
Incremental Controller Networks: a comparative studybetween two self-organising non-linear controllersEric Ronco and Peter J. GawthropCentre for System and ControlDepartment of Mechanical EngineeringUniversity of Glasgowericr@mech.gla.ac.uk & peterg@mech.gla.ac.ukTechnical Report: CSC-97011November 13, 1997AbstractTwo self-organising controller networks are presented in this study. The \ClusteredController Network" (CCN) uses a spatial clustering approach to select the controllersat each instant. In the other gated controller network, the \Models-Controller Network"(MCN), it is the performance of the model attached to each controller which is used toachieve the controller selection. An algorithm to automaticly conctrust the architectureof both networks is described. It makes the two schemes self-organising.Di�erent examples of control of non-linear systems are considered in order to illustratethe behaviour of the ICCN and the IMCN. It makes clear that both these schemes areperforming much better than a single adaptive controller. The two main advantages ofthe ICCN over the IMCN concern the possibilities to use any controller as a building blockof its network architecture and to apply the ICCN for modelling purpose. However theICCN appears to have serious problems to cope with non-linear systems having more thana single variable implying a non-linear behaviour. The IMCN does not su�er from thistrouble. This high sensitivity to the clustering space order is the main drawback limitingthe use of the ICCN and therefore makes the IMCN a much more suitable approach tocontrol a wide range of non-linear systems.1 IntroductionFor the purposes of control, it is essential that the chosen class of models is transparent in thesense that the model structure and parameters may be interpreted in the context of controlsystem design. For example, neural networks are widely used for system modelling purposesbecause of their ability to represent non-linear functions. However, most of the neural networksdevelop unclear representations of the system; therefore system analysis can not be carried out1



easily and thus the neural model is less useful for control purposes. This black box modellingis the main feature that restricts the use of neural networks for system modelling and control.However, there are a couple of neural networks that appears to be very suitable for modellingoriented control purposes. This is due to their use of multiple linear models to approximatethe behaviour of a system. From each of the linear models it is straight forward to design acontroller. Therefore the non-linear overall model developed by those networks can be easilytransformed into a non-linear controller. This is perhaps the only general and systematicapproach to designing a non-linear controller out of a non-linear model.One of these neural networks is the \Local Model Network" (LMN) introduced in (Poggioand Girosi, 1990) and further extended for modelling and control purposes by (Johansen andFoss, 1993; Johansen and Foss, 1992). The control version of the LMN is the \Local ControllerNetwork" (LCN). The idea underlying the other network was introduced in (Middleton etal., 1988) and further extended in (Morse, 1990; Morse et al., 1992; Weller and Goodwin,1994) and coined as the \hysteresis switching algorithm". This algorithm aims at achievingstability whereas, the \Multiple Switched Model" (MSM) extensively studied by (Narendra etal., 1995; Narendra and Balakrishan, 1997), but closely related to the former algorithm, is usedfor improving the control performance whilst dealing with systems having their parameterschanging quickly through time (e.g. non-linear systems).The basic idea of the LCN and MSM is to develop and use various controllers at di�erentoperating regions of the system. These algorithms di�er mainly by the method used for theselection of the controllers at each instant. In the LMN, the controllers are selected accordingto a spatial clustering of the operating space whereas in the LMN the selection of the controllersis clustering free.These two LCN and MSM have important advantages in common. Their properties canbe easily extracted since linear theory can be applied to analyse each of the linear controllerscomposing the network. \Learning" is extremely quick due to the use of regression methods(e.g. least squares) for the estimation of the model-controller parameters. This makes theseapproaches very suitable for online control purposes. Another advantage of these algorithms isthat they do not su�er from the \stability-plasticity dilemma" which is a basic design problemfor learning machine as emphasised by (Carpenter and Grossberg, 1988): while the model is ad-apting to an operating region of the system it is forgetting previous adaptations regarding otherregions. The LCN and MSM are not exposed to this dilemma because each model-controller isspecially adapted for a di�erent operating region of the system. Hence, and as highlighted by(Narendra et al., 1995), these two schemes can be adapted for di�erent discontinuities of thesystem.However, to make the LCN and MSM self-organising requires a general and systematicmethod to automatically construct their network architecture. This is the purpose of thisstudy to develop such an automatic network construction algorithm.The outline of this study is as follows. The next section compares, in the frame of non-linearcontrol, a linear adaptive controller and a multiple linear controller. The latter controller em-beds the basic mechanisms of the LCN and MSM. The automatic network construction methoddeveloped in this study is then described. This method implies signi�cant modi�cations of theLCN algorithm. The modi�ed algorithm is called the \Clustered Controller Network" (CCN).The automatic network construction algorithm is referred to as the \Incremental Network Con-struction" (ICN) and the algorithm embedding the INC is called the \Incremental Clustered2



Controller Network" (ICCN). The following section describes the incremental network con-struction method applied to the \Model-Controller Network" (MCN) (a modi�ed version ofthe MSM). The results obtained by the ICCN and the IMCN whilst controlling various non-linear systems are then compared. The results are recalled during the conclusion to discuss thee�ciency of these two approaches.2 Adaptive linear control versus multiple linear controlThe purpose of this section is to brie
y introduce the basis of the multiple-linear control ap-proach. The control of a non-linear system is considered. This system is described by thefollowing equation sy = 2:5u� 2sin(y) (1)where s � ddt is a di�erential operator, sin(y) is the system's non-linearity and 0 � y � pi.This function is non monotonic since a change of sign occurs around the operating conditiony = 12�. This makes this system a di�cult problem to control using the \Model ReferenceAdaptive Controller" (MRAC) used in this study. This MRAC is an indirect design method,therefore the controller design is based on a local model of the non-linear system. Each of the�rst order linear model used for the local modelling of the system (1) is of the following formsŷ = bu� ay + c (2)where c is a constant that makes the above equation non-homogeneous. This is importantin the case of a model network since the local models linearise the system at any position (atequilibrium or not).From each of the local models one can easily work out the controllers equation. To do so amodel of the closed loop system has to be speci�ed. It was arbitrarily decided that the systemwill have to settle down in 3sec with an error inferior to 0.01% of the desired set point r. Thisleads to the following reference closed loop model:s�y = 1:5351(r� y) (3)where 1:5351 is the reference model parameter obtained with tol = 1%r and the settlingtime ts = 3s.Now, from the equalisation of the system model (2) and the reference model (3) we determinethe linear equation describing the various local controllers composing the CCN (see for furtherdetails about this control design method chapter 2 in (Ronco, 1997)):u = 1b (1:5351r � y(1:5351� a) + c) (4)You see from this equation that the control design is only a matter of determining the valueof the model parameters a, b and c. The singular value decomposition method is used in thisstudy for the estimation of these parameters (see chapter 2 in (Ronco, 1997)).We can generalise this control design method for any SISO system of order N :3



u = 1bN  c� N�1Xi=1 bisi�1u+ NXi=1 �ri sN�ir � sN�iy(�ri � ai)! (5)The control of a non-linear system is often achieved through the use of a linear controllerdesigned from a linearisation of the system. The resulting controller is only valid for a localregion of the system. This is shown is �gure 1. The non-linearity of system (1) and its linear-isation used for the controller design are depicted in the bottom of �gure 1. The top subplotdepicts the control performance of this controller concerning two consecutive control sequences.During the �rst control sequence we see that the control performance is correct i.e. a smallsteady state error is achieved after a quite accurate matching of the desired transient systemoutput. This was expected since the system's non-linearity is quiet accurately approximatedby its linearisation in the range y[0 0:63] (where 0:63 is the control goal). However, it is notsensible to use the same controller to drive the system in the range y[0:63 �] (see the secondcontrol sequence in �gure 1). In this range the linearisation of the system diverges signi�cantlyfrom its non-linearity.
0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

3.5

y(
t)

time

 First sequence  Second sequence

Desired output
System output 

0 1 2 3
0

0.2

0.4

0.6

0.8

1

y

si
n(

y)

 System non−linearity

Figure 1: Performance of a linear controllerThe top subplot depicts the control performance of the controller (designed from the linearisation of system(1) achieved around y = 0) concerning two consecutive control sequences. During the �rst and second controlsequences a desired transient (see plain line curves) has to be achieved whilst respectively driving the system(see dotted line curves) toward the desired position y = �5 = 0:63 and y = �. The bottom subplot shows thesystem's non-linearity in the range 0 � y � pi and its linearisation used for the controller design.Hence, a linear controller has a certain region of validity beyond which its performancebecomes poor. One standard way to overcome this problem is to continually adapt the iden-ti�cation (i.e. the linearisation) of the system and thus the controller; this is conventionaladaptive control. Such a method can only be e�ective if the dynamics of the system arechanging smoothly and quite slowly through time. Therefore, if the function is discontinuousadaptive control can not be applied. In addition, the slowness of such an adaptation may resultin a large transient error (Narendra et al., 1995). This is illustrated in �gure 2. The adaptive4



controller has been preadapted from a linearisation of the system around y = 0 (see left bottomplot of this �gure). Hence the controller performs well in the operating region where the lin-earisation is valid. In the second control sequence the system has to move from y = 0 to y = �.We can see that from the top plot of �gure 2 that the adaptive controller is eventually going toreach a small steady state error. However, the transient is much slower than the desired one.A more serious problem occurs during the third control sequence. While during the secondcontrol sequence the controller became adapted for the control of the system around y = �it forgot its former adaptation corresponding to the linearisation of the system around y = 0.This resulted in a control performance worse than during the second sequence. This e�ect is abasic machine learning problem referred as the \stability-plasticity dilemma" (Carpenter andGrossberg, 1988).
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Figure 2: Performance of a linear adaptive controllerThe top subplot depicts the control performance of an adaptive controller (preadapted from the system (1)linearisation achieved around y = 0) concerning three consecutive control sequences. During the �rst, secondand third control sequences a same desired transient (see plain line graphs) has to be achieved whilst respectivelydriving the system (see dotted line graphs) toward the desired position y = �5 = 0:63, y = � and y = �5 = 0:63.The three bottom subplots depict the system's non-linearity in the range 0 � y � � and its linearisationsachieved by the adaptive controller at the last stage of each control sequence (see plain straight line; the dottedlines correspond to the system linearisation at the �rst stage of each control sequence).A simple way to avoid the \stability-plasticity dilemma" is to use a number of controllerseach valid for a di�erent operating region of the system. To show the e�ectiveness of this scheme,the results obtained whilst using only two di�erent controllers active each for a di�erent halfof the whole operating range of the system have been depicted (see �gure 3). The controllersobtained at the last stage of the �rst and second adaptive control sequences previously describedhave been used (see bottom of the �gure 3). The control performance although not perfect (thesecond controller is not very well adapted to its operating region) overcomes the stability-plasticity dilemma and the transient is as quick as desired.
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Figure 3: Performance of two linear controllers for the control of system (1).The top subplot depicts the control performance of this scheme concerning three consecutive control sequences.During the �rst, second and third control sequences a desired transient (see plain line graphs) has to be achievedwhilst respectively driving the system (see dotted line graphs) toward the desired position y = �5 = 0:63, y = �and y = �5 = 0:63. Each controller is active for a di�erent half of the operating range of the system. The bottomsubplot shows the system's non-linearity in the range 0 � y � � and the two linearisations used to design thecontrollers (see plain straight lines).Hence both problems of an adaptive controller can be avoided using a multiple linear con-trollers scheme to control non-linear systems. However there are few problems to sort out beforeapplying systematicly this scheme. Solutions to these problems are exposed in the next section.3 Clustered Controller NetworkThe development of an automatic network construction algorithm is di�cult to achieve if onemaintains the architecture of the Local Controller Network (LCN). Therefore, this algorithmhas been simpli�ed whilst developing the Clustered Controller Network (CCN). This sectionaims at describing this algorithm. Note that the modelling version of the CCN is closely relatedto it since one model is linked to each controller in the CCN. We could say that a ClusteredModels Network (CMN) lies inside a CCN. Hence, although we are mainly going to deal withthe CCN bear in mind that the basic features of this algorithm applies also to a CMN.Similarly to the LMN, the selection of the controllers in the CCN is achieved through aclustering of the operating space. As discussed in (Ronco et al., 1996a) and extensively in(Ronco, 1997) (chapter 1), the use of radial basis functions (rbfs) for the clustering is moste�ective for single dimensional space. A compromise between approximation and clusteringquality has to be found for clustering spaces of dimensions superior to one. This problem isnon trivial and its complexity increases quickly with the dimension of the space. This is whythe clustering should always be performed on a single dimension space. The ideal situationwould be to cluster on quantities which remain one dimensional for high-order systems; forexample the control error. Such a quantity that could be relevant for most of the SISO systems6



has not yet been found. Hence, the choice of this quantity is an important issue in applyingthe CCNs.In most of the cases studied so far the clustering has been achieved on the space shapedby yt�1 (the system output at time t-1). The clustering of this single quantity is only e�ectivefor cases where the system output is the main variable inducing non-linearity in the system.For other cases, where other variables can imply non-linear behaviour (e.g. the velocity of thesystem), to perform a multi-dimensional clustering should be more relevant even if we bear inmind the di�culty of performing a multi-dimensional clustering (see above discussion).However, there are other features that further justify the clustering on a single quantityrather than on a multiple one. Those advantages are related to the fact that in the singledimension case it is straightforward to determine the neighbourhood of the operating condition�. The neighbourhood always implies the two controllers attached to the two rbf surroundingthe operating condition (see the graph entitled \single dimensional clustering in �gure 4). Thisneighbourhood has a predominant e�ect on the quality of interpolation between controllers thatis necessary to smooth the behaviour of the controller network. This interpolation is straightforward in the single dimension clustering case. In the multi-dimension case the neighbourhoodis much more unclear. In the two dimensional case plotted in �gure 4 at least six rbfs can beconsidered as being in the neighbourhood of the operating condition �. Only a few of them aregoing to be relevant for this operating condition. Interpolating between all of these neighbourcontrollers can lead to catastrophic results if some of them are not �tted for the operating con-dition. In addition, this unclear neighbourhood makes the behaviour of the controller networkdi�cult to interpret. In the single dimension case the analysis of the network of controllers canbe reduced locally to a single controller without losing any of the signi�cance of the analysis.This can not be done in the multi dimensional case. There are too many interactions betweencontrollers. This interaction also makes the parameters identi�cation of the local controllersdi�cult whereas this is straight forward in the single dimension case. A regression method(e.g. least squares) can be applied to speed up the adaptation and to ensure a convergencetowards a solution (in the least error squares sense). It is often required to apply a gradientmethod to identify the parameters of the controllers composing the network that involves amulti dimensional operating space. This makes the adaptation slow and does not ensure toreach a satisfactory solution. This involvement of the majority of the controllers, to determinethe output of the network, tends also to make the computation intensive. In the single dimen-sion case only the two neighbours are involved in the network output at each instant. Thismakes the computation very quick or at least does not relate it to the number of controllerscomposing the network. A last advantage, as we are going to see in the next section, is thatthe clustering of a single quantity facilitates considerably the automatic network construction.It is clear from these advantages that, whatever the characteristics of the SISO system is, it isrecommended to cluster on a single quantity rather than on a multiple one.In the CCN each rbf is characterised by a centre and a \single dimension width" (see�gure 5). The selection of each rbf is performed using a \winner takes all" like method. Eachtime we select the two rbfs in the neighbourhood of the operating condition �. This is achievedby computing D for each rbf. Di = jcentrei � �j � widthi (6)The rbfi having the smallestD is selected. The other rbf in the neighbourhood of � is simply7
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To determine the architecture of a CCN without any a priori knowledge about the systemis indeed a non-trivial problem. Our �rst attempt to develop a network construction was verymuch inspired from some biological insights. This method is exposed next, followed by a sectiondedicated to an extended version of this method that should be applicable for most cases.4.1 Progressive Control DesignIt is clear that the human system never learn how to perform a task at once but tends toprogressively learn the complexity of a task (Ronco, 1994; Szilas and Ronco, 1995). (Ronco,1994; Szilas and Ronco, 1995) referred to this learning strategy as \the progressive complexitylearning". This learning strategy has been applied in (Ronco et al., 1996b; Ronco et al., 1996c)to determine the controller network architecture required to balance the inverted pendulum (see�gure 10) around the angle � = 0. The inverted pendulum can be described by the followingequation: �� = 12mgl: sin (� (t�1)) + �13ml2 (9)It is a simple problem if the pendulum is initialised near � = 0 but it is non-trivial if thependulum is initialised upside down i.e. �0 = 180. The latter case was studied.
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gravity gFigure 10: The inverted pendulumTo determine the network architecture a \progressive control design" was performed. Theunderlying idea of this algorithm is to incrementally build the CCN whilst the initial transientcontrol error e (e = y0�r where y0 is the initial system output and r is the set point, the controlgoal) is progressively increased. In other words, instead of trying to control the penduluminitialised upside down at once, a progressive increase of the complexity of the control problemis achieved. Di�erent successive control sequences, that di�ered only in the initial position ofthe pendulum, were performed. The �rst control sequence was the simplest since the pendulumwas initialised very close to the control goal � = 0. The distance (i.e. the initial error e) betweenthe set point r and its initial position y0 was increased during the following stages. The laststage of the progressive control design was the most di�cult one since the distance e betweenthe set point r and the initial position y0 was the maximum (see �gure 11 for some of thosestages).This learning strategy does not solve the problem of the network construction but it con-stitutes a simple and very e�cient method which ensure to drive the system in most of its11
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Figure 11: Stages of the progressive control design applied to the inverted pendulumoperating conditions. On this basis it becomes straight forward to construct the CCN. Duringthe control of the system one looks at the actual control error. If the control error of the CCNexceeds a certain threshold it means that the control is unsatisfactory. The control is e�cientenough in other cases. Hence, each time the control becomes unsatisfactory a controller isadded to the network. Otherwise, when the control is e�cient enough, the activated controller(only one controller is activated each time) is updated as well as its connected basis functionso that its region of activity covers the actual operating condition and the others for which itwas previously valid (see next section for more details about the way the controllers are addedto the network and the updating of the controllers design and their operating region).This fairly simple method makes the network construction straightforward. However thismethod can not be widely applied since not all the systems can be initialised at any position.Thus, in this study this approach has been generalised to make it applicable to most of theSISO systems. This method is exposed in the next section.4.2 Incremental Network ConstructionAs just shown, the problem of the network construction can be easily solved if one can drivethe system into most of its operating conditions. This is indeed di�cult to perform in the caseof a multi-dimensional clustering. The number of possibilities increases very quickly with thesystem order. One way to reduce this problem would be to consider only operating conditionswhere the system is in equilibrium. This would be too restrictive since many systems have veryfew equilibrium points (e.g. unstable systems). Hence, this constitutes another argument forconstraining the clustering to a single quantity.In most cases it is trivial to cover all the operating conditions involved by a single quantity.The network construction can be achieved on-line whilst controlling the system. At each instant,two actions are possible depending on the control performance achieved by the CCN. Thecontrol accuracy is re
ected by the control error �e = �y� y (where �y is the desired output givenby a reference closed loop model) achieved by the CCN. If this error can not be determined themodelling error ê = y� ŷ can be used as an indirect measure of the control e�ciency. This canbe done since each controller is designed from a model. Hence to be general let us consider acontrol e�ciency criteria � rather than the control error �e or the modelling error ê. There are12



two possible actions to modify the architecture of the CCN:� If � � threshold:To facilitate the updating of the control design only one controller must be selected ateach instant among the two controllers selected by the CCN. If the operating conditionbelongs to the region of activity of one controller this latter is automaticly selected. In theother case, the most valid controller for the current operating condition must be selected.To do so we can not use the control error because it is not possible to test the controlaccuracy performed by each controller (only one control signal can be inputed to the plantat each instant). The distance between the operating condition and the rbf attached toeach controller is not a relevant criteria to determine which of the two controllers is themost e�ective. Therefore we use the modelling error ê as an indirect measure of thecontrol e�ciency. One selects the controller having its connected model performing thebest modelling of the actual input-output sample of the system behaviour.The selected controller is then updated in order to integrate the new sample and to beadapted to small changes in the environment. In addition, the rbf connected to theselected controller is updated in order it covers the current operating condition as well asprevious ones for which the controller was previously valid.� If � > threshold :A sampling of the system is achieved around the actual operating condition (this isusually preferable than continuing the control that can become totally inaccurate if thechange of parameters value related to the operating condition is abrupt e.g. case of adiscontinuous function). From those samples a local model of the system is determined.A linear controller is then designed from this model. Any conventional control designmethods can be used (e.g. pole placement, Model Reference Adaptive Controller. Thelatter is used in this study. Details about this control design approach can be found inthe (Ronco, 1997) (chapter 1). A rbf is centred on the current operating condition andits width is set to almost zero. The new controller-rbf pair is �nally added to the CCN.These features are the basis of the \Incremental Network Construction" (INC). This al-gorithm has been �rst introduced in (Ronco and Gawthrop, submittedb). A pruning featurehas been recently added to the INC to remove the controllers that are not (or are unlikelyto be) robust enough (see (Ronco and Gawthrop, submitteda; Ronco and Gawthrop, 1997)).It happens that some controllers perform very badly at some operating conditions. This canbe interpreted as a lack of robustness that could lead to unstable behaviour of the overallcontroller. There are two cases involving a pruning. We prune the controllers that have notlearned enough i.e. the number of samples encountered is less than the number of parametersof the model attached to the controller. We also prune the controllers which on average havea modelling error greater than twice the threshold used for the network construction. This isindeed arbitrary but su�cient in most cases to remove the undesirable controllers. A bettercriteria could be found in the singularity vector expressed by the Singular Value Decomposition(SVD) method used for the models approximation (see (Ronco, 1997) (chapter 2) for details).However this possibility has not been su�ciently investigate to be exposed here.After a while, when most of the operating conditions have been reviewed it is suggested toswitch from this learning stage to a generalisation where the architecture of the network is no13



longer updated. The controllers should remain adaptable in case some small changes occur inthe environment. The advantage of this generalisation stage is that it is much quicker than theincremental one.Although this algorithm could look dedicated for the construction of the CCN architecture,it is straight forward to apply it for the construction of the Clustered Models Network. It iseven simpler since no control design will be required. The only di�culty without a controlleris to have a method to e�ciently sample the plant, but this is a known problem in systemidenti�cation.Note that in the context of gating through spatial clustering, this network constructionalgorithm is the only one developed so far which takes into account the capability of themodels/controllers to determine their operating region. This is indeed an important featuresince this ensures that each model/controller is valid for its operating region. This is howevera common feature with another neural network which also applies a gating approach to selectdi�erent computing modules at each instant: the \Hierarchical Mixture of Experts" algorithmdeveloped by (Jacobs and Jordan, 1993) and extensively described in (Ronco, 1997) (chapter 1).4.3 IllustrationIn order to illustrate the capability of the INC associated to the CCN we will consider thecontrol of the �rst order system (1) used in the �rst section of this article. We recall thefunction representing this system: sy = 2:5u� 2sin(y) (10)where s � ddt , sin(y) is the system's non-linearity and 0 � y � �.Each of the �rst order linear controllers composing the CCN are described by the followingequation which was derived in section 2:u = 1b (1:5351r � y(1:5351� a)) (11)where b and a are the two parameters of a �rst order local model of the system.We wish to design a CCN adapted for the control of the system (1) in its full operatingrange, that is to say y[0 �]. The control adaptation to this system by the CCN consisted ina series of �ve control sequences with respective set points � � 1=5, � � 2=5, � � 3=5, � � 4=5and �. This simple learning strategy is important to ensure that the system has been properlyexcited and therefore driven in most of its possible states. The INC was applied during thislearning stage. The threshold determining the control e�ciency performed by the CCN wasset to 0.01 i.e. we wish the CCN to never make a control error �e = �y� y superior to 0.01. TheINC assigned �ve controllers to the CCN.To test its generalisation capability, the CCN has been applied to control system (1) onthree di�erent control situations depending on three di�erent set points (i.e. control goals).The three control sequences are characterised respectively by a set point r = pi=5, r = pi andr = pi=5. This is the same control problem used in the �rst section of this article to evaluatethe e�ciency of an adaptive controller whilst controlling the non-linear system (1).The results obtained from the CCN are depicted in �gure 12. In the bottom subplot of this�gure you can see the �ve local linearisations of the system used for the design of the controllers.14



It is clear that, if one limits each linearisation to its operating region (see the operating regionsof each controller on the x axis), the overall model is a perfect match of the non-linear system.This is indeed the reason why the performance of the CCN is so good (see the top sub-plotof �gure 12). The system output (dashed line) matches perfectly the desired transient (plainline). Note that on the y axis you can see the operating region of each of the controllers.
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Figure 12: Performance of the CCN whilst controlling system (1).The top subplot depicts the control performance of this scheme concerning three consecutive control sequences.During the �rst, second and third control sequences a desired transient (see plain line graphs) has to be achievedwhilst respectively driving the system (see dotted line graphs) toward the desired position y = �5 = 0:63, y = �and y = �5 = 0:63. Five controllers are active at a di�erent operating region depicted on the y axis. The bottomsubplot shows the system's non-linearity in the range 0 � y � � and the �ve local linearisations of the systemused to design the controllers (see plain straight lines).These results are far better than those obtained from the single adaptive controller (see�gure 2). More importantly this shows that although the ICCN is a simple method it is verye�cient. The CCN is not subject to the stability-plasticity dilemma and it is valid for the fulloperating range of the system.4.4 Concluding remarksThe architecture of the CCN and CMN have been presented. The CCN and CMN are re-spectively modi�ed versions of the LCN and LMN. The main di�erence is that the clusteringis achieved on a single quantity in the CCN whereas the LCN clusters on multiple quantities.There are several important advantages arising from this simple clustering. Among them isthe facility to determine the neighbourhood of an operating condition. This leads to a betterinterpolation capability of the network as well as a straight forward understanding of the net-work activity. The activation of no more than two models/controllers each time has also theadvantage of implying very few computations.Another important advantage of clustering on a single quantity is that it highly simpli-�es the problem of developing an automatic architecture construction of the network of mod-15



els/controllers. The \Incremental Network Construction" (INC) algorithm was developed anddescribed in this study. This algorithm constructs the network architecture on-line accordingto the performance of the network. It determines the number of models/controllers requiredto model/control an unknown system as well as the operating region of each model/controller.The INC therefore gives a complete autonomy to the CCN/CMN.However, in case that more than a single quantity involves important non-linear behaviourin the system, the clustering on a single quantity may not be e�cient enough. Rather than clus-tering on multiple quantities one should use an other approach to select the models/controllers.A clustering free approach is described next.5 Incremental Model-Controller NetworkThe "Multiple Switched Model" (MSM) has been extensively studied in (Narendra et al., 1995;Narendra and Balakrishan, 1997) (See (Ronco, 1997) (chapter 1) for details about this al-gorithm). The MSM is a network of model-controller pairs where each controller is designedfrom its connected model (See �gure 13). There are various possibilities while composing thenetwork. One can use solely �xed or adaptive model-controller pairs or a combination of them.The authors argue that the best compromise is obtained by using a certain number of �xedmodels plus an adaptive and reinitialisable one. The best control performance and stabilityresults have been obtained from this scheme.The selection of the controllers is achieved according to the performance of their connectedmodel. The network of models can therefore be interpreted as a gating system (See �gure 14).This is a clustering free approach where at each instant, the selected controller i is the onehaving its connected model i minimising the index Ji(t):Ji(t) = �ê2i (t) + � Z t0 e��(t��)ê2i (�)d� (12)where ê is the modelling error, � � 0, � > 0 and � > 0 are designed parameters. � � 0 and� > 0 respectively in
uence the instantaneous and long term memory of the index. This indexcan be thought of a �rst order �lter.The properties of a simpli�ed version of the MSM is investigated in this study: the "Model-Controller Network" (MCN). The index used takes only into consideration the integral of theerror over the immediately preceding interval of T units. This givesJi(t) = Z tt�1 êi (13)This index should e�ective enough in this study since we are not considering any systema�ected by disturbances and compared to the one used in the MSM it has the advantage ofrequiring no setting of parameters.All the model-controller pairs are adaptive but with no forgetting factor so that their ad-aptability will diminish with the increase of data reviewed. To have all controllers adaptiveis not computationally demanding since only one controller is adapted each time (the one se-lected). However the number of controllers will signi�cantly a�ect the computing time as ateach instant all the models must be activated to determine their performance. This actually16
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A sampling of the system is achieved around the actual operating condition (this isusually preferable instead of continuing the control which can become totally inaccurateif the change of parameters relating the operating condition is abrupt e.g. case of adiscontinuous function). From those samples a local model of the system is determined.A linear controller is then designed from this model. Similar to the CCN, a ModelReference Adaptive Controller design method is used in this study (see (Ronco, 1997)(chapter 2) for details about this control design method). The new model-controller pairis �nally added to the MCN.Similar to the CCN, there is in the INC a pruning of the controllers that are not performingwell enough i.e. their average control error is greater than twice the threshold. Indeed thisshould not occur very often since a controller is added as soon as the control error exceeds thethreshold. However it can happen that a controller has not learned enough (i.e. the controllerhas not reviewed enough system input-output samples). A controller must be selected to learn.The fact that the controller is almost never selected means that it is of no use for the network.It may be useless because it is not adapted well enough. Otherwise its connected model shouldhave performed well at some operating conditions and this would have implied the selectionof this controller. Hence, this is a simple but very e�ective way of determining what are theundesirable controllers in the network. Note that, without any mean of biological mimetism,this method is applied by biological systems to prune neurons. Neurons with low activity tendto degenerate (or at least to be allocated to other tasks).As well as with the CCN, it is suggested to apply the INC only during a learning stage.After a while, when the system has been driven in most of its possible states, the INC shouldbe removed. It is not so much to speed up the process but to ensure a �xed structure of thecontroller network necessary to be implemented to control real systems. By removing the INCone makes the MCN entering a generalisation stage.Note also that a similar technique than the INC is reported in (Narendra et al., 1995).However, their method contains no pruning feature. This pruning should be vital to removeinadapted controllers that are very likely to imply unstable behaviours in the MSM if theycome to be activated due to disturbances.5.1 IllustrationThe control capability of the IMCN is going to be illustrated according to the non-linear system(1) used previously to illustrate the control capability of the ICCN. Hence the INC is appliedto the MSM during the same learning stage than the one used for the creation of the CCN.As a result six controllers were designed (instead of �ve in case of the ICCN). Each of the �rstorder linear controllers composing the MCN are described by the following equation that hasbeen derived in section 2: u = 1b (1:5351r � y(1:5351� a)) (14)where b and a are the two parameters of a �rst order local model of the system (1).The results obtained from the IMCN during the same generalisation stage as for the ICCNare depicted in �gure 15. In the bottom subplot of this �gure you can see the six local linear-isations of the system obtained during the INC that were used for the indirect design of the18



controllers. These linearisations very accurately cover the system's non-linearity. This impliesthat the overall model developed by the IMCN is very accurate. This is why the overall con-troller performs so well. As for the CCN, the transient of the system (dashed line) matchesperfectly the desired transient (plain line).Hence, here again we see that the INC lead to a perfect network construction that involvedperfect control of the system.
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Figure 15: Performance of the IMCN whilst controlling system (1).The top subplot depicts the control performance of this scheme concerning three consecutive control sequences.During the �rst, second and third control sequences a desired transient (see plain line graphs) has to be achievedwhilst respectively driving the system (see dotted line graphs) toward the desired position y = �5 = 0:63, y = �and y = �5 = 0:63. Six controllers are active for various operating regions. The bottom subplot shows thesystem's non-linearity in the range 0 � y � � and the six local linearisations of the system used to design thecontrollers (see plain straight lines).5.2 Concluding remarksA simpli�ed version of the MSM extensively studied in (Narendra and Balakrishan, 1997;Narendra et al., 1995) has been described in this section: the \Model-Controller Network"(MCN). The modelling performance index used to select the controllers is much simpler thanthe one used in the MSM. Another di�erence is that in the MCN all the model-controllerpairs are adaptive. Referring to the stability results obtained and described in (Narendra andBalakrishan, 1997), an important advantage of this scheme is the insurance of stability. Howeverone must be careful with this result. The robustness of the multiple controllers scheme shouldbe of prime interest since few inadapted but stable controllers could lead to an unstable overallbehaviour of the network. This is why a pruning of inconsistent approximations (e.g. modeldeveloped from singular matrices) is necessary to avoid the above problem.Note that the MSM lacks the possibility of interpolating between controller outputs. Thisis essential to smooth the behaviour of the network. This possibility has not been investigated.This should be a future area of research. 19



We have seen that the INC is a very e�cient technique to construct the MCN architecture.The results obtained by this scheme were similar to the one obtained by the ICCN. Since theMCN avoids the clustering problem of the CCN without adding signi�cant drawbacks we couldargue that for control purposes the IMCN is a better solution than the ICCN. However todiscuss this further, in the next section will be compared these two approaches on a couple ofdi�erent control problems.6 IllustrationSo far a quite simple non-linear control problem has been used to illustrate the behaviour ofboth the ICCN and the IMCN. The system (1) was �rst order and stable. The illustrationis going to be extended next by considering a second order unstable system: the invertedpendulum. In the following section will be illustrated the problem of using a CCN to control asystem where more than one variable implies non-linearity into the system.6.1 Control of a second order unstable non-linear systemIn this section we are going to consider the control of the inverted pendulum (see �gure 10as anexample of a second order unstable non-linear system. The equation of the inverted pendulumis the following: �� = 12mgl: sin (� (t�1)) + �13ml2 (15)where �� is the angular acceleration of the pendulum and � is the angle of the pendulum. �is the torque in Newton meters applied to the pendulum by the controller. The mass of thependulum is m = 0:1kg, l = 0:5m is its length and g = 0:81 is the gravity. The Euler methodis chosen for the integration.This problem is trivial if the control is performed whilst the pendulum angle � � �12o sincein this region the pendulum behaves linearly. It becomes much more di�cult to control thependulum as � is diverging from this region. The task of the controller will be to stabilise thependulum at three di�erent angles that are respectively � = 14� = 0:78rads, � = 12� = 1:57radsand � = 34� = 2:35rads. These three pendulum positions are depicted in �gure 16. These threecontrol sequences last 10sec each.For each control sequence, the controllers are required to track a transient characterisedby no overshoot, a settling time of 5sec and a tolerance error of 1% of the set point r. Thisspeci�cation gives rise to the following the 2nd order linear adaptive controllers (i.e. ModelReference Adaptive Controller):u = 1b2 (�b1u+ �r1sr � (�r1 � a1)sy + �r2r � (�r2 � a2)y + c) (16)where b1, b2, a1 , a2 and c are the parameters of a second order local model of the system and�r1 = 1:5 and �r2 = 1:84 are the parameters of the reference closed loop model (see (Ronco, 1997)(chapter 2) for details). 20



θt =0.78rads θt =1.57rads θt =2.35rads

Figure 16: The three desired positions of the inverted pendulumThe same learning strategy as the one described earlier has been used to properly excite theplant. That is to say that the learning stage consisted in �ve control sequences with respectiveset points r = 2:5 � 1=5, r = 2:5 � 2=5, r = 2:5 � 3=5, r = 2:5 � 4=5 and r = 2:5. The sametransients as during the generalisation stage (see above) have to be tracked during this stage.At the end of the learning stage the INC had attributed �ve controllers to the ICCN andnine to the IMCN. The results obtained by a single adaptive controller, an ICCN and an IMCNare depicted in �gure 17. It is clear that the two controller networks (see graphs IMCN andICCN transient) perform much better than the single adaptive controller (see graph MRACtransient). The adaptive controller controls the system with a very slow transient and issu�ering the stability-plasticity dilemma (otherwise it would have performed well during thesecond control sequence). The performance of the two controller networks are comparable.During the �rst two control sequences they meet the control requirement: the system settlesdown in about 5sec, there is no overshoot and the steady state error is less than 1% of the setpoint. During the third control sequence the actual transient is slightly slower than the desiredone but the control requirement are almost meet.The transient of the controlled input are plotted in �gure 18 to show more clearly thebehaviour of the controller networks. We can see that they do not always behave very smoothly.During the �rst control sequence the ICCN makes a sharp change of behaviour around t = 5sec.This is a very undesirable behaviour which could have easily yielded instability. This suggeststhat a controller is inadapted around the region y = 2:35. By observing the operating regionof the controllers (see table 1) we see that the controller #5 is the one active for this region.One could easily investigate the stability and robustness of this controller. Depending on theresults one could have decided to remove this controller. It was not removed because it wasassumed that this behaviour was due to an inadaptation of this controller (a signi�cant changebetween the parameters of its connected model occurred after this controller became activated).The ICCN was reapplied to the control problem to validate this hypothesis. The results aredepicted in �gure 19. The undesirable sharp behaviour has disappeared. The control is moreaccurate.This example was only meant to show how simple it is to understand the behaviour of theICCN since each controller has a clear region of activity de�ned by its attached rbf. This isunfortunately not the case of the IMCN. We can not know easily the activity region of eachcontroller. If the IMCN behaves undesirably at a certain operating region it is di�cult toknow which controller is responsible. For instance, during the last control sequence, the IMCN21
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Figure 17: Control performance of a single adaptive controller, an ICCN and an IMCN whilstcontrolling the inverted pendulum.Three di�erent control sequences of 10sec each had to be achieved. During the �rst, second and third controlsequences a desired transient (see plain line graphs) has to be achieved whilst respectively driving the system(see respective dashed line graphs) toward the desired angular position � = 14� = 0:78rads, � = 12� = 1:57radsand � = 34� = 2:35rads.Table 1: Operating region of the controllers composing the ICCNController # Operating region1 0 < � < 0:82012 0:8201 < � < 0:95623 0:9563 < � < 1:55004 1:5502 < � < 2:35285 2:3531 < � < 2:5445changes abruptly its behaviour approximatively at t � 23sec. At this time the operatingregion y = � � 1:45. This last information is irrelevant for the determination of the activatedcontroller. To determine the controller responsible for this undesirable behaviour each controllerhas been associated to a rbf. The operating regions are given in table 2. Note that the regionof activity of each controller is only determined during the generalisation stage.First, one will notice that there are a lot of overlaps. More importantly there are somecontrollers (#4, #5 and #8) associated with a very small operating region. This could meanthat there are of no use for the control problem. Regarding the controllers operating around theregion y = � � 1:45, we can now see that they are two possible candidates: controller #3 and#6. The values of the model parameter b1 associated with the control input u (which highlyin
uences the control design) are depicted in the last row of table 2. We actually know from thependulum equation (15) that this parameter is 113ml2 = 120:4819. Most of this models parameter22
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Figure 19: Control performance of the ICCN whilst controlling the inverted pendulum a secondtime.The top plot depicts the system transients obtained whilst controlling the pendulum toward the desired angularposition � = 14� = 0:78rads, � = 12� = 1:57rads and � = 34� = 2:35rads. The bottom plot depicts the transientcontrolled input.regions to controllers (even if those regions are not used for the selection of the controllers)highly simpli�es the understanding of the network behaviour. We have also seen that the ICCNand the IMCN perform equally well and much better than a single adaptive controller whilstcontrolling a second order system having a unique variable implying a non-linear behaviour.In the next section are presented some results obtained using the ICCN and the IMCN whilstcontrolling a second order system having two variables implying non-linear behaviours.6.2 Control of a second order system having two states implyingnon-linear behavioursThis section illustrates the behaviour of the ICCN and IMCN whilst controlling a secondorder system having two states implying a non-linear behaviour. The arbitrary system used isdescribed by the following second order equation:s2y = 10u+ 2 sin(y) + cos(2sy) (17)You see from this equation that the system non-linearity not only depends on the systemoutput y but also on the velocity of the system sy. This implies signi�cantly di�erent behaviourat the beginning of the control (fast velocity) and at the end of the control when the system issettling down.The control problem consists of three di�erent control sequences di�ering only on the setpoints that are respectively r = 13� = 1:0472, r = 12� = 1:5708 and r = �. The 2nd order linearcontrollers used here correspond to equation (16).24



After a learning stage similar to the one described in the previous section, the INC allocatedsix controller to the ICCN and 10 to the IMCN. These numbers of controllers have a signi�cantimpact on the control performances of the ICCN and IMCN (see �gure 20 and �gure 21). TheIMCN performs very well (perfect match of the IMCN transient with the Desired transient).This contrasts with the poor control performance of the ICCN (and of the single adaptivecontroller).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
 First sequence  Second sequence  Third sequence

time

y(
t)

Desired transient
ICCN transient   
IMCN transient   
MRAC transient   

Figure 20: Control performance of a single adaptive controller, an ICCN and an IMCN whilstcontrolling system (17).Three di�erent control sequences of 10sec each had to be achieved. During the �rst, second and third controlsequences a desired transient (see plain line graphs) had to be followed whilst respectively driving the system(see respective dashed line graphs) toward the desired position y = 13� = 1:0472, y = 12� = 1:5708 and y = �.
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Figure 22: Control performance obtained whilst controlling system (17) a second time.The top plot depicts the system transients obtained whilst controlling the system toward the desired positiony = 13� = 1:0472, y = 12� = 1:5708 and y = �. The bottom plot depicted the transient controlled input.The operating regions of each of the controllers composing the ICCN are summarised intable 3. These operating regions di�er totally from the ones involved by the IMCN (see table 2).Most of the controllers of the IMCN have a large operating region that is overlapping with manyothers. This means that there are many controllers involved in the same operating conditiony. A two dimensional clustering should clarify the behaviour of the IMCN. This was done byclustering the controllers according to the system output y and its velocity sy (see �gure 23).This way, each controller appears to have a square region of activity over the operating space.The fact that we can not identify clearly what is the operating region of each controller indicatesthat a highly complex clustering (certainly not square) is taking place especially in the regiony[0 1] sy[0 0:6] where more than half of the controllers are overlapping. This is the only wayto cope with the highly non-linear behaviour of system (17). This complex network behaviourwould be di�cult to obtain using a spatial clustering approach for the selection of the controllers.It is clear from these results that the IMCN is a much more suitable approach than the ICCNfor the control of highly non-linear systems.Table 3: Operating region of the controllers composing the ICCNController # Operating region Size1 �0:000001 < y < 0:510308 0.5103092 0:510318 < y < 1:034262 0.5239443 1:034274 < y < 1:554180 0.5199064 1:554212 < y < 2:072184 0.5179725 2:072217 < y < 2:589818 0.5176016 2:590953 < y < 3:106402 0.51544927



Table 4: Operating region of the controllers composing the IMCNController # Operating region Size1 0:000616 < y < 0:600437 0.5998212 0:000134 < y < 0:853710 0.8535763 0:031017 < y < 1:047788 1.0167724 0:002177 < y < 0:923805 0.9216285 0:000000 < y < 1:411980 1.4119806 0:322573 < y < 2:102542 1.7799697 0:090697 < y < 2:008967 1.9182708 0:276597 < y < 1:036315 0.7597189 0:606431 < y < 1:832973 1.22654110 1:838017 < y < 3:151625 1.313608
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Figure 23: Two dimensional operating regions of the controllers composing the IMCN7 ConclusionIn this study was presented two controller networks which have in common a gating systemenabling them to select at each instant the currently valid local controllers of the plant. Thelocal controllers composing these gated controller networks are Model Reference Adaptive Con-trollers (MRAC). A detailed description of such a controller and its properties can be found in(Ronco, 1997) (chapter 2). Note that other kind of local controllers might be used as buildingblock of the controller networks.One of the gated controller networks uses a spatial clustering approach to select the con-trollers at each instant: the \Clustered Controller Network" (CCN) that shares many commonfeatures with the \Local Controller Network" (LCN) developed by (Johansen and Foss, 1992; Jo-28



hansen and Foss, 1993). The main di�erence in the CCN is that, whatever the system charac-teristics, the clustering used for the selection of the controllers is achieved on a single quantity.This simpli�cation is justi�ed by several important advantages. The main advantages are thesimpli�cation and speed-up of the controllers selection, the facilitation of the local plant ap-proximations, the clari�cation of the overall behaviour of the CCN and the simpli�cation ofthe construction of the network architecture. The latter advantage enabled us to develop afairly simple algorithm to automatically construct the network architecture of the CCN: the\Incremental Network Construction" (INC). The CCN together with the ICN lead to the \In-cremental Clustered Controller Network" (ICCN).The other gated controller network is clustering free in the sense that instead of clusteringthe operating space for the selection of the controllers it uses the modelling performance of themodels attached to each of the controllers to achieve the controller selection. This approachhas been called the \Model-Controller Network" (MCN). The MCN is similar to the so called\Multiple Switched Models" (Narendra et al., 1995; Narendra and Balakrishan, 1997). TheICN, used for the construction of the CCN, has been adapted to construct the MCN. From theICN and the MCN arises the \Incremental Model-Controller Network" (IMCN).An important feature of the ICN in both the CCN and MCN is the pruning of inadaptedcontrollers. Fairly simple heuristics are used to determine whether a controller is well adaptedor not. The average control error is one of the criteria. A more sensible criteria is the numberof input-output samples reviewed by a controller which, particularly in the case of the MCN,indicates the inadaptation (or at least useless) of a controller. However, the singularity ofthe matrix should be a much more relevant criteria to determine the adaptation quality ofa controller. This information is contained in the singular vector given by the SVD whilstapproximating the parameters of the models associated with the controllers (see (Ronco, 1997)(chapter 2) for details).Both the ICCN and the IMCN o�er several important advantages compared to other ap-proaches. Since the controllers composing these networks are linear, it should be simple toanalyse locally the properties of each controller and deduce general properties regarding theoverall behaviour of the network. For the same reason it is straightforward to determine theparameter values of the controllers as linear regression methods can be applied. These two veryimportant advantages are missing in most of the other non-linear control schemes. Another ad-vantage is the possibility for these controller networks to be adapted to the full operating rangeof conditions involved by a non-linear system. This is why these schemes are not sensitive to thestability-plasticity dilemma that largely a�ects a single adaptive controller. A last importantadvantage is that the INC makes the CCN and the MCN two self-organising approaches. Theonly system knowledge required to apply the ICCN and the IMCN is the system order. Theseadvantages highlight the high potential of the controller networks for the control of non-linearsystems.Di�erent examples of control of non-linear systems have been considered in order to illus-trate the behaviour of the ICCN and the IMCN. It is very clear that both these schemes areperforming much better than a single adaptive controller. Perfect matching of desired tran-sients have been obtained whilst controlling highly non-linear systems. Moreover, the INCallocated an optimum number of controllers to the two controller networks. We have also seenthat the understanding of the networks behaviour was straightforward due to the knowledge ofthe region of activity of each controller. 29



However the ICCN appears to have serious problems in coping with non-linear systemshaving more than a single variable implying a non-linear behaviour. The IMCN does not havesuch a problem. This high sensitivity to the clustering space order is the main drawback limitingthe use of the ICCN or any other approaches involving an operating space clustering for thecontrollers selection.This does not imply to reject the ICCN. It can be useful for situations where the IMCN cannot be applied. It is clear that the controllers composing the IMCN must be designed from alocal system model. Without a model one cannot select the controllers and therefore cannot usethe IMCN. For instance it may be di�cult to apply this approach using model based predictivecontrollers as building blocks of the IMCN. This is inconvenient since such a controller is apowerful approach to handle systems with complex dynamics. In addition, it is not possible touse the IMCN for modelling purposes. Hence, the ICCN has a wide range of applicability overthe IMCN.Moreover, the spatial clustering itself has the important advantage of clarifying the under-standing of the controller networks' behaviour. This is why rbfs have been attached to thecontrollers composing the CCN as well as for the MCN. In the MCN the rbfs are not used forthe selection of the controllers as in the former case but are simply used to facilitate the under-standing of its behaviour. A powerful approach would consist of combining these two gatingschemes (the spatial clustering and the clustering free approach). The number of controllers ina MCN could be rather large depending of the non-linearity and the order of the system. Insuch a case, for the controller selection, the activation at each instant of all the models couldinvolve too many computations to be feasible. One way to overcome this problem would be toactivate only the models which have an operating region covering the actual operating condition(the clustering on a single quantity would be satisfactory in this case). This constitutes one ofour future works in this area.
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