, the world is its own best
model, and sensor systems can obtain information as needed for
the task at hand. This point has been echoed in human vision by
results on change blindness (O’Regan, 1992; Rensink, O’Regan, &
Clark, 1997) and gaze behavior in natural tasks (Ballard et al.,
1995; Hayhoe, 2000), which suggest that perception is strongly
dependent on the attended information and that any visual repre-
sentation of the world is fragmentary and fleeting.

At the same time, researchers in behavior-based robotics
(Brooks, 1986, 1991b) and the simulation of behavior (Beer, 1990;
Meyer & Wilson, 1991) sought alternatives to model-based con-
trol. Emphasizing that an agent is embodied in a physical platform
and embedded in a physical world, they proposed exploiting such
constraints to simplify the control architecture. In behavior-based
robots, behavior emerges from the interaction between a structured
world and an agent endowed with elementary behavioral routines,
rather than being planned in advance on the basis of a world
model. However, such systems are purely reactive, and their be-
havioral repertoire has been limited; they also tend to have a
hierarchical control structure, thus preserving a discrete logic atop
a continuous physics.
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An instructive alternative has been developed by Schöner and
his colleagues (Schöner & Dose, 1992; Schöner, Dose, & Engels,
1995), in which behavior is governed by a dynamical system
defined over the state of the robot and the sensed state of the
environment. Flexibility is obtained from nonlinearity by having
elementary behaviors compete with one another, rather than hav-
ing a fixed dominance hierarchy. Thus, both agent and environ-
ment contribute to control, and a common dynamical language is
applied at all levels of description. Similar ideas have been for-
mulated by Shaw (Shaw, Kadar, Sim, & Repperger, 1992; Shaw et
al., 1990, Beer (1995, 1997), and Smithers (1994). The present
framework for biological control is indebted to the approach of
Schöner and his colleagues.

My argument synthesizes four themes that run through this
spectrum of research: (a) Embodiment and embeddedness. The
agent possesses a physical body and is embedded in a physical
environment, which provide nontrivial sources of constraint on
stable behavioral solutions. (b) Information-based control. Behav-
ior is guided by occurrent information about the state of the
agent–environment system. The available information provides
another important source of constraint on stable solutions. (c)
Task-specificity. Control relations are task specific, mapping rel-
evant informational quantities to relevant action variables. This
allows the agent to adopt special-purpose solutions that make
minimal demands on internal representation, rather than general-
purpose solutions that depend on elaborated world and plant mod-
els. (d) Emergent, self-organized behavior. Behavior emerges from
the interaction of the agent and the environment, under physical,
informational, and task constraints. By emergent I mean a pattern
of behavior that does not reside a priori in the individual compo-
nents of the system but is a consequence of their interdependence
and interaction (Bar-Yam, 2004; Corning, 2002). Reciprocally, the
dynamics of this interaction feed back to capture the individual
components, serving to stabilize particular action patterns. In this
way, new forms of adaptive behavior are self-organized.

In what follows, my aim is to understand the stabilization of
adaptive, goal-directed behavior. First, some pertinent concepts
from nonlinear dynamics are introduced, prefatory to a formal
description of the dynamics of perception and action. I then de-
scribe a taxonomy of tasks based on physical and informational
stability and illustrate the framework by developing three exam-
ples: ball bouncing, pole balancing, and braking. Finally, I put
these ideas to work in a theory of the behavioral dynamics of
human locomotion.

Dynamics

Before we can consider the dynamics of perception and action,
some basic concepts must be introduced. (Readers already familiar
with these topics can skip to the next section.) The field of
nonlinear dynamics offers useful tools for analyzing and modeling
patterns of stability and change in a system’s behavior. In the
present context, the dynamical hypothesis proposes that the mor-
phology of human and animal behavior can be formalized in terms
of low-dimensional dynamical systems (Kugler et al., 1980; Yates
& Iberall, 1973). In particular, preferred stable modes of behavior
can be identified with attractors, and qualitative transitions be-
tween them with bifurcations in the system’s dynamics.

Dynamics is the study of change in a system over time (see
Acheson, 1997; D. W. Jordan & Smith, 1977; Strogatz, 1994). One
way to represent change is in the form of a time series, which plots
the value of a particular variable as an explicit function of time.
Over time, for example, a variable might settle down to a stable
equilibrium, blow up to infinity, repeat in a regular periodic
pattern, exhibit irregular chaotic patterns, behave randomly, or
switch suddenly from one pattern to another. More generally, a
system can be described by a set of state variables (x1, x2,. . . xn),
and its current state by a location in the state space defined by
those variables. The behavior of the system is thus characterized
by changes in the state variables and can be represented as a
trajectory in state space, so that time is implicit.

The aim of analysis is to formalize this behavior as a dynamical
system, a system of first-order differential equations in which the
rate of change in each variable is a function of the current state of
the system:

ẋ1 ! f1(x1, x2, . . . , xn)

ẋ2 ! f2(x1, x2, . . . , xn)

···
ẋn ! fn(x1, x2, . . . , xn). (1)

Exhibited behavior corresponds to solutions of these equations of
motion for given initial conditions and can be represented as
trajectories in state space. Loci in state space toward which tra-
jectories converge from different initial conditions are known as
attractors, and those from which trajectories diverge as repellers.
Continuous change in system parameters can produce sudden
changes in the number or stability of attractors or repellers, which
are known as bifurcations. By formally expressing behavior in this
way, one can achieve a deeper understanding of the underlying
morphology of stabilities and instabilities that govern observed
behavior.

Dynamical systems can be classified in terms of their dimen-
sionality, the number of state variables minimally required to
predict the future state of the system, and their linearity, whether
the equations of motion contain nonlinear terms.3 A one-
dimensional system has a single state variable x. For example,

ẋ ! "rx (2)

is a linear system that describes the exponential decay in x, where
the parameter r determines the rate of decay. A parameter is
simply a term that changes on a slower time scale than does a state
variable. The dynamics of the system can be represented in a phase
portrait (see Figure 1a), which plots ẋ as a function of x. Because
this is a one-dimensional system, its trajectory lies on the abscissa
and the vector field or flow is represented by arrows, whereas the
curve plots the system’s velocity at each value of x. In this case the
curve is a straight line that crosses the abscissa with a negative
slope. This indicates an asymptotic approach to a stable fixed point
or point attractor at (x, ẋ) ! (0, 0), where the velocity goes to zero.

3 Variables that are raised to a power greater than one, form products, are
arguments of trigonometric functions, and so on.
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The rate of approach and hence the stability of the attractor is
determined by the slope of the curve at the fixed point, correspond-
ing to r; the inverse of the slope (1/r) is its relaxation time, the
characteristic time scale of the dynamics. The trajectory of a
particular solution x(t) is plotted as a function of time for different
initial conditions x0 at t0 in Figure 1b, illustrating exponential
decay. A point attractor is a useful model for biological behavior
that tends toward a goal value or stable equilibrium, although the
asymptotic approach must be considered an idealization.

Things get more interesting in nonlinear systems. Consider the
one-dimensional system

ẋ ! rx " x3, (3)

whose phase portrait appears in Figure 2a (for r # 0). This curve
possesses two negative zero crossings, corresponding to two point
attractors, but also crosses the abscissa with a positive slope at x !
0, known as an unstable fixed point or repeller. A repeller behaves
like a fixed point because if the system has a value of precisely x !
0 it will remain at that value, but it is unstable because a slight
perturbation will result in acceleration away from the fixed point,
toward the neighboring attractors. Because of the topology of
one-dimensional dynamics, a pair of attractors must be separated
by a repeller, and vice versa; this places nontrivial constraints on
the morphology of behavior. An unstable fixed point is a useful
model for inverted pendulum dynamics such as standing posture or
balancing a pole on end. In these cases the challenge for the agent
is to use information to stabilize a dynamically unstable fixed
point.

Moreover, if the parameter of this system is varied continu-
ously, a discontinuous change occurs (see Figures 2b and 2c):
As r is decreased, the two attractors converge upon the repeller,
collide in a half-stable fixed point (r ! 0), and then coalesce
into a single point attractor (r $ 0). Such a qualitative change

in the number or stability of attractors is a bifurcation, and the
parameter that brings it about is the control parameter. If it is
run backward, a single point attractor bifurcates into two at-
tractors with a repeller in between as r increases. This example
is called a supercritical pitchfork bifurcation,4 and the reason
becomes obvious when one plots the bifurcation diagram,
which represents the fixed points of x as a function of the
control parameter r (see Figure 2d). In any particular instance,
the branch a physical system actually takes will depend on
random fluctuations or noise. Such instabilities are signatures
of nonlinearity and reveal the organization of the system’s
stable states, and they also allow for flexibility and creativity in
behavior. For example, maintaining the control parameter near
the bifurcation point at r ! 0 keeps the system in a marginally
stable state from which different attractors are readily
accessible.

It turns out that there is a limited family of routes by which
attractors can come into or go out of existence, or change from
stable to unstable, in nonlinear systems. The set of possible bifur-
cations thus offers models for qualitative transitions in biological
behavior, suggesting a dynamical account of the formation and
dissolution of behavioral patterns. Instability near bifurcation
points is also particularly revealing of the low-dimensional dy-
namics that underlie behavior and is useful in reconstructing the
system’s equations of motion (Haken, 1988).

Two-dimensional systems possess more complicated dynamics,
in particular periodic behavior. Consider first a linear harmonic
oscillator such as a mass–spring system,

mẍ % bẋ % kx ! 0, (4)

4 In the subcritical version, a repeller splits into two repellers separated
by an attractor.

Figure 1. A one-dimensional linear system (Equation 2), illustrating point-attractor dynamics. a: Phase portrait
plotting the rate of change of x as a function of state variable x, with a point attractor at (0, 0). b: Exponential
decay in x as a function of time, showing particular solutions of Equation 2 for two different initial conditions.
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which requires two state variables, position (x1 ! x) and velocity
(x2 ! ẋ),5 and has parameters of mass m, damping b, and stiffness
k. This can be rewritten as a dynamical system in the following
form:

ẋ1 ! x2

ẋ2 ! "
b
m

x2 "
k
m

x1. (5)

In an undamped system (b ! 0), once the mass is set into motion
it will continue to oscillate forever with a constant amplitude. This
yields an elliptical trajectory in the phase plane known as a closed

orbit (see Figure 3a), because the mass slows to a velocity of zero
(ẋ) at its extreme x positions and accelerates to peak positive or
negative velocity as it passes through its equilibrium position (x !
0). With different initial conditions, or if perturbed, the system will
adopt a different closed orbit with a different amplitude. These
concentric orbits are thus neutrally stable and do not act as

5 Both position and velocity are necessary to describe the current state
and predict the future of a mass–spring system, because the oscillating
mass can occupy the same position with either a rightward (positive) or
leftward (negative) velocity.

Figure 2. A one-dimensional nonlinear system (Equation 3), illustrating the pitchfork bifurcation. a: Phase
portrait for r # 0, with two attractors separated by a repeller. b: Phase portrait for r ! 0, with a half-stable fixed
point. c: Phase portrait for r $ 0, with a point attractor. d: Bifurcation diagram, plotting the fixed points of x as
a function of the control parameter r. Solid curves represent attractors, and the dashed curve represents a repeller.
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Figure 3. Phase portraits for several two-dimensional systems. a: Undamped linear oscillator (Equation 4, b !
0), showing neutrally stable orbits for different initial conditions. b: Damped linear oscillator (Equation 4, b # 0),
showing trajectories converging to a spiral attractor at (0, 0) from different initial conditions. c: Forced linear
oscillator, showing trajectories converging to a limit cycle attractor from different initial conditions.
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attractors. If damping is added (b # 0), the mass slows to rest at
the static equilibrium point in the center (x, ẋ) ! (0, 0), which is
a stable focus or spiral attractor (see Figure 3b).

In nonlinear systems, closed orbits can form periodic attractors
known as limit cycles. For example, suppose we force the har-
monic oscillator,

mẍ % bẋ ! kx " F(#), (6)

using an intrinsic forcing function that depends on the system’s
own phase #, like a grandfather clock with an escapement. This
renders the oscillator nonlinear because the forcing function is
periodic and autonomous because it does not depend explicitly on
time. The system now displays self-sustained oscillation with a
stable frequency and amplitude. In the phase plane (see Figure 3c),
the trajectories all spiral asymptotically toward a single closed
orbit and return to it following a perturbation. Hence, the orbit is
a stable limit-cycle attractor,6 and the point in the center is an
unstable fixed point that repels the system toward the limit cycle.

Another autonomous limit cycle is the van der Pol oscillator,

ẍ % b(x2 " 1)ẋ % kx ! 0. (7)

Rather than being externally forced, it has a nonlinear damping
term that depends on the oscillator’s position. This acts like normal
positive damping when !x! # 1 but changes to negative damping
when !x! $ 1. Thus, if the amplitude of oscillation is either too
large or too small, it is returned to the limit cycle that passes
through !x! ! 1. Other examples include the Rayleigh oscillator,
which has a nonlinear damping that depends on velocity, and the
Duffing oscillator, which has a nonlinear stiffness. Periodic attrac-
tors have an associated family of bifurcations as well. For exam-
ple, the onset of oscillation is captured by the Hopf bifurcation. In
its subcritical version, a stable fixed point that is surrounded by a
limit cycle suddenly becomes unstable, so the system jumps to the
limit cycle.

Such self-sustained periodic behavior is ubiquitous in biology,
ranging from locomotor gaits and circadian rhythms to skills such
as hammering, dribbling, hopping on a pogo stick, or bouncing a
ball on a racquet. Coupled nonlinear oscillators can exhibit stable
entrainment, in which their phases and frequencies become mode
locked (D. W. Jordan & Smith, 1977). Local interactions between
oscillatory components thus offer a natural basis for explaining
temporal coordination in biological systems (Haken et al., 1985;
Kopell, 1988; Strogatz & Steward, 1993; von Holst, 1980).

Finally, three-dimensional nonlinear systems can exhibit com-
plex, chaotic dynamics. For example, by extrinsically forcing a
nonlinear oscillator such as the Duffing, one can observe strange
attractors, chaotic oscillations that remain in a bounded region of
state space but never settle down into a stable orbit. In this case the
oscillator is nonautonomous because the forcing function depends
explicitly on time, and hence the system has three state variables
(x, ẋ, t). Such chaotic systems may also undergo bifurcations. For
example, the classic period-doubling route to chaos proceeds
through a series of bifurcations to a chaotic regime, doubling the
number of oscillations per cycle at each critical value of a control
parameter.

There is thus a limited bestiary of attractors and bifurcations out
of which behavior can be assembled. This suggests the hypothesis

that the essential forms of all stable patterns of biological behavior
are composed of low-dimensional fixed points, limit cycles, or
strange attractors, with a restricted topology of layouts. Similarly,
transitions between behavioral patterns should take the form of a
limited set of bifurcations. Nonlinear dynamics thus provides a
powerful theoretical language for characterizing the morphology
of behavior, in terms of which specific theoretical claims about
particular tasks can be formulated.

Behavioral Dynamics

Armed with this array of concepts, let us return to the original
question of adaptive behavior in biological systems. In this section
I propose an approach to goal-directed behavior at two levels of
analysis (see Figure 4). The first level is that of the components of
the system—the agent and environment—and their interactions in
the course of detecting information and controlling action, which
have been referred to as the perception–action cycle (Kugler &
Turvey, 1987; Warren, 1988). Local interactions between these
components give rise to the global behavior of the system. The
second level of analysis is a low-dimensional description of this
global behavior, the behavioral dynamics (Fajen & Warren, 2003).
My aim is to show how the behavioral dynamics both arise from
the specifics of perception and action and reciprocally act to
constrain them.

Let us begin by supposing that the agent and the environment
can be treated as a pair of coupled dynamical systems, with the
following equations of motion:

ė " &'e, f )ȧ ! ( (a, i), (8)

where e is a vector of environmental state variables, f is a vector
of external forces, a is a vector of agent state variables (which
describes the current state of the action system), and i is a vector
of informational variables. This is trivially true of the environment,
which is governed by laws of physics & that can be expressed in
the form of differential equations. Change in the environment is
thus a function of its current state together with any external forces
that act on it.

Following the dynamical approach to action, I also assume this
to be the case for the agent. Specifically, the action system, with its
many neuromuscular and biomechanical degrees of freedom, be-
haves as a low-dimensional dynamical system for a given task
(Saltzman & Kelso, 1987; Scholz & Schöner, 1999). Although this
formulation does not explicitly represent biological noise, stochas-
tic models of coordination dynamics have been developed
(Schöner, Haken, & Kelso, 1986). However, adaptive behavior
does not consist in coordinated movement per se but in goal-
directed action that is tailored to the environment. Hence, a few
control variables must be left free to vary, which may be regulated
by perceptual information. Thus, an action is some function of the
current state of the action system together with informational
variables i, according to a law of control (.

6 Conversely, an unstable limit cycle would repel the system away from
its closed orbit. Note that in a deterministic two-dimensional system,
trajectories in the phase plane cannot cross, for the system cannot move in
two different directions from a given state.
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The agent and environment are coupled in two ways. First, an
effector function,

f " $'a), (9)

transforms the vector of action variables into muscle activation
patterns that produce forces in the environment, consistent with the
biomechanics of the neuromusculoskeletal system. This is essen-
tially a cover term for the inverse dynamics problem in motor
control, which might be resolved via inverse models (M. I. Jordan
& Wolpert, 1999) or synergies that define postural vector fields
(Berkinblitt, Feldman, & Fukson, 1986; Giszter, Mussa-Ivaldi, &
Bizzi, 1993). These agent-produced forces serve as coupling terms
in the environment’s equations of motion. Action is thus charac-
terized as a relation defined over the agent, causal forces, and the
environment.

Second, an information function,

i ! %(e), (10)

maps properties of the agent–environment system into informa-
tional variables, in accordance with what Gibson (1966, 1979)
called laws of ecological optics, acoustics, haptics, and so on.
These informational variables serve as coupling terms from the
environment in the agent’s laws of control. Information consists of
patterns of stimulation at the receptors that are specific to the
ecological state of affairs and are therefore useful in controlling
action. For example, optical patterns reflected from environmental
surfaces to a point of observation provide information about the
layout of surfaces, the properties of objects and events, and the
position and movement of the observer. Of course, these variables
must be detected and used by perceptual systems that are tuned to
particular patterns of stimulation, with attendant issues of sensi-
tivity and noise. In many cases, a presumptive environmental
property (e.g., euclidean distance) may not be specified by the
available information or accurately recovered by the perceptual
system; instead, the agent may capitalize on task-specific variables
(e.g., declination angle; Ooi, Wu, & He, 2001) that suffice to guide
behavior under ecological conditions. Perception is thus charac-

terized as a relation defined over the environment, information,
and the agent.

We can now trace the perception–action cycle. When an agent
performs an action, changes in action system variables yield forces
exerted by the end effectors in the environment. These forces alter
the state of the environment, perhaps changing the layout of
surfaces, the properties of objects, or the position of the agent. As
a consequence, new information is generated about the current
state of the agent–environment system. The informational quanti-
ties in turn act to modulate the control variables of the action
system, altering the forces exerted in the environment (with a
perceptual–motor delay), and the cycle iterates.

During locomotion, for example, the step cycle applies a force
against the substrate, and the reaction force propels the body and
observation point forward. This alters the egocentric directions of
obstacles and goals and generates an optic flow pattern at the
observation point, which are in turn used to govern the next step
cycle. Or, when hammering a nail, each action changes the envi-
ronment physically, generating visual, acoustic, and haptic infor-
mation about the new conditions that is then used to modify the
next stroke. The challenge at this level of analysis is to describe the
physical constraints on the task, identify the informational vari-
ables that are actually detected and used to guide behavior, char-
acterize the coordination dynamics of the action system, and
formulate the control laws by which the former regulate the latter.

Adaptive, goal-directed behavior emerges from these local in-
teractions between an agent governed by control laws and an
environment governed by physical laws. At the second level of
analysis, the time evolution of this global behavior—its behavioral
dynamics—is formally characterized. The global state of the sys-
tem with respect to the task goal can be described in terms of a
small number of key behavioral variables (x). Thus, the behavioral
dynamics are expressed as a higher-level dynamical system,

ẋ " *'x, r), (11)

where x is a vector of behavioral state variables and s of system
parameters, which defines a vector field for the system’s behavior.
Exhibited behavior corresponds to solutions of this set of equa-
tions, represented as trajectories in the space of behavioral vari-
ables. Thus, goals may be expressed as loci in state space toward
which trajectories converge, corresponding to attractors in the
behavioral dynamics. Conversely, states to be avoided are regions
from which trajectories diverge, corresponding to repellers. Fi-
nally, sudden transitions between behavioral patterns are related to
changes in the number or stability of these fixed points as system
parameters are varied, corresponding to bifurcations in the behav-
ioral dynamics. Behavioral flexibility can thus be achieved by
dwelling near these regions of instability (Kelso, 1995). When
modeling behavior at this level, the challenge is to identify the
task-relevant variables; empirically determine the layout of attrac-
tors, repellers, and bifurcations; and infer the system’s equations of
motion.

These two levels are linked in both directions. In an “upward”
direction, the behavioral dynamics emerge from relations among
the physics of the environment, the biomechanics of the body,
informational variables, and control laws at the first level. Adap-
tive behavior is thus not a property of the agent alone, but of the
system as a whole, and consequently cannot simply be dictated by

Figure 4. Schema of the dynamics of perception and action.
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the nervous system. Rather, the role of the nervous system is to
adjust the mapping between informational variables and control
variables (i.e., control laws) so as to give rise to stabilities in the
behavioral dynamics that correspond to the intended behavior. In
a “downward” direction, attractors in the behavioral dynamics act
to capture the perception–action cycle. Specifically, the morphol-
ogy of this vector field has behavioral consequences that can be
perceived, such as sensing one’s own energy expenditure, the
variability of action, or task success. These observations provide a
feedback that serves to fix control laws and index parameter values
that yield effective behavior. Perception and action systems thus
manifest the properties of upward and downward causality that are
characteristic of emergent behavior and self-organization (Bar-
Yam, 2004; Haken, 1977).

As the agent interacts with the world, the behavioral dynamics
are likely to evolve. Previous work on coordination dynamics has
focused on fairly simple tasks with stationary dynamics, such as
rhythmic movement or bimanual coordination. But in more com-
plex adaptive behavior, the dynamics may depend on the agent’s
interaction with the environment. The landscape of attractors and
repellers can shift as the agent navigates through it, and bifurca-
tions open up new behavioral avenues as others are closed off. The
trajectory of behavior thus unfolds as agent and environment
interact, guided by tracking the evolving stabilities. Moreover,
because the system is nonlinear, this behavioral trajectory is highly
sensitive to initial conditions and susceptible to noise. The body is
a complex system with many interdependent neuromusculoskeletal
components, and these processes contribute to high-dimensional
complexity in what is essentially a low-dimensional action pattern
(Newell & Corcos, 1993). Such effects can cascade through a
behavioral sequence, altering the initial conditions for the next
action and sending behavior down qualitatively different paths
(Van Orden, Holden, & Turvey, 2003). Such historical contin-
gency can make individual behavior notoriously difficult to pre-
dict, particularly in noisy biological systems. Consequently, re-
searchers may need to be satisfied with theories that capture the
dynamical “deep structure” of behavior—the morphology of at-
tractors, repellers, and bifurcations for a given task—rather than
one that can precisely predict individual behavior on particular
occasions.

In summary, a formal description of behavior requires identify-
ing a system of differential equations whose vector field corre-
sponds to the observed pattern of behavior, with attractors corre-
sponding to goal states, repellers to avoided states, and
bifurcations to qualitative behavioral transitions. But an explana-
tion of adaptive behavior further requires showing how these
behavioral dynamics arise from interactions among the system’s
components, that is, how a stable solution is codetermined by
physical and informational constraints. Ultimately, it must be
shown how behavior is self-organized through feedback from the
behavioral dynamics.

Control Laws

The control problem with which we began is now recast in terms
of the dynamics of the agent–environment system. From the
agent’s perspective, the problem becomes one of tweaking the
dynamics of the system in which it is embedded so as to enact

stabilities for the intended behavior. The lever at the agent’s
disposal is the law of control, and here lies the psychological heart
of the matter.

Typically, a control law in perception and action is thought of as
a mapping from task-specific information to a movement variable,
m ! f (i) (see Warren & Fajen, 2004). But the way in which
information can influence movement is by means of modulating
the dynamics of the action system. Thus, it is more appropriate to
write control laws as a function in which informational variables
modulate the control variables of a dynamical system:

ȧ ! ((a, i). (12)

This control law has two implicit parts: First is a dynamical system
that represents the organization of the action system for a partic-
ular task, ȧ ! ((a), which Kelso (1995) referred to as the “in-
trinsic dynamics.” Second is an informational coupling term in
which optic, acoustic, haptic, and so forth variables i modify the
control variables of the dynamical system. The resulting control
law does not specify the kinematics of movement per se but rather
relaxes to an attractor in the action variables a that corresponds to
the desired action. The effector function $ then converts this limit
value of the action variable into muscle activation and thence limb
kinematics and endpoint forces, given the biomechanics of the
musculoskeletal system.

For information to modulate the action system, it is essential that
informational variables be commensurate with control variables.
That is, low-dimensional informational terms, which reflect higher
order relations among many elementary variables, must map to
low-dimensional control terms, which reflect higher order relations
among the many degrees of freedom of the musculoskeletal sys-
tem. To be commensurate, these informational and control terms
must have the same dimensions and are typically expressed in the
same variables.

A pertinent example is the optic flow field, the pattern of optical
motion produced at a moving point of observation during terres-
trial locomotion (Gibson, 1950; Warren, 2004). Here, relations
defined over many elementary local motions form a global flow
pattern, which contains a focus of expansion in the direction of
self-motion or heading. The focus of expansion constitutes a
higher order variable that specifies the current heading direction
(azimuth angle), relative to which the directions of goals and
obstacles can also be defined. Thus, high-dimensional local mo-
tions are compressed into a low-dimensional variable that is com-
mensurate with behavior. On the action side, gait patterns reflect
the compression of many neuromusculoskeletal degrees of free-
dom into a task-specific organization, such that the action system
behaves as a low-dimensional dynamical system with a few free
control variables. One of these control variables is the direction of
force applied against the ground, which determines the current
heading direction. The informational and control terms are thus of
the same dimensionality and are expressed in the same variable
(azimuth angle), such that the direction of a goal with respect to the
current heading can directly control the direction of force appli-
cation. I develop this case in some detail below. Other control
relations may not be quite as transparent, of course, and can
involve more complex variables and scaling factors. But the point
is that, for a given task, the agent need only map low-dimensional
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information to low-dimensional control variables, thereby simpli-
fying the control problem.7

Control variables may be of two types: state variables or pa-
rameters. In addition, information may regulate a control variable
by three possible manners of coupling: continuous modulation,
periodic adjustment, or discrete resetting. Crossing control vari-
ables with manners of coupling yields six logically possible con-
trol modes that an agent can exploit to shape the dynamics for the
task at hand, which are illustrated below.

State Control

First, information may influence the state variables of a system
(e.g., its position and velocity). This is achieved by allowing
informational quantities to contribute to the dynamics, altering the
attractive states (Schöner & Kelso, 1988b; Schöner, Zanone, &
Kelso, 1992). In the simple one-dimensional system of Equation 2,
for instance, the intrinsic dynamics possess a fixed point at a ! 0.
However the goal state may be at another value that is specified by
information, a ! i. Adding an informational coupling term ci,

ȧ ! "ra % ci, (13)

shifts the attractor along the abscissa toward i. The magnitude of
the shift is determined by the relative strength of the information
and action terms (determined by coefficients c and r). A special
case occurs when c ! r, so information about the goal state
completely determines the resulting fixed point:

ȧ ! "r(a " i). (14)

In this case, the attractor shifts to the specified location at a ! i,
and the system relaxes to the goal state. An early example is the
equilibrium-point model of single joint movement (Asatryan &
Feldman, 1965; Latash, 1993). Note that i might be discretely reset
to a fixed value so the attractor is stationary (Asatryan & Feld-
man’s, 1965, original proposal), continuously modulated so that
the attractor location evolves in time (an equilibrium point trajec-
tory), or adjusted periodically so that the attractor regularly shifts
position (yielding a rhythmic movement). Information and control
are commensurate because the informational variable specifies the
goal state of the system in the terms of the state variable a.

An illustrative case of state control is provided by Schöner’s
(Dijkstra, Schöner, & Gielen, 1994; Schöner, 1991) model of the
visual regulation of standing posture. The intrinsic postural dy-
namics are modeled as a second-order system similar to Equation
6, with a fixed point at (x, ẋ) ! (0, 0) corresponding to upright
stance. Visual information about postural sway is provided by the
relative rate of optical expansion e(x, t) ! &̇/&, the inverse of Lee’s
(1976; Lee & Lishman, 1975) time-to-contact variable, where & is
the visual angle of a frontal surface patch. Information is treated as
a continuous forcing function, such that a coupling term is added
into the dynamics,

ẍ ! "'ẋ " (2x % "Q)t " ce(x, t) (15)

where c is the coupling strength, ' is the damping, ( is the
eigenfrequency of the postural system, and "Q)t is a stochastic
term that introduces random fluctuations. Information effectively
shifts the resulting fixed point along the x dimension, such that

optical expansion leads to backward postural acceleration, and
optical contraction to forward acceleration. Because the optic flow
is itself determined by postural position and velocity, the informa-
tion is defined in the same terms as the control variables.

Parametric Control

Second, information may modulate the parameters of a system,
affecting its state indirectly. For the one-dimensional system of
Equation 2, this is equivalent to adding the informational coupling
term i to parameter r, so the control law becomes

ȧ ! "(r % i)a. (16)

In this case, the parameter affects the slope of the function in
Figure 1a and hence the relaxation time to the fixed point, whose
location remains constant. For the nonlinear system of Equation 3,
on the other hand, modulation of the control parameter can take the
system through a bifurcation, changing its stability and the number
of fixed points.

In a two-dimensional system such as Equation 4, discrete reset-
ting of the stiffness parameter k changes its frequency of oscilla-
tion and in some cases its amplitude as well (Kay, Kelso, Saltz-
man, & Schöner, 1987). Continuous modulation of the parameter
can also amplify the system’s oscillation, a phenomenon known as
parametric excitation (Hayashi, 1964; Nayfeh & Mook, 1979). A
familiar example is pumping on a swing: Periodically raising and
lowering one’s center of mass decreases and increases the effective
length (and hence the natural frequency) of the pendulum, boosting
its amplitude (Post, 2000).8

Kay and Warren (1998, 2001) first demonstrated parametric
excitation in biological coordination by showing that gait synchro-
nizes to posture during walking (see also Jirsa, Fink, Foo, & Kelso,
2000). Specifically, when postural sway is driven by an oscillating
visual display at various frequencies, the step cycle becomes
entrained to the visual driver at specific integer mode locking
ratios (1:1, 2:1, 3:2, etc.). Such superharmonic entrainment, in
which the natural frequency of the driven oscillator (gait) is higher
than the frequency of the driver (visual display), is only stable in
parametrically forced systems. The results are consistent with
continuous modulation of a gait “stiffness” parameter.

In summary, control laws involve mapping informational vari-
ables to state variables or parameters of a dynamical system, with
three manners of coupling. This offers six possible control modes
by which information can influence the dynamics of behavior.

Stabilization of Goal-Directed Behavior

The function of perception and action is to stabilize behavior on
the goal for a given task while maintaining adaptive flexibility. To

7 For simplicity, informational variables themselves appear in the con-
trol law of Equation 12, ignoring for the moment the complexities of the
detection process. In principle, this term could be expanded to incorporate
a perceptual transduction function, so that the registered values of these
variables appear in the control law.

8 A swing actually combines parametric and state control, because
pumping both changes the length of the pendulum and shifts the center of
mass backward and forward, changing its state.
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this end, control laws use information to modulate the dynamics of
the action system. The behavioral outcome is a consequence of the
interaction among the control laws, the biomechanics of the body,
and the physics of the environment. In many instances, these
physical constraints can simplify the control problem by determin-
ing stable or preferred solutions. The degree to which a stable
solution is sitting in the physics of the task awaiting discovery or
is created by the appropriate use of information depends on the
nature of the task. The agent contributes to the solution by dis-
covering the relevant physical and informational quantities and
identifying control laws that yield successful, stable behavior.
Finally, to avoid getting locked into a rigidly stable solution, the
agent also uses information to maintain adaptive flexibility (Beek,
1989; Kelso, 1995).

A taxonomy of tasks can be developed on the basis of their
inherent physical stability. First are those that possess passively
stable solutions given by the physics of the task, for example, a
point attractor or limit cycle. This is perhaps the simplest case,
because the solution is highly constrained and can be discovered
via perceptual–motor exploration. Second are tasks that are inher-
ently unstable, such as those characterized by an unstable fixed
point. These require active stabilization, by means of control laws
that use information to counteract the physical instability. This is
a more challenging case because, although the solution is physi-
cally constrained in the sense that the goal state is picked out by
the fixed point, the agent must discover the relevant information
and identify an effective control law. Moreover, there is no guar-
antee that a realizable solution exists. Third are tasks that are
neutrally stable, with no intrinsic fixed points. A stable solution
thus depends on identifying informational variables that allow the
goal to be realized. This case is difficult because, in the absence of
physical constraints, the solution space is a level playing field until
fixed points are created by the appropriate use of information. To
show the process of stabilization at work, I present examples of the
three basic cases from the recent literature.

Stabilizing a Passively Stable System: Follow the
Bouncing Ball

Consider first a deceptively simple task that is a textbook
example in nonlinear dynamics: bouncing a ball on a racquet in
one (vertical) dimension. As racquet frequency increases, the
bouncing ball system actually exhibits the period-doubling route to
chaos (Guckenheimer & Holmes, 1983; Tufillaro, Abbott, &
Reilly, 1992). But our interest is in stable Period 1 bouncing, in
which the period of the ball is equal to one racquet period and it
bounces to a constant height. In the purely passive case, the
racquet oscillates sinusoidally with a constant frequency (() and
amplitude (A) without active control, and the ball falls with grav-
itational acceleration (g) and rebounds from the racquet with a
coefficient of restitution (') less than 1.

Counterintuitively, Period 1 bouncing is passively stable when
impact occurs during the decelerative phase of racquet motion
(Dijkstra, Katsumata, de Rugy, & Sternad, 2004; Schaal, Sternad,
& Atkeson, 1996)—that is, in the upward swing between the
racquet’s approximately horizontal position (where its velocity is
maximum and deceleration is zero) and its highest position (where
its velocity is zero and deceleration is maximum). Specifically,

bouncing is qualitatively stable when impact acceleration is be-
tween zero and a negative value equal to "2g(1 % '2)/(1 % ')2

and is maximally stable in a smaller region within this range. In
this regime, if the system is perturbed, it will self-correct to a
constant impact acceleration and bounce height. This means that
the ball can be bounced blindly as long as the racquet keeps going
at a constant frequency, requiring no sensory information.

In empirical tests of humans bouncing a ball on a racquet in one
dimension, Sternad and her colleagues (Schaal et al., 1996; Ster-
nad, Duarte, Katsumata, & Schaal, 2000, 2001) found that the
mean impact acceleration did indeed lie within the stable range on
the vast majority of trials, clustered about the maximally stable
region (see Figure 5). Moreover, with practice, participants pro-
gressively homed in on the stable region. The results indicate that
people exploit the physics of the system to enact a stable solution
for Period 1 bouncing.

But they also appear to rely on perceptual information to bring
the system into the passively stable region and to keep it there.
First, visual information about the ball’s trajectory may have been
used at start-up to adjust the racquet oscillation and bring the
system into the stable range, for when testing the role of vision,
Sternad et al. (2001) instructed participants to close their eyes only
after stable bouncing was achieved. Second, information appears
to have contributed to ongoing stabilization. Sternad et al. (2001)
found that removal of either visual or haptic information signifi-
cantly increased the variability in impact acceleration compared
with a full-information control. Moreover, when bouncing a virtual
ball with a physical racquet, participants responded to a sudden

Figure 5. Passive stability in bouncing a ball on a racquet. Standard
deviation of racquet acceleration at impact as a function of impact accel-
eration; each data point represents the mean and standard deviation of a
30-s trial (N ! 6). Open symbols are eyes-open trials, and filled symbols
are trials in which the eyes were closed after stable bouncing was achieved.
Theoretical curve is computed from a nonlocal Lyapunov stability analysis,
in arbitrary units. Inset is a frequency histogram of impact acceleration for
the same data. Note that nearly all trials lie in the passively stable region
between "11.44 and 0 m/s2 and cluster around the maximally stable region
between "5 and "2 m/s2. Reprinted from “Bouncing a Ball: Tuning Into
Dynamic Stability,” by D. Sternad et al., 2001, Journal of Experimental
Psychology: Human Perception and Performance, 27, p. 1169. Copyright
2001 by the American Psychological Association.
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change in g or ' within one cycle (Siegler, Mantel, Warren, &
Bardy, 2003). Indeed, de Rugy, Wei, Müller, and Sternad (2003)
observed that when ' was randomly perturbed on a single bounce,
participants adjusted the racquet period to bring the ball back into
the stable range on the next impact. They successfully modeled
this behavior with a “period controller,” which uses the perceived
period of the ball’s flight to modulate the period of racquet motion.
These results indicate that visual information is used to regulate
racquet motion on a cycle-to-cycle basis, suggesting that ball
bouncing involves a mixed regime that blends passive stability and
active control. In addition, bouncing can be sustained outside the
stable region with positive impact accelerations, by using vision
alone to actively stabilize the system (Siegler et al., 2003).

To adjust the period of racquet motion, it is reasonable to
assume that observers use visual information about the duration of
the ball’s flight, specifically, the time (tc) remaining until the ball
will arrive the height of the previous contact (hc). Several candi-
date variables that specify this arrival time can be identified. First,
the arrival time can be determined from the peak height of the
ball’s trajectory (hp), given that g is known:

tc ! "2hp/g.

Second, the arrival time can be predicted from the ball’s launch
velocity (v0), given that g is known: tc ! v0/g. Third, the arrival
time from the peak of the ball’s trajectory is equal to the first half
period of the ball’s flight: tc ! */2. The advantage of this variable
is that it holds irrespective of the gravitational constant and thus
does not depend on a known g. Finally, arrival time is also
specified haptically because the flight period is related to the force
at impact, which also depends on a known g. Siegler et al. (2003)
found that participants recover from a sudden change in g as
quickly as they do from a sudden change in ', indicating that
visual control does not depend on a known g. Furthermore, they
adapt to a change in g by adjusting both the racquet’s period and
amplitude but adapt to a change in ' by adjusting only amplitude.
The results are consistent with the use of information about the
ball’s flight period to control the period of racquet motion.

The behavioral dynamics of the bouncing task can thus be
conceptualized as follows. The environment consists of the ball–
racquet system in a gravitational field with constants g and ',
governed by the mechanics of falling bodies and collisions (&).
Given the task of Period 1 bouncing, the action system is organized
as a nonlinear limit-cycle oscillator generating vertical periodic
movements of the arm. A control variable such as the stiffness
parameter scales the period of oscillation. These two dynamical
systems are coupled mechanically by the force applied to the ball
and informationally by optic (and haptic) variables that specify the
ball’s flight period. The control law (() uses these variables to
modulate the stiffness parameter on each cycle, so that the racquet
period matches the specified ball period. At the level of the
behavioral dynamics, these cyclic interactions have regions of
passive stability with minimal active adjustments, which feed back
during learning to capture the preferred impact acceleration and
phase. The stable solution for bouncing a ball on a racquet thus
takes advantage of both physical constraints, which define passive
stability, and informational constraints, which allow the agent to
find and sustain the stable regime.

Active Stabilization of an Unstable System: Pole
Balancing

Now consider the problem of functionally stabilizing an unsta-
ble fixed point. A good example is the task of balancing an
inverted pendulum, a staple of control theory (Barto, Sutton, &
Anderson, 1983; Kwakernaak & Sivan, 1972). A pole will balance
unaided if its angle to the vertical (&) is precisely zero, but given
a slight perturbation it will fall with an angular acceleration in-
versely proportional to its length. With a bit of practice, people can
learn to balance a pole upended on one hand (or a chair on the
chin) by applying appropriate horizontal forces to its base.

The control-theoretic approach to such a planar cart–pole prob-
lem is to derive a linear control strategy in which the horizontal
force F is computed as a weighted sum of the state variables of the
system, typically the angle (&) and angular velocity (&̇) of the pole
and the position (x) and velocity (ẋ) of the cart that supports it. The
problem thus boils down to determining fixed coefficients for each
state variable, given the mechanics of a particular pendulum. This
generally results in successful solutions in which the pole oscil-
lates about the vertical without falling. But do biological systems
stabilize an inverted pendulum in this manner? In the present view,
rather than a general solution based on elementary state variables,
it is likely that people find a control law that maps higher order
informational variables into higher order control variables.

To address these questions, Foo, Kelso, and Guzman (2000)
recorded people’s behavior as they tried to balance a pole attached
to a cart that was moved by hand along a horizontal track. During
successful 30-s trials, the pole tended to oscillate by a few degrees
in a regular pattern of overshooting the vertical and being recov-
ered again by a hand adjustment, occasionally punctuated by
undershooting. The authors hypothesized a higher order informa-
tional variable called “time-to-balance” (*bal), an angular version
of Lee’s time-to-contact variable (Lee, Young, & Rewt, 1992).
Specifically, the ratio between the current pole angle (with respect
to the vertical) and its rate of change specifies the time remaining
until the pole arrives at the vertical position, if angular velocity
remains constant:

*bal !
&

&̇
. (18)

Foo et al. (2000) pointed out that rate of change in this variable
(*̇bal) can be interpreted in terms of the angular deceleration of the
pole as it approaches the vertical (Lee, 1976). A value in the range
0 $ *̇bal $ 0.5 specifies that the current deceleration is too great,
and if maintained, the pole will undershoot the vertical and could
fall. A value of *̇bal ! 0.5 indicates that the current deceleration,
if held constant, will bring the pole to rest precisely at the vertical.
However, because this fixed point is unstable the subsequent
motion of the pole would be unpredictable, so control would
become reactive. A value in the range 0.5 $ *̇bal $ 1.0 specifies
that the current deceleration is too low and the pole will overshoot
the vertical—but it will remain controllable with subsequent ad-
justments. A *̇bal ! 1.0 corresponds to a constant angular velocity,
and *̇bal # 1.0 specifies that the pole is accelerating toward the
vertical, which will lead to a large overshoot. If maintained in this
regime over several cycles, the amplitude of oscillation would
increase and the system would become uncontrollable.
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Consistent with this analysis, the data show that prior to over-
shoots, the time series of *̇bal hovers between 0.87 and 0.97 at peak
hand velocity. In contrast, prior to undershoots the mean values of
*̇bal are between 0.18 to 0.36 at peak hand velocity. Foo et al.
(2000) argued that the hand’s peak velocity is a critical control
point at which information is used to initiate a new adjustment,
such as reversing hand direction or launching a new movement in
the same direction.

These findings lead Foo et al. (2000) to propose a visual control
strategy based on *̇bal: To stabilize an inverted pendulum, keep *̇bal

between 0.5 and 1.0 at peak hand velocity. To implement this
strategy, they defined a control law in which the force to be applied
by the hand (scaled to the length and mass of the pendulum) is a
linear weighted function of pole angle and hand position,

F ! '*bal& % $x, (19)

where $ is a constant as in a standard controller. Stabilization is
achieved by using time-to-balance information *bal to periodically
modulate the “stiffness” parameter ' at each control point in the
cycle. In brief, ' is adjusted by an amount based on how far the
current value of *̇bal is outside the interval {0.5, 1.0}. The resulting
force returns *̇bal into the controllable range, keeping the pole
balanced. Simulations of this strategy applied to a model cart–pole
system produced time series that are qualitatively similar to the
human data, including antiphase coordination between hand and
pole velocity, *bal values near zero for most of a cycle, and *̇bal

values near 1.0 at peak hand velocity.
This analysis can be cast into the behavioral dynamics frame-

work as follows. The environment is governed by the physics of
the inverted pendulum in a gravitational field (&). The action
system is organized as an oscillator that generates horizontal
movements of the hand, with both state and parametric control
variables. The agent is mechanically coupled to the pole via the
force exerted on the cart and informationally coupled via visual
information about the pole angle & and *̇bal and visual or haptic
information about hand position x. The control law (() uses this
information to continuously modulate the state variables determin-
ing applied force F and to periodically adjust the “stiffness”
parameter '. At the level of the behavioral dynamics, this gives
rise to small periodic fluctuations in pole angle, stabilizing it in the
neighborhood about the fixed point at (&, &̇) ! (0, 0).

Thus, the pole is dynamically balanced by exploiting a combi-
nation of physical and informational constraints that allow the
agent to functionally stabilize the system. Although the inverted
pendulum is physically unstable, the solution to the pole balancing
problem is still constrained by the existence of an unstable fixed
point that clearly picks out a goal state.

Active Stabilization of a Neutrally Stable System: Braking

In the previous example, the physics of the inverted pendulum
limits the solution space for stabilizing the system. But in many
perceptual–motor tasks, the physical and biomechanical con-
straints are weak or nonexistent. The system is thus neutrally stable
in the sense that there are no intrinsic fixed points and no inher-
ently preferred or unpreferred states. However, informational con-
straints can play a role analogous to physical constraints when the

agent can identify higher order variables that permit the functional
stabilization of a behavioral pattern.

A good example is provided by Lee’s (1976) theory of the visual
control of braking. Imagine that the agent is traveling toward an
obstacle at a distance z, and the task is to decelerate to a stop right
in front of it, such that (z, ż) ! (0, 0). The intrinsic physics of the
situation offer little constraint, for left to itself the body or vehicle
will continue to hurtle toward a collision, slowing slightly due to
friction. There is no fixed point in this case because the position at
which the vehicle will finally stop depends entirely on initial
conditions. Thus, the active stabilization of braking at (z, ż) ! (0,
0) must rely upon informational constraints.

Lee (1976) based his analysis of braking on the * variable,
which denotes the ratio of an object’s visual angle (') over its rate
of change ('̇) and corresponds to the first-order time to contact
(limits to this analysis have been discussed by Tresilian, 1990,
1999). The time derivative of this variable (*̇) specifies the ade-
quacy of the current deceleration, as just described for the case of
pole balancing. Specifically, a value of *̇ ! "1.0 indicates a
constant velocity approach and hence an eventual crash.9 A value
in the range "1.0 $ *̇ $ "0.5 specifies that the current deceler-
ation is too low and, if maintained, would result in a collision, so
the agent should increase the brake. A *̇ ! "0.5 indicates that the
current deceleration will bring the agent to a precise stop at the
obstacle if held constant. And finally, a *̇ # "0.5 specifies that the
current deceleration is too high and would lead one to stop short of
the obstacle, so the agent should decrease the brake. Thus, *̇ !
"0.5 corresponds to the boundary between a crash state and a safe
state if the current deceleration is maintained. Note that the visual
system need not be sensitive to *̇ per se, which depends on
detecting an optical acceleration, but could be sensitive to a suf-
ficiently small difference +*, which depends on detecting a thresh-
old change in optical velocity.

Yilmaz and Warren (1995) experimentally tested several *̇ strat-
egies as well as alternative hypotheses based on the simple rate of
expansion ('̇) or computing deceleration from spatial variables.
Participants viewed an interactive display of approach to a road
sign, with or without a ground plane that added information about
speed and distance. They controlled their deceleration with a linear
“brake,” a spring-loaded mouse in which deceleration was propor-
tional to position. The data were quite consistent with a *̇ strategy,
with an overall mean *̇ of "0.51. However, the time series of
braking behavior revealed that participants did not hold *̇ constant
at "0.5, as some have suggested (Kaiser & Phatak, 1993; Kim,
Turvey, & Carello, 1993; Lee, 1976), but rather made a series of
brake adjustments at a rate of about one per second. A detailed
analysis showed that the direction and magnitude of each adjust-
ment depended upon the current value of *̇. This relationship is
represented in Figure 6, which plots the mean change in *̇ during
a brake adjustment as a function of the value of *̇ at the onset of
the adjustment. The slope of the function is exactly "1.04, and it
crosses the abscissa at a value of *̇ ! ".52 (r ! .98). This means
that if *̇ $ "0.52, participants increase their deceleration, and if

9 The signs of these values are negative, consistent with Lee’s (1976)
original analysis. Otherwise, this is analogous to the pole-balancing anal-
ysis in the preceding section.
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*̇ # "0.52, they reduce their deceleration—by an amount that on
average brings *̇ back to a criterial value of "0.52.10

Note that Figure 6 actually represents the phase portrait of the
informational variable *̇. It reveals that participants stabilize their
braking behavior by enacting a point attractor in the dynamics of
*̇. This is not an arbitrary solution but reflects the informational
structure of the task, specifically the relation between higher order
variables and deceleration conditions, which corresponds to the
boundary between a crash state and a safe state. Note also that
braking is effected via periodic discrete adjustments of a control
variable, in this case the state variable of brake position, which
directly determines the braking force and deceleration.

The visual control of braking can be placed in the behavioral
dynamics framework as follows. The environment consists of the
obstacle, the vehicle and brake dynamics, and the road surface,
governed by the laws of physics (&). The action system is pre-
sumably organized as a second-order system similar to Equation 6,
with an equilibrium point at a desired brake position x. The agent
is mechanically coupled to the environment via force exerted on
the brake and informationally coupled via *̇. Provisionally, the
control law can be modeled by a difference equation in which the

change in brake position (+x) is proportional to the distance of *̇
from its criterial value,

+x ! b("0.52 " *̇) % +, (20)

where *̇ depends on brake position x, b scales the amplitude of
brake adjustment, and + is a noise term that produces random over-
and undercorrection. This works because *̇ is roughly proportional
to deceleration and hence to brake position during most of the
controlled approach. The control law thus uses the current value of
("0.52 " *̇) to regulate the change in brake position. This exerts
a braking force on the vehicle and produces a deceleration accord-
ing to physical laws, which in turn affects the informational
variable *̇. At the level of the behavioral dynamics, this use of
information serves to stabilize braking behavior in the neighbor-
hood of (z, ż) ! (0, 0).

These three examples illustrate how biological systems use
information to find a passively stable solution, to actively stabilize
an unstable system, or to actively stabilize a neutrally stable
system. In the first case, a solution is given by the physics of the
task and can be discovered through perceptual–motor exploration.
In the second case, information is used to stabilize an unstable
system, but the solution is narrowly constrained by the physics of
the task. Finally, in the third case, information is used to enact
stable states based on the informational structure of the task.
Information may be used to influence a state variable, such as
brake position, or to modulate a parameter, such as the stiffness of
the oscillator in bouncing or pole balancing. Finally, such control
variables may be modulated continuously, periodically adjusted on
each cycle, or discretely reset to a fixed value. Empirical research
on such whole agent–environment systems is required to model
the specifics of the perception–action cycle and to formally char-
acterize the behavioral dynamics of a given task.

A Case Study: Behavioral Dynamics of Locomotion

The time has come to put these concepts to work. The goal of
this section is to show how adaptive behavior actually arises from
agent–environment interactions by pursuing a model system in
some depth. Fajen and I have recently developed a theory of the
dynamics of locomotor behavior, in which the elements of the
current framework have been modeled and empirically tested
(Fajen & Warren, 2003, 2004; Fajen, Warren, Temizer, & Kael-
bling, 2003). Our approach to modeling human locomotor path
formation is influenced by the work of Schöner et al. (1995) on a
control system for mobile robots.

Imagine yourself walking through Grand Central Station in New
York City. To reach the exit, you must adopt a route through a
complex dynamic environment. First, you must steer toward a
stationary goal—the exit. At the same time, you must avoid
stationary obstacles, such as benches and luggage. Worse, you also
have to avoid moving obstacles, such as baggage carts and other
passengers—some of which are simultaneously trying to avoid
you. Along the way, you might spot a passing acquaintance and try

10 There are small individual differences in this criterial value, indicating
more risky or conservative braking, and in the slope of the line, indicating
a tendency to over- or undercorrect.

Figure 6. Active stabilization of a neutrally stable system: Phase portrait
for braking to stop at an obstacle. Mean change in *̇ during a brake
adjustment as a function of *̇ at the onset of the adjustment, based on 4,800
trials (N ! 12). Note that the regression line indicates a point attractor at
a *̇ of "0.52, close to the theoretical value of "0.50, with a slope of "1.04
(r ! .98). Reprinted from “Visual Control of Braking: A Test of the *̇
Hypothesis,” by E. H. Yilmaz and W. H. Warren, 1995, Journal of
Experimental Psychology: Human Perception and Performance, 21, p.
1010. Copyright 1995 by the American Psychological Association.
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to intercept this moving target—which may also seek to intercept
or evade you. Locomotion in a complex changing environment
requires integrating these four elementary behaviors (stationary
goal, stationary obstacle, moving target, moving obstacle) to gen-
erate a locomotor path, a surprisingly difficult task that mobile
robots have yet to master. Below I show that human locomotor
paths can be understood as dynamic trajectories that unfold online
as the agent interacts with its environment.

The path of locomotion is unconstrained, which puts it in the
class of neutrally stable systems that must be functionally stabi-
lized by information. Most interesting, the dynamics evolve as the
agent moves through the environment, making this the first case in
which the dynamical approach has been applied to a nonstationary
real-world behavior. To address this problem, Fajen and I (Fajen &
Warren, 2003) developed a model of the behavioral dynamics of
locomotion. In this research program, we record human walking in
simple cases and use the data to specify a component model for
each of the four basic behaviors. We then fix the parameter values
and attempt to predict locomotor paths in more complex situations
by linearly combining these components. Finally, we infer possible
control laws that give rise to the observed behavior. If we can
formalize the locomotor dynamics for an individual agent, this
may ultimately allow us to model interactions among multiple
agents in a complex environment like Grand Central Station.

Steering to a Goal

Recall that exhibited behavior can be analyzed as a trajectory in
the state space of behavioral variables, where attractors correspond
to goal states and repellers to avoided states. The desired aim is to
describe the behavioral dynamics of the task by formalizing a
dynamical system with a vector field that corresponds to the
observed behavior.

Consider first the task of steering to a stationary goal. The
behavioral variables are defined as the current heading direction #
with respect to an arbitrary reference axis (see Figure 7) and the
current turning rate #̇. Walking speed is fairly constant in the data,
so for the moment assume a constant speed v. From the agent’s
current (x, z) position, a goal lies in the direction ,g at a distance
dg. The simplest description of steering is to bring the heading
error, the angle between the current heading direction and the goal
direction, to zero (# " ,g ! 0). The goal direction is thus an
attractor of heading in state space at (#, #̇) ! (,g, 0). The distance
of the goal (or equivalently, its time to contact) might also be
expected to influence steering, because the agent may need to turn
faster to hit a nearer goal.

Because the agent is embodied, the physical body must undergo
angular acceleration to change its direction of travel, and thus it is
reasonable to assume that a description of steering behavior re-
quires at least a second-order system. To get an intuition, imagine
that the agent’s current heading direction is attached to the goal
direction by a damped spring (see Figure 7). Angular acceleration
toward the goal direction would thus depend on the stiffness of the
spring and be resisted by the damping. To make the attractiveness
of the goal depend on its distance, the goal distance is used to
modulate the spring stiffness parameter continuously.

To specify these functions, a series of studies determined how
the locomotor path is influenced by the directions and distances of

goals and obstacles (Fajen & Warren, 2003). The research was
carried out in the Virtual Environment Navigation Lab (VENLab)
at Brown University, a 12 m , 12 m room in which a participant
can walk freely wearing a head-mounted display (60° horizontal ,
40° vertical) while head position is recorded with a sonic–inertial
tracking system. On each trial, the participant walked forward on
a textured ground plane for 1 m, then a goal post appeared, and the
task was simply to walk to the goal. The first experiments varied
the initial heading error (0° to 25°) and goal distance (2 m to 8 m).

The data revealed that participants turned onto a straight path to
the goal (see Figure 8a) but did so more rapidly when the goal had
a larger heading error or was at a closer distance. The time series
of heading error showed that it converged to zero from all initial
conditions (see Figure 8b), with an angular acceleration that in-
creased linearly with heading error and decreased exponentially
with goal distance. Thus, the goal direction does in fact behave like
an attractor of heading.

We modeled this behavior with an angular version of the “mass–
spring” equation (Equation 4), in which angular acceleration #̇ is
a function of both heading error (# ",g) and goal distance (dg),

#̈ " "b#̇ " kg(# " ,g)(e"c1dg % c2). (21)

The “damping” term indicates that the resistance to turning is
proportional to the turning rate; the b parameter determines the
slope of this function, expressing the ratio of damping to body
mass (in units of s"1). The “stiffness” term reflects the finding that
angular acceleration increases linearly with heading error, at least
over the tested range of "25° to %25°.11 The kg parameter
determines the slope of this function and hence the attractiveness
of the goal, expressing the ratio of stiffness to mass (in units of

11 It is interesting that Reichardt and Poggio (1976) determined a similar
function for steering in the housefly that was also linear over this range.

Figure 7. Definition of variables for locomotor behavior: Heading direc-
tion in an extrinsic coordinate frame #, direction of goal or obstacle ,, and
heading error in an intrinsic coordinate frame $ ! # " ,. Steering behaves
as though the heading direction were attached to the goal direction by a
spring with stiffness k and damping b.
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s"2). Finally, the attractiveness of the goal decreases exponentially
with distance, where c1 determines the rate of decay and c2 a
minimum value (to ensure that one will steer toward distant goals).
The slope of the “stiffness” function is thus modulated by distance.
Least squares fits to the mean time series of heading error yielded
parameter values of b ! 3.25, kg ! 7.50, c1 ! 0.40, and c2 ! 0.40.

Simulations of the experimental conditions generate locomotor
paths that are very close to the human data (see Figure 9a) and time
series of heading error that converge to zero in a similar manner
(see Figure 9b). The fits to the mean time series accounted for a
proportion of .980 of the variance, indicating that model behavior
is highly similar to the mean human behavior. Thus, the model
successfully captures the basic form of walking to a goal, in which
the goal direction behaves like an attractor of heading whose
strength increases with angle and decreases with distance. Al-
though four free parameters may seem to be overkill, it turns out
that simpler models do not account for the observed variation in
human paths. Recall as well that the modeling strategy is to fix
these values and predict behavior in more complex environments
with no free parameters.

Rushton, Wen, and Allison (2002) proposed but did not test a
simpler hypothesis for steering to a goal in which, rather than
bringing the heading error to zero, the agent holds the goal at a
fixed eccentricity from the body’s midline, corresponding to one
free parameter. This generates paths in the form of equiangular
spirals, with greater curvature (higher turning rate) near the end of
the trajectory, as the target is approached. However, data from
Fajen and Warren (2003) clearly show the opposite pattern: Hu-
mans turn onto a straight path to the target with greater curvature

at the beginning of the trajectory. An alternative hypothesis pro-
poses that the agent steers to cancel target drift, the optical velocity
of the target (Llewellyn, 1971; Rushton et al., 2002). As formal-
ized by Wilkie and Wann (2003), the model has only two param-
eters, analogous to a stiffness term and a damping term, and
generates more humanlike trajectories that depend on target ec-
centricity and distance. However, simulations of their model pro-
duced spiral paths to the goal that differ from the human data (see
Fajen & Warren, 2005). The heading error does not go to zero but
gets stuck at a constant nonzero value. This may be ameliorated by
choosing appropriate stiffness and damping values for each initial
condition, but that effectively adds free parameters that depend on
goal distance and direction. Thus, apparently simpler models based
on fixed eccentricity or target drift do not generate realistic human
paths.

Obstacle Avoidance

Now consider the task of avoiding a stationary obstacle. From
the agent’s current position, an obstacle lies in the direction ,o at
a distance do. The simplest description of obstacle avoidance is the
converse of steering to a goal: to increase the heading error
between the current heading and the obstacle direction (# " ,o #
0 ). The obstacle direction thus acts like a repeller of heading at (#,
#̇) ! (,o, 0). In addition, its distance (or time to contact) is also
likely to influence steering behavior, for nearby obstacles must be
avoided before more distant ones. Returning to our intuitive
model, imagine that the heading direction is repelled from the

Figure 8. Human steering to a goal at a distance of 2, 4, or 8 m. a: Mean walking paths for an initial heading
error of 20°. b: Mean time series of heading error, with initial values of -10° or -20°. Adapted from
“Behavioral Dynamics of Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen and W. H.
Warren, 2003, Journal of Experimental Psychology: Human Perception and Performance, 29, p. 348. Copyright
2003 by the American Psychological Association.
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obstacle direction by a second angular spring, whose stiffness is
modulated by the distance of the obstacle.

Fajen and Warren (2003) recorded detours taken around a single
obstacle en route to a goal. On each trial, the participant began
walking toward a goal post, and after 1 m, an obstacle post
appeared. The initial angle between the obstacle and the path (1°
to 8°) as well as the obstacle’s initial distance (3 m to 5 m) were
manipulated. Once again, both the direction and distance of the
obstacle influenced the path (see Figure 10a), and the heading was
repelled from the obstacle direction such that the heading error
diverged from zero in all conditions (see Figure 10b). In this case,
angular acceleration decreased exponentially with both heading
error and obstacle distance.

We (Fajen & Warren, 2003) modeled this behavior with a
component having a repeller in the direction of the obstacle by
flipping the sign on the stiffness term,

#̈ " "b#̇ ! ko(# " ,o)(e"c3!#",o!)(e"c4do). (22)

The form of the stiffness term reflects the finding that angular
acceleration decreases exponentially to the right or left of the
obstacle; the amplitude of this function is determined by the
parameter ko and its decay rate by c3 (in units of rad"1), and it
asymptotes to zero. The stiffness also decreases exponentially to
zero with obstacle distance, where parameter c4 is the decay rate
(in units of m"1). To fit the model to the mean time series of
heading error, Fajen and I kept the previous parameter values for
the goal component fixed and added the obstacle component to it,

yielding parameter values of ko ! 198.0, c3 ! 6.5, and c4 ! 0.8.
Simulations reproduced the mean human paths (e.g., see Fig-
ure 11a) and time series (see Figure 11b), accounting for a pro-
portion of .975 of the variance. The model thus captures the
behavioral dynamics of obstacle avoidance, such that the direction
of the obstacle behaves like a repeller of heading whose strength
decreases with both heading error and obstacle distance.

Note that the model relies only on a limited perceptual sample
of the environment, not a full world model. The influence of
obstacles asymptotes to zero at a distance of around 4 m and an
angle of - 60° about the heading direction. Moreover, because the
distance functions are gradually decreasing exponentials, the
model is not sensitive to error in perceived distance. Adding 10%
Gaussian noise into all perceptual variables and model parameters
induces a standard deviation of only a few centimeters in the path’s
lateral position around an obstacle, demonstrating the robustness
of the model. Currently, the model treats obstacles as points, so a
larger obstacle or surface must be represented as a set of points at
finite intervals, such that the repulsion functions sum over space.

Routes as Emergent Behavior

Now that elementary goal and obstacle components have been
formulated, can they be used to predict more complex behavior? In
the model, routes emerge from the agent’s interaction with the
environment, rather than being explicitly planned in advance.
Fajen and I began with the simplest case of route selection,

Figure 9. Model simulations of steering to a goal at 2, 4, and 8 m. a: Paths for an initial heading error of 20°.
b: Time series of heading error for initial values of -10° or -20°. Adapted from “Behavioral Dynamics of
Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen and W. H. Warren, 2003, Journal of
Experimental Psychology: Human Perception and Performance, 29, p. 350. Copyright 2003 by the American
Psychological Association.
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comparing a shorter “inside” path around an obstacle to a longer
“outside” path (Fajen & Warren, 2003). Given initial conditions
for an outside path, the model predicts that the route will switch to
an inside path as the angle between the goal and the obstacle
increases to 7°–10° and as the distance of the goal decreases,
making it more attractive. Humans exhibited both of these effects,
but the switch occurred at a somewhat smaller angle of 2°–4°. This
may be because the first experiments did not sample cases in
which the participant had to cross in front of an obstacle. However,
adjusting the obstacle parameter c4 from 0.8 to 1.6 is sufficient for
the model to exhibit switching in the human range. Parameter c4

might be thought of as a “risk” parameter, for higher values cause
the repulsion function to decay more rapidly with distance, allow-
ing a closer approach to obstacles. The agent’s body size is thus
implicitly represented in the model by the repulsion parameters.

Route switching results from competition between the attraction
of the goal and the repulsion of the obstacle, and the choice of
whether to steer right or left appears as a bifurcation in the model
dynamics. The vector field of the behavioral dynamics, in this case
an acceleration field computed from Equations 21 and 22, is
plotted in Figure 12 for an agent at different locations in the
environment. When the agent is far from the obstacle at (0, 0) (see
Figure 12a) it exerts no influence, so there is a simple attractor in
the goal direction (see Figure 12b). But as the agent moves through
the environment, the vector field evolves. If the obstacle is be-

tween the agent and the goal, the model is bistable, such that both
outside and inside paths are attractive with a repeller in between
(see Figure 12c); the selected route then depends upon the agent’s
initial conditions. As the agent moves around the obstacle, the
curve lifts off the abscissa and the vector field undergoes a tangent
bifurcation, such that only one route remains stable (see Figure
12d). The “choice” of a particular route can thus be understood as
a consequence of bifurcations in the system’s dynamics.

One advantage of the model is that it scales linearly with the
complexity of the scene, simply adding one “spring” term for each
object. Essentially, the heading direction at any moment is the
resultant of all spring forces acting on the agent. The next step in
complexity is a configuration of two obstacles en route to a goal,
creating three possible routes (Fajen & Warren, 2001). In this
experiment, the goal and the near obstacle were in fixed positions,
while the lateral position of a slightly farther obstacle was manip-
ulated. As the angle between the far obstacle and the goal increases
from 0° to 10°, the model predicts a particular sequence of route
switching: from outside the far obstacle, to outside the near ob-
stacle, to in between them. Participants demonstrated exactly this
sequence of switching behavior.

The success of the model is that it enables one to understand the
“surface structure” of exhibited locomotor paths and route switch-
ing in terms of the “deep structure” of the underlying dynamics of
attractors, repellers, and bifurcations. As the agent moves through

Figure 10. Human obstacle avoidance, with an initial distance of 3, 4, or 5 m and an initial heading error of
"4°. a: Mean walking paths. b: Mean time series of heading error. Adapted from “Behavioral Dynamics of
Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen and W. H. Warren, 2003, Journal of
Experimental Psychology: Human Perception and Performance, 29, pp. 352 and 353. Copyright 2003 by the
American Psychological Association.
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the world, the dynamics evolve, for as the directions and distances
of goals and obstacles change, the attractors and repellers shift and
bifurcations occur. Thus far, the online steering dynamics are
empirically sufficient to account for human locomotor paths with-
out assuming explicit path planning or an internal world model.

Fajen and I subsequently developed a third model component
that intercepts a moving target simply by modifying Equation 21 to
null change in the bearing direction of the target, a type of
“constant bearing” strategy (Fajen & Warren, 2005). A fourth
component was also added for avoiding a moving obstacle, creat-
ing a repeller in the constant bearing direction (Cohen & Warren,
2005). Currently, the group at Brown University is testing whether
linear combinations of these four components can predict human
paths through complex dynamic environments through complex
dynamic environments; thus far we have closely predicted paths
and switching behavior for a moving target with a stationary
obstacle (Bruggeman & Warren, 2005), a moving target with a
moving obstacle, and a moving target with a stationary and a
moving obstacle. The model thus appears to scale to complex
configurations with no free parameters. Once elementary locomo-
tor behaviors for an individual agent are formalized, our aim is to
use the model to simulate interactions among multiple agents,
including pedestrian traffic flow and crowd behavior.

Locomotor Control Laws

Now that a formal description of the behavioral dynamics of
steering and obstacle avoidance has been developed, let us return to
the level of control laws. The central argument of this article is that
observed behavior emerges from an agent governed by control laws
interacting with an environment governed by physical laws to stabi-
lize a behavioral outcome. I thus wish to show how control laws for
locomotion can give rise to the behavioral dynamics just described.

First consider the informational coupling between agent and
environment. Given that turning rate depends on the heading error,
steering does not appear to be based simply on the visual direction
of a goal or obstacle but rather on the angle between the object and
the current direction of locomotion. This implicates information
related to the current heading (#) or object-relative heading ($ !
# " ,). Conveniently, information is available in the optic flow
that specifies both the absolute heading (#flow) and the object-
relative heading ($ ! #flow " ,). Human observers are quite
accurate at judging their heading with respect to an object from
optic flow alone or in conjunction with extraretinal information
about eye movements (Lappe, Bremmer, & van den Berg, 1999;
Warren, 2004). For terrestrial animals, the current heading is also
given by proprioceptive information about the locomotor axis

Figure 11. Model simulations of obstacle avoidance, with an initial distance of 3, 4, or 5 m and an initial
heading error of "4°. a: Model paths. b: Time series of heading error. Adapted from “Behavioral Dynamics of
Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen and W. H. Warren, 2003, Journal of
Experimental Psychology: Human Perception and Performance, 29, p. 353. Copyright 2003 by the American
Psychological Association.
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(#prop), and hence the heading error is redundantly specified by the
egocentric direction of the object with respect to the felt locomotor
axis ($ ! #prop " ,). There is converging evidence that both optic
flow and egocentric direction contribute to the control of walking

to a goal (Rushton, Harris, Lloyd, & Wann, 1998; Warren, Kay,
Zosh, Duchon, & Sahuc, 2001) as well as to joystick steering (Li
& Warren, 2002; Wilkie & Wann, 2003; for an overview see
Warren & Fajen, 2004).

Figure 12. Sample vector fields (# vs. #̇) for steering around an obstacle en route to a goal. a: Four sampled
positions on typical inside and outside routes. The goal is denoted by X, the obstacle by O. b–e: Vector fields
at the four positions. Each vector has a vertical component that represents the angular acceleration (#̈) and a
horizontal component that represents the angular velocity (#̇) at the corresponding point in phase space. Solid
curves represent nullclines at which #̈ is zero. Filled circles represent point attractors, and open circles represent
repellers. Filled arrows indicate the goal direction (,g), and open arrows indicate the obstacle direction (,o).
Reprinted from “Behavioral Dynamics of Steering, Obstacle Avoidance, and Route Selection,” by B. R. Fajen
and W. H. Warren, 2003, Journal of Experimental Psychology: Human Perception and Performance, 29, p. 357.
Copyright 2003 by the American Psychological Association.
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These findings led me and my colleagues to propose a control
law for steering to a goal (Warren et al., 2001) in which turning is
a function of the current heading error given by a linear combi-
nation of egocentric direction and optic flow:

#̇ " "kg[(#prop " ,g) % wv(#flow " ,g)]. (23)

The coefficient kg is a rate constant. The contribution of the flow
is weighted by the observer’s velocity v, which influences the flow
rate, and by w, a measure of the visual area and magnitude of optic
flow due to environmental structure. Thus, as the observer travels
faster or as there is more visual structure, steering will be increas-
ingly dominated by the optic flow, consistent with experimental
evidence (Fink & Warren, 2002; M. G. Harris & Carre, 2001;
Warren et al., 2001; Wilkie & Wann, 2002; Wood, Harvey,
Young, Beedie, & Wilson, 2000). Conversely, with little visual
structure, the egocentric direction of the target will dominate (J. M.
Harris & Bonas, 2002; Rushton, Harris, & Wann, 1999). Such
redundancy is highly adaptive, for it allows locomotor guidance to
be robust under varying environmental conditions.

In the preceding experiments on steering dynamics, it was also
found that the influence of the goal decays exponentially with
distance (or equivalently, time to contact). The control law can
thus be expanded as

#̇. " "kg[(#prop " ,g) % wv(#flow " ,g)](e"c1dg % c2).

(24)

This control law is represented as a first-order dynamical system
that relaxes to an attractor for the intended heading in a direction
#. with a relaxation rate #̇.. The prime indicates that the intended
heading is a control variable, and its relaxation rate is distinct from
a physical turning rate. In principle, the equation can be expanded
further by adding the obstacle term:

#̇. " "kg[(#prop " ,g) % wv(#flow " ,g)](e"c1dg % c2)

% ko[(#prop " ,g) % wv(#flow " ,g)](e"c3!#",o!)(e"c4do). (25)

The system relaxes to a heading that is determined by the current
configuration of goals and obstacles. This control law thus maps
low-dimensional informational variables that specify heading error
into a low-dimensional control variable for the intended heading.
The control law is what the agent’s perceptual–motor system must
learn, including the form of the first-order function (which is the
same for each component), the relaxation rates kg and ko, the
spread of the obstacle repulsion function (which reflects the
agent’s body size), and the decay rates for obstacles and goals with
distance.

Next consider the mechanical coupling between agent and en-
vironment. Given an intended heading direction, the locomotor
system transforms this control variable into forces exerted in the
environment. Effectively, this means changing the direction of
motion of the body’s center of mass and simultaneously rotating
the trunk via forces applied through the supporting foot against the
ground (Patla, Adkin, & Ballard, 1999). Reaction forces produce a
change in the direction of travel in accordance with the laws of
physics. Given that the physical body is an inertial system, it must
undergo angular acceleration and will necessarily lag behind the

intended heading. Body motion can thus be represented as a
lumped second-order system,

#̈ " "bb#̇ " kb(# " #.), (26)

where the mass term is incorporated in the parameters as before,
and the parameter values are fixed. The damping parameter is
interpreted as a physical constraint related to centripetal force and
thus need not be learned. The observed angular acceleration is thus
a function of the discrepancy between the current and intended
heading (# " #.). Finally, the resulting change in heading alters
the information available at the moving eye in accordance with the
laws of ecological optics, resulting in a shift of the optic flow as
well as the visual directions of goals and obstacles.

It is now possible to see how the behavioral dynamics emerge
from the interaction between an agent governed by control laws
and an environment governed by physical laws. As described in
Fajen and Warren (2003), Philip Fink simulated this perception–
action cycle for steering around an obstacle to a goal, by embed-
ding the first-order control law (Equation 22) within a second-
order body (Equation 23). The resulting paths were
indistinguishable from those generated by the model of the behav-
ioral dynamics (Equation 19). Moreover, the time series of heading
error fit the mean human data and accounted for a proportion of
.991 of the variance (parameter values kg ! 59.1625, c1 ! .0555,
c2 ! .01125, ko ! 842, c3 ! 2.74063, c4 ! .04653, bb ! .0375,
kb ! 592).12 This result demonstrates formally how the
perception–action cycle gives rise to the behavioral dynamics.

Bootstrapping Adaptive Behavior

We are now in a position to consider how such adaptive behav-
ior patterns might come about. The aim is to show how stable
behavior could arise through a process of self-organization,
thereby circumventing an appeal to a priori internal organization.
Such pattern formation processes typically occur in physical sys-
tems with many simple interacting components (Haken, 1977;
Nicolis & Prigogine, 1989), but they also occur in biological
systems with more complex components that are coupled together
by sensory information (Camazine et al., 2001; Murray, 1989;
Yates, 1987). I wish to extend such an analysis to the interactions
between a complex individual and a complex environment under
certain physical and informational constraints.

Self-organization is the spontaneous formation of ordered states
in complex systems under specific boundary conditions. First, it is
typically observed in open systems composed of many individual
components with many degrees of freedom. Second, the compo-
nents must be coupled together so that they are interacting locally
and simultaneously. Third, the presence of fluctuations or insta-
bilities produces a symmetry-breaking event, which launches the
pattern-formation process. Most important, there must be a non-
linear positive feedback that amplifies the initial instability, so that
the emerging pattern feeds back to capture the behavior of indi-
vidual components. In effect, this acts to compress or enslave the

12 These parameter values are different from those for the behavioral
dynamics because they reflect the relaxation rate for a first-order control
law, which is embedded in a second-order physical system.
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system’s degrees of freedom into an ordered spatial or temporal
pattern. This form of circular causality is the hallmark of self-
organization, by which specific patterns emerge from nonspecific
initial conditions.

To illustrate, consider the question of why geese fly in a “V.”
One might assume that such species-typical behavior is governed
by an innate program for a particular flocking pattern, but it can
also be understood as a product of self-organization. In this case,
the components are individual birds, which are coupled by an
aerodynamic field. Because of the bird’s morphology, air flow
over the wing creates a rolling vortex cylinder—an updraft—that
trails behind it and may be exploited by another goose flying off
the wingtip of the bird ahead. Hainsworth (1987, 1989) calculated
that this yields an energy savings of up to 51%, so that a migrating
flock can actually travel twice as far on one feeding.

A pattern-formation account proposes that a symmetry-breaking
event occurs when a few birds in a flock fall into advantageous
positions behind one another. This initiates the formation of a
vortex field, which feeds back to capture the behavior of neigh-
boring birds. As each bird contributes to the growing field, it
becomes increasingly advantageous for the rest of the flock to fall
into line. Note that the birds are not compelled to adopt this pattern
by a physical force but rather are guided into it by sensory
information about the energetic cost of their positions in the field.
The V formation thus emerges from the interactions of the geese
and their avian environment under aerodynamic, metabolic, and
informational constraints. The “innate” components are wing mor-
phology and a general sensitivity to metabolic cost rather than a
specific behavior per se. Although this view of flocking is still
under debate, it offers a plausible account of behavioral pattern
formation that avoids an appeal to genetic neural programs.

The bootstrapping of adaptive behavior can similarly be under-
stood as resulting from the coupling between a complex agent and
a complex environment. As the agent interacts with the environ-
ment in a particular task, this generates a vector field at the level
of the behavioral dynamics with attractors that correspond to stable
task solutions. The appearance of these stabilities breaks the sym-
metry of a homogeneous behavioral state space. Just as the geese
explore the vortex field and sense its energetic consequences,
which feed back to capture their behavior, so the agent explores the
vector field and perceives its behavioral consequences, providing
a sensory feedback that organizes stable behavior. By hypothesis,
this search is made tractable by a confluence of physical, biome-
chanical, and informational constraints that renders the search
space low-dimensional, with well-defined stabilities.

How might such a bootstrapping process be envisioned for a
particular task? There are at least three levels at which the dynam-
ics of a task must be considered (Saltzman & Munhall, 1992).
Graph dynamics refers to change in the functional relations among
system components that determine a dynamical regime—ab-
stractly, the function that defines a dynamical system. Parameter
dynamics refers to change in the parameters of this function, which
can alter the attractor layout by shifting attractor loci or taking the
system through a bifurcation. When performing an action, state
dynamics refers to the evolution of the system from initial condi-
tions to attractor states.

In learning a new behavior, at the graph level the agent must
adopt a dynamical regime that is suited to the task at hand, such as

a point-attractor or limit-cycle dynamic. The regime is signifi-
cantly constrained by the nature and the goal of the task. During
the task of bouncing a ball periodically on a racquet, for example,
an oscillatory regime is dictated by the physics of the task. The
appropriate regime might be discovered through perceptual–motor
exploration (Newell, Liu, & Mayer-Kress, 2001) or jumpstarted by
imitation or instruction. The resulting action mode leaves a limited
number of parameters and other control variables free to vary, such
as the stiffness and phase of racquet oscillation.

Once the agent begins to interact with the environment, the
vector field of the behavioral dynamics becomes defined. To
discover its stabilities and instabilities, the learner must explore
these dynamics at the parameter level and observe the behavioral
consequences, such as the stability of the ball’s bounce height and
period. In essence, the agent jointly searches a space of control
variables and a space of informational variables to determine a
control law for the task. One possible mechanism for doing so is
reinforcement learning (Kaelbling et al., 1996; Sutton & Barto,
1998), which finds a “policy” that maps perception to action so as
to optimize an objective function, such as stability. Reinforcement
learning depends on the presence of appropriate task constraints,
and there is a direct trade-off between the degree of constraint and
the time for learning to converge or whether it converges at all.
Thus, as Berthier et al. (2005) emphasized, an explanation of the
organization of behavior rests crucially upon an understanding of
the intrinsic dynamical and informational constraints.

Consider first the problem of searching the space of control
variables. The adopted dynamical regime limits the dimensionality
of this space, leaving only a few parameters and state variables free
to vary, thus simplifying the search. Further, the relevant control
variables can be quickly identified because manipulating them
produces an immediate effect on task-relevant aspects of behavior.
Stable solutions may then be found by using efficient search
procedures to explore these control variables and sensing the
behavioral outcome (Krinskii & Shik, 1964; Newell et al., 2001;
Newell & McDonald, 1992). In ball bouncing, the passively stable
regime might be found by varying the stiffness and phase of
racquet oscillation while observing the ball’s trajectory. At some
values, bouncing is unstable and difficult to sustain. When impact
occurs during the racquet’s decelerative phase, the ball’s period
and amplitude are less variable, providing a feedback that may be
used to tune the control parameters. Sternad et al. (2000) found
that, with only 20 min of practice, the mean impact acceleration
shifted exponentially from the border of the stable range ("1.0
m/s2) to the center of maximum stability ("3.6 m/s2).

At the same time, the agent must search the space of informa-
tional variables. The dimensionality of the information space is
limited by the task constraints and further reduced by observing
the covariation of relevant informational variables with control
adjustments. In the bouncing example, the task itself defines the
trajectory of the ball as relevant. As the stiffness and phase of
racquet oscillation are varied, they affect the period, peak height,
and velocity of the ball, picking them out as candidate informa-
tional variables. Finally, exploring possible couplings to the rac-
quet control variables will result in more or less successful and
stable bouncing, allowing the agent to identify a control law.

Recent research on perceptual and perceptual–motor learning
suggests that informational variables tend to be explored from
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simple to complex (Jacobs, Runeson, & Michaels, 2001; Smith,
Flach, Dittman, & Stanard, 2001). For example, Smith et al. (2001)
investigated the novel task of releasing a pendulum to hit an
approaching ball. The task constraints define a clear goal with a
single control variable, the time of release. Participants quickly
detected that a successful hit covaries with the ball’s expansion
rate or visual angle at the time of release, and they initially adopted
one of these lower order variables to control the action. But as they
observed a wider range of conditions (ball velocity, size, distance),
the early correlation broke down, and they adopted a higher order
ratio of these variables. Such results suggest that the perceptual
system searches informational variables by determining whether
they covary with successful action and eventually converges on
higher order variables that bear invariant relations over a wide
range of conditions. The learner thus follows trajectories through
information space that converge on informational stabilities (Ja-
cobs & Michaels, 2006).

In principle, stable behavioral solutions could be identified on
the time scale of learning, development, or evolution (Thelen &
Smith, 1994). In each case, a process of exploration is involved,
searching the space of control and informational variables and
their couplings. What makes this search tractable is that task
constraints reduce the dimensionality of the problem, and the
covariation of informational and control variables picks out rele-
vant relations. Stabilities and instabilities in the resulting vector
field are sensed perceptually, providing a feedback that fixes the
control laws for the task. What is learned is thus not an internalized
model of the environment or the interaction but a task-specific
mapping from informational to control variables that serves to
stabilize behavior over a range of conditions. In this manner,
adaptive behavior emerges through a process of self-organization.

Bootstrapping Locomotor Behavior

Now consider how the elementary locomotor behaviors de-
scribed above might get bootstrapped over ontogenetic or phylo-
genetic time. At the graph level, the dynamical regime is con-
strained to fixed-point dynamics by the nature of the task, because
by definition one steers toward goals and away from obstacles.
Informational variables that specify heading, such as the optic
flow, and control variables for steering, such as the direction of
force application, are presumably discovered on the basis of their
systematic covariation. To identify control laws, the agent must
explore particular mappings of informational to control variables,
and the behavioral outcome acts as a feedback to select the form of
the law. Exploration of parameter space reveals stable regions that
produce effective paths to the goal and unstable regions that result
in collisions, missed targets, or oscillations. At this level, an
objective function such as minimum variance (maximum stability),
minimum energy expenditure, or least action presumably plays a
role in setting parameter values that yield optimum paths through
the environment (Flascher, 2004; Sparrow & Newell, 1998). Of
course, different parameter settings may be learned for variants of
the task, as when steering on foot, on a bicycle, or in a car: The
control relations may be quite similar in each case, but the param-
eter values must be adapted to the dynamics of the vehicle.

In summary, self-organization over the course of learning or
evolution results in parameterized control laws for steering and

obstacle avoidance. The agent’s constrained interactions with the
environment generate the behavioral dynamics in a form of “up-
ward” causality, and conversely, stabilities in the vector field act
“downward” to fix control laws and their parameter values.

Limitations and Extensions

The framework as presently articulated is intended to apply to
online perception and action and assumes certain boundary con-
ditions, including a task goal and available perceptual information.
The approach thus faces challenges in accounting for behavior that
appears to go beyond the occurrent information, behavior that
Clark (1997) dubbed “representation-hungry.” This includes (a)
sequential behavior that seems to require representational specifi-
cation, (b) anticipatory behavior oriented toward goals that are
remote in time or space, (c) predictive behavior that takes account
of hidden properties or behaviors of environmental entities, and (d)
strategic behavior requiring richer contextual knowledge. Al-
though the present behavioral dynamics framework does not ac-
count for these capabilities explicitly, it can provide a platform for
approaching such “cognitive” behavior in dynamical terms. In this
section I discuss the current limitations of the approach and spec-
ulate rather freely about possible extensions that may go beyond
them.

Sequential Behavior

Ongoing behavior is often composed of sequences of actions,
defined by a series of subtasks or subgoals. Consider the task of
making a peanut butter and jelly sandwich (Land & Hayhoe,
2001), which involves a sequence such as getting out the ingredi-
ents, putting a slice of bread on a plate, grasping and opening a jar,
grasping and loading the knife, spreading peanut butter on the
bread, and so on. Some complex behavior is composed of action
sequences that exhibit nonadjacent dependencies that cannot be
accounted for by simple stimulus–response chains—the classic
problem of serial order (Lashley, 1951; Terrace, 2005). For exam-
ple, spreading peanut butter depends on having opened the jar, but
there may be any number of intervening actions, such as opening
the jelly or putting the bread on the plate. In fact, it has been
observed for behaviors such as brushing one’s teeth or grooming in
rodents that the overall structure of behavior over instances is more
stable than is the sequence of component movements (Berridge,
1990; Reed, Montgomery, Schwartz, Palmer, & Pittenger, 1992).
Serial behavior is usually taken to imply a preexisting internal
representation that specifies the sequence of actions, such as a
hierarchical action plan or script. However, the observed variabil-
ity in action sequences also suggests that behavior may be dynam-
ically assembled on each occasion.13

One approach to sequential behavior is to suggest that each
action corresponds to a dynamical regime but that the sequence of
regimes is specified by an antecedent action plan. Saltzman (1995)
proposed such a hybrid scheme for generating the sequence of

13 Lashley (1951) himself sketched a dynamical view: Temporal se-
quences are created on the fly in reverberatory circuits by interactions
between current inputs, ongoing activity, and traces of prior inputs and
actions.
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articulatory speech gestures necessary to produce a syllable, using
a predefined “gestural score.” This scheme preserves a dynamical
account at the level of individual actions while conceding a time-
independent representation at the level of the sequence.

An alternative approach is to characterize how dynamical re-
gimes change over time, that is, to describe the system’s graph
dynamics. Keijzer (1998) has sketched such an approach on the
basis of coupled multiscale dynamics. Interactions between the
nervous system, the body, and the environment occur at multiple
spatiotemporal scales, each with its intrinsic dynamics and self-
organizing tendencies—what one might call a nested behavioral
dynamics. For example, Iberall and McCulloch (1969) observed
that much human and animal behavior is composed of marginally
stable, periodic action modes such as gait, drinking, feeding,
work–rest, play, sleep–wake, and so forth. These nested rhythms
yield large-scale patterns of behavior and can be dynamically
regulated by coupling or switching among the marginally stable
modes (Iberall, 1977).

Keijzer (1998) similarly proposed that a behavioral sequence is
generated by modulating the intrinsic dynamics at appropriate
points to yield a trajectory through the action modes that is
sufficient for the task at hand. The short time-scale dynamics are
modulated by “internal control parameters” embodied in neural
networks; they are coupled to larger scale dynamics, yielding a
particular behavioral trajectory. In present terms, these modula-
tions correspond to the graph dynamics, which determine the
attractor layout and when the system bifurcates from one regime to
another. The large-scale behavioral outcome feeds back to modify
the neural networks so that learning occurs. Because a behavioral
trajectory is assembled afresh on each occasion, the action se-
quence is historically contingent and variable, allowing for the
flexibility observed in ordinary action sequences.

It is clear how basic action modes such as feeding and drinking
might arise in such a system and how they might be phased with
behavior on other time scales. But Keijzer (1998) admitted that
fine-grained sequences such as making a sandwich are at the upper
end of behavioral complexity. Coupled multiscale dynamics offer
one avenue to understanding such sequential behavior, but a more
detailed theory remains to be developed, including precisely how
patterns of mode switching may be acquired in learning. Saltzman,
Lofqvist, and Mitra (2000) have argued that recurrent neural
networks provide a plausible embodiment of such graph dynamics
in speech production.

Anticipatory Behavior

Anticipatory behavior refers to actions that are constrained not
only by the immediate environment but also by some remote goal
state. In contrast to online perception and action, anticipatory
behavior may be organized on relatively large spatiotemporal
scales and is not completely guided by occurrent information.

A plausible approach to anticipatory behavior was the motiva-
tion for Keijzer’s (1998) coupled multiscaled dynamics program.
What is required is a long-term trajectory that emerges from
short-term neural–body–environment interactions and is sufficient
to arrive in the neighborhood of the desired goal state. In Keijzer’s
(1998) view, it is the coupling between dynamics at different
scales that generates such macroscopic forms. Specifically, the

behavioral dynamics at a short time scale are modulated by neural
control parameters to guide the formation of the behavioral trajec-
tory over longer time scales. Reciprocally, the longer term dynam-
ics influence the short-term interactions, for example by altering
environmental conditions or making new information available.
Self-organized order is thus extended over larger spatiotemporal
scales so that distal goals can be achieved. Again, this gestures
toward an approach that remains to be developed in substance.

Predictive Behavior

Predictive behavior refers to actions that depend on hidden
aspects of the environment, such as object properties (e.g., mass,
fragility, slipperiness) or behavior patterns (e.g., projectiles travel
in parabolic arcs, rabbits follow zigzag paths). For example, when
reaching to grasp an object, the hand deceleration phase is longer
when the target object is a lightbulb than when it is a tennis ball
(Marteniuk, MacKenzie, Jeannerod, Athenes, & Dugas, 1987).
Predictive behavior thus seems to require that the agent possess
internal representations of the entities involved, including their
properties and behaviors.

The first line of attack on this problem is to reanalyze the
available information to determine whether the behavior is truly
predictive or exploits prospective information—occurrent informa-
tion that specifies a future event. The best-known example is the *
variable described earlier, which specifies the immanent arrival of
an approaching object (Lee, 1976). Abernathy and Russell (1987)
have shown that the arm and racquet movements involved in a
badminton stroke provide prospective information about the tra-
jectory of the shuttle, and the same may also hold for a baseball
pitcher’s windup.

The second line of attack is to look for simple perceptual–motor
mappings or relations between visible and hidden properties that
would support adaptive behavior without a full-blown internal
world model. For instance, skilled cricket batsmen make accurate
high-speed pursuit eye movements to track the ball as it ap-
proaches the bat from its bounce point on the ground (Land &
McLeod, 2000). Hayhoe, Mennie, Gorgos, Semrau, and Sullivan
(2004) argued that the batsmen must use a learned internal model
of the dynamic properties of the world, together with current visual
information, to predict the ball’s trajectory. In support, they
showed that when the bounciness of the ball is suddenly changed,
novice catchers require several trials to adapt their pursuit move-
ments to track the new ball. However, a simple visual–motor
mapping exists between the bounce and the pursuit path that could
be learned over a few trials, without presuming an internal model
of the world’s physics. Similarly, simple relations between the
visible properties of an object and its hidden fragility, mass, or
characteristic motion would allow adaptive behavior without re-
sorting to an elaborated world model. Learning these relations
must be based on past perceptual–motor encounters that reveal
information about an object’s hidden properties, so they can be
incorporated into a control law or embodied in parameter settings
for interacting with that class of objects. This framing of the
problem leads back to the nested time scales of agent–environment
interaction.
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Strategic Behavior

Strategic behavior is influenced by richer contextual knowledge
about the aspect of the world with which the agent is interacting,
such as its history, event statistics, or conventional rules, or con-
text, which are only partially observable. Consider a baseball
batter’s expectation that the pitcher will throw a fast ball, given the
pitcher’s style, recent history of pitches, the score, the count, and
the runners on first and third. Gray (2002) has shown that the
timing of a batter’s swing depends heavily on recent pitch speeds
and the current pitch count, perhaps because visual information
was limited (the ball was a virtual display and the pitcher was not
visible). At this point the limits of the present framework have
been reached and other cognitive processes may be called for, such
as learning through language or by inductive inference from ob-
servations. Yet even for strategic behavior, much of the relevant
knowledge is acquired through agent–environment interactions,
and its influence is manifested through modulations of the multi-
scaled behavioral dynamics.

Representation Revisited

Let us return to the issue with which we began, the role of
internal representation in the organization of behavior. As com-
monly used in cognitive science, the term implies more than a
mere correlation between internal and external states. Specifically,
it refers to an internal state that designates an external state for a
user and plays a functional and causal role in behavior (Dennett,
1969; Dretske, 1988). In perception and action, the key properties
of internal representations are twofold. First, a perceptual repre-
sentation is an internal state whose functional role is to “stand in”
for features of the environment, the body, or their relations in
guiding behavior (Clark, 1997; Haugeland, 1991). A representa-
tion is not bound to the information or the behavioral context that
originally produced it, so it can serve to guide behavior in the
absence of occurrent information and be used to plan other actions
off-line. Second, an action representation includes a set of instruc-
tions that specify a motor sequence that leads to a desired outcome
(Keijzer, 1998). Thus, it represents both the intended goal state of
the agent–environment system and an action plan that will achieve
it.

At what point should a perceptual–motor relation be considered
to be such an internal representation? At one end of the spectrum
are full-blown internal models, detailed general-purpose represen-
tations of the world, the body, and their interactions, which specify
a behavioral pattern and can be used to plan a variety of actions
off-line. These clearly satisfy the criteria for internal representa-
tions. At the other end of the spectrum are control laws, simple
mappings between occurrent information about the immediate
environment and the control variables of the action system. Al-
though they constitute a weak form of perceptual–motor knowl-
edge based on learning, they do not meet the standards of a
representation.

First, control laws depend on the presence of occurrent infor-
mation and do not “stand in” for anything that is perceptually
unavailable. Thus, they do not serve to guide behavior in the
absence of information and cannot be used for off-line planning. In
the steering dynamics model presented above, registering the cur-

rent direction and time to contact of goals and obstacles (within
4 m) might be thought of as a continually updated viewer-centered
world model, but it satisfies none of the representational criteria
for one. Empirically, moreover, existing data suggest that perfor-
mance on interactive tasks degrades sharply after vision is re-
moved, and thus any such spatial knowledge does not appear to
guide behavior when vision is available.

Second, control laws do not constitute a specification of a
particular action pattern. Rather, they serve to modulate the
dynamics of the larger agent– environment system in which
they are embedded, and behavior arises from the entire ensem-
ble. Control laws thus complement the dynamics of the system,
rather than reifying a model of the world, the plant, and their
interactions internally. An elegant illustration of this principle
is offered by recent work on “passive dynamic” robots (Collins
et al., 2005; McGeer, 1990). Control systems for most bipedal
robots prescribe the angle and velocity at each joint over time,
based on a detailed inverse model of the plant. In contrast,
passive dynamic bipeds exploit the natural physics of pendu-
lums to generate a walking pattern and require minimal active
control. Because of its physical design, Tedrake’s biped (Col-
lins et al., 2005) possesses an inherent step-to-step stability,
which is continually optimized for current inertial and ground
surface conditions by reinforcement learning. The learning al-
gorithm explores the parameter space of ankle actuators with
small random changes, senses the velocity of lateral sway in the
subsequent step cycle, and converges on a stable limit-cycle
solution within a few minutes. Moreover, passive bipeds use an
order of magnitude less energy (per kg-m) than active biped
robots—about the same as walking humans— even though en-
ergy is not explicitly optimized. The gait pattern thus results
from a simple mapping between sensors and actuators that
complements the system’s natural dynamics, without replicat-
ing the entire system in an internal model.

It is for structures intermediate to these clear cases that
questions arise. For example, the internal control parameters
proposed by Keijzer (1998) to account for behavioral sequences
might appear to be candidates for internal representations be-
cause, at a coarse grain of analysis, they are correlated with
behaviors. But they differ in that they do not model the world
and the agent and do not specify behavioral patterns. Rather,
control parameters correspond to context-dependent tweaks that
eventuate in appropriate actions by virtue of the multiscaled
dynamical system of which they are a part. More sophisticated
mappings that incorporate learned relations between perceiv-
able and hidden properties also fall short of internal models, for
occurrent information about the perceivable properties is then
sufficient to guide appropriate action. However, strategic be-
havior, off-line planning, or conditions of partial observability
may force an appeal to internal representations or knowledge
structures. Nevertheless, one must still account for such repre-
sentations in terms of their grounding in perception and action.
For example, it is conceivable that a dynamical perceptual–
motor process might become detached from its original infor-
mational and behavioral context to form an emergent represen-
tation, which could then be deployed in mental practice,
imagery, off-line planning, or strategic reasoning (cf. Barsalou,
1999; Grush, 2004). Under the present approach, invoking such
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representations to explain behavior should be viewed as a last
resort.

It is generally understood that any perception–action policy can
be equivalently described by a mapping (i.e., a discrete lookup
table or continuous function) or by an internal model and a
planner, although there are trade-offs in terms of space and time
(L.P. Kaelbling, personal communication, August 8, 2005). The
question is which description is more parsimonious and appropri-
ate for theories of biological systems, given the conceptual chal-
lenges faced by internal representations. To the extent that natural
constraints and behavioral dynamics are incorporated into these
theories, they can serve to simplify the control of behavior and
minimize the role of representations.

Conclusion

In this article I have considered how the organization of adap-
tive behavior might derive from physical and informational con-
straints in natural environments. I have argued that organized
behavior need not be attributed to a centralized controller, internal
models, or representations. Instead, I have tried to show how
control could lie in the agent–environment system by developing
the notion of behavioral dynamics. Interactions between the agent
and environment under physical, informational, and task con-
straints give rise to the behavioral dynamics, an evolving vector
field that reciprocally captures the agent’s behavior. The agent
modulates the dynamics of the system in which it is embedded via
the lever at its disposal—a control law—to enact a stable and
adaptive task solution. The exhibited behavior is thus genuinely
emergent. It is in this sense, as Gibson (1979) foresaw, that
behavior can be regular without being regulated.
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