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We discuss the computation of the instantaneous 3D displacement vector fields
of deformable surfaces from sequences of range data. We give a novel version of
the basic motion constraint equation that can be evaluated directly on the sensor
grid. The various forms of the aperture problem encountered are investigated and the
derived constraint solutions are solved in a total least squares (TLS) framework. We
propose a regularization scheme to compute dense full flow fields from the sparse
TLS solutions. The performance of the algorithm is analyzed quantitatively for both
synthetic and real data. Finally we apply the method to compute the 3D motion field
of living plant leaves. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The instantaneous velocity field that describes the motion of a deformable surface is
denoted range flow. Range flow refers to a velocity field derived from sequences of range
data sets. Together with the 3D structure, the range flow field can be used to study the
dynamic changes of such surfaces. The same displacement vector field has also been called
scene flow when computed directly from stereo image sequences [1, 2]. Using multiple
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cameras this has been extended to additionally compute the shape and reflectance of the
observed surface [3].

Most previous work on range sequence analysis seeks to estimate the sensor position with
respect to a rigid environment [4–9]. The methods put forward here estimate the instanta-
neous velocity field of a moving deformable surface. To do so the velocity is described by
a differential equation which parameters are assumed to be constant within small surface
patches. This is in contrast to previously reported motion estimation on nonrigid surfaces
using finite element models where the surface movement is described by a deforming mesh
[10–12].

The study of range flow can be seen as an extension of 2D optical flow estimation
(an approximation of the local image motion) in image sequences [13, 14]. Such image
motion estimation can be feature-based, where points of interest are first segmented and
then tracked through the sequence. Alternatively, it is possible to determine where a region
in one image moves, based on the grayvalue information. Such area-based approaches can
again be subdivided into matching and differential methods. The former approach estimates
the displacement by minimizing an energy functional comprising the similarity of two
candidate regions. Examples are cross-correlation, sum of squared differences, and mean
absolute difference. Differential methods, on the other hand, compute that displacement
vector which best satisfies a grayvalue continuity equation. In principle any optical flow
method can be extended to work with range data. In this context the presented range flow
estimation framework can be considered a differential technique.

The primary contributions of this work are the development of a new range flow constraint
equation that can be evaluated directly on the sensor grid, the adaptation of total least squares
to the problem of range flow estimation, and the introduction of a constrained regularization
scheme to compute dense velocity fields from sparse TLS estimates.

Paper Organization

Section 2 discusses the fundamental constraint equation for range flow. The aperture prob-
lem encountered when this equation is used is examined in Section 2.1. We also introduce
an additional constraint derived from the usually available intensity texture in Section 2.2.
After the constraint equations have been introduced we show in Section 3 how the velocity
field may be estimated locally within a total least squares framework. Section 4 introduces
a variational regularization method to obtain a dense flow field from the sometimes sparse
TLS estimates. Finally we present a number of experiments on both synthetic and real data
in Section 5.

2. MOTION CONSTRAINT EQUATION

A time-varying surface may be viewed as a depth function Z (X, Y, t). If the object under
consideration is made up of local planar patches then this function can be expressed by its
first order Taylor series expansion as

Z (X, Y, t) = Z0(t) + Z X X (t) + ZY Y (t), (1)

where the Z X , ZY denote the partial derivatives with respect to X and Y , respectively. Here
X, Y are the local world coordinates around the point of interest. The change in depth with
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time then becomes

dZ

dt
= ∂ Z0

∂t
+ Z X

dX

dt
+ ZY

dY

dt
+ X

dZ X

dt
+ Y

dZY

dt
. (2)

Under the assumption that the infinitesimal motion of the patch is a pure translation, i.e.,
the slope does not change ( d Z X

dt = d ZY
dt = 0), this can be written as

W = Z XU + ZY U + Zt . (3)

The local displacements form the range flow field denoted by f = [U V W ]T =
d
dt [X Y Z ]T . Equation (3) is called the range flow constraint equation [12]. The same
equation has also been termed the elevation rate constraint equation [5]. It is the analog
of the brightness change constraint equation used in optical flow calculation [15]. As with
image motion computation we rely on the coherence of motion to solve the correspondence
problem [14]. This implies that the temporal sampling is dense enough to avoid aliasing.

Note that the above Taylor series approximation only holds on a continuous surface. At
discontinuities caused by sharp edges or occlusions the constraint equation is not valid. This
will cause the TLS estimate to be described in Section 3, to fail. However, for many practical
applications (e.g., Section 5.4), the observed scene consists primarily of continuous surfaces.

In order to evaluate the range flow motion constraint equation (3) the derivatives of the
depth function with respect to the other world coordinates have to be computed. This is
not entirely straightforward for unevenly sampled data. One approach computes the desired
derivatives from a local parameterized model of the surface [16, 17]. Alternatively the data
may be resampled on a regular grid using a membrane [5] or thin-plate splines [9]. However,
we would rather work directly on the original data, as this avoids any erroneous interpolation
and avoids a computationally expensive preprocessing step.

Toward this end, we now derive a new version of the range flow constraint equation.
Notice that the range sensors considered here do not yield a depth function in terms of
X and Y but rather produce one data set for each of X , Y , and Z on its sampling grid
(X = X (x, y) etc.). Here sensor coordinates are denoted by (x, y). Note that the measured
(X, Y, Z ) (x, y) values are not independent of each other, because the observed 3D point
has to lie on the ray of sight corresponding to the sampling position (x, y).

The three components of the range flow field are the total derivatives of the world coor-
dinates with respect to time (U = d X

dt , etc.). Taking these derivatives yields the following
equations:

U = ∂x X ẋ + ∂y X ẏ + ∂t X, (4)

V = ∂x Y ẋ + ∂yY ẏ + ∂t Y, (5)

W = ∂x Z ẋ + ∂y Z ẏ + ∂t Z . (6)

Total derivatives with respect to time are indicated by a dot and partial derivatives as
∂x X = ∂ X

∂x . As we are not interested in the rates of change in the sensor coordinate frame we
eliminate ẋ and ẏ to obtain the range flow motion constraint expressed in sensor coordinates
as

∂(Z , Y )

∂(x, y)
U + ∂(X, Z )

∂(x, y)
V + ∂(Y, X )

∂(x, y)
W + ∂(X, Y, Z )

∂(x, y, t)
= 0, (7)
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where

∂(Z , Y )

∂(x, y)
=
∣∣∣∣∂x Z ∂x Y
∂y Z ∂yY

∣∣∣∣ = ∂x Z∂yY − ∂y Z∂x Y (8)

is the Jacobian of Z , Y with respect to x, y. Notice that the Jacobians are readily computed
from the derivatives of X, Y, Z in the sensor frame using derivative kernels. Thus the new
constraint can be evaluated entirely on the sensor grid by means of convolutions. This
makes it possible to draw on well-established linear filter theory and can be implemented
very efficiently.

Equation (7) poses the general constraint equation independent of a particular sensor.
Many sensors have aligned world and sensor coordinate systems (∂y X = ∂x Y = 0). This
simplifies the range flow constraint equation considerably:

(∂yY ∂x Z )U + (∂x X∂y Z )V − (∂x X∂yY )W

+ (∂x X∂yY ∂t Z − ∂x X∂t Y ∂y Z + ∂t X∂yY ∂x Z ) = 0. (9)

Not surprisingly, dividing through (∂x X∂yY ) yields the initial constraint equation (3). But
notice that the partial derivative of Z with respect to time depends on the parameterization:

(∂t Z )XY = (∂t Z )xy + (∂X Z )XY (∂t X )xy + (∂X Z )XY (∂t Y )xy . (10)

Here we still make the assumption of aligned sensor and world coordinate systems. In some
cases one can further assume orthogonal projection onto the sensor, for instance when a
telecentric lens is used. This implies ∂x X = �x, ∂yY = �y, and ∂t X = ∂t Y = 0, where �x ,
�y are constants. In this case the constraint equation simply becomes

∂x Z

�x
U + ∂y Z

�y
V − W + ∂t Z = 0. (11)

2.1. The Aperture Problem

Unfortunately (3) or (7) poses only one constraint in three unknowns; this may be at-
tributed to our initial assumption of locally planar surface patches. On a plane only the
movement perpendicular to the plane may be observed. This is a three-dimensional version
of the aperture problem known from optical flow [18]. Just as the optical flow constraint
equation describes a line in 2D velocity space, so does the range flow constraint equation (3)
describe a plane in (U , V , W )-space with surface normal [Z X ZY −1]T . The best solution
that can be achieved will be the vector with minimum norm, between the origin and the
constraint plane. This solution defines the raw normal flow:

f r = −Zt

Z2
X + Z2

Y + 1


 Z X

ZY

−1


 . (12)

In the following the linear dependencies that may occur when the range flow constraint
equations are pooled over a certain region are examined. Here we only discuss range flow:
however, we note that for volumetric flow from time-varying 3D data such as CT scans the
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FIG. 1. Example range data from a cube that illustrates the three different types of neighborhoods encountered
in three-dimensional data.

same problems occur. The three possible types of neighborhoods are illustrated in Fig. 1.
On corner- or point-like structures clearly all three components of the movement can be
determined even locally; such an estimate will in the following be called full flow. Any
movement along edges or linear structures cannot be resolved by a local analysis, but
only the velocity in the perpendicular plane, which we call line flow. On planar surfaces
any velocity within the plane is not detectable. Only the component perpendicular to the
surface can be determined, which will be denoted plane flow. The implications of the three
region types for the constraint equations are discussed next, noting that they define planes
in velocity space.

As we are dealing with three-dimensional flow, at least three mutually distinct, i.e., non-
parallel, planes are needed to combine the constraint equations from a local region to yield
full 3D flow. If enough such linearly independent constraint equations are available in the
considered neighborhood the full velocity vector is readily computed by the intersection of
the constraint planes as illustrated in Fig. 2a.

Linear structures such as intersecting planes result in two distinct classes of constraint
planes in the examined aperture; see Fig. 2b. The point on the common line closest to the
origin gives the appropriate line flow. This line flow lies in the plane perpendicular to the
linear structure and only the motion along the direction of the structure cannot be resolved.

Obviously the considered neighborhood may be made up of a single plane. Then all
constraint equations are essentially the same and we only have one averaged constraint
plane; see Fig. 2c. The point on this plane closest to the origin defines the velocity normal
to the planar surface. This plane flow can be obtained by using averaged derivative values
in (12). Note that by considering an entire neighborhood such a plane flow estimate is less
sensitive to noise than the raw normal flow computed via (12).

Section 3 describes how a local estimate is obtained by means of a total least squares tech-
nique. In Section 3.1 it is shown how the described linear dependencies can be automatically
detected within this framework. Last, Section 3.2 shows how to compute the appropriate

FIG. 2. Illustration of the independent constraint equations present in a neighborhood for (a) full flow, (b) line
flow, and (c) plane flow.
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normal flows. An alternative least squares solution for range flow and the appropriate normal
flows has been described elsewhere [19, 20].

2.2. Intensity Constraint

Apart from the 3D structure information discussed so far, optical range sensors also return
an intensity value of the observed surface. Clearly the information thus available should be
exploited as well. In order to derive another constraint equation it is reasonable to assume
that the intensity of an observed point remains the same for moderate depth changes. Thus,
as for optical flow, we attribute all changes in intensity to motion in the horizontal plane.
This yields another constraint equation:

dI

dt
= ∂x I ẋ + ∂y I ẏ + ∂t I = 0. (13)

Combined with Eqs. (4) and (5) we obtain an additional constraint on U and V :

∂(I, Y )

∂(x, y)
U + ∂(X, I )

∂(x, y)
V + ∂(X, Y, I )

∂(x, y, t)
= 0. (14)

As before this can also be written in the alternative form.

0 = IXU + IY U + It . (15)

Because we assumed the intensity is not altered by changes in the distance we cannot
infer any information about the vertical motion W . In an actual range flow estimation
algorithm we seek a solution that fulfills both (14) and (7). Section 3.3 shows how this can
be achieved. Apart from making an estimate more robust by using all available data, the
additional intensity constraint often allows an estimate of full range flow in places where
the range constraint equation alone is not adequate [21].

3. LOCAL TLS SOLUTION

The TLS solution presented here is an extension of the structure tensor algorithm for
optical flow estimation [14, 22]. The method may also be viewed as a special case of a more
general technique for parameter estimation in image sequences [23].

Assuming constant flow in a region containing n pixels we have n equations (7). These
equations can be written in the form dT f̃ = 0, where

d =
[
∂(Z , Y )

∂(x, y)

∂(X, Z )

∂(x, y)

∂(Y, X )

∂(x, y)

∂(X, Y, Z )

∂(x, y, t)

]T

and f̃ = [U V W 1]T . (16)

Because Eq. (7) gives only one constraint for every pixel we need to make further assump-
tions in order to solve for the complete parameter field. For least-squares estimation we
pool the constraints over a local neighborhood and assume the parameters to be constant
within this area. Another possible assumption is made by variational approaches that impose
smoothness constraints; such a method has been described in [21, 24]. The assumption of
locally constant parameters leads to the following minimization problem:

p = arg min
∫ ∞

−∞
w(x − x′, t − t ′)(dT p)2 dx′ dt ′ subject to pT p = 1. (17)
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Here w(x − x′, t − t ′) is a weighting function that defines the spatiotemporal neighborhood
where the parameters are estimated. Because we require ‖p‖ = 1 the trivial solution is
avoided. This later requirement can be incorporated by means of a Lagrangian multiplier
to yield the unconstrained energy functional

E =
∫ ∞

−∞
w(x − x′, t − t ′)

[
(dT p)2 + λ

(
1 −

n∑
i=1

p2
i

)]
dx′ dt ′. (18)

It is known from basic calculus that this energy functional reaches a minimum when the
derivatives with respect to all variables vanish. These derivatives take the following form:

∂ E

∂pi
= 2

∫ ∞

−∞
w(x − x′, t − t ′)[di (dT p) − λpi ] dx′ dt ′ =̇ 0, ∀i = 1 . . . n. (19)

We are assuming a locally constant parameter field p; hence the pi can be taken out of the
integral: (∫

di d1

)
p1 + · · · +

(∫
di dn

)
pn = λpi ; ∀i = 1 . . . n. (20)

On the right hand side of Eq. (19) we assume the weight function to be normalized; i.e.,∫
w = 1. Then these n equations can be written in matrix form as

J p = λp with J =
∫ ∞

−∞
w(x − x′, t − t ′)(ddT ) dx′ dt ′. (21)

This is an eigenvalue equation of the extended structure tensor J. For each of the n eigen-
vectors we get an extremum of the energy functional E . In a discrete implementation, the
components of J can be readily computed using standard image processing operations ap-
plied to the data vector d , J = B ∗ (ddT ), where ∗ denotes convolution. B is an averaging
filter containing the weights w, typically Binomial or Box. J contains all the necessary
information about the local spatiotemporal structure of the data; it is an extension of the
structure tensor encountered in optical flow computation [14].

The energy (17) to be minimized can be written as follows:∫ ∞

−∞
w(dT p)2 = pT J p = λ. (22)

Because p is normalized this energy simply becomes the corresponding eigenvalue for
each solution. It follows that (17) is minimized by the eigenvector ê4 corresponding to the
smallest eigenvalue λ4 of J.

This minimization problem (17) is also known as the orthogonal l2 approximation problem
and the solution coincides with the TLS solution up to a scaling factor [25]. As J is real
and symmetric, the eigenvalues and -vectors can easily be computed using Jacobi rotations
[26]. The desired range flow is then given by

f f = 1

e44


 e14

e24

e34


. (23)
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In order to save execution time and increase overall flow accuracy we only compute range
flow where the trace of the tensor exceeds a threshold τ1. This eliminates regions with insuffi-
cient magnitude of the gradient. The regularization step described in Section 4 subsequently
closes these holes.

3.1. Confidence Measures

In the above we are really fitting a local constant flow model to the data. The smallest
eigenvalue λ4 directly measures the quality of this fit (22). In particular, at motion discon-
tinuities, the data cannot be described by a single flow and the fit fails. This is also the case
for pure noise without any coherent motion. To quantify this we introduce a confidence
measure:

ω =
{

0 if λ4 > τ2 or tr(D) < τ1(
τ2 − λ4
τ2 + λ4

)2
otherwise .

(24)

Here τ2 is used to determine whether an eigenvalue is considered nonvanishing. To choose
this threshold, note that ideally the smallest eigenvalue will become λ4 ≈ 〈σ 2〉, where σ 2

is the noise level in d and 〈·〉 denotes the local average computed using the filter B. On
this basis a threshold can be chosen, for example τ2 = 3 〈σ 2〉. Of course there still is the
need for an informed guess about the noise variance. In practice one will often choose τ2

empirically.
Even a high confidence value by no means ensures that all the parameters can be estimated

independent of each other. The reason is that more than one eigenvalue may be close to zero
(<τ2) and we can no longer uniquely pick an eigenvector as a solution. More generally, any
vector in the nullspace of J yields a possible solution. This is the aperture problem revisited;
see Section 2.1. Nevertheless, we can compute a sensible estimate, as shown in Section 3.2.
Thus, we want to compute a type metric that indicated how well the dimensionality of the
nullspace of J has been determined. This can be done by examining how much the first
relevant eigenvalue λp is above the threshold. We define

ωt =
(

λp − τ2

λp

)2

(25)

as a normalized measure for each encountered type (plane flow p = 1, line flow p = 2, and
full flow p = 3).

3.2. Normal Flows

As pointed out above, any vector in the nullspace of J is a possible solution. However, of
all these solutions only that with minimum norm is actually observable. Any other motion
components do not result in detectable changes in the measured data. Yet it is important to
keep in mind that the “real” solution can be any vector in the nullspace. It is precisely this
degeneracy that motivates the constrained interpolation algorithm presented in Section 4.
But first we discuss how to obtain the minimum norm solutions. Towards this end the
possible solutions are expressed as linear combinations of the relevant eigenvectors and the
result with minimal Euclidean norm is chosen. Appendix A gives the details.

As discussed in Section 2.1 we encounter two types of normal flows for range flow. On
linear structures the motion along the line cannot be resolved. This results in two vanishing
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FIG. 3. Example flow types for range flow: (a) synthetic depth map, (b) rendered. X–Y components of the
estimated flow fields, (c) full flow, (e) line flow, and (g) plane flow, and X–Z components of the estimated flow
field, (d) full flow, (f ) line flow, and (h) plane flow.

eigenvalues of the structure tensor. We name the corresponding minimum norm velocity
line flow which is computed from (A.10) as follows:

f l = 1

1 − e2
14 − e2

24


e14


 e11

e12

e13


+ e24


 e21

e22

e23




. (26)

When we encounter planar structures only the movement perpendicular to the plane can be
resolved. Hence all but one eigenvalue falls below τ2 and the plane flow becomes

f p = e14

1 − e2
14


 e11

e12

e13


 = e14

e2
11 + e2

12 + e2
13


 e11

e12

e13


. (27)

On pointlike structures, motion in all directions can be measured and the resulting full flow
is computed as usual from the eigenvector to the single vanishing eigenvalue λ4:

f f = 1

e44


 e41

e42

e43


. (28)

Figure 3 shows a synthetic example that nicely illustrates all three kinds of encountered
flow types.

3.3. Incorporating the Intensity

As illustrated in Section 2.2 the intensity yields another, constraint on the X- and Y-
components of the sought range flow. In order to incorporate this constraint we have to
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insert zero at the appropriate place. Then (14) translates into dT
i f̃ with

d i =
[
∂(I, Y )

∂(x, y)

∂(X, I )

∂(x, y)
0

∂(X, Y, I )

∂(x, y, t)

]T

and f̃ = [U V W 1]T . (29)

The combined energy to be minimized can then be written (see Eq. (17)) as,

p = arg min
∫ ∞

−∞
w(x − x′, t − t ′)

[
(dT p)2 + β

(
dT

i p
)2]

dx′ dt ′. (30)

The two data channels are weighted using a constant β. This is useful, for instance, when
they have different signal-to-noise ratios. We scale the intensity to have the same mean and
variance as the depth data before combining the two channels. Incorporating the additional
constraint ‖p‖ = 1 leads to a combined structure tensor that is simply the weighted sum of
the two tensors on the depth and intensity channels,

J ′ = J + β J i with J i =
∫ ∞

−∞
w(x − x′, t − t ′)

(
d i dT

i

)
dx′ dt ′, (31)

and J as given by (21). The above discussion remains true for the combined tensor J ′.
The use of the intensity has two advantages. First, more data points are used for the local

estimation, which increases the accuracy. Second, and more important, through the use of
intensity as well as depth information it is often easier to resolve the aperture problem.
For example, the presence of a dot-oriented texture on a planar surface may enable the
computation of full flow where otherwise only plane flow could be estimated.

To illustrate the beneficial effect of additional intensity information we use the synthetic
sequence shown in Fig. 4. The correct movement is [0.66, −0.46, 0.34]T . Using depth
maps alone local TLS estimation gives only sparse full flow, Fig. 4c. The flat surface only
allows the computation of plane flow perpendicular to it. On the lines any movement in the
direction of the lines can not be resolved. When the linear intensity pattern (Fig. 4b) is taken
into consideration the displacements along the lines can now be computed as well. Hence
the full flow density increases from 7% to 38%, as shown in Fig. 4d. Clearly this would not
be the case if intensity and depth lines coincided. On the planar surface the intensity allows
computation normal to the intensity lines, yet one direction remains ambiguous. Both the
relative error (47) and the directional error (48) are very low on this ideal test case (<1%
and <1◦).

FIG. 4. Rendered synthetic data: (a) depth only and (b) with intensity texture. X–Y range flow: (c) depth only
and (d) using the intensity as well.
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4. REGULARIZATION

Even the use of the additional intensity data does not guarantee a full flow estimate
everywhere. There are regions where still only one of the normal flows may be recovered,
sometimes the estimation fails, and occasionally there is not enough variation in the data
for a sensible flow calculation. We will now present a regularization scheme that makes it
possible to close these remaining holes while taking the information from the previous TLS
estimation into account.

We seek to estimate a dense and smooth flow field, v = [U V W ]T . In places where
flow estimates from the above TLS algorithm exist we denote them f , computed from one
of Eqs. (26), (27), or (28) as appropriate. From the structure of the TLS solution given by
(A.10) we can use the reduced eigenvectors as a, not necessarily orthogonal, basis for the
desired solution:

bi = 1∑3
k=1 e2

ki


 e1i

e2i

e3i


 i = 1, 2, 3. (32)

Using this notation we define a projection matrix which projects onto the subspace that was
determined by our TLS algorithm:

P = B̄p B̄T
p where λp > λp+1 ≈ · · · ≈ λ4 ≈ 0, (33)

B̄p = [b̂1 · · · b̂ p]. (34)

Each estimated flow vector f = f f,p,l constrains the solution within this subspace. We
therefore require the regularized solution to be close in a least-squares sense,

ω(Pv − f )2 → min, (35)

where ω, given by Eq. (24), captures the confidence of the TLS solution. At locations where
no solution has been computed, obviously no such data term exists. This is readily accounted
for by setting the confidence values ω to zero.

To ensure smoothly varying parameters we use a membrane smoothness term,

3∑
i=1

(∇vi )
2 → min. (36)

Obviously the use of this simple membrane model is only justified if we have already
segmented the data into differently moving objects. If no such segmentation were available
more elaborate schemes would have to be considered. The above smoothness term usually
considers only spatial neighborhoods (∇ = [∂x, ∂y]T ); however, this is easily extended to
enforce temporal smoothness as well (∇ = [∂x, ∂y, ∂t]T ).

Combining the data (35) and smoothness (36) terms in the considered area A yields the
following minimization problem:

∫
A

{
ω(Pv − f )2 + α

3∑
i=1

(∇vi )
2

}
︸ ︷︷ ︸

h(v)

dr → min . (37)
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The overall smoothness can be regulated by the positive nonzero constant α. The minimum
of (37) is achieved when the Euler–Lagrange equations are satisfied:

∂h

∂vi
− d

dx

∂h

∂(vi )x
− d

dy

∂h

∂(vi )y
= 0; i = 1, 2, 3. (38)

If an extension in the temporal domain is anticipated another term − d
dt

∂h
∂(vi )t

will have to be
added. Subscripts x, y, t denote partial differentiation. Using vector notation we write the
Euler–Lagrange equations as follows:

∂h

∂v
− d

dx

∂h

∂(v x )
− d

dy

∂h

∂(v y)
= 0. (39)

Computing the derivatives yields

2ωP(Pv − f ) − 2α

[
d

dx
(v x ) + d

dy
(v y)

]
= 0. (40)

Introducing the Laplacian �v = v xx + v yy we get

ωPv − ωP f − α�v = 0, (41)

where the idempotence of the projection matrix P P = P is used. The Laplacian can be
approximated as�v = v̄ − v , where v̄ denotes a local average [18]. Using this approximation
we arrive at

(ωP + α1l) v = αv̄ + ωP f . (42)

This makes possible an iterative solution to the minimization problem. We introduce
A= ωP + α1l and get an update vk+1 from the solution at step k:

vk+1 = αA−1v̄k + ωA−1 P f . (43)

Because of the convex energy functional convergence is guaranteed; thus we could use zero
for initialization. However, here we are using the TLS solution, as this slightly improves
the rate of convergence. Examining A, we find

A−1 = α−1

(
1l − ω

α + ω
P
)

. (44)

To verify that A−1 A= 1l only the idempotence of the projection matrix is needed. We can
thus examine the iteration process in more detail. Inserting (44) into (43) yields

vk+1 = v̄k − ω

α + ω
Pv̄k + ω

α + ω
P f , (45)

where we also used the idempotence of P . Using 1l = P + P⊥ we can separate the two
subspaces:

vk+1 = P⊥v̄k + 1

α + ω
P(αv̄k + ω f ). (46)
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FIG. 5. Example of regularization for the range flow field computed on the data given in Fig. 4. X–Y -flow
filed after (a) 10, (b) 100, (c) 1000, and (d) 10,000 iterations. X–Z -flow field after (e) 10, (f )100, (g) 1000, and
(h) 10,000 iterations.

In the orthogonal subspace, where no initial TLS solution is available, the local average
is used. In the subspace determined by the TLS solution the iterative update is given by a
weighted mean of the local average and the originally available solution. The weights are
determined by the regularization constant α and the confidence measure ω. Notice that the
choice of α only regulates the amount of smoothing in the TLS subspace and has no effect
in the orthogonal subspace.

The effect of this regularization for a range flow field is illustrated in Fig. 5 where the
algorithm is applied to the data given in Fig. 4. Here we used a regularization parameter,
α = 1. In the beginning the flow field is dominated by the normal flows. With increasing
iterations the full flow information spreads out. However, due to the large regions without
initial full flow estimation it takes a very long time to reach convergence. In this example a
5 × 5 Box filter is used to compute the average.

5. EXPERIMENTS

This section first examines the quantitative performance of the proposed algorithm on
synthetic and real test data. Then examples from a real scientific application are given.

5.1. Error Measure

In order to quantify the accuracy of the estimated range flow, the following error measures
are used. Let the correct range flow be denoted as f c and the estimated flow as f e. The first
error measure describes the relative error in the velocity magnitude:

Er = |(| f c| − | f e|)|
| f c|

· 100 [%]. (47)

Because Er measures only the difference between the estimated and the correct veloc-
ity magnitude, no deviation from the correct direction is captured. Therefore we use the
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directional error as a second error measure:

Ed = arccos

(
f c · f e

| f c|| f e|
)

[◦]. (48)

The value of Ed directly gives the angle in 3D between the correct velocity vector and the
estimated vector and thus describes how accurately the correct direction has been recovered.
Apart from the averaged error values we report their standard deviation to determine what
range of error values can be expected.

5.2. Synthetic Test Data

To generate synthetic range data we model a structured light sensor with a focal length of
f = 12 mm, a pixel size of 7.4 × 7.4 µm2, and 256 × 256 sensor elements. This resembles a
sensor used to study plant leaves; see Section 5.4. To eliminate all border effects, especially
for the regularized solution, we only use the inner 200 × 200 pixel to compute averaged
error values.

The first test sequence contains a synthetic plane at a viewing distance of 300 mm and
typically an angle between the surface normal and the Z -axis of ϑ = 5◦. The intensity
textures consists of a sinusoidal plaid pattern with a wavelength of 1 mm in both directions.

The second type of synthetic data uses a sphere with a radius of 300 mm with its center
initially placed 700 mm away from the camera. The intensity on the sphere is described as
a sinusoidal plaid in terms of the spherical angles of the surface point:

I =
{

o if θ < 0.5◦

o + a sin
(

2πθ
λθ

)+ a sin
( 2πφ

λφ

)
otherwise .

(49)

In the following we choose wavelengths of λθ = 1◦ and λφ = 30◦. Figure 6 shows the
computed range data using an offset o = 100 and an amplitude a = 50.

Here we are only looking at the full flow estimation performance using the simulated
structured light sensor; other results for normal flows can be found in [27]. In the following
the intensity data is always incorporated using β = 1 (Section 3.3). How does noise in the
four data channels influences the accuracy of the recovered velocity? The results for a
translation in the X -direction (only U is nonzero) on the plane tilted by ϑ = 5◦ are shown
in Fig. 7. The results for other movements are practically identical and not shown here. For
both the relative magnitude error and the directional error we observe the same qualitative
behavior. The range flow estimation fails for movements above 1 mm/frame. This is due to
aliasing and thus dependent on the data. In the considered case the intensity structure limits
the maximum velocity.

FIG. 6. Synthetic sphere: (a) texture-mapped range data, (b) intensity data, (c) depth (Z ) data, and (d) X data.



RANGE FLOW ESTIMATION 223

FIG. 7. Error depending on noise in the individual data channels: (a) relative magnitude and (b) direction
error for movements in X direction.

We find that the results do not depend very much on the noise in the Z data but are much
more influenced by the noise in the intensity and X , Y coordinates. In particular, we see that
a rise of σxy from 0.005 to 0.02 mm decreases the estimation accuracy by almost one order
of magnitude. This indicates that on more or less planar data, where most scenes can be
considered to be locally planar, it is not the depth accuracy but that in the other coordinates
which limits the velocity estimation. In the following we will examine the performance for
three typical noise situations:

Name σX = σY σZ σI

N1 0.005 0.05 0.5
N2 0.01 0.1 1.0
N3 0.02 0.2 2.0

These are sensible choices for typical range sensors with a viewing distance around 0.5 m
[28, 29]. In Fig. 8 the dependency of the relative error on four types of movements are given
for the above noise models. For a translation in the X -direction we find the same behavior
as above with similar error values even though there is noise on all data channels now.

FIG. 8. Relative magnitude error for different kinds of motion: (a) translation in Y - or Z -direction, (b) rotation
of the plane by φ and by ϑ .
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The accuracy in the estimation of the Z -movement does not decrease for higher velocities
until 2 mm/frame are reached. For even greater velocities no range flow is estimated as
the confidence value drops to zero. Unfortunately this is not the case for high X -velocities
which are computed wrongly.

Another interesting type of motion is a rotation of the plane. This can be achieved by
changing the spherical angles of the surface normal, resulting in a nonuniform velocity
field. The relative error for an increasing rotational velocity is given in Fig. 8b. For small
changes in the angles the resulting flow field is calculated very accurately. This remains
true for rotations around the Z-axis (�φ) even for a rotation up to 10◦/frame. However, for
a change in ϑ , which is the angle between the surface normal and the Z-axis, we see that
the accuracy quickly deteriorates for changes above 1◦/frame. This implies that a fast tilt of
the observed surface cannot be captured accurately using this method, that is, if the frame
rate cannot be increased accordingly.

We proceed by looking at the range flow accuracy on the data made up of a synthetic
sphere. The relative and directional error for a translation in the X - and Z -directions are
given in Fig. 9. We obtain the same qualitative results as for the plane test data (Fig. 8a) but
on this data the error is almost one order of magnitude higher. Yet for motions smaller than
1 mm/frame the error is still below 1% and 1◦, respectively.

In order to asses the algorithms performance for nonrigid motions we use two test cases.
In the first example the sphere is expanded by increasing the radius. For the second example
we expand the intensity pattern on the tilted plane. The resulting relative error in the TLS
range flow estimation for the expanding sphere is shown in Fig. 10a. We find very low
errors for an expansion of up to 1%/frame. However, already for 2%/frame the encountered
speed is so high that the algorithm does not compute any flow any more. For an oriented
plane with ϑ = 15◦ the accuracy of the computed flow is examined in Fig. 10b. We see that
the error increases for higher expansion rates. Yet even for very high expansion rates, up
to 10%/frame, we achieve a relative error below 1% and a directional error below 1◦ (not
shown here). However, note that for the highest noise level (N3) no full flow is computed
for growth rates exceeding 2%/frame.

The results of TLS estimation on the synthetic data are already very good indeed. There-
fore we only examine the regularization results for the example of the moving sphere to
see whether there are further improvements in the accuracy. The relative magnitude error is

FIG. 9. Error in the TLS range flow on the sphere depending on the velocity in the X - and Z -directions: (a)
relative error and (b) directional error.



RANGE FLOW ESTIMATION 225

FIG. 10. Relative error in the TLS range flow for nonrigid motion: (a) expanding sphere and (b) expansion
on a tilted plane.

given in Fig. 11a and the directional error in Fig. 11b. Comparing the results to those found
using only TLS (Fig. 9) we see that both error values drop by about one order of magnitude.
This can be attributed to the smoothing accompanied by the regularization. Here and in the
following we used α= 10 and stopped after 100 iterations.

In order to convert the presented results to another setup it is important to realize that
the limiting factor is the displacement in units of the sensor grid. To a first approximation
this displacement follows from perspective projection of the horizontal movement �X
to be �x = f

p
�X

Z , where p denotes the pixel size. To be on the safe side the displacement
should not exceed 1 pixel/frame [14]. For the given example a displacement of 1 pixel/frame
corresponds to �X = 0.19 mm at Z = 300 mm and �X = 0.25 mm at Z = 400 mm. As
shown above, vertical displacements can be considerably larger.

5.3. Real Test Data

The results from synthetic data can only be transferred to a certain degree to real data.
Here we examine a few real test sequences. In all cases the observed objects are moved
using linear positioners. Thus we can only generate pure translational movements without

FIG. 11. Error in the regularized range flow on the sphere depending on the velocity in the X - and Z -directions:
(a) relative error and (b) directional error.
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FIG. 12. Real test data using the Biris scanner. Intensity (upper row) and depth data (lower row): (a) a coke
can, (b) a toy crocodile, (c) some pebbles, and (d) a toy tiger.

any deformations. The computational accuracy is analyzed for both Biris laser [30] and
structured light range data.

For the Biris range sensor we used a number of objects to test the range flow algorithm.
The intensity and depth data of a few examples are shown in Fig. 12. On these data sets we
obtain the following errors, where the TLS results are shown on the left of the regularized
results:

Object Correct flow [mm] Er [%] Ed [◦] Dens. [%] Er [%] Ed [◦]

a [0.10 0.26 0.22]T 2.7 ± 5.5 6.6 ± 4.9 30.4 1.2 ± 0.7 5.3 ± 4.2
b [0.13 0.51 0.25]T 2.2 ± 2.2 4.1 ± 2.9 35.8 1.2 ± 0.8 2.1 ± 1.18
c [0.45 –0.25 0.38]T 5.4 ± 7.2 12.0 ± 9.7 28.8 3.8 ± 2.7 10.4 ± 7.2
d [0.16 0.19 –0.32]T 0.7 ± 0.9 2.5 ± 2.3 28.8 0.3 ± 0.4 1.1 ± 1.3

Clearly the regularization not only yields 100% dense full flow but also significantly im-
proves upon the results of the initial TLS algorithm. The computed 3D velocity accuracy
is quite good.

Next we examine the achievable range flow accuracy using a structured light sensor
assembled at the Institute for Botany at the University of Heidelberg [29]. Again some test
objects are placed on a set of linear positioning tables and moved by a known displacement
between consecutive scans. We examine a sheet of crumpled paper and a freshly cut leaf in
more detail. Example intensity and depth data from these two test scenes are given in Fig. 13.

Because it makes a difference whether the motion is in the horizontal or the vertical
direction we show the relative and directional errors depending on U , V , and W separately
in Fig. 14. We did not observe any difference between movements in X or Y or an influence
of the sign. Therefore we plot the results as function of the absolute value of the horizontal or
vertical motion. Those movements containing both horizontal and vertical motion are plotted
among the horizontal velocities, because we found this component to clearly dominate the
error.

For the relative error depending on U or V (Fig. 14a) we find the previously observed
relationship with increasing magnitude. Again the regularization does significantly improve
the accuracy for small velocities. Of two test objects used, we got better results for the
crumpled paper than for the leaf. In order to maintain a relative error below 1% the speed
should not exceed 0.5 mm/frame in the horizontal direction. Note that the full flow density
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FIG. 13. Real structured light data to assess the range flow performance: the first and fifth frame in an example
sequence are shown on top of each other. Crumpled paper f = [−0.5 0.0 1.5]T mm: (a) intensity and (b) depth.
Freshly cut leaf f = [1.0 0.0 −0.2]T mm: (c) intensity and (d) depth.

on the crumpled paper data is not very high and quickly decreases with increasing velocity.
The directional error depending on the horizontal movement (Fig. 14b) shows a similar rise
towards higher velocities. To ensure an error below 5◦ in the estimated velocity direction
the speed should not exceed 0.5 mm/frame.

FIG. 14. Results on the real data for different movements: (a) Relative error and (b) directional error depending
on the motion in the X- or Y -direction. (c) Relative error and (d) directional error depending in the motion in the
Z -direction.
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FIG. 15. Example data and movements of castor bean leaves. (a, b, c, d) are taken with the structured light
sensor at 3-min sampling and (e, f) with the Biris sensor with a 5-min sampling interval. (a) Fixed leaf viewed from
above and (b) the same leaf from undermeath. (c) An unconstrained leaf with rapidly folding lobes and (d) the
same leaf viewed from undermeath. (e) Unconstrained leaf during the night and (f) one at daytime.

For the error in dependence of the vertical velocity we observe only a minor increase
for velocities up to 3 mm/frame. This is in qualitative agreement with the results found on
synthetic data. However, the errors on real data are significantly higher. Again we see that
the regularization improves the results and that we get better results on the crumpled paper
than on the leaf. The relative error remains on average well below 1% for the complete
velocity range. Except for one outlier we also find the directional error on the regularized
flow to be less than 5◦ for all considered movements.

5.4. Leaf Motion

Finally we show some examples of a scientific application of the proposed range flow
estimation scheme. Range flow fields from living castor bean leaves show rather different
types of movement under different conditions (Fig. 15). Leaves that are confined in a
plane by pulling at the lobe tips are relatively flat but not entirely so (Figs. 15a, 15b). The
movement on such a fixed leaf is predominantly in the horizontal plane, but there is some
vertical motion as well. In the given example there are locations where the leaf is moving
upward and others where it moves downward.

An unconstrained leaf just after nightfall already shows some bending of the lobes
(Figs. 15c, 15d). This bending expresses itself in a large downward velocity. Another exam-
ple of a free leaf taken during the night shows an overall upward movement paired with a
fair bit of lateral motion (Fig. 15e). At day time, on the other hand, much smaller velocities
are encountered (Fig. 15f ).

6. CONCLUSION

An algorithm to compute dense 3D range flow fields from sequences of range data sets has
been presented. Towards this end we introduced a constraint equation that can be evaluated
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directly on the sensor grid. We showed how a local velocity estimate can be obtained in
a total least squares framework. Our technique is able to distinguish areas where line and
plane normal as well as full range flow can be computed. It has been shown how the sparse
information from the TLS technique can be regularised to yield a dense full flow field. The
performance of the proposed algorithm is quantitatively assessed on synthetic and real data
and the method has been found to give excellent results. Finally it could be shown that the
motion of living castor bean leaves can be nicely captured.

APPENDIX A

Minimum Norm Solutions

We present a way to estimate a parameter vector even when there are linear dependencies
in the data. As stated above any vector in the nullspace of J is a possible solution. The only
sensible choice is that resulting in an estimate with minimal norm—here we always use
the Euclidean norm. Following [25] this estimate can be derived as follows. Assume we
have λ1 > · · · > λp > λp+1 ≈ · · · ≈ λn ≈ 0; then any linear combination of the eigenvectors
êi ; i > p is a solution to (17):

p =
n∑

i=p+1

gi êi = E pg where E p = [ê p+1, . . . , ên] =




e(p+1)1 . . . en1
...

. . .
...

e(p+1)n . . . enn


. (A.1)

The norm of p is then given by

‖p‖ = gT ET
p E pg = gT g =

∑
i

g2
i . (A.2)

The additional constraint pn = 1 can be expressed as

pn =
(

n∑
i=p+1

gi êi

)
n

=
n∑

i=p+1

gi ein = vT
n E pg = 1, (A.3)

where vn = [0, . . . , 0, 1]T . Equations (A.2) and (A.3) can be combined using a Lagrange
multiplier to give an energy functional to be minimized:

E(g) = gT g + λ
(
vT

n E pg
)→ min . (A.4)

The minimum is found by setting the partial derivatives of E with respect to the gi to zero.
Doing so yields

2gi + λein = 0 → gi = −λ

2
ein → g = −λ

2
ET

p vn. (A.5)

Substitution into (A.3) gives

λ = −2

vT
n E p ET

p vn
. (A.6)
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The minimum norm solution then equates to

p = E pg = E p ET
p vn

vT
n E p ET

p vn
or pk =

∑n
i=p+1 eikein∑n

i=p+1 e2
in

; k = 1 . . . n. (A.7)

It is sometimes advantageous to express this solution in terms of the eigenvectors corre-
sponding to the nonvanishing eigenvalues. To do so we note that E p ET

p = 1l − Ē p ĒT
p , with

Ē p = [e1, . . . , ep]. Then (A.7) becomes

p =
(
1l − Ē p ĒT

p

)
vn

vT
n E p ET

p vn
. (A.8)

In components this equals:

pk = −∑p
i=1 eikein

1 − ∑p
i=1 e2

in

; k = 1 . . . n − 1 and pn = 1 − ∑p
i=1 e2

in

1 − ∑p
i=1 e2

in

= 1. (A.9)

The actual parameter vector m = [p1 . . . pn−1]T can also be expressed in a vector equation:

m =
∑n

i=p+1 ein
[
ei1, . . . , ei(n−1)

]T∑n
i=p+1 e2

in

= −∑p
i=1 ein

[
ei1, . . . , ei(n−1)

]T

1 − ∑p
i=1 e2

in

. (A.10)

Thus the parameter solution can be expressed as a linear combination of the “reduced”
eigenvectors b̂k . By reduced we mean those vectors obtained from the first n − 1 elements
of the eigenvectors: b̂k = 1∑n−1

i=1
e2

ki

[ek1 . . . ek(n−1)]T . In case only the smallest eigenvalue

vanishes; i.e., all parameters can be estimated. (A.10) becomes (p = n − 1)

m = enn
[
en1, . . . , en(n−1)

]T

e2
nn

= 1

enn




en1
...

en(n−1)


. (A.11)

This is consistent with the previously given solution (23).
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