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Abstract

Two self-organising controller networks are presented in this study. The “Clustered
Controller Network” (CCN) uses a spatial clustering approach to select the controllers
at each instant. In the other gated controller network, the “Models-Controller Network”
(MCN), it is the performance of the model attached to each controller which is used to
achieve the controller selection. An algorithm to automaticly conctrust the architecture
of both networks is described. It makes the two schemes self-organising.

Different examples of control of non-linear systems are considered in order to illustrate
the behaviour of the ICCN and the IMCN. It makes clear that both these schemes are
performing much better than a single adaptive controller. The two main advantages of
the ICCN over the IMCN concern the possibilities to use any controller as a building block
of its network architecture and to apply the ICCN for modelling purpose. However the
ICCN appears to have serious problems to cope with non-linear systems having more than
a single variable implying a non-linear behaviour. The IMCN does not suffer from this
trouble. This high sensitivity to the clustering space order is the main drawback limiting
the use of the ICCN and therefore makes the IMCN a much more suitable approach to
control a wide range of non-linear systems.

1 Introduction

For the purposes of control, it is essential that the chosen class of models is transparent in the
sense that the model structure and parameters may be interpreted in the context of control
system design. For example, neural networks are widely used for system modelling purposes
because of their ability to represent non-linear functions. However, most of the neural networks
develop unclear representations of the system; therefore system analysis can not be carried out



easily and thus the neural model is less useful for control purposes. This black box modelling
is the main feature that restricts the use of neural networks for system modelling and control.

However, there are a couple of neural networks that appears to be very suitable for modelling
oriented control purposes. This is due to their use of multiple linear models to approximate
the behaviour of a system. From each of the linear models it is straight forward to design a
controller. Therefore the non-linear overall model developed by those networks can be easily
transformed into a non-linear controller. This is perhaps the only general and systematic
approach to designing a non-linear controller out of a non-linear model.

One of these neural networks is the “Local Model Network” (LMN) introduced in (Poggio
and Girosi, 1990) and further extended for modelling and control purposes by (Johansen and
Foss, 1993; Johansen and Foss, 1992). The control version of the LMN is the “Local Controller
Network” (LCN). The idea underlying the other network was introduced in (Middleton et
al., 1988) and further extended in (Morse, 1990; Morse et al., 1992; Weller and Goodwin,
1994) and coined as the “hysteresis switching algorithm”. This algorithm aims at achieving
stability whereas, the “Multiple Switched Model” (MSM) extensively studied by (Narendra et
al., 1995; Narendra and Balakrishan, 1997), but closely related to the former algorithm, is used
for improving the control performance whilst dealing with systems having their parameters
changing quickly through time (e.g. non-linear systems).

The basic idea of the LCN and MSM is to develop and use various controllers at different
operating regions of the system. These algorithms differ mainly by the method used for the
selection of the controllers at each instant. In the LMN, the controllers are selected according
to a spatial clustering of the operating space whereas in the LMN the selection of the controllers
is clustering free.

These two LCN and MSM have important advantages in common. Their properties can
be easily extracted since linear theory can be applied to analyse each of the linear controllers
composing the network. “Learning” is extremely quick due to the use of regression methods
(e.g. least squares) for the estimation of the model-controller parameters. This makes these
approaches very suitable for online control purposes. Another advantage of these algorithms is
that they do not suffer from the “stability-plasticity dilemma” which is a basic design problem
for learning machine as emphasised by (Carpenter and Grossberg, 1988): while the model is ad-
apting to an operating region of the system it is forgetting previous adaptations regarding other
regions. The LCN and MSM are not exposed to this dilemma because each model-controller is
specially adapted for a different operating region of the system. Hence, and as highlighted by
(Narendra et al., 1995), these two schemes can be adapted for different discontinuities of the
system.

However, to make the LCN and MSM self-organising requires a general and systematic
method to automatically construct their network architecture. This is the purpose of this
study to develop such an automatic network construction algorithm.

The outline of this study is as follows. The next section compares, in the frame of non-linear
control, a linear adaptive controller and a multiple linear controller. The latter controller em-
beds the basic mechanisms of the LCN and MSM. The automatic network construction method
developed in this study is then described. This method implies significant modifications of the
LCN algorithm. The modified algorithm is called the “Clustered Controller Network” (CCN).
The automatic network construction algorithm is referred to as the “Incremental Network Con-
struction” (ICN) and the algorithm embedding the INC is called the “Incremental Clustered



Controller Network” (ICCN). The following section describes the incremental network con-
struction method applied to the “Model-Controller Network” (MCN) (a modified version of
the MSM). The results obtained by the ICCN and the IMCN whilst controlling various non-
linear systems are then compared. The results are recalled during the conclusion to discuss the
efficiency of these two approaches.

2 Adaptive linear control versus multiple linear control

The purpose of this section is to briefly introduce the basis of the multiple-linear control ap-
proach. The control of a non-linear system is considered. This system is described by the
following equation

sy = 2.5u — 2sin(y) (1)

where s = % is a differential operator, sin(y) is the system’s non-linearity and 0 < y < pi.
This function is non monotonic since a change of sign occurs around the operating condition
y = %7‘(. This makes this system a difficult problem to control using the “Model Reference
Adaptive Controller” (MRAC) used in this study. This MRAC is an indirect design method,
therefore the controller design is based on a local model of the non-linear system. Each of the

first order linear model used for the local modelling of the system (1) is of the following form

sy =bu—ay+c (2)

where c is a constant that makes the above equation non-homogeneous. This is important
in the case of a model network since the local models linearise the system at any position (at
equilibrium or not).

From each of the local models one can easily work out the controllers equation. To do so a
model of the closed loop system has to be specified. It was arbitrarily decided that the system
will have to settle down in 3sec with an error inferior to 0.01% of the desired set point r. This
leads to the following reference closed loop model:

sy = 1.5351(r — y) (3)

where 1.5351 is the reference model parameter obtained with tol = 1%r and the settling
time £, = 3s.

Now, from the equalisation of the system model (2) and the reference model (3) we determine
the linear equation describing the various local controllers composing the CCN (see for further
details about this control design method chapter 2 in (Ronco, 1997)):

1
u = 6(1.53517“ —y(1.5351 — a) +¢) (4)

You see from this equation that the control design is only a matter of determining the value
of the model parameters a, b and ¢. The singular value decomposition method is used in this
study for the estimation of these parameters (see chapter 2 in (Ronco, 1997)).

We can generalise this control design method for any SISO system of order N:
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N i=1 i=1

The control of a non-linear system is often achieved through the use of a linear controller
designed from a linearisation of the system. The resulting controller is only valid for a local
region of the system. This is shown is figure 1. The non-linearity of system (1) and its linear-
isation used for the controller design are depicted in the bottom of figure 1. The top subplot
depicts the control performance of this controller concerning two consecutive control sequences.
During the first control sequence we see that the control performance is correct i.e. a small
steady state error is achieved after a quite accurate matching of the desired transient system
output. This was expected since the system’s non-linearity is quiet accurately approximated
by its linearisation in the range y[0 0.63] (where 0.63 is the control goal). However, it is not
sensible to use the same controller to drive the system in the range y[0.63 7| (see the second
control sequence in figure 1). In this range the linearisation of the system diverges significantly
from its non-linearity.
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Figure 1: Performance of a linear controller
The top subplot depicts the control performance of the controller (designed from the linearisation of system
(1) achieved around y = 0) concerning two consecutive control sequences. During the first and second control

sequences a desired transient (see plain line curves) has to be achieved whilst respectively driving the system

(see dotted line curves) toward the desired position y = ¥ = 0.63 and y = 7. The bottom subplot shows the

system’s non-linearity in the range 0 < y < pi and its linearisation used for the controller design.

Hence, a linear controller has a certain region of validity beyond which its performance
becomes poor. One standard way to overcome this problem is to continually adapt the iden-
tification (i.e. the linearisation) of the system and thus the controller; this is conventional
adaptive control. Such a method can only be effective if the dynamics of the system are
changing smoothly and quite slowly through time. Therefore, if the function is discontinuous
adaptive control can not be applied. In addition, the slowness of such an adaptation may result
in a large transient error (Narendra et al., 1995). This is illustrated in figure 2. The adaptive



controller has been preadapted from a linearisation of the system around y = 0 (see left bottom
plot of this figure). Hence the controller performs well in the operating region where the lin-
earisation is valid. In the second control sequence the system has to move from y = 0 to y = .
We can see that from the top plot of figure 2 that the adaptive controller is eventually going to
reach a small steady state error. However, the transient is much slower than the desired one.
A more serious problem occurs during the third control sequence. While during the second
control sequence the controller became adapted for the control of the system around y = 7
it forgot its former adaptation corresponding to the linearisation of the system around y = 0.
This resulted in a control performance worse than during the second sequence. This effect is a
basic machine learning problem referred as the “stability-plasticity dilemma” (Carpenter and
Grossberg, 1988).
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Figure 2: Performance of a linear adaptive controller
The top subplot depicts the control performance of an adaptive controller (preadapted from the system (1)
linearisation achieved around y = 0) concerning three consecutive control sequences. During the first, second
and third control sequences a same desired transient (see plain line graphs) has to be achieved whilst respectively
driving the system (see dotted line graphs) toward the desired position y = £ = 0.63, y = 7 and y = T = 0.63.
The three bottom subplots depict the system’s non-linearity in the range 0 < y < 7 and its linearisations
achieved by the adaptive controller at the last stage of each control sequence (see plain straight line; the dotted
lines correspond to the system linearisation at the first stage of each control sequence).

A simple way to avoid the “stability-plasticity dilemma” is to use a number of controllers
each valid for a different operating region of the system. To show the effectiveness of this scheme,
the results obtained whilst using only two different controllers active each for a different half
of the whole operating range of the system have been depicted (see figure 3). The controllers
obtained at the last stage of the first and second adaptive control sequences previously described
have been used (see bottom of the figure 3). The control performance although not perfect (the
second controller is not very well adapted to its operating region) overcomes the stability-
plasticity dilemma and the transient is as quick as desired.
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Figure 3: Performance of two linear controllers for the control of system (1).
The top subplot depicts the control performance of this scheme concerning three consecutive control sequences.

During the first, second and third control sequences a desired transient (see plain line graphs) has to be achieved
whilst respectively driving the system (see dotted line graphs) toward the desired position y = £ = 0.63,y =7
and y = T = 0.63. Each controller is active for a different half of the operating range of the system. The bottom
subplot shows the system’s non-linearity in the range 0 < y < 7 and the two linearisations used to design the

controllers (see plain straight lines).

Hence both problems of an adaptive controller can be avoided using a multiple linear con-
trollers scheme to control non-linear systems. However there are few problems to sort out before
applying systematicly this scheme. Solutions to these problems are exposed in the next section.

3 Clustered Controller Network

The development of an automatic network construction algorithm is difficult to achieve if one
maintains the architecture of the Local Controller Network (LCN). Therefore, this algorithm
has been simplified whilst developing the Clustered Controller Network (CCN). This section
aims at describing this algorithm. Note that the modelling version of the CCN is closely related
to it since one model is linked to each controller in the CCN. We could say that a Clustered
Models Network (CMN) lies inside a CCN. Hence, although we are mainly going to deal with
the CCN bear in mind that the basic features of this algorithm applies also to a CMN.
Similarly to the LMN, the selection of the controllers in the CCN is achieved through a
clustering of the operating space. As discussed in (Ronco et al., 1996a) and extensively in
(Ronco, 1997) (chapter 1), the use of radial basis functions (rbfs) for the clustering is most
effective for single dimensional space. A compromise between approximation and clustering
quality has to be found for clustering spaces of dimensions superior to one. This problem is
non trivial and its complexity increases quickly with the dimension of the space. This is why
the clustering should always be performed on a single dimension space. The ideal situation
would be to cluster on quantities which remain one dimensional for high-order systems; for
example the control error. Such a quantity that could be relevant for most of the SISO systems



has not yet been found. Hence, the choice of this quantity is an important issue in applying
the CCNs.

In most of the cases studied so far the clustering has been achieved on the space shaped
by y; 1 (the system output at time t-1). The clustering of this single quantity is only effective
for cases where the system output is the main variable inducing non-linearity in the system.
For other cases, where other variables can imply non-linear behaviour (e.g. the velocity of the
system), to perform a multi-dimensional clustering should be more relevant even if we bear in
mind the difficulty of performing a multi-dimensional clustering (see above discussion).

However, there are other features that further justify the clustering on a single quantity
rather than on a multiple one. Those advantages are related to the fact that in the single
dimension case it is straightforward to determine the neighbourhood of the operating condition
®. The neighbourhood always implies the two controllers attached to the two rbf surrounding
the operating condition (see the graph entitled “single dimensional clustering in figure 4). This
neighbourhood has a predominant effect on the quality of interpolation between controllers that
is necessary to smooth the behaviour of the controller network. This interpolation is straight
forward in the single dimension clustering case. In the multi-dimension case the neighbourhood
is much more unclear. In the two dimensional case plotted in figure 4 at least six rbfs can be
considered as being in the neighbourhood of the operating condition ®. Only a few of them are
going to be relevant for this operating condition. Interpolating between all of these neighbour
controllers can lead to catastrophic results if some of them are not fitted for the operating con-
dition. In addition, this unclear neighbourhood makes the behaviour of the controller network
difficult to interpret. In the single dimension case the analysis of the network of controllers can
be reduced locally to a single controller without losing any of the significance of the analysis.
This can not be done in the multi dimensional case. There are too many interactions between
controllers. This interaction also makes the parameters identification of the local controllers
difficult whereas this is straight forward in the single dimension case. A regression method
(e.g. least squares) can be applied to speed up the adaptation and to ensure a convergence
towards a solution (in the least error squares sense). It is often required to apply a gradient
method to identify the parameters of the controllers composing the network that involves a
multi dimensional operating space. This makes the adaptation slow and does not ensure to
reach a satisfactory solution. This involvement of the majority of the controllers, to determine
the output of the network, tends also to make the computation intensive. In the single dimen-
sion case only the two neighbours are involved in the network output at each instant. This
makes the computation very quick or at least does not relate it to the number of controllers
composing the network. A last advantage, as we are going to see in the next section, is that
the clustering of a single quantity facilitates considerably the automatic network construction.
It is clear from these advantages that, whatever the characteristics of the SISO system is, it is
recommended to cluster on a single quantity rather than on a multiple one.

In the CCN each rbf is characterised by a centre and a “single dimension width” (see
figure 5). The selection of each rbf is performed using a “winner takes all” like method. Each
time we select the two rbfs in the neighbourhood of the operating condition ®. This is achieved
by computing D for each rbf.

D; = |centre; — ®| — width; (6)
The rbf; having the smallest D is selected. The other rbf in the neighbourhood of ® is simply
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Figure 4: Multiple vs single dimension space clustering
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Figure 5: Components of the radial basis functions used for the clustering of a single dimension

space.
Two radial basis functions are depicted. Each one is composed of a centre and a width.

the neighbour of rbf; in the opposite side of ®: the neighbour of 70f; is 70 fi 1 sign(—center,)- Note
that this neighbour relationship between rbfs leads to an architecture that could be related to
a Kohonen’s neural network (see (Kohonen, 1982) for details about this neural network).

Now, by relating a different controller to each rbf we end up with a Clustered Controller
Network (CCN) (see figure 6). Since at each instant only two rbfs are selected, the two control-
lers attached to those rbfs are activated as well. The selection of two controllers at each instant
enables an interpolation between their outputs. This is important to avoid sharp controller
switching and thus non-smooth behaviour of the CCN. Hence, the CCN output u corresponds
to a weighted sum of the two selected controllers’ output:

where w; and w; are the two weighting parameters respectively corresponding to the activity
of rbf; and rbf;. The determination of the activity of each rbf is achieved according to the
block diagram depicted in figure 7.

The following sigmoid like function is used to perform the interpolation.

1

Acty = ———
S

(8)

! is used to maintain the same shape of the sigmoid function (see

where p= a\centerjfcenteri\

figure 8) whatever the size of the single dimension operating space is. This is to avoid the
normalisation of the clustering space (as it is achieved when applying the local models network
or local controller network (see for instance (Johansen and Foss, 1993)). The parameter « in



Figure 6: The controller network closed loop system.
The output of each selected controller u is weighted by the activity w of its connected rbf. Hence, the output
of the network is a sum of the weighted output of the two selected controllers.
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Figure 7: The gating system
The two rbfs in the neighbourhood of the operating condition ® are activated. The other rbfs are kept at
rest. Each rbf has got a certain activity w depending on its region of activity and the position of the operating
condition ®. A fixed sigmoid like function is used to enable an interpolation between their activity.

the variable p is the coefficient that drives the sharpness of the sigmoid. o = 10 was used in
this study, which leads to the sigmoid shape depicted in figure 8.

From figure 8, and taking the rbf; for example, you can see that the activation “Act;”
of the rbf; will tend to 1 when the operating condition ® will be inside the activity region
|center;|+ |width;| of the rbf;, whereas the activity of the rbf; will tend to 0 when the operating
condition ® will be outside of its activity region. To make sure that the sum of the activity of
the two rbf is 1, the activation “Act” of each rbf is weighted by the activations’ sum of the two
rbfs. The activity w is then determined from the weighted activation of each rbf. The activity
w of each rbf will be the one used to weight the output of its connected controller.

As previously said, this approach could be used also for the clustered models network. This
latter case is depicted for clarity (see figure 9).
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Figure 9: The clustered models network.
The output of each selected model g is weighted by the activity w of its respective rbf. Hence, at each instant,
the output of the network is a sum of the weighted output of the two selected models.

4 Incremental Clustered Controller Network

The purpose of this section is to describe the main method uses in this study to determine the
architecture of the Clustered Controller Network (CCN): the number of controllers and their
region of activity. Bear in mind again, that although we are going to deal with the CCN, most
of the features that are going to be exposed here applies also to the Clustered Models Network
(CMN).

As discussed in (Ronco, 1997) (chapter 1) an homogeneous spread of the basis functions is
not a sensible approach because the non-linearity of a system and the input-output samples
are not homogeneously spread. A small region can be highly non-linear whereas a large region
can be almost linear. Few samples can be available in a large region whereas a large amount
of samples could be distributed into a very small region. Both these problems would affect the
parameter approximation quality of the controllers composing the network. Therefore it is vital
to find out the required number of controllers and their region of validity in order to efficiently
apply a controller network. Note that during the literature review preformed in (Ronco, 1997)
(chapter 2) it was emphasised that there is no general and systematic approach to solve that
clustering problem.
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To determine the architecture of a CCN without any a priori knowledge about the system
is indeed a non-trivial problem. Our first attempt to develop a network construction was very
much inspired from some biological insights. This method is exposed next, followed by a section
dedicated to an extended version of this method that should be applicable for most cases.

4.1 Progressive Control Design

It is clear that the human system never learn how to perform a task at once but tends to
progressively learn the complexity of a task (Ronco, 1994; Szilas and Ronco, 1995). (Ronco,
1994; Szilas and Ronco, 1995) referred to this learning strategy as “the progressive complexity
learning”. This learning strategy has been applied in (Ronco et al., 1996b; Ronco et al., 1996¢)
to determine the controller network architecture required to balance the inverted pendulum (see
figure 10) around the angle # = 0. The inverted pendulum can be described by the following
equation:

smgl.sin (6 (t—1)) + 7

1 2
3ml

0= (9)

It is a simple problem if the pendulum is initialised near § = 0 but it is non-trivial if the
pendulum is initialised upside down i.e. 6y = 180. The latter case was studied.
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Figure 10: The inverted pendulum

To determine the network architecture a “progressive control design” was performed. The
underlying idea of this algorithm is to incrementally build the CCN whilst the initial transient
control error e (e = yo—r where yq is the initial system output and r is the set point, the control
goal) is progressively increased. In other words, instead of trying to control the pendulum
initialised upside down at once, a progressive increase of the complexity of the control problem
is achieved. Different successive control sequences, that differed only in the initial position of
the pendulum, were performed. The first control sequence was the simplest since the pendulum
was initialised very close to the control goal § = 0. The distance (i.e. the initial error e) between
the set point r and its initial position gy, was increased during the following stages. The last
stage of the progressive control design was the most difficult one since the distance e between
the set point r and the initial position yy was the maximum (see figure 11 for some of those
stages).

This learning strategy does not solve the problem of the network construction but it con-
stitutes a simple and very efficient method which ensure to drive the system in most of its
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Figure 11: Stages of the progressive control design applied to the inverted pendulum

operating conditions. On this basis it becomes straight forward to construct the CCN. During
the control of the system one looks at the actual control error. If the control error of the CCN
exceeds a certain threshold it means that the control is unsatisfactory. The control is efficient
enough in other cases. Hence, each time the control becomes unsatisfactory a controller is
added to the network. Otherwise, when the control is efficient enough, the activated controller
(only one controller is activated each time) is updated as well as its connected basis function
so that its region of activity covers the actual operating condition and the others for which it
was previously valid (see next section for more details about the way the controllers are added
to the network and the updating of the controllers design and their operating region).

This fairly simple method makes the network construction straightforward. However this
method can not be widely applied since not all the systems can be initialised at any position.
Thus, in this study this approach has been generalised to make it applicable to most of the
SISO systems. This method is exposed in the next section.

4.2 Incremental Network Construction

As just shown, the problem of the network construction can be easily solved if one can drive
the system into most of its operating conditions. This is indeed difficult to perform in the case
of a multi-dimensional clustering. The number of possibilities increases very quickly with the
system order. One way to reduce this problem would be to consider only operating conditions
where the system is in equilibrium. This would be too restrictive since many systems have very
few equilibrium points (e.g. unstable systems). Hence, this constitutes another argument for
constraining the clustering to a single quantity.

In most cases it is trivial to cover all the operating conditions involved by a single quantity.
The network construction can be achieved on-line whilst controlling the system. At each instant,
two actions are possible depending on the control performance achieved by the CCN. The
control accuracy is reflected by the control error € = § — y (where g is the desired output given
by a reference closed loop model) achieved by the CCN. If this error can not be determined the
modelling error é = y — ¢ can be used as an indirect measure of the control efficiency. This can
be done since each controller is designed from a model. Hence to be general let us consider a
control efficiency criteria € rather than the control error e or the modelling error €. There are

12



two possible actions to modify the architecture of the CCN:

o If e < threshold:

To facilitate the updating of the control design only one controller must be selected at
each instant among the two controllers selected by the CCN. If the operating condition
belongs to the region of activity of one controller this latter is automaticly selected. In the
other case, the most valid controller for the current operating condition must be selected.
To do so we can not use the control error because it is not possible to test the control
accuracy performed by each controller (only one control signal can be inputed to the plant
at each instant). The distance between the operating condition and the rbf attached to
each controller is not a relevant criteria to determine which of the two controllers is the
most effective. Therefore we use the modelling error é as an indirect measure of the
control efficiency. One selects the controller having its connected model performing the
best modelling of the actual input-output sample of the system behaviour.

The selected controller is then updated in order to integrate the new sample and to be
adapted to small changes in the environment. In addition, the rbf connected to the
selected controller is updated in order it covers the current operating condition as well as
previous ones for which the controller was previously valid.

e Ife>threshold :
A sampling of the system is achieved around the actual operating condition (this is
usually preferable than continuing the control that can become totally inaccurate if the
change of parameters value related to the operating condition is abrupt e.g. case of a
discontinuous function). From those samples a local model of the system is determined.
A linear controller is then designed from this model. Any conventional control design
methods can be used (e.g. pole placement, Model Reference Adaptive Controller. The
latter is used in this study. Details about this control design approach can be found in
the (Ronco, 1997) (chapter 1). A rbf is centred on the current operating condition and
its width is set to almost zero. The new controller-rbf pair is finally added to the CCN.

These features are the basis of the “Incremental Network Construction” (INC). This al-
gorithm has been first introduced in (Ronco and Gawthrop, submittedd). A pruning feature
has been recently added to the INC to remove the controllers that are not (or are unlikely
to be) robust enough (see (Ronco and Gawthrop, submitteda; Ronco and Gawthrop, 1997)).
It happens that some controllers perform very badly at some operating conditions. This can
be interpreted as a lack of robustness that could lead to unstable behaviour of the overall
controller. There are two cases involving a pruning. We prune the controllers that have not
learned enough i.e. the number of samples encountered is less than the number of parameters
of the model attached to the controller. We also prune the controllers which on average have
a modelling error greater than twice the threshold used for the network construction. This is
indeed arbitrary but sufficient in most cases to remove the undesirable controllers. A better
criteria could be found in the singularity vector expressed by the Singular Value Decomposition
(SVD) method used for the models approximation (see (Ronco, 1997) (chapter 2) for details).
However this possibility has not been sufficiently investigate to be exposed here.

After a while, when most of the operating conditions have been reviewed it is suggested to
switch from this learning stage to a generalisation where the architecture of the network is no
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longer updated. The controllers should remain adaptable in case some small changes occur in
the environment. The advantage of this generalisation stage is that it is much quicker than the
incremental one.

Although this algorithm could look dedicated for the construction of the CCN architecture,
it is straight forward to apply it for the construction of the Clustered Models Network. It is
even simpler since no control design will be required. The only difficulty without a controller
is to have a method to efficiently sample the plant, but this is a known problem in system
identification.

Note that in the context of gating through spatial clustering, this network construction
algorithm is the only one developed so far which takes into account the capability of the
models/controllers to determine their operating region. This is indeed an important feature
since this ensures that each model/controller is valid for its operating region. This is however
a common feature with another neural network which also applies a gating approach to select
different computing modules at each instant: the “Hierarchical Mixture of Experts” algorithm
developed by (Jacobs and Jordan, 1993) and extensively described in (Ronco, 1997) (chapter 1).

4.3 Illustration

In order to illustrate the capability of the INC associated to the CCN we will consider the
control of the first order system (1) used in the first section of this article. We recall the
function representing this system:

sy = 2.5u — 2sin(y) (10)

%, sin(y) is the system’s non-linearity and 0 < y < 7.

Each of the first order linear controllers composing the CCN are described by the following
equation which was derived in section 2:

where s =

1
u= (153515 — y(1.5351 - a)) (11)

where b and a are the two parameters of a first order local model of the system.

We wish to design a CCN adapted for the control of the system (1) in its full operating
range, that is to say y[0 m]. The control adaptation to this system by the CCN consisted in
a series of five control sequences with respective set points 7w % 1/5, m % 2/5, m x 3/5, w % 4/5
and 7. This simple learning strategy is important to ensure that the system has been properly
excited and therefore driven in most of its possible states. The INC was applied during this
learning stage. The threshold determining the control efficiency performed by the CCN was
set to 0.01 i.e. we wish the CCN to never make a control error ¢ = yy — y superior to 0.01. The
INC assigned five controllers to the CCN.

To test its generalisation capability, the CCN has been applied to control system (1) on
three different control situations depending on three different set points (i.e. control goals).
The three control sequences are characterised respectively by a set point r = pi/5, r = pi and
r = pi/5. This is the same control problem used in the first section of this article to evaluate
the efficiency of an adaptive controller whilst controlling the non-linear system (1).

The results obtained from the CCN are depicted in figure 12. In the bottom subplot of this
figure you can see the five local linearisations of the system used for the design of the controllers.
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It is clear that, if one limits each linearisation to its operating region (see the operating regions
of each controller on the x axis), the overall model is a perfect match of the non-linear system.
This is indeed the reason why the performance of the CCN is so good (see the top sub-plot
of figure 12). The system output (dashed line) matches perfectly the desired transient (plain
line). Note that on the y axis you can see the operating region of each of the controllers.
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Figure 12: Performance of the CCN whilst controlling system (1).
The top subplot depicts the control performance of this scheme concerning three consecutive control sequences.
During the first, second and third control sequences a desired transient (see plain line graphs) has to be achieved

whilst respectively driving the system (see dotted line graphs) toward the desired position y = £ = 0.63,y =7
and y = £ = 0.63. Five controllers are active at a different operating region depicted on the y axis. The bottom

subplot shows the system’s non-linearity in the range 0 < y < 7 and the five local linearisations of the system
used to design the controllers (see plain straight lines).

These results are far better than those obtained from the single adaptive controller (see
figure 2). More importantly this shows that although the ICCN is a simple method it is very
efficient. The CCN is not subject to the stability-plasticity dilemma and it is valid for the full
operating range of the system.

4.4 Concluding remarks

The architecture of the CCN and CMN have been presented. The CCN and CMN are re-
spectively modified versions of the LCN and LMN. The main difference is that the clustering
is achieved on a single quantity in the CCN whereas the LCN clusters on multiple quantities.
There are several important advantages arising from this simple clustering. Among them is
the facility to determine the neighbourhood of an operating condition. This leads to a better
interpolation capability of the network as well as a straight forward understanding of the net-
work activity. The activation of no more than two models/controllers each time has also the
advantage of implying very few computations.

Another important advantage of clustering on a single quantity is that it highly simpli-
fies the problem of developing an automatic architecture construction of the network of mod-
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els/controllers. The “Incremental Network Construction” (INC) algorithm was developed and
described in this study. This algorithm constructs the network architecture on-line according
to the performance of the network. It determines the number of models/controllers required
to model/control an unknown system as well as the operating region of each model/controller.
The INC therefore gives a complete autonomy to the CCN/CMN.

However, in case that more than a single quantity involves important non-linear behaviour
in the system, the clustering on a single quantity may not be efficient enough. Rather than clus-
tering on multiple quantities one should use an other approach to select the models/controllers.
A clustering free approach is described next.

5 Incremental Model-Controller Network

The ”Multiple Switched Model” (MSM) has been extensively studied in (Narendra et al., 1995;
Narendra and Balakrishan, 1997) (See (Ronco, 1997) (chapter 1) for details about this al-
gorithm). The MSM is a network of model-controller pairs where each controller is designed
from its connected model (See figure 13). There are various possibilities while composing the
network. One can use solely fixed or adaptive model-controller pairs or a combination of them.
The authors argue that the best compromise is obtained by using a certain number of fixed
models plus an adaptive and reinitialisable one. The best control performance and stability
results have been obtained from this scheme.

The selection of the controllers is achieved according to the performance of their connected
model. The network of models can therefore be interpreted as a gating system (See figure 14).
This is a clustering free approach where at each instant, the selected controller i is the one
having its connected model ¢ minimising the index J;(¢):

Ti(t) = ad?(t) + ﬁ/ (r)dr (12)

where ¢ is the modelling error, a > 0, # > 0 and A > 0 are designed parameters. a > 0 and
B > 0 respectively influence the instantaneous and long term memory of the index. This index
can be thought of a first order filter.

The properties of a simplified version of the MSM is investigated in this study: the ”Model-
Controller Network” (MCN). The index used takes only into consideration the integral of the
error over the immediately preceding interval of T units. This gives

wo = [ e (13)

This index should effective enough in this study since we are not considering any system
affected by disturbances and compared to the one used in the MSM it has the advantage of
requiring no setting of parameters.

All the model-controller pairs are adaptive but with no forgetting factor so that their ad-
aptability will diminish with the increase of data reviewed. To have all controllers adaptive
is not computationally demanding since only one controller is adapted each time (the one se-
lected). However the number of controllers will significantly affect the computing time as at
each instant all the models must be activated to determine their performance. This actually
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Figure 13: The controller network.
A network of feedback controllers. A gating sys-
tem is used to select only one controller at each
instant. Hence, the output of the network is al-
ways reduced to the output of a single controller.

Figure 14: The gating system of the mul-

tiple switched models.

It is composed of plant models each one connected
to a controller. The weight w; of a model i equal
1 if min(J;) or 0 otherwise. Hence, this scheme
implies the selection of only one controller at each
instant

implies far more computations than the selection of the controller using the clustering approach
described in the previous section.

Note that the “hysteresis” feature, introduced in (Middleton et al., 1988) and use also in
the MSM, is not involved in the MCN. The hysteresis is a time delay between the selection of
a new controller and its activation. This is to avoid instability that could arise from a quick
change of controllers. Since we are here only dealing with system having simple dynamics, this
feature should be of no use in our case.

In (Narendra et al., 1995; Narendra and Balakrishan, 1997) the parameters of the models
are initialised at a certain distance from their desired value. Different preinitialisations enable
the convergence of the model towards different solutions. However, a random initialisation of
the model should not ensure that the scheme will converge toward a solution. Moreover, the
number of controllers required to control an unknown system can not be determined a priori.
To use a high number of controllers to overcome this problem is certainly not a satisfactory
solution at least because of the high number of computations that it would implies. Hence,
here again the overall modelling and control of the plant should be significantly facilitated by
an incremental construction of the network of model-control pairs.

The general idea of the INC can be applied to the MCN. That is to say that the MCN can
be constructed according to the on-line control performance of the controller network. Actually,
the incremental process is simplified since only the controller attached to the model performing
the best according to the index (13) is selected at each instant rather than the two neighbours
of the operating condition in the CCN. However this method can only be used for control
purposes since the modelling performance of each model can only be determine a posteriori.
There are two possible actions according to the actual control error e:

o [fe <threshold:
The selected controller is updated in order to integrate the actual system input-output
sample and to be adapted to small changes in the environment.

e Ife > threshold :
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A sampling of the system is achieved around the actual operating condition (this is
usually preferable instead of continuing the control which can become totally inaccurate
if the change of parameters relating the operating condition is abrupt e.g. case of a
discontinuous function). From those samples a local model of the system is determined.
A linear controller is then designed from this model. Similar to the CCN, a Model
Reference Adaptive Controller design method is used in this study (see (Ronco, 1997)
(chapter 2) for details about this control design method). The new model-controller pair
is finally added to the MCN.

Similar to the CCN, there is in the INC a pruning of the controllers that are not performing
well enough i.e. their average control error is greater than twice the threshold. Indeed this
should not occur very often since a controller is added as soon as the control error exceeds the
threshold. However it can happen that a controller has not learned enough (i.e. the controller
has not reviewed enough system input-output samples). A controller must be selected to learn.
The fact that the controller is almost never selected means that it is of no use for the network.
It may be useless because it is not adapted well enough. Otherwise its connected model should
have performed well at some operating conditions and this would have implied the selection
of this controller. Hence, this is a simple but very effective way of determining what are the
undesirable controllers in the network. Note that, without any mean of biological mimetism,
this method is applied by biological systems to prune neurons. Neurons with low activity tend
to degenerate (or at least to be allocated to other tasks).

As well as with the CCN, it is suggested to apply the INC only during a learning stage.
After a while, when the system has been driven in most of its possible states, the INC should
be removed. It is not so much to speed up the process but to ensure a fixed structure of the
controller network necessary to be implemented to control real systems. By removing the INC
one makes the MCN entering a generalisation stage.

Note also that a similar technique than the INC is reported in (Narendra et al., 1995).
However, their method contains no pruning feature. This pruning should be vital to remove
inadapted controllers that are very likely to imply unstable behaviours in the MSM if they
come to be activated due to disturbances.

5.1 TIllustration

The control capability of the IMCN is going to be illustrated according to the non-linear system
(1) used previously to illustrate the control capability of the ICCN. Hence the INC is applied
to the MSM during the same learning stage than the one used for the creation of the CCN.
As a result six controllers were designed (instead of five in case of the ICCN). Each of the first
order linear controllers composing the MCN are described by the following equation that has
been derived in section 2:

1
u= (15351 — y(1.5351 — a)) (14)

where b and a are the two parameters of a first order local model of the system (1).

The results obtained from the IMCN during the same generalisation stage as for the [CCN
are depicted in figure 15. In the bottom subplot of this figure you can see the six local linear-
isations of the system obtained during the INC that were used for the indirect design of the
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controllers. These linearisations very accurately cover the system’s non-linearity. This implies
that the overall model developed by the IMCN is very accurate. This is why the overall con-
troller performs so well. As for the CCN, the transient of the system (dashed line) matches
perfectly the desired transient (plain line).

Hence, here again we see that the INC lead to a perfect network construction that involved
perfect control of the system.

First sequence Second sequence Third sequence
T T T T

Desired output
-—- System output

L
0 5 10 15 20 25 30
time

Multiple linearisations of the system non-linearity
2 T = T < T T T —=T

sin(y)
I

Figure 15: Performance of the IMCN whilst controlling system (1).
The top subplot depicts the control performance of this scheme concerning three consecutive control sequences.
During the first, second and third control sequences a desired transient (see plain line graphs) has to be achieved
whilst respectively driving the system (see dotted line graphs) toward the desired position y = £ = 0.63, y =«
and y = £ = 0.63. Six controllers are active for various operating regions. The bottom subplot shows the
system’s non-linearity in the range 0 < y < 7 and the six local linearisations of the system used to design the
controllers (see plain straight lines).

5.2 Concluding remarks

A simplified version of the MSM extensively studied in (Narendra and Balakrishan, 1997;
Narendra et al., 1995) has been described in this section: the “Model-Controller Network”
(MCN). The modelling performance index used to select the controllers is much simpler than
the one used in the MSM. Another difference is that in the MCN all the model-controller
pairs are adaptive. Referring to the stability results obtained and described in (Narendra and
Balakrishan, 1997), an important advantage of this scheme is the insurance of stability. However
one must be careful with this result. The robustness of the multiple controllers scheme should
be of prime interest since few inadapted but stable controllers could lead to an unstable overall
behaviour of the network. This is why a pruning of inconsistent approximations (e.g. model
developed from singular matrices) is necessary to avoid the above problem.

Note that the MSM lacks the possibility of interpolating between controller outputs. This
is essential to smooth the behaviour of the network. This possibility has not been investigated.
This should be a future area of research.
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We have seen that the INC is a very efficient technique to construct the MCN architecture.
The results obtained by this scheme were similar to the one obtained by the ICCN. Since the
MCN avoids the clustering problem of the CCN without adding significant drawbacks we could
argue that for control purposes the IMCN is a better solution than the ICCN. However to
discuss this further, in the next section will be compared these two approaches on a couple of
different control problems.

6 Illustration

So far a quite simple non-linear control problem has been used to illustrate the behaviour of
both the ICCN and the IMCN. The system (1) was first order and stable. The illustration
is going to be extended next by considering a second order unstable system: the inverted
pendulum. In the following section will be illustrated the problem of using a CCN to control a
system where more than one variable implies non-linearity into the system.

6.1 Control of a second order unstable non-linear system

In this section we are going to consider the control of the inverted pendulum (see figure 10as an
example of a second order unstable non-linear system. The equation of the inverted pendulum
is the following:

smgl.sin (6 (t—1)) + 7

1,72
3ml

0= (15)

where 0 is the angular acceleration of the pendulum and 6 is the angle of the pendulum. 7
is the torque in Newton meters applied to the pendulum by the controller. The mass of the
pendulum is m = 0.1kg, [ = 0.5m is its length and g = 0.81 is the gravity. The Euler method
is chosen for the integration.

This problem is trivial if the control is performed whilst the pendulum angle 6 < +12° since
in this region the pendulum behaves linearly. It becomes much more difficult to control the
pendulum as # is diverging from this region. The task of the controller will be to stabilise the
pendulum at three different angles that are respectively 6 = %w = 0.78rads, 6 = %’ﬂ' = 1.57rads
and 0 = %ﬂ = 2.35rads. These three pendulum positions are depicted in figure 16. These three
control sequences last 10sec each.

For each control sequence, the controllers are required to track a transient characterised
by no overshoot, a settling time of 5sec and a tolerance error of 1% of the set point r. This
specification gives rise to the following the 2nd order linear adaptive controllers (i.e. Model
Reference Adaptive Controller):

1
u = ™ (—=byu + 07 sr — (6] — ay)sy + 051 — (05 — az)y + ¢) (16)
2

where by, by, a; , as and ¢ are the parameters of a second order local model of the system and

07 = 1.5 and 0 = 1.84 are the parameters of the reference closed loop model (see (Ronco, 1997)
(chapter 2) for details).

20



0:=0.78rads 0¢=1.57rads ©t=2. 35rads

Figure 16: The three desired positions of the inverted pendulum

The same learning strategy as the one described earlier has been used to properly excite the
plant. That is to say that the learning stage consisted in five control sequences with respective
set points r = 2.5 % 1/5, r = 25%2/5, r = 25%3/5, r = 2.5 x4/5 and r = 2.5. The same
transients as during the generalisation stage (see above) have to be tracked during this stage.

At the end of the learning stage the INC had attributed five controllers to the ICCN and
nine to the IMCN. The results obtained by a single adaptive controller, an ICCN and an IMCN
are depicted in figure 17. It is clear that the two controller networks (see graphs IMCN and
ICCN transient) perform much better than the single adaptive controller (see graph MRAC
transient). The adaptive controller controls the system with a very slow transient and is
suffering the stability-plasticity dilemma (otherwise it would have performed well during the
second control sequence). The performance of the two controller networks are comparable.
During the first two control sequences they meet the control requirement: the system settles
down in about 5sec, there is no overshoot and the steady state error is less than 1% of the set
point. During the third control sequence the actual transient is slightly slower than the desired
one but the control requirement are almost meet.

The transient of the controlled input are plotted in figure 18 to show more clearly the
behaviour of the controller networks. We can see that they do not always behave very smoothly.
During the first control sequence the ICCN makes a sharp change of behaviour around ¢ = 5sec.
This is a very undesirable behaviour which could have easily yielded instability. This suggests
that a controller is inadapted around the region y = 2.35. By observing the operating region
of the controllers (see table 1) we see that the controller #5 is the one active for this region.
One could easily investigate the stability and robustness of this controller. Depending on the
results one could have decided to remove this controller. It was not removed because it was
assumed that this behaviour was due to an inadaptation of this controller (a significant change
between the parameters of its connected model occurred after this controller became activated).
The ICCN was reapplied to the control problem to validate this hypothesis. The results are
depicted in figure 19. The undesirable sharp behaviour has disappeared. The control is more
accurate.

This example was only meant to show how simple it is to understand the behaviour of the
ICCN since each controller has a clear region of activity defined by its attached rbf. This is
unfortunately not the case of the IMCN. We can not know easily the activity region of each
controller. If the IMCN behaves undesirably at a certain operating region it is difficult to
know which controller is responsible. For instance, during the last control sequence, the IMCN
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Figure 17: Control performance of a single adaptive controller, an ICCN and an IMCN whilst

controlling the inverted pendulum.

Three different control sequences of 10sec each had to be achieved. During the first, second and third control
sequences a desired transient (see plain line graphs) has to be achieved whilst respectively driving the system
(see respective dashed line graphs) toward the desired angular position 6 = %ﬂ' = 0.78rads, 6 = %ﬂ' = 1.57rads
and 0 = %71’ = 2.35rads.

Table 1: Operating region of the controllers composing the ICCN
Controller # | Operating region
1 0 <6 <0.8201
0.8201 < 6 < 0.9562
0.9563 < 6 < 1.5500
1.5502 < 0 < 2.3528
2.3531 < 6 < 2.5445

Tt W N

changes abruptly its behaviour approximatively at ¢ ~ 23sec. At this time the operating
region y = 6 & 1.45. This last information is irrelevant for the determination of the activated
controller. To determine the controller responsible for this undesirable behaviour each controller
has been associated to a rbf. The operating regions are given in table 2. Note that the region
of activity of each controller is only determined during the generalisation stage.

First, one will notice that there are a lot of overlaps. More importantly there are some
controllers (#4, #5 and #8) associated with a very small operating region. This could mean
that there are of no use for the control problem. Regarding the controllers operating around the
region y = # ~ 1.45, we can now see that they are two possible candidates: controller #3 and
#6. The values of the model parameter b; associated with the control input u (which highly
influences the control design) are depicted in the last row of table 2. We actually know from the
pendulum equation (15) that this parameter is ﬁ = 120.4819. Most of this models parameter
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Figure 18: Transient controlled input of a single adaptive controller, an ICCN and an IMCN.
These transients are associated to their control performances depicted in figure 17.

Table 2: Operating region of the controllers composing the IMCN

Controller # | Operating region Size by
1 0 <6 <1.2952 1.156692 | 113.0253
2 0.4239 < 6 < 0.8026 | 0.378670 | 116.3043
3 0.1314 < 0 < 1.5548 | 1.423441 | 98.1966
4 0.2561 < 6 < 0.2593 | 0.003202 | 129.0845
5 0.2771 < 6 < 0.2853 | 0.008208 | 118.6738
6 0.7095 < 6 < 2.3705 | 1.661001 | 134.7457
7 0.4637 < 6 < 1.3316 | 0.867870 | 116.4107
8 0<f<0 0 115.3445
9 0.1176 < 6 < 1.0255 | 0.907872 | 121.2787

value b, are fluctuating around 120.4819 except for the models attached to the controllers #3
and #6 which have respectively a parameter value b; = 98.1966 and b; = 134.7457. One should
notice also that these two controllers have the two largest operating regions. This means
those controllers are active at operating regions that are very different from each other and
thus disrupt the adaptation of these controllers. This problem has occurred because during
the generalisation stage no controller is added even if the network does not perform well.
Instead of forcing the use of the two unfitted controllers #3 and #6 for the operating region
around y = # =~ 1.45 a new controller should have been added. Although this inadaptation
does not disrupt significantly the control, for other situations this could have lead to unstable
behaviour of the IMCN. This suggests that one should make sure that most of the operating
conditions have been reviewed before ending the INC and switching from the learning stage to
the generalisation stage. Indeed, this recommendation holds also for the CCN.

In brief, the main point stressed by this control example is that the association of activity
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Figure 19: Control performance of the ICCN whilst controlling the inverted pendulum a second

time.

The top plot depicts the system transients obtained whilst controlling the pendulum toward the desired angular
position § = %n = 0.78rads, 6 = %w = 1.57rads and 6 = %w = 2.35rads. The bottom plot depicts the transient
controlled input.

regions to controllers (even if those regions are not used for the selection of the controllers)
highly simplifies the understanding of the network behaviour. We have also seen that the ICCN
and the IMCN perform equally well and much better than a single adaptive controller whilst
controlling a second order system having a unique variable implying a non-linear behaviour.
In the next section are presented some results obtained using the ICCN and the IMCN whilst
controlling a second order system having two variables implying non-linear behaviours.

6.2 Control of a second order system having two states implying
non-linear behaviours

This section illustrates the behaviour of the ICCN and IMCN whilst controlling a second
order system having two states implying a non-linear behaviour. The arbitrary system used is
described by the following second order equation:

s*y = 10u + 2sin(y) + cos(2sy) (17)

You see from this equation that the system non-linearity not only depends on the system
output y but also on the velocity of the system sy. This implies significantly different behaviour
at the beginning of the control (fast velocity) and at the end of the control when the system is
settling down.

The control problem consists of three different control sequences differing only on the set
points that are respectively r = %’ﬂ' =1.0472,r = %w = 1.5708 and r = 7. The 2nd order linear
controllers used here correspond to equation (16).
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After a learning stage similar to the one described in the previous section, the INC allocated
six controller to the ICCN and 10 to the IMCN. These numbers of controllers have a significant
impact on the control performances of the ICCN and IMCN (see figure 20 and figure 21). The
IMCN performs very well (perfect match of the IMCN transient with the Desired transient).
This contrasts with the poor control performance of the ICCN (and of the single adaptive
controller).

First sequence Second sequence Third sequence
T T T T

Desired transient
-—- ICCN transient
S IMCN transient
25 f s MRAC transient 4

y®

15

15
time
Figure 20: Control performance of a single adaptive controller, an ICCN and an IMCN whilst

controlling system (17).

Three different control sequences of 10sec each had to be achieved. During the first, second and third control
sequences a desired transient (see plain line graphs) had to be followed whilst respectively driving the system
(see respective dashed line graphs) toward the desired position y = %ﬂ' =1.0472, y = %ﬂ' =1.5708 and y = .
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Figure 21: Transient controlled input of a single adaptive controller, an ICCN and an IMCN
associated to their control performances depicted in figure 20.

These results were expected since the ICCN clustered on a single dimension (i.e. the system
output) which is in this case not the only one involving a non-linear behaviour in the system.
At the same operating region, the behaviour is significantly different depending on whether
the system is accelerating (e.g. start of a control sequence) or settling down (end of a control
sequence). The ICCN performs well to control the system with the set point r = 7 because it
encountered situations around y = 7 involving a settling down of the system but no situation
involving its acceleration. During the other control sequences there are operating regions where
both situations are encountered and a unique controller has to cope with them. Note that the

results are improved if the same ICCN is controlling for a second time system (17) but they

are still inaccurate (see figure 22).
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Figure 22: Control performance obtained whilst controlling system (17) a second time.
The top plot depicts the system transients obtained whilst controlling the system toward the desired position
Yy = ]§7T =1.0472, y = %ﬂ' = 1.5708 and y = w. The bottom plot depicted the transient controlled input.

The operating regions of each of the controllers composing the ICCN are summarised in
table 3. These operating regions differ totally from the ones involved by the IMCN (see table 2).
Most of the controllers of the IMCN have a large operating region that is overlapping with many
others. This means that there are many controllers involved in the same operating condition
y. A two dimensional clustering should clarify the behaviour of the IMCN. This was done by
clustering the controllers according to the system output y and its velocity sy (see figure 23).
This way, each controller appears to have a square region of activity over the operating space.
The fact that we can not identify clearly what is the operating region of each controller indicates
that a highly complex clustering (certainly not square) is taking place especially in the region
y[0 1] sy[0 0.6] where more than half of the controllers are overlapping. This is the only way
to cope with the highly non-linear behaviour of system (17). This complex network behaviour
would be difficult to obtain using a spatial clustering approach for the selection of the controllers.
It is clear from these results that the IMCN is a much more suitable approach than the ICCN
for the control of highly non-linear systems.

Table 3: Operating region of the controllers composing the ICCN

Controller # Operating region Size
1 —0.000001 < y < 0.510308 | 0.510309
2 0.510318 < y < 1.034262 | 0.523944
3 1.034274 < y < 1.554180 | 0.519906
4 1.554212 < y < 2.072184 | 0.517972
5 2.072217 < y < 2.589818 | 0.517601
6 2.590953 < y < 3.106402 | 0.515449
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Table 4: Operating region of the controllers composing the IMCN

Controller #

Operating region

Size

1

0.000616 < y < 0.600437
0.000134 < y < 0.853710
0.031017 < y < 1.047788
0.002177 < y < 0.923805
0.000000 < y < 1.411980
0.322573 < y < 2.102542
0.090697 < y < 2.008967

0.599821
0.853576
1.016772
0.921628
1.411980
1.779969
1.918270

0.759718
1.226541
1.313608

0.276597 < y < 1.036315
0.606431 < y < 1.832973
1.838017 < y < 3.151625
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Figure 23: Two dimensional operating regions of the controllers composing the IMCN

7 Conclusion

In this study was presented two controller networks which have in common a gating system
enabling them to select at each instant the currently valid local controllers of the plant. The
local controllers composing these gated controller networks are Model Reference Adaptive Con-
trollers (MRAC). A detailed description of such a controller and its properties can be found in
(Ronco, 1997) (chapter 2). Note that other kind of local controllers might be used as building
block of the controller networks.

One of the gated controller networks uses a spatial clustering approach to select the con-
trollers at each instant: the “Clustered Controller Network” (CCN) that shares many common
features with the “Local Controller Network” (LCN) developed by (Johansen and Foss, 1992; Jo-
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hansen and Foss, 1993). The main difference in the CCN is that, whatever the system charac-
teristics, the clustering used for the selection of the controllers is achieved on a single quantity.
This simplification is justified by several important advantages. The main advantages are the
simplification and speed-up of the controllers selection, the facilitation of the local plant ap-
proximations, the clarification of the overall behaviour of the CCN and the simplification of
the construction of the network architecture. The latter advantage enabled us to develop a
fairly simple algorithm to automatically construct the network architecture of the CCN: the
“Incremental Network Construction” (INC). The CCN together with the ICN lead to the “In-
cremental Clustered Controller Network” (ICCN).

The other gated controller network is clustering free in the sense that instead of clustering
the operating space for the selection of the controllers it uses the modelling performance of the
models attached to each of the controllers to achieve the controller selection. This approach
has been called the “Model-Controller Network” (MCN). The MCN is similar to the so called
“Multiple Switched Models” (Narendra et al., 1995; Narendra and Balakrishan, 1997). The
ICN, used for the construction of the CCN, has been adapted to construct the MCN. From the
ICN and the MCN arises the “Incremental Model-Controller Network” (IMCN).

An important feature of the ICN in both the CCN and MCN is the pruning of inadapted
controllers. Fairly simple heuristics are used to determine whether a controller is well adapted
or not. The average control error is one of the criteria. A more sensible criteria is the number
of input-output samples reviewed by a controller which, particularly in the case of the MCN,
indicates the inadaptation (or at least useless) of a controller. However, the singularity of
the matrix should be a much more relevant criteria to determine the adaptation quality of
a controller. This information is contained in the singular vector given by the SVD whilst
approximating the parameters of the models associated with the controllers (see (Ronco, 1997)
(chapter 2) for details).

Both the ICCN and the IMCN offer several important advantages compared to other ap-
proaches. Since the controllers composing these networks are linear, it should be simple to
analyse locally the properties of each controller and deduce general properties regarding the
overall behaviour of the network. For the same reason it is straightforward to determine the
parameter values of the controllers as linear regression methods can be applied. These two very
important advantages are missing in most of the other non-linear control schemes. Another ad-
vantage is the possibility for these controller networks to be adapted to the full operating range
of conditions involved by a non-linear system. This is why these schemes are not sensitive to the
stability-plasticity dilemma that largely affects a single adaptive controller. A last important
advantage is that the INC makes the CCN and the MCN two self-organising approaches. The
only system knowledge required to apply the ICCN and the IMCN is the system order. These
advantages highlight the high potential of the controller networks for the control of non-linear
systems.

Different examples of control of non-linear systems have been considered in order to illus-
trate the behaviour of the ICCN and the IMCN. It is very clear that both these schemes are
performing much better than a single adaptive controller. Perfect matching of desired tran-
sients have been obtained whilst controlling highly non-linear systems. Moreover, the INC
allocated an optimum number of controllers to the two controller networks. We have also seen
that the understanding of the networks behaviour was straightforward due to the knowledge of
the region of activity of each controller.
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However the ICCN appears to have serious problems in coping with non-linear systems
having more than a single variable implying a non-linear behaviour. The IMCN does not have
such a problem. This high sensitivity to the clustering space order is the main drawback limiting
the use of the ICCN or any other approaches involving an operating space clustering for the
controllers selection.

This does not imply to reject the ICCN. It can be useful for situations where the IMCN can
not be applied. It is clear that the controllers composing the IMCN must be designed from a
local system model. Without a model one cannot select the controllers and therefore cannot use
the IMCN. For instance it may be difficult to apply this approach using model based predictive
controllers as building blocks of the IMCN. This is inconvenient since such a controller is a
powerful approach to handle systems with complex dynamics. In addition, it is not possible to
use the IMCN for modelling purposes. Hence, the ICCN has a wide range of applicability over
the IMCN.

Moreover, the spatial clustering itself has the important advantage of clarifying the under-
standing of the controller networks’ behaviour. This is why rbfs have been attached to the
controllers composing the CCN as well as for the MCN. In the MCN the rbfs are not used for
the selection of the controllers as in the former case but are simply used to facilitate the under-
standing of its behaviour. A powerful approach would consist of combining these two gating
schemes (the spatial clustering and the clustering free approach). The number of controllers in
a MCN could be rather large depending of the non-linearity and the order of the system. In
such a case, for the controller selection, the activation at each instant of all the models could
involve too many computations to be feasible. One way to overcome this problem would be to
activate only the models which have an operating region covering the actual operating condition
(the clustering on a single quantity would be satisfactory in this case). This constitutes one of
our future works in this area.

30



References

Carpenter, G. A. and S. Grossherg (1988). The art of adaptive pattern recognition by a self-
organising neural network. IEEE Computer 21(3), 77-88.

Jacobs, R.A. and M.I. Jordan (1993). Learning piecewise control strategies in a modular neural
network architecture. IEEE Transaction on Systems, Man, and Cybernetics 23(2), 337—
345.

Johansen, T. A. and B. A. Foss (1992). A narmax model representation for adaptive control
based on local model. Modeling, Identification, and control 13(1), 25-39.

Johansen, T. A. and B. A. Foss (1993). Constructing NARMAX models using ARMAX models.
Int. J. Control 58, 1125-1153.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
Cybernetics 43, 59-69.

Middleton, R. H., G. C. Goodwin, D. J. Hill and D. Q. Mayne (1988). Design issues in adaptive
control. IEEE Transaction on Automatic Control 33(1), 50-58.

Morse, A. S. (1990). Toward a unified theory of parameter adaptive control tunability. IEEE
Transaction on Automatic Control 35(9), 1002 1012.

Morse, A. S., D. Q. Mayne and G. C. Goodwin (1992). Applications of hysteresis switching in
parameter adaptive control. IEEE Transaction on Automatic Control 37(9), 1343 1354.

Narendra, K. S. and J. Balakrishan (1997). Adaptive control using multiple models. IEEE
transactions on Automatic Control 42(2), 171 187.

Narendra, Kumpati S., Jeyendran Balakrishnan and Kemal M. Ciliz (1995). Adaptation and
learning using multiple models, switching, and tuning. IEEE Control Systems 3, 37 51.

Poggio, T. and F. Girosi (1990). Networks for approximation and learning. Proceedings of the
IEEE 78, 1481-1497.

Ronco, Eric (1994). Apprentissage a complexite progressive dans les systemes connexionnistes.
Master’s thesis. Institut National Polytechnique de Grenoble. Grenoble, France.

Ronco, Eric (1997). Incremental Polynomial Controller Networks: two self-organising non-linear
controllers. PhD thesis. Faculty of Mechanical Engineering, University of Glasgow.

Ronco, Eric and Peter J. Gawthrop (1997). Incremental model reference adaptive polyno-
mial controllers network. In: Proceeding of the IEEE Conference on Decision and Control

(CDC’97). (In Press).

Ronco, Eric and Peter J. Gawthrop (submitteda). Incremental model reference adaptive poly-
nomial controllers network. International Journal of Systems Science.

31



Ronco, Eric and Peter J. Gawthrop (submittedd). Polynomial models network for system mod-
elling and control. Neural Computing Survey.

Ronco, Eric, Henrik Gollee and Peter J. Gawthrop (1996a). Modular neural network and self
decomposition. Technical Report CSC-96012. Centre for system and control, U. of glasgow,
UK. Available at www.mech.gla.ac.uk/ ericr/pub/mnnsd.ps.Z.

Ronco, Eric, Peter J. Gawthrop and Mohamed Abderrahim (1996b). Progressive local control.
In: World Automatic Conference. pp. 637 642.

Ronco, Eric, Peter J. Gawthrop and Yasmine Mather (1996¢). Incremental modular control-
lers network. In: Proceeding of the International Conference on Intelligent and Cognitive

Systems (IC1CS’96).

Szilas, N. and E. Ronco (1995). Action for learning in non-symbolic systems. In: Furopeen
Conference on Cognitive Science.

Weller, S. R. and G. C. Goodwin (1994). Hysteresis switching adaptive control of linear mul-
tivariable systems. IEEE Transaction on Automatic Control 39(7), 1360 1375.

32



