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The goal of this chapter is to describe the contemporary status of nonuniform
hyperbolicity theory. We present the core notions and results of the theory as
well as discuss recent developments and some open problems. We also describe
essentially all known examples of nonuniformly hyperbolic systems. Following the
principles of the Handbook we include informal discussions of many results and
sometimes outline their proofs.

Originated in the works of Lyapunov [170] and Perron [193, 194] the nonuniform
hyperbolicity theory has emerged as an independent discipline in the works of Os-
eledets [191] and Pesin [197]. Since then it has become one of the major parts of
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the general dynamical systems theory and one of the main tools in studying highly
sophisticated behavior associated with “deterministic chaos”. We refer the reader
to the article [105] by Hasselblatt and Katok in Volume 1A of the Handbook for
a discussion on the role of nonuniform hyperbolicity theory, its relations to and
interactions with other areas of dynamics. See also the article [104] by Hasselblatt
in the same volume for a brief account of nonuniform hyperbolicity theory in view
of the general hyperbolicity theory, and the book by Barreira and Pesin [24] for a
detailed presentation of the core of the nonuniform hyperbolicity theory.

Nonuniform hyperbolicity conditions can be expressed in terms of the Lyapunov
exponents. Namely, a dynamical system is nonuniformly hyperbolic if it admits
an invariant measure with nonzero Lyapunov exponents almost everywhere. This
provides an efficient tool in verifying the nonuniform hyperbolicity conditions and
determines the importance of the nonuniform hyperbolicity theory in applications.

We emphasize that the nonuniform hyperbolicity conditions are weak enough
not to interfere with the topology of the phase space so that any compact smooth
manifold of dimension > 2 admits a volume-preserving C*° diffeomorphism which
is nonuniformly hyperbolic. On the other hand, these conditions are strong enough
to ensure that any C**® nonuniformly hyperbolic diffeomorphism has positive en-
tropy with respect to any invariant physical measure (by physical measure we mean
either a smooth measure or a Sinai-Ruelle-Bowen (SRB) measure). In addition,
any ergodic component has positive measure and up to a cyclic permutation the re-
striction of the map to this component is Bernoulli. Similar results hold for systems
with continuous time.

It is conjectured that dynamical systems of class C'*t® with nonzero Lyapunov
exponents preserving a given smooth measure are typical in some sense. This
remains one of the major open problems in the field and its affirmative solution
would greatly benefit and boost the applications of the nonuniform hyperbolicity
theory. We stress that the systems under consideration should be of class '+
for some a > 0: not only the nonuniform hyperbolicity theory for C! systems is
substantially less interesting but one should also expect a “typical” C' map to have
some zero Lyapunov exponents (unless the map is Anosov).

In this chapter we give a detailed account of the topics mentioned above as well
as many others. Among them are: 1) stable manifold theory (including the con-
struction of local and global stable and unstable manifolds and their absolute con-
tinuity); 2) local ergodicity problem (i.e., finding conditions which guarantee that
every ergodic component of positive measure is open (mod 0)); 3) description of
the topological properties of systems with nonzero Lyapunov exponents (including
the density of periodic orbits, the closing and shadowing properties, and the ap-
proximation by horseshoes); and 4) computation of the dimension and the entropy
of arbitrary hyperbolic measures. We also describe some methods which allow one
to establish that a given system has nonzero Lyapunov exponents (for example, the
cone techniques) or to construct a hyperbolic measure with “good” ergodic proper-
ties (for example, the Markov extension approach). Finally, we outline a version of
nonuniform hyperbolicity theory for systems with singularities (including billiards).

The nonuniform hyperbolicity theory covers an enormous area of dynamics and
despite the scope of this survey there are several topics not covered or barely men-
tioned. Among them are nonuniformly hyperbolic one-dimensional transformations,
random dynamical systems with nonzero Lyapunov exponents, billiards and related
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systems (for example systems of hard balls), and numerical computation of Lya-
punov exponents. For more information on these topics we refer the reader to the
articles in the Handbook [90, 93, 124, 143, 147]. Here the reader finds the ergodic
theory of random transformations [143, 93] (including a version of Pesin’s entropy
formula in [143]), nonuniform one-dimensional dynamics [168, 124], ergodic proper-
ties and decay of correlations for nonuniformly expanding maps [168], the dynamics
of geodesic flows on compact manifolds of nonpositive curvature [147], homoclinic
bifurcations and dominated splitting [209] and dynamics of partially hyperbolic
systems with nonzero Lyapunov exponents [106]. Last but no least, we would like
to mention the article [90] on the Teichmiiller geodesic flows showing in particular,
that the Kontsevich—Zorich cocycle over the Teichmiiller flow is nonuniformly hy-
perbolic [89]. Although we included comments of historical nature concerning some
main notions and basic results, the chapter is not meant to present a complete his-
torical account of the field.
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in debt to D. Dolgopyat, A. Katok, and the referees for valuable comments. L. Bar-
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partially supported by the National Science Foundation. Some parts of the chapter
were written when Ya. Pesin visited the Research Institute for Mathematical Sci-
ence (RIMS) at Kyoto University. Ya. Pesin wishes to thank RIMS for hospitality.

1. LYAPUNOV EXPONENTS OF DYNAMICAL SYSTEMS

Let f*: M — M be a dynamical system with discrete time, ¢t € Z, or continuous
time, ¢ € R, of a smooth Riemannian manifold M. Given a point z € M, consider
the family of linear maps {d, f*} which is called the system in variations along the
trajectory ft(z). It turns out that for a “typical” trajectory one can obtain a suffi-
ciently complete information on stability of the trajectory based on the information
on the asymptotic stability of the “zero solution” of the system in variations.

In order to characterize the asymptotic stability of the “zero solution”, given a
vector v € T, M, define the Lyapunov exponent of v at = by
+(

— 1
X (@) = T loglldafol]

For every € > 0 there exists C = C(v,&) > 0 such that if ¢ > 0 then
o ftol) < CeOT @0 o).

The Lyapunov exponent possesses the following basic properties:

1. xT(z,av) = xT(z,v) for each v € V and a € R\ {0};

2. xM(z,v+w) < max{x " (x,v), x(z,w)} for each v, w € V;

3. xT(z,0) = —c0.
The study of the Lyapunov exponents can be carried out to a certain extent using
only these three basic properties. This is the subject of the abstract theory of
Lyapunov exponents (see [24]). As a simple consequence of the basic properties we

obtain that the function x*(z,-) attains only finitely many values on T,,M \ {0}.
Let p*(z) be the number of distinct values and

Xf(m) <-- < X;+(z)($)»
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the values themselves. The Lyapunov exponent x*(z,-) generates the filtration V;
of the tangent space T, M

{0} = Vi (@) SV (0) G - G Vi o) (@) = T,

where V" (z) = {v € T, M : x(2,v) < x; (¥)}. The number
k(@) = dim V' (@) — dim V,E (2)
is the multiplicity of the value x; (z). We have

pt(x)

Z = dim M.

The collection of pairs

Spx* (@) = {(xi (2), K (2)) : 1 <i < p*(2)}
is called the Lyapunov spectrum of the exponent x*(z, ).
The functions x; (z), p*(x), and k] (z) are invariant under f and (Borel) mea-
surable (but not necessarily continuous).
One can obtain another Lyapunov exponent for f by reversing the time. Namely,
for every x € M and v € T, M let

— 1
X (z,v) = lim 710g||dzftv||.

t——o0 | |

The function x~(z,-) possesses the same basic properties as x(z,-) and hence,
takes on finitely many values on T, M \ {0}:

Xl_(x) > > X;,($)(£),
where p~ (z) < dim M. Denote by V the filtration of T,, M associated with x~(z, -):
TzM:Vf(w) DV?(I)( )DV () +1( z) = {0},
where V;” (z) = {v € T, M : x " (z,v) < x; (z)}. The number
K (@) = dim V" (2) — dim V.7, (2)
is the multiplicity of the value x; (). The collection of pairs
Spx” () ={(x; (@), ki (2)):i=1,....p" (2)}

is called the Lyapunov spectrum of the exponent x~ (z, )

We now introduce the crucial concept of Lyapunov regularity. Roughly speaking
it asserts that the forward and backward behavior of the system along a “typical”
trajectory comply in a quite strong way.

A point z is called Lyapunov forward reqular point if

p* ()
hm flog|detd It = Z kf(2)xi (2).
i=1
Similarly, a point z is called Lyapunov backward regular if

p_ (=)

Jim Hlog\detd oSt = Z k7 (2)x; ().

If a point x is forward (backward) regular then 0 is any point along its trajectory
and we can say that the whole trajectory is forward (backward) regular. Note
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that there may be trajectories which are neither forward nor backward regular and
that forward (backward) regularity does not necessarily imply backward (forward)
regularity (an example is a flow in R? that progressively approaches zero and infinity
when time goes to 400, oscillating between the two, but which tends to a given
point when time goes to —oo).

Given z € M, we say that the filtrations V" and V. comply if:

L pt(e) = p~(2) = p(a);
2. the subspaces E;(z) = V" (z) NV, (x), i = 1, ..., p(z) form a splitting of
the tangent space

(x)
T,M = @ E;(z).
=1

We say that a point z is Lyapunov reqular or simply regular if:

1. the filtrations V} and V. comply;
2. fori=1, ..., p(z) and v € E;(z) \ {0} we have

def

o1 .
Jim —logllde fo]| = X (2) = —xi (#) = xi(@)

with uniform convergence on {v € E;(x) : ||v]| = 1};
3.
1 p(w)
. =+ t _ ) . )
t_l}inoo ; log|det d,. f*] ; xi(z) dim E;(z).

Note that if = is regular then so is the point f(z) for any ¢ and thus, one can
speak of the whole trajectory as being regular.

In order to simplify our notations in what follows, we will drop the superscript
+ from the notation of the Lyapunov exponents and the associated quantities if it
does not cause any confusion.

The following criterion for regularity is quite useful in applications. Denote by
V(v1,...,vx) the k-volume of the parallelepiped defined by the vectors vy, ..., vg.

Theorem 1.1 (see [58]). If x is Lyapunov regular then the following statements
hold:

1. for any vectors vy, ..., vp € T, M there exists the limit
. 1
tl}glm n log V(dwftvla R dw.ftvk);
if, in addition, vy, ..., v € Ej(x) and V(v1,...,v;) # 0 then
1
, lilﬂr:n n log V(dy ffv1,. .., de ffor) = xi(2)k;
2. ifv e Eij(x) \ {0} and w € Ej(z) \ {0} with i # j then
1
lim - log|sin Z(d, f'v, dy ffw)| = 0.
t—too t
Furthermore, if these properties hold then x is Lyapunov reqular.

Forward and backward regularity of a trajectory does not automatically yields
that the filtrations comply and hence, forward and backward regularity do not, in
general, imply Lyapunov regularity. Roughly speaking the forward behavior of a
trajectory may not depend on its backward behavior while Lyapunov regularity
requires some compatibility between the forward and backward behavior expressed



6 LUIS BARREIRA AND YAKOV PESIN

in terms of the filtrations V,+ and V,-. However, if a trajectory {f"(x)} returns
infinitely often to an arbitrary small neighborhood of x as n — 400 one may expect
the forward and backward behavior to comply in a certain sense.

The following celebrated result of Oseledets [191] gives a rigorous mathematical
description of this phenomenon and shows that regularity is “typical” from the
measure-theoretical point of view.

Theorem 1.2 (Multiplicative Ergodic Theorem). If f is a diffeomorphism of a
smooth Riemannian manifold M, then the set of Lyapunov regular points has full
measure with respect to any f-invariant Borel probability measure on M.

This theorem is a particular case of a more general statement (see Section 5.3).

The notion of Lyapunov exponent was introduced by Lyapunov [170], with back-
ground and motivation coming from his study of differential equations. A compre-
hensive but somewhat outdated reference for the theory of Lyapunov exponents as
well as its applications to the theory of differential equations is the book of Bylov,
Vinograd, Grobman, and Nemyckii [58] which is available only in Russian. A part
of this theory is presented in modern language in [24].

The notion of forward regularity originated in the work of Lyapunov [170] and
Perron [193, 194] in connection with the study of the stability properties of solutions
of linear ordinary differential equations with nonconstant coefficients (see [24] for a
detailed discussion).

2. EXAMPLES OF SYSTEMS WITH NONZERO EXPONENTS

2.1. Hyperbolic invariant measures. Smooth ergodic theory studies topologi-
cal and ergodic properties of smooth dynamical systems with nonzero Lyapunov
exponents. Let f be a diffeomorphism of a complete (not necessarily compact)
smooth Riemannian manifold M. The map f should be of class at least C1+2,
a > 0. We assume that there exists an f-invariant set A with the property that for
every x € A the values of the Lyapunov exponent at x are nonzero. More precisely,
there exists a number s = s(x), 1 < s < p(x) such that

Xl(x) << Xs(w) <0< Xs+1(x) << Xp(m)(x) (21)

We say that f has nonzero exponents on A. Let us stress that according to our
definition there should always be at least one negative value and at least one positive
value of the exponent.

Assume now that f preserves a Borel probability measure v on M. We call
v hyperbolic if (2.1) holds for almost every x € M. It is not known whether a
diffeomorphism f which has nmonzero exponents on a set A possesses a hyperbolic
measure v with v(A) = 1.

In the case v is ergodic the values of the Lyapunov exponent are constant almost
everywhere, i.e., k;(x) = k¥ and x;(z) = x¥ fori = 1,...,p(x) = p¥. The collection
of pairs

Spx” ={(xi,ki):i=1,...,p"}
is called the Lyapunov spectrum of the measure. The measure v is hyperbolic if
none of the numbers x in its spectrum is zero.

We now discuss the case of dynamical systems with continuous time. Let f! be
a smooth flow on a smooth Riemannian manifold M. It is generated by a vector
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field X on M such that X (z) = df;im) |t=o. Clearly, x(z,v) = 0 for every v in the
direction of X (), i.e., for v = aX (z) with some o € R.

We say that the flow f! has nonzero exponents on an invariant set A if for every
x € A all the Lyapunov exponents, but the one in the direction of the flow, are
nonzero, at least one of them is negative and at least one of them is positive. More

precisely, there exists a number s = s(z), 1 < s < p(z) — 1 such that

X1(z) <0 < xs(®) < Xsp1(2) = 0 < xsq2(T) < - < Xp(a) (2), (2.2)

where xs41(z) is the value of the exponent in the direction of X (x).

Assume now that a flow f? preserves a Borel probability measure v on M. We
call v hyperbolic if (2.2) holds for almost every x € M.

There are two classes of hyperbolic invariant measures on compact manifolds for
which one can obtain a sufficiently complete description of its ergodic properties.
They are:

1. smooth measures, i.e., measures which are equivalent to the Riemannian vol-
ume with the Radon—-Nikodim derivative bounded from above and bounded
away from zero (see Section 11);

2. Sinai-Ruelle-Bowen measures (see Section 14).

Dolgopyat and Pesin [78] proved that any compact manifold of dimension > 2
admits a volume-preserving diffeomorphism with nonzero Lyapunov exponents, and
Hu, Pesin and Talitskaya [121] showed that any compact manifold of dimension > 3
admits a volume-preserving flow with nonzero Lyapunov exponents; see Section 13.1
for precise statements and further discussion. However, there are few particular
examples of volume-preserving systems with nonzero Lyapunov exponents. In the
following subsections we present some basic examples of such systems to illustrate
some interesting phenomena associated with nonuniform hyperbolicity.

2.2. Diffeomorphisms with nonzero exponents on the 2-torus. The first
example of a diffeomorphism with nonzero Lyapunov exponent, which is not an
Anosov map, was constructed by Katok [130]. This is an area-preserving ergodic
(indeed, Bernoulli) diffeomorphism G2 of the two-dimensional torus T? which is
obtained by a “surgery” of an area-preserving hyperbolic toral automorphism A
with two eigenvalues A > 1 and A~! < 1. The main idea of Katok’s construction
is to destroy the uniform hyperbolic structure associated with A by slowing down
trajectories in a small neighborhood U of the origin (which is a fixed hyperbolic
point for A). This means that the time, a trajectory of a “perturbed” map Gz stays
in U, gets larger and larger the closer the trajectory passes by the origin, while the
map is unchanged outside U. In particular, it can be arranged that the trajectories,
starting on the stable and unstable separatrices of the origin, have zero exponents
and thus, Gz is a not an Anosov map. Although a “typical” trajectory may spend
arbitrarily long periods of time in U, the average time it stays in U is proportional to
the measure of U and hence, is small. This alone does not automatically guarantee
that a “typical” trajectory has nonzero exponents. Indeed, one should make sure
that between the time the trajectory enters and exits U a vector in small cone
around the unstable direction of A does not turn into a vector in a small cone
around the stable direction of A. If this occurs the vector may contract, while
travelling outside U, so one may loose control over its length.

The construction depends upon a real-valued function 1) which is defined on the
unit interval [0, 1] and has the following properties:



8 LUIS BARREIRA AND YAKOV PESIN

1 is a C'*° function except at the origin;
¥(0) = 0 and ¥(u) =1 for u > rg where 0 < g < 1;
' (u) > 0 for every 0 < u < 79;
. the following integral converges:
Lodu <
— < 0.
o Y(u)
Consider the disk D, centered at 0 of radius r and a coordinate system (s1, $2)
in D, formed by the eigendirections of A such that

W=

D, ={(s1,$2) : s12 4892 < T2}.

Observe that A is the time-one map of the flow generated by the following system
of differential equations:

51 = 81 log )\, 32 = —S8o IOg A

Fix a sufficiently small number r; > ¢ and consider the time-one map g generated
by the following system of differential equations in D, :

51 = slw(slz + 322) log A, §9 = 7321/1(512 + 522) log A. (2.3)

Our choice of the function 1 guarantees that g(D,,) C D,, for some ro < r1, and
that g is of class C*° in D, \ {0} and coincides with A in some neighborhood of
the boundary 0D, . Therefore, the map

_JA(@) ifzeT?\D,,
Gle) = {g(x) ifexe D,

defines a homeomorphism of the torus T? which is a C> diffeomorphism everywhere
except at the origin. The map G(z) is a slowdown of the automorphism A at 0.
Denote by W* and W* the projections of the eigenlines in R? to T? corresponding
to the eigenvalues A and A=, Set W = W*UW?* and X = T?\ W. Note that the
set W is everywhere dense in T?.
Let z = (0,s2) € D,., N W?. For a vertical vector v € T, T?,

Tim 10g|52(t)|

x(w,v) =, lm ——
_ T /A e 2
= lim (logls2(t)])" =  lim (—(s2(t)°)log ),

where s5(t) is the solution of (2.3) with the initial condition s2(0) = s2. In view
of the choice of the function 1, we obtain that x(z,v) = 0. Similarly, x(z,v) =0
whenever x, v € W*. In particular, G is not an Anosov diffeomorphism.

Choose z € X \ D,, and define the stable and unstable cones in T, T? = R? by

C*(z) = {(v1,v2) € R? : oy | < aluaf},
C"(z) = {(v1,v2) € R? : |vg] < afuyl},
where v; € W¥ vy € W* and 0 < o < 1/4. The formulae

E*(x) = () dGTICH (G (x), E“(x)=()dG'C*(G(x))

Jj=0 Jj=0
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define one-dimensional subspaces at = such that x(z,v) < 0 for v € E*(x) and
x(xz,v) > 0 for v € E¥(z). The map G is uniformly hyperbolic on X \ D,,: there
is a number p > 1 such that for every z € X \ D,,,

1

S 1 - U
[dG|E®(z)]| < m [dG—H E* ()]

One can show that the stable and unstable subspaces can be extended to W\ {0}
to form two one-dimensional continuous distributions on T2\ {0}.

The map G preserves the probability measure dv = & Lk dm where m is area
and the density k is a positive C'*° function that is infinite at 0. It is defined by
the formula

1 otherwise

Ko = Kk dm.
’]1‘2

Consider the map ¢ of the torus given by

2 2 1/2
1 s1°+82 du
90(81782) = m (/0 1/)(u)> (81,82) (2.4)

in D,., and ¢ = Id in T?\ D,,. It is a homeomorphism and is a C*° diffeomorphism
except at the origin. It also commutes with the involution I(t1,t2) = (1—1t1,1—1t2).
The map Gr2 = ¢ o G o ¢! is of class C°°, area-preserving and has nonzero
Lyapunov exponents almost everywhere. One can show that Gtz is ergodic and is
a Bernoulli diffeomorphism.

/4,(517 82) — {(1/1(512 + 822))71 if (81, 32) €D, ’

and

2.3. Diffeomorphisms with nonzero exponents on the 2-sphere. Using the
diffeomorphism G2 Katok [130] constructed a diffeomorphisms with nonzero ex-
ponents on the 2-sphere S2. Consider a toral automorphism A of the torus T?
given by the matrix A = (3 ). It has four fixed points z; = (0,0), z2 = (1/2,0),
x3 = (0,1/2) and z4 = (1/2,1/2).

For i = 1, 2, 3, 4 consider the disk D! centered at x; of radius r. Repeating
the construction from the previous section we obtain a diffeomorphism g; which
coincides with A outside Dil. Therefore, the map

 [A@@) fzeT\D
Gl(x)_{gi(x) if z € DI,

defines a homeomorphism of the torus T? which is a C* diffeomorphism everywhere
expect at the points z;. Here D = U?Zl Dil. The Lyapunov exponents of G are
nonzero almost everywhere with respect to the area.

Consider the map

pi(z) ifxe D!
p(x) = { ) 1
T otherwise,

where ¢; are given by (2.4) in each disk D}, . It is a homeomorphism of T? which is
a C*° diffeomorphism everywhere expect at the points z;. The map G2 = po Gy o
o~ is of class C°°, area-preserving and has nonzero Lyapunov exponents almost
everywhere.
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Consider the map ¢: T2 — S? defined by

C( ) ( 512 7522 28182 )
S1,S8 = s
b V512 + 522 V512 + 592

This map is a double branched covering and is C'°° everywhere except at the
points x;, ¢ = 1, 2, 3, 4 where it branches. It commutes with the involution I
and preserves the area. Consider the map Gg> = ¢ 0o Gy 0 (™. One can show that
it is a C*° diffeomorphism which preserves the area and has nonzero Lyapunov
exponents almost everywhere. Furthermore, one can show that Gg2 is ergodic and
indeed, is a Bernoulli diffeomorphism.

2.4. Analytic diffeomorphisms with nonzero exponents. We describe an ex-
ample due to Katok and Lewis [134] of a volume-preserving analytic diffeomorphism
of a compact smooth Riemannian manifold. It is a version of the well-known blow-
up procedure from algebraic geometry.

Setting X = {x € R™: ||z|| > 1} consider the map ¢: R™ \ {0} — X given by

(lall” + 1)
e

p(z) =

It is easy to see that ¢ has Jacobian 1 with respect to the standard coordinates
on R".

Let A be a linear hyperbolic transformation of R™. The diffeomorphism f =
@po Aop~! extends analytically to a neighborhood of the boundary which depends
on A. This follows from the formula

Sy (el =1 1 )1/”

poder@ = (N o) 4
Let (r,6) be the standard polar coordinates on X so that X = {(r,0): r > 1,0 €
S™=1}. Introducing new coordinates (s,), where s = r™ — 1, observe that these
coordinates extend analytically across the boundary and have the property that the
standard volume form is proportional to ds A df. Let B be the quotient of X under
the identification of antipodal points on the boundary. The map f induces a map
F of B which preserves the volume form ds A df, has nonzero Lyapunov exponents
and is analytic.

2.5. Pseudo-Anosov maps. Pseudo-Anosov maps were singled out by Thurston
in connection with the problem of classifying diffeomorphisms of a compact C'*°
surface M up to isotopy (see [240, 85]). According to Thurston’s classification,
a diffeomorphism f of M is isotopic to a homeomorphism ¢ satisfying one of the
following properties (see [85, Exposé 9]):
1. g is of finite order and is an isometry with respect to a Riemannian metric
of constant curvature on M;
2. gis a “reducible” diffeomorphism, that is, a diffeomorphism leaving invariant
a closed curve;
3. g is a pseudo-Anosov map.

Pseudo-Anosov maps are surface homeomorphisms that are differentiable except
at most at finitely many points called singularities. These maps minimize both
the number of periodic points (of any given period) and the topological entropy
in their isotopy classes. A pseudo-Anosov map is Bernoulli with respect to an
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absolutely continuous invariant measure with C'°° density which is positive except
at the singularities (see [85, Exposé 10]).

We proceed with a formal description. Let {x1,...,2,,} be a finite set of points
and v a Borel measure on M. Write D, = {2z € C: |z| < a}.
We say that (F,v) is a measured foliation of M with singular points x1, ..., T
if F is a partition of M for which the following properties hold:
1. there is a collection of C'*° charts ¢: Uy — C for k = 1, ..., £ and some
¢>m with Us_, U = M;
2. for each k = 1, ..., m there is a number p = p(k) > 3 of elements of F

meeting at xj such that:
(a) pr(zr) =0 and i (Uy) = D, for some aj > 0;
(b) if C is an element of F then C' N Uy is mapped by ¢y to a set

{z : Im(2P/?) = constant} N @i (Uy);
(¢) the measure v|Uy, is the pullback under ¢ of
Im(dz"/?)| = [Im(2P~/2dz)|;

3. for each k > m we have:
(a) ok (Ug) = (0,b1) x (0,c;) C R? = C for some by, ¢ > 0;
(b) if C is an element of F then C' N Uy is mapped by ¢y to a segment

{(z,y) : y = constant} N @i (Uy);
(c) the measure v|Uy is given by the pullback of |dy| under ¢y.

The elements of F are called leaves of the foliation, and v a transverse measure.
For k =1, ..., m, each point xj is called a p(k)-prong singularity of F and each
of the leaves of F meeting at xj is called a prong of xy. If, in addition, we allow
single leaves of F to terminate in a point (called a spine, in which case we set p =1
above), then (&, v) is called a measured foliation with spines.

The transverse measure is consistently defined on chart overlaps, because when-
ever U; N Uy, # @, the transition functions ¢y, o cpj_l are of the form

(ox 09 D (@, y) = (hjr(z,y), cji £ ),
where hjy, is a function, and c;;, is a constant.
A surface homeomorphism f is called pseudo-Anosov if it satisfies the following
properties:
1. f is differentiable except at a finite number of points z1, ..., Zm;
2. there are two measured foliations (F%,v°) and (F*,v") with the same sin-
gularities x1, ..., Z,, and the same number of prongs p = p(k) at each point
g, for k=1, ..., m;
3. the leaves of the foliations F° and F* are transversal at nonsingular points;
4. there are C*° charts pg: Uy — C for k = 1, ..., £ and some ¢ > m, such
that for each k we have:
(a) pr(zr) =0 and @i (Ug) = D, for some ay > 0;
(b) leaves of F* are mapped by ¢; to components of the sets

{z: Re 2”2 = constant} N Dy, ;
(c) leaves of F* are mapped by ¢; to components of the sets

{z : Im(2P/?) = constant} N Dy, ;
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(d) there exists a constant A > 1 such that
f(&F,v°) =(F°,v°/A) and f(F“v") = (F“ ).

If, in addition, (F%,v°) and (F*,v*) are measured foliations with spines (with
p = p(k) = 1 when there is only one prong at xy), then f is called a generalized
pseudo-Anosov homeomorphism.

We call F° and F“ the stable and unstable foliations, respectively. At each
singular point z, with p = p(k), the stable and unstable prongs are, respectively,
given by

, 2 + 1
P§j=@k_1{P@ZT:0Sp<ak»T= = W},
P

) 29
P&zwk‘l{ﬂe”:ogpwmﬁ]“},
p

for 7=0,1, ..., p—1. We define the stable and unstable sectors at xj by

. 2j —1 2j +1
Szj@kl{PelT30§P<ak7] r<r< At ﬂ},
p p

) 27 25 +2
p p

respectively, for j =0, 1, ..., p— 1.

Since f is a homeomorphism, f(xp) = x,, for k = 1, ..., m, where o is a
permutation of {1, ..., m} such that p(k) = p(ox) and f maps the stable prongs
at x) into the stable prongs at z,, (provided the numbers ay are chosen such that
ak/)\Q/p < a,, ). Hence, we may assume that o is the identity permutation, and

f(Pl:j) C Pg; and f_l(Plgj) -
fork=1,...,mand j=0, ..., p— 1. Consider the map
Prj: pr(Sk;) — {2 : Rez >0},
given by
Oy;(2) = 2272 /p,
where p = p(k). Write ®;(2) = s1 + is2 and z = t1 + ito, where s1, s, t1, t2 are
real numbers. Define a measure v on each stable sector by
dV\ng = cp,’;q)zj(dsldsQ)
ifk=1,...,m,57=0,...,p(i) — 1, and on each “nonsingular” neighborhood by
dv|Uy, = ¢f,(dt1dts)
if & > m. The measure v can be extended to an f-invariant measure with the

following properties:

1. v is equivalent to the Lebesgue measure on M; moreover, v has a density
which is smooth everywhere except at the singular points xj, where it van-
ishes if p(k) > 3, and goes to infinity if p(k) = 1;

2. f is Bernoulli with respect to v (see [85, Section 10]).
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One can show that the periodic points of any pseudo-Anosov map are dense.

If M is a torus, then any pseudo-Anosov map is an Anosov diffeomorphism
(see [85, Exposé 1]). However, if M has genus greater than 1, a pseudo-Anosov
map cannot be made a diffeomorphism by a coordinate change which is smooth
outside the singularities or even outside a sufficiently small neighborhood of the
singularities (see [97]). Thus, in order to find smooth models of pseudo-Anosov
maps one may have to apply some nontrivial construction which is global in nature.
In [97], Gerber and Katok constructed, for every pseudo-Anosov map g, a C*°
diffeomorphism which is topologically conjugate to f through a homeomorphism
isotopic to the identity and which is Bernoulli with respect to a smooth measure
(that is, a measure whose density is C* and positive everywhere).

In [96], Gerber proved the existence of real analytic Bernoulli models of pseudo-
Anosov maps as an application of a conditional stability result for the smooth
models constructed in [97]. The proofs rely on the use of Markov partitions. The
same results were obtained by Lewowicz and Lima de S [162] using a different
approach.

2.6. Flows with nonzero exponents. The first example of a volume-preserving
ergodic flow with nonzero Lyapunov exponents, which is not an Anosov flow, was
constructed by Pesin in [195]. The construction is a “surgery” of an Anosov flow
and is based on slowing down trajectories near a given trajectory of the Anosov
flow.

Let ¢y be an Anosov flow on a compact three-dimensional manifold M given by
a vector field X and preserving a smooth ergodic measure p. Fix a point pg € M.
There is a coordinate system z, y, z in a ball B(pg,d) (for some d > 0) such that
po is the origin (i.e., po = 0) and X = 9/0z.

For each ¢ > 0, let T. = S* x D. C B(0,d) be the solid torus obtained by
rotating the disk

D.={(z,y,2) € B(0,d) : x = 0 and (y — d/2)* + 2% < (ed)?}

around the z-axis. Every point on the solid torus can be represented as (6, y, 2)
with 6 € S and (y,2) € D..

For every 0 < a < 2w, consider the cross-section of the solid torus II, =
{(0,y,2) : 6 = a}. We construct a new vector field X on M \ T.. We describe
the construction of X on the cross-section IIy and we obtain the desired vector field
X|II,, on an arbitrary cross-section by rotating it around the z-axis.

Consider the Hamiltonian flow given by the Hamiltonian H (y, z) = y(e? — y? —
22). In the annulus €2 < y? + 22 < 4¢2 the flow is topologically conjugated to the
one shown on Figure 1. However, the Hamiltonian vector field (—2yz, 3y? + 22 —&2)
is not everywhere vertical on the circle y? 4 22 = 4e2. To correct this consider a C'>°
function p: [g,00) — [0,1] such that p|[e,3¢/2] = 1, p|[2e,00) = 0, and p is strictly
decreasing in (3¢/2,2¢). The flow defined by the system of differential equations

Y = —2yzp(\/y? + 22)
2= @92+ 2 (VT + 1 (T P)

has now the behavior shown on Figure 1. Denote by @, and X the corresponding
flow and vector field in coordinates x, y, z.

By changing the time one can obtain a flow @, in the annulus €2 < y? + 22 < 4¢2
so that the new flow @; preserves the measure . As a result we have a smooth
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F1GURE 1. A cross-section I, and the flow ¢,

vector field X on M \ T such that the flow &; generated by X has the following
properties:

1.
2.

X|(M\ Tae) = X|(M \ Te); N
for any 0 < o, B < 27, the vector field X |II3 is the image of the vector field
X|II, under the rotation around the z-axis that moves I, onto Ilg;

. for every 0 < o < 2, the unique two fixed points of the flow @;|I1,, are those

in the intersection of II, with the hyperplanes z = +ed;

. for every 0 < a < 27 and (y,2z) € D \ int D, the trajectory of the

flow @¢|I1,, passing through the point (y, z) is invariant under the symmetry
(047 Y, Z) = (Oé, Y, _Z);

. the flow @|II, preserves the conditional measure induced by the measure

on the set Il,.

The orbits of the flows ¢; and @; coincide on M \ Ty, the flow @; preserves the
measure g and the only fixed points of this flow are those on the circles {(,y, z) :
z = —ed} and {(0,y, 2) : z = ed}.

On Ty \ int T, consider the new coordinates 61,02, r with 0 < 61,602 < 27 and
ed < r < 2ed such that the set of fixed points of ¢, consists of those for which
r=cd,and 6y =0 or #; = 7.

Define the flow on T, \ int T. by

(01,02, 7,t) > (01,02 + [2 — r/(ed)]*t cos b1, 1),

and let X be the corresponding vector field. Consider the flow ¢, on M \ int T
generated by the vector field Y on M \ int T

X(x), x € M\ int To.
X(x)+ X(z), xeintTh \intT.
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The flow ¢, has no fixed points, preserves the measure p and for p-almost every
€T € M \ TQE,

x(z,v) < 0ifv e E*(z), and x(z,v) >0 if v € E%(x),

where E%(xz) and E°(z) are respectively stable and unstable subspaces of the
Anosov flow ¢, at x.

Set My = M \ T, and consider a copy (Ml, Jt) of the flow (My, ;). Gluing the
manifolds M; and Ml along their boundaries 97 one obtains a three-dimensional
smooth Riemannian manifold D without boundary. We define a flow F; on D by

Yx, x € My
th = ~ —~ .
Y, x € M

It is clear that the flow F} is smooth and preserves a smooth hyperbolic measure.

2.7. Geodesic flows. Our next example is the geodesic flow on a compact smooth
Riemannian manifold of nonpositive curvature. Let M be a compact smooth p-
dimensional Riemannian manifold with a Riemannian metric of class C3.

The geodesic flow g; acts on the tangent bundle T'M by the formula

9¢(v) = Yo (1),
where 4, (t) is the unit tangent vector to the geodesic v, (t) defined by the vector v

(i.e., 4, (0) = v; this geodesic is uniquely defined). The geodesic flow generates a
vector field V on T'M given by

d(ge(v))
dt  l=0
Since M is compact the flow g; is well-defined for all ¢ € R and is a smooth flow.
We recall some basic notions from Riemannian geometry of nonpositively curved
manifolds (see [82, 81] for a detailed exposition). We endow the second tangent
space T (T M) with a special Riemannian metric. Let m: TM — M be the natural
projection (i.e., 7(z,v) = x for each x € M and each v € T, M) and K: T(TM) —
TM the linear (connection) operator defined by K¢ = (VZ)(t)|t=0, where Z(t) is
any curve in TM such that Z(0) = dn€, £Z(t)[4—o = & and V is the covariant
derivative. The canonical metric on T(TM) is given by

<§7T/>’U = <dv7T£a d’UTrTI>ﬂ'U + <K§7K77>7rv

The set SM C TM of the unit vectors is invariant with respect to the geodesic
flow, and is a compact manifold of dimension 2p — 1. In what follows we consider
the geodesic flow restricted to SM.

The study of hyperbolic properties of the geodesic flow is based upon the de-
scription of solutions of the variational equation for the flow. This equation along
a given trajectory g:(v) of the flow is the Jacobi equation along the geodesic v, (t):

Y (t) + Rxy X(t) = 0. (2.5)

Here Y (t) is a vector field along ~,(t), X (t) = 4(t), and Rxy is the curvature
operator. More precisely, the relation between the variational equations and the
Jacobi equation (2.5) can be described as follows. Fix v € SM and & € T, SM. Let
Ye(t) be the unique solution of (2.5) satisfying the initial conditions Y¢(0) = d,m&
and Y (0) = K¢. One can show that the map § — Y¢(?) is an isomorphism for which
dg,omdy9:€ = Ye(t) and Kd,g:& = Yg’(t) This map establishes the identification

V(v) =
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between solutions of the variational equation and solutions of the Jacobi equation
(2.5).

Recall that the Fermi coordinates {e;(t)}, for i = 1, ..., p, along the geodesic
v (t) are obtained by the time ¢ parallel translation along +,(¢) of an orthonormal
basis {e;(0)} in T, oyM where e;(t) = ¥(t). Using these coordinates we can rewrite
Equation (2.5) in the matrix form

d2

dt?
where A(t) = (a;;(t)) and K(t) = (k;;(t)) are matrix functions with entries k;;(t) =
K, (eit), e;(t)).

Two points z = y(¢1) and y = v(¢2) on the geodesic  are called conjugate if there
exists a nonidentically zero Jacobi field Y along ~ such that Y (¢;) = Y (t2) = 0.
Two points = y(t1) and y = ~y(t2) are called focal if there exists a Jacobi field Y
along 7 such that Y (1) =0, Y(t;) # 0 and 4 ||V (¢)||?]s=¢, = 0.

We say that the manifold M has:

1. no conjugate points if on each geodesic no two points are conjugate;

2. no focal points if on each geodesic no two points are focal;

3. nonpositive curvature if for any x € M and any two vectors v, ve € T, M
the sectional curvature K, (vi,v2) satisfies

Kg;(Ul,UQ) S 0. (27)

A(t) + K(H)A(t) =0, (2.6)

If the manifold has no focal points then it has no conjugate points and if it has
nonpositive curvature then it has no focal points.

From now on we consider only manifolds with no conjugate points. The boundary
value problem for Equation (2.6) has a unique solution, i.e., for any numbers s,
so and any matrices A;, Ag there exists a unique solution A(t) of (2.6) satisfying
A(Sl) = Al and A(S2) = AQ.

Proposition 2.1. Given s € R, let As(t) be the unique solution of Equation (2.6)
satisfying the boundary conditions: Ag(0) = Id (where 1d is the identity matriz)
and Ag(s) = 0. Then there exists the limit

lim % A,(1)

s—oo dt 8

= A+
t=0

[Eberlein, [80]] We define the positive limit solution AT (t) of (2.6) as the solution
that satisfies the initial conditions:

d
AT(0) =T Aty _ = at.
(0)=1d and o (t) —
This solution is nondegenerate (i.e., det AT (t) # 0 for every t € R) and A*(t) =
lims_,+oo AS (t)
Similarly, letting s — —oo, define the negative limit solution A~ (t) of Equation
(2.6).
For every v € SM set
Et(v)={£€T,SM : (£, V(v)) =0 and Ye(t) = AT (t)d,mE}, (2.8)
E~(v) ={£ € T,SM : (£,V(v)) =0 and Y¢(t) = A™ (t)d, ¢}, (2.9)

where V' is the vector field generated by the geodesic flow.
Proposition 2.2 (Eberlein, [80]). The following properties hold:
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. the sets E~(v) and ET(v) are linear subspaces of T,SM ;

.dimE~(v) =dimET(v) =p—1;

. dymE~ (v) = dymE1(v) = {w € Ty M : w is orthogonal to v};

. the subspaces E~(v) and E*(v) are invariant under the differential d,gs,
i.e., dyge B~ (v) = E~(gv) and dpygi ET(v) = E1(gv);

5. 4f 7: SM — SM is the involution defined by Tv = —v, then

Et(—v)=d,7E~(v) and E~(—v)=d,7E"(v);

6. if Ky(v1,v2) > —a? for some a > 0 and all x € M, then ||K¢|| < al|d,mé||
for every £ € ET(v) and € € E~(v);
7. if £ € ET(v) or £ € E~(v), then Ye(t) # 0 for every t € R;
8. & € ET(v) (respectively, & € E~(v)) if and only if
(& V() =0 and |dg,mdygiéll <c
for every t > 0 (respectively, t < 0) and some ¢ > 0;
9. if the manifold has no focal points then for any & € ET(v) (respectively,

& € E~(v)) the function t — ||Ye(t)|| is nonincreasing (respectively, nonde-
creasing).

N R

In view of Properties 6 and 8, we have £ € ET(v) (respectively, £ € E~(v)) if
and only if (§,V(v)) = 0 and ||d,g:&|| < ¢ for ¢t > 0 (respectively, ¢t < 0), for some
constant ¢ > 0. This observation and Property 4 justify to call ET(v) and E~(v)
the stable and unstable subspaces.

In general, the subspaces £~ (v) and E™(v) do not span the whole second tangent
space T, SM. Eberlein (see [80]) has shown that if they do span T,SM for every
v € SM, then the geodesic flow is Anosov. This is the case when the curvature is
strictly negative. For a general manifold without conjugate points consider the set

t

— 1
A= {U € SM : lim n Kr(g,0)(9sv, gsw) ds < 0
0

t—o0

for every w € SM orthogonal to v} . (2.10)

It is easy to see that A is measurable and invariant under g;. The following result
shows that the Lyapunov exponents are nonzero on the set A.

Theorem 2.3 (Pesin [197]). Assume that the Riemannian manifold M has no
conjugate points. Then for every v € A we have x(v,€) < 0 if £ € ET(v) and

X0, &) >0if &€ E-(v).

The geodesic flow preserves the Liouville measure p on the tangent bundle.
Denote by m the Lebesgue measure on M. It follows from Theorem 2.3 that if
the set A has positive Liouville measure then the geodesic flow g;|A has nonzero
Lyapunov exponents almost everywhere. It is, therefore, crucial to find conditions
which would guarantee that A has positive Liouville measure.

We first consider the two-dimensional case.

Theorem 2.4 (Pesin [197]). Let M be a smooth compact surface of nonpositive
curvature K (x) and genus greater than 1. Then u(A) > 0.

In the multidimensional case one can establish the following criterion for posi-
tivity of the Liouville measure of the set A.



18 LUIS BARREIRA AND YAKOV PESIN

Theorem 2.5 (Pesin [197]). Let M be a smooth compact Riemannian manifold of
nonpositive curvature. Assume that there exist x € M and a vector v € S, M such
that

K,(v,w) <0
for any vector w € S M which is orthogonal to v. Then pu(A) > 0.

One can show that if ©(A) > 0 then the set A is open (mod 0) and is everywhere
dense (see Theorem 17.7 below).

3. LYAPUNOV EXPONENTS ASSOCIATED WITH SEQUENCES OF MATRICES

In studying the stability of trajectories of a dynamical system f one introduces
the system of variations {d, f™, m € Z} and uses the Lyapunov exponents for this
systems (see Section 1). Consider a family of trivializations 7, of M, i.e., linear
isomorphisms 7, : T, M — R™ where n = dim M. The sequence of matrices

A, = Tpm+1(g) O dfm(z)f o Tﬁ”}(z): R™ - R"™

can also be used to study the linear stability along the trajectory f™(x).

In this section we extend our study of Lyapunov exponents for sequences of
matrices generated by smooth dynamical systems to arbitrary sequences of matri-
ces. This will also serve as an important intermediate step in studying Lyapunov
exponents for the even more general case of cocycles over dynamical systems.

3.1. Definition of the Lyapunov exponent. Let AT = {A,,},,>0 C GL(n,R)
be a one-sided sequence of matrices. Set A,, = A,,_1--- A1 Ao and consider the
function x*: R® — RU {—o0o} given by

1
@) = X0, AY) = T S log|Ayull. (3.1)
m—+00 1M
We make the convention log 0 = —o0, so that xT(0) = —oo.

The function x*(v) is called the forward Lyapunov exponent of v (with respect
to the sequence A™1). Tt has the following basic properties:
1. xT(av) = x*(v) for each v € R" and v € R\ {0};
2. xT(v+w) <max{x"(v),x"(w)} for each v, w € R";
3. xT(0) = —cc.
As an immediate consequence of the basic properties we obtain that there exist
a positive integer p, 1 < p™ < n, a collection of numbers x1 < x2 < - < Xp+,
and linear subspaces
(O} =V SNENG GV =R
such that V; = {v € R" : x*(v) < x;i}, and if v € V; \ V;_1, then x*(v) = y; for
eachi=1,...,p". The spaces V; form the filtration V,+ of R™ associated with x*.
The number
k; =dimV; —dim V;_4
is called the multiplicity of the value y;, and the collection of pairs
SpxT ={(xi,ki):i=1,...,p"}

the Lyapunov spectrum of xT. We also set

n; =dimV; = " k;.
j=1
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In a similar way, given a sequence of matrices A~ = { A, }im<o, define the backward
Lyapunov exponent (with respect to the sequence A=) x~: R® — RU {—o0} by
_ _ _ =— 1
W) = (@A) = B ologdol (32)
where Ay, = (Apn) "+ (A_3) "H(A_y) " for each m < 0. Let X1 > > X, be

the values of x, for some integer 1 < p~ < n. The subspaces
R'=V 2 2‘/}; QVP_,H = {0},

=
where V7 = {v € R" : x~(v) < x; }, form the filtration V,- of R™ associated
with x~. The number
ki =dimV;” —dimV;
is the multiplicity of the value x; , and the collection of pairs

Spx~ = {(X;J{;;) i=1,.., p_}
is the Lyapunov spectrum of x~.

In the case when the sequence of matrices is obtained by iterating a given matrix
A, ie., Ay = A™ the Lyapunov spectrum is calculated as follows. Take all the
eigenvalues with absolute value r. Then logr is a value of the Lyapunov exponent
and the multiplicity is equal to the sum of the multiplicities of the exponents with
this absolute value.

Equality (3.1) implies that for every ¢ > 0 there exists Cy = Cy(v,e) > 0 such
that if m > 0 then

Mol < eI o, (3.3)
Similarly, (3.2) implies that for every ¢ > 0 there exists C_ = C_(v,&) > 0 such
that if m > 0 then

o]l < C_et @+am |y (3.4)

Given vectors vy, ..., vy € R™ we denote by V(vy, ..., vx) the volume of the
k-parallelepiped formed by vy, ..., vg. The forward and backward k-dimensional
Lyapunov exponents of the vectors vy, ..., v, are defined, respectively, by

T, oo vk) = x (v, .oy g, AT

— 1
= lim —logV(Anv1, ..., Anvg),
m—-+o0 M,
Xi(/vla EEE3) ’Uk) = Xi(vlv EEE) vkv‘Ai)
— 1
lim — log V(Anv1, ..., Amtg).
m— —00 m|
These exponents depend only on the linear space generated by the vectors vy, ...,
vg. Since V(vy, ..., vg) < HfﬂHvzH we obtain

k
xH (o1, o vp) < ZX+(Ui)- (3.5)

A similar inequality holds for the backward Lyapunov exponent.
The inequality (3.5) can be strict. Indeed, consider the sequence of matrices

A = (3 g) and the vectors v; = (1,0), vo = (1,1). We have x*(v1) = x"(v2) =

log2. On the other hand, since det A, = 1, we have x T (vi,v2) = 0 < x*(v1) +
+
X" (v2)-
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3.2. Forward and backward regularity. We say that a sequence of matrices
At is forward regular if

.1 -,
lim  —log|det Ay, | = Z; X5, (3.6)
=
where X}, ..., X}, are the finite values of the exponent x* counted with their mul-

tiplicities. By (3.5), this is equivalent to

1 n
lim — log|det A,,| > L.
i logldet A > ; X
The forward regularity is equivalent to the statement that there exists a positive
definite symmetric matrix A such that

lim [[A,A"™| =0, lim |[[A™A ! =0. (3.7)

Let AT = {A,;,}m>0 and BT = {B,,}.n>0 be two sequences of matrices. They
are called equivalent if there is a nondegenerate matrix C such that A4,, = C~'B,,C
for every m > 0. Any sequence of linear transformations, which is equivalent to a
forward regular sequence, is itself forward regular.

The Lyapunov exponent T is said to be

1. ezxact with respect to the collection of vectors {vy, ..., v} C R™ if

1
xt(vr, ooy o) = lim - log V(Amvi, - .., Amur);

m——+oo
2. ezact if for any 1 < k < n, the exponent T is exact with respect to every
collection of vectors {vy, ..., v} C R™.
If the Lyapunov exponent is exact then in particular for v € R™ one has

1
+ = [ 1 .
XT(v) = lim —log||[Amnvl;

m

equivalently (compare with (3.3) and (3.4)): for every € > 0 there exists C' =
C(v,e) > 0 such that if m > 0 then

C e @Wmam < |4 o] < CeXT@He)m,

Theorem 3.1 (Lyapunov [170]). If the sequence of matrices AT is forward regular,
then the Lyapunov exponent xT is exact.

The following simple example demonstrates that the Lyapunov exponent T
may be exact even for a sequence of matrices which is not forward regular. In other
words, the existence of the limit in (3.1) does not guarantee that the Lyapunov
exponent x* is forward regular.

Example 3.2. Let AT = {A,,}m>0 be the sequence of matrices where Ag = (39)
and A, = (7271“1 2) for each m > 1 so that A,, = (2% 49n) for every m > 1.
Given a vector v = (a,b) # (0,0) we have xT(v) =log2 if b =0, and x* (v) = log4
if b# 0. This implies that x™ is exact with respect to every vector v. Let vy = (1,0)
and vy = (0,1). Then x*(v1) = log2 and x(v2) = log4. Since det A, = 4™ we
obtain x ¥ (vi,v2) = log4. Therefore, x* is exact with respect to {v1,v2}, and hence
with respect to every collection of two vectors. On the other hand,

X (v1,v2) =log4 < log2+logd = xT(vy) + xT (v2)
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and the sequence of matrices AT is not forward regular.
In the one-dimensional case the situation is different.

Proposition 3.3. A sequence of numbers AT C GL(1,R) = R\ {0} is forward
reqular if and only if the Lyapunov exponent x™ is exact.

We now present an important characteristic property of forward regularity which

is very useful in applications. We say that a basis v = (v1, ..., v,) of R™ is normal
with respect to the filtration V= {V; : ¢ =0, ..., pT} if for every 1 <i < p* there
exists a basis of V; composed of vectors from {vy, ..., v,}.

Theorem 3.4 (see [58]). A sequence of matrices A is forward regular if and only
if for any normal basis v of R™ with respect to the filtration V,+ and any subset
K c{1, ..., n}, we have:

1.
. 1
X ({vitiex) = hm - log V{Amvitier) = z;(xﬂvi);
ic
2. if o is the angle between the subspaces span{A,v; : i € K} and span{A,v; :
i ¢ K}, then
1
lim — log|sino,,| = 0.
m—+o00 Mm
A sequence of matrices A~ = {A,; }m<o is called backward regular if
1 ~
P da =35,
1=
where X1, ..., X}, are the finite values of x~ counted with their multiplicities.
Given a sequence A~ = {A,, },n<0, we construct a new sequence Bt = {B,,, } >0

by setting B, = (A_,,_1)~*. The backward regularity of A~ is equivalent to the
forward regularity of B*. This reduction allows one to translate any fact about
forward regularity into a corresponding fact about backward regularity.

For example, the backward regularity of the sequence of matrices A~ implies
that the Lyapunov exponent x~ is exact. Moreover, if the Lyapunov exponent x~
is exact (in particular, if it is backward regular) then

X (v)= lim 1

log|[Amv]|

for every v € R™. This is equivalent to the following: for every € > 0 there exists
C = C(v,e) > 0 such that if m > 0 then

C e~ (X" (W)—e)m < [A_ ol < Ce— (™ (v)+e)m

3.3. A criterion for forward regularity of triangular matrices. Let At =
{An.}m>0 be a sequence of matrices. One can write each A, in the form A,, =
R, T, where R, is orthogonal, and T}, is lower triangular. In general, the diagonal
entries of T}, alone do not determine the values of the Lyapunov exponent associated
with A*. Indeed, let AT = {A4,,}m>0 be a sequence of matrices where A, =

(5 _10/2) for each m > 0. We have A, = Ry, Trn, where Ry, = (9 ') is orthogonal

and T, = ({,)2) is diagonal. Since A,,> = —Id, we obtain x*(v,AT) = 0 for
every v # 0 whereas the values of the Lyapunov exponent for 7 = {T},,},,>0 are
equal to +log2.
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However, in certain situations one can reduce the study of sequences of arbitrary
matrices to the study of sequences of lower triangular matrices (see Section 5.3).
Therefore, we shall consider sequences of lower triangular matrices and present a
useful criterion of regularity of the Lyapunov exponent. This criterion is used in
the proof of the Multiplicative Ergodic Theorem 5.5, which is one of the central
results in smooth ergodic theory. We write log™ a = max{loga,0} for a positive
number a.

Theorem 3.5 (see [58]). Let AT = {(aj})}m>0 C GL(n,R) be a sequence of lower
triangular matrices such that:

1. for each i =1, ..., n, the following limit exists and is finite:

m——+oo

m L3 loglak] 2 A
m
k=0
2. foranyi, j=1, ..., n, we have

— 1
1 —_— + m =
ml_lgloomlog lai;| = 0.
Then the sequence AT is forward reqular, and the numbers \; are the values of the
Lyapunov exponent xT (counted with their multiplicities but possibly not ordered).

Let us comment on the proof of this theorem. If we count each exponent ac-
cording to its multiplicity we have exactly n exponents. To verify (3.6) we will
produce a basis v1, ..., v, which is normal with respect to the standard filtration
(i.e., related with the standard basis by an upper triangular coordinate change)
such that x*(v;) = \;.

If the exponents are ordered so that Ay > Ao > --- > A, then the standard
basis is in fact normal. To see this notice that while multiplying lower triangular
matrices one obtains a matrix whose off-diagonal entries contain a polynomially
growing number of terms each of which can be estimated by the growth of the
product of diagonal terms below.

However, if the exponents are not ordered that way then an element e; of the
standard basis will grow according to the maximal of the exponents A; for j > 1.
In order to produce the right growth one has to compensate the growth caused by
off-diagonal terms by subtracting from the vector e; a certain linear combination of
vectors e; for which A; > A;. This can be done in a unique fashion. The detailed
proof proceeds by induction.

A similar criterion of forward regularity holds for sequences of upper triangular
matrices.

Using the correspondence between forward and backward sequences of matrices
we immediately obtain the corresponding criterion for backward regularity.

3.4. Lyapunov regularity. Let A = {A,,}mez be a sequence of matrices in
GL(n,R). Set A" = {A,,}m>0 and A~ = {4, }m<o. Consider the forward and
backward Lyapunov exponents = and x~ specified by the sequence A, i.e., by the
sequences AT and A~ respectively; see (3.1) and (3.2). Denote by

Ver ={V ii=1,..,p"} and V- ={V, :i=1,..,p"}

the filtrations of R™ associated with the Lyapunov exponents x* and x~.
We say that the filtrations V,+ and V, - comply if the following properties hold:
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Lpt=p “p
2. there exists a decomposition

p
R" =P E:
=1

into subspaces E; such that if i =1, ..., p then

% p
Vi =@E; and V; =@E,
j=1 j=i

(note that necessarily F; = V.t NV,” fori =1, ..., p);
3. if v € E; \ {0} then

. 1
i log | Aol = i

with uniform convergence on {v € E; : ||v]| = 1}.
We say that the sequence A is Lyapunov regular or simply regular if:

1. A is simultaneously forward and backward regular (i.e., AT is forward regular
and A~ is backward regular);
2. the filtrations V,+ and V, - comply.

Notice that the constant cocycle generated by a single matrix A (see Section 3.1)
is Lyapunov regular since

P
Z xi dim E; = log|det A|.
i=1

Proposition 3.6. If A is reqular then:

1. the exponents xT and x~ are ezact;
2. x; = —Xi, dimE; = k;, and
lim el log|det(Am|E;)| = xiki.
m—=+oo m
Simultaneous forward and backward regularity of a sequence of matrices A is

not sufficient for Lyapunov regularity. Forward (respectively, backward) regularity
does not depend on the backward (respectively, forward) behavior of A, i.e., for
m < 0 (respectively, m > 0). On the other hand, Lyapunov regularity requires
some compatibility between the forward and backward behavior which is expressed
in terms of the filtrations V, + and V, .

Example 3.7. Let

4 _{(31(/)2) ifm>0
"R gm<o

Note that
2 0\ _ p-1( 5/4 —3/4
(0 1/2) =R (—3/4 5/4 ) R,
where R is the rotation by 7 /4 around 0. We have x(1,0) = x~(1,1) = log 2 and
xt(0,1) = x~(1,-1) = —log 2. Hence, Vi # V", and thus, A is not reqular. On
the other hand, since det A,,, = 1, we have

Xt (v1,v2) = x (v1,v2) = log2 — log2 = 0,
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and the exponents xT(v1,v2) and x~ (v1,v2) are exact for any linearly independent
vectors vy, vy € R2. Therefore, the sequence A is simultaneously forward and
backward reqular.

4. COCYCLES AND LYAPUNOV EXPONENTS

4.1. Cocycles and linear extensions. In what follows we assume that X is
a measure space which is endowed with a o-algebra of measurable subsets and
that f: X — X is an invertible measurable transformation. For most substantive
statements we will assume that f preserves a finite measure.

A function A: X x Z — GL(n,R) is called a linear multiplicative cocycle over f
or simply a cocycle if the following properties hold:

1. for every x € X we have A(z,0) = Id and if m, k € Z then
Az, m + k) = A(f*(x), m)A(z, k); (4.1)

2. for every m € Z the function A(-,m): X — GL(n,R) is measurable.

If A is a cocycle, then A(f~™(x),m)~! = A(z, —m) for every z € X and m € Z.
Given a measurable function A: X — GL(n,R) and x € X, define the cocycle

A(f™ N (2)) - A(f(2) Al) if m > 0
A(z,m) = (¢ Id ifm=0.
A(f™(@) ™ AT (@) A @) T ifm< 0

The map A is called the generator of the cocycle A. One also says that the cocycle
A is generated by the function A. Each cocycle A is generated by the function
A() = A, 1).

The sequences of matrices that we discussed in the previous section are cocycles
over the shift map f: Z — Z, f(n) =n+ 1.

A cocycle A over f induces a linear extension F: X x R™ — X x R" of f to
X x R™, or a linear skew product, defined by

F(z,v) = (f(z), A(z)v).
In other words, the action of F' on the fiber over x to the fiber over f(z) is given

by the linear map A(x). If 7: X x R"® — X is the projection, 7(x,v) = x, then the
following diagram

X xR —£ ., X xR»

ﬂl Jﬂ
x L. x

is commutative. Notice that for each m € Z,
F™(z,0) = (f™(x), A(z,m)v).

Linear extensions are particular cases of bundle maps of measurable vector bundles
which we now consider. Let F and X be measure spaces and m: £ — X a mea-
surable map. One says that F is a measurable vector bundle over X if for every
x € X there exists a measurable subset Y,, C X containing = such that there exists
a measurable map with measurable inverse 7—1(Y,) — Y, x R™. A bundle map
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F: E — E over a measurable map f: X — X is a measurable map which makes
the following diagram commutative:

E - . E

ﬂl ln :

x 1. x
The following proposition shows that from the measure theory point of view every
vector bundle over a compact metric space is trivial, and hence, without loss of
generality, one may always assume that £ = X x R™. In other words every bundle

map of F is essentially a linear extension provided that the base space X is a
compact metric space.

Proposition 4.1. If E is a measurable vector bundle over a compact metric space
(X,v), then there is a subset Y C X such that v(Y) =1 and #=*(Y) is (isomorphic
to) a trivial vector bundle.

4.2. Cohomology and tempered equivalence. Let A: X — GL(n,R) be the
generator of a cocycle A over the invertible measurable transformation f: X — X.
The cocycle A acts on the linear coordinate v, on the fiber {z} x R™ of X x
R™ by vfm)y = A(x)ve. Let L(xz) € GL(n,R) be a linear coordinate change in
each fiber, given by u, = L(z)v, for each x € X. We assume that the function
L: X — GL(n,R) is measurable. Consider the function B: X — GL(n,R) for
which uf(;y = B(z)u,. One can easily verify that

A(x) = L(f(2)) " B()L(x),

and that B generates a new cocycle B over f. One can naturally think of the
cocycles A and B as equivalent. However, since the function L is in general only
measurable, without any additional assumption on L the measure-theoretical prop-
erties of the cocycles A and B can be very different. We now introduce a sufficiently
general class of coordinate changes which make the notion of equivalence produc-
tive.

Let Y C X be an f-invariant nonempty measurable set. A measurable function
L: X — GL(n,R) is said to be tempered on'Y with respect to f or simply tempered
on Y if for every z € Y we have

1 1
olim - log||L(f™(z)) lim log||L(f™ ()|l = 0.

| =
m— oo

A cocycle over f is said to be tempered on Y if its generator is tempered on Y. If the
real functions x — ||L(x)]|, ||L(x)~!|| are bounded or, more generally, have finite
essential supremum, then the function L is tempered with respect to any invertible
transformation f: X — X on any f-invariant nonempty measurable subset Y C X.
The following statement provides a more general criterion for a function L to be
tempered.

Proposition 4.2. Let f: X — X be an invertible transformation preserving a
probability measure v, and L: X — GL(n,R) a measurable function. If

log||L||, log||L™"|| € L' (X, v),

then L is tempered on some set of full v-measure.
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Let A, B: X — GL(n,R) be the generators, respectively, of two cocycles A
and B over an invertible measurable transformation f, and Y C X a measurable
subset. The cocycles A and B are said to be equivalent on Y or cohomologous on'Y,
if there exists a measurable function L: X — GL(n,R) which is tempered on YV
such that for every x € Y, we have

A(z) = L(f(2)) ™ B(z)L(x). (4.2)

This is clearly an equivalence relation and if two cocycles A and B are equivalent,
we write A ~y B. Equation (4.2) is called cohomology equation.
It follows from (4.2) that for any z € Y and m € Z,

A(z,m) = L(f™(x)) " B(z, m)L(z). (4.3)
Proposition 4.2 immediately implies the following.

Corollary 4.3. If L: X — R is a measurable function such that log||L||, log|| L]
€ LY(X,v) then any two cocycles A and B satisfying (4.3) are equivalent cocycles.

We now consider the notion of equivalence for cocycles over different transfor-
mations. Let f: X — X and g: Y — Y be invertible measurable transformations.
Assume that f and g are measurably conjugated, i.e., that ho f = g o h for some
invertible measurable transformation h: X — Y. Let A be a cocycle over f and B
a cocycle over g. The cocycles A and B are said to be equivalent if there exists a
measurable function L: X — GL(n,R) which is tempered on Y with respect to g,
such that for every x € Y, we have

A(h™H(2)) = L(g(x)) " B(z)L(x).

4.3. Examples and basic constructions with cocycles. We describe various
examples of measurable cocycles over dynamical systems. Perhaps the simplest
example is provided by the rigid cocycles generated by a single matrix. Starting
from a given cocycle one can build other cocycles using some basic constructions
in ergodic theory and algebra. Thus one obtains power cocycles, induced cocycles,
and exterior power cocycles.

Let A be a measurable cocycle over a measurable transformation f of a Lebesgue
space X. We will call a cocycle A rigid if it is equivalent to a cocycle whose
generator A is a constant map. Rigid cocycles naturally arise in the classical Floquet
Theory (where the dynamical system in the base is a periodic flow), and among
smooth cocycles over translations on the torus with rotation vector satisfying a
Diophantine condition (see [83, 151] and the references therein). In the setting
of actions of groups other than Z and R rigid cocycles appear in the measurable
setting for actions of higher rank semisimple Lie groups and lattices in such groups
(see [261]), and in the smooth setting for hyperbolic actions of higher rank Abelian
groups (see [136, 137]).

Given m > 1, consider the transformation f™: X — X and the measurable
cocycle A™ over f™ with the generator

A™(z) E A (@) - Ale).

The cocycle A™ is called the m-th power cocycle of A.
Assume that f preserves a measure v and let Y C X be a measurable subset of
positive v-measure. By Poincaré’s Recurrence Theorem the set Z C Y of points
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x € Y such that f*(z) € Y for infinitely many positive integers n, has measure
v(Z) =v(Y). We define the transformation fy:Y — Y (mod 0) as follows

fy(z) = o @) (2) where ky (z) = min{k > 1: f*(z) e Y}.

The function ky and the map fy are measurable on Z. We call ky the (first) return
time to Y and fy the (first) return map or induced transformation on Y.

Proposition 4.4 (see, for example, [67]). The measure v is invariant under fy,
the function ky € L'(X,v) and [y, ky dv = v(U, >, f"Y).

Since ky € L'(X,v), it follows from Birkhoff’s Ergodic Theorem that the func-
tion
= _
) =l 3 k()
is well-defined for v-almost all x € Y and that 7y € LY(X,v).

If A is a measurable linear cocycle over f with generator A, we define the induced
cocycle Ay over fy to be the cocycle with the generator

Ay (z) = A @) (),

Finally, given a cocycle A we define the cocycle A"*: X x Z — (GL(n,R))"* by
AN (z,m) = A(x,m)"* (see Section 5.1 for the definition of exterior power). We
call ANF the k-fold exterior power cocycle of A.

4.4. Hyperbolicity of cocycles. The crucial notion of nonuniformly hyperbolic
diffeomorphisms was introduced by Pesin in [196, 197]. In terms of cocycles this
is the special case of derivative cocycles (see Section 6.1). Pesin’s approach can
readily be extended to general cocycles.

Consider a family of inner products (-,-) = {(-,"); : © € X} on R". Given z € X
we denote by ||-|| the norm and by <(-,-), the angle induced by the inner product
(*,*)z- In order to simplify the notation we often write ||-|| and <(-, ) omitting the
reference point x.

Let Y C X be an f-invariant nonempty measurable subset. Let also A\, p: Y —
(0,400) and €: Y — [0,£0], €0 > 0, be f-invariant measurable functions such that
Az) < p(x) for every z € Y.

We say that a cocycle A: X XZ — GL(n,R) over f is nonuniformly partially hy-
perbolic in the broad sense if there exist measurable functions C, K: Y — (0,400)
such that

1. for every z € Y,
either A\(x)e*®) < 1 or p(x)e =@ > 1; (4.4)

2. there exists a decomposition R"™ = F;(z) ® E2(x), depending measurably on
xz €Y, such that A(x)E1(z) = E1(f(x)) and A(z)Eq(z) = Ex(f(x));
3. (a) for v e Eq(z) and m > 0,

Iz, m)ol| < C(a)A(@)™ e ™ oll;
(b) for v € Ea(xz) and m < 0,
A, m)o|| < C(z)u()™ eI fo];
(c) <(Er(f™(2)), E2(f™(x))) = K(f™(x)) for every m € Z;
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(d) for m € Z,

C(f™(@)) < Clx)el™=) K (f™(2)) > K (x)e ™),

We say that a cocycle A: X xZ — GL(n,R) over f is nonuniformly (completely)
hyperbolic if the requirement (4.4) is replaced by the following stronger one: for
every x €Y,

AMaz)ef™ < 1 < p(x)e =@,

Proposition 4.5. If a cocycle A over f is partially hyperbolic in the broad sense,
then for every x € Y,

1. A(z,m)E1(z) = E1(f™(z)) and A(z,m)Es(z) = Eo(f™(x));
2. forv € Eq(z) and m < 0,

1Az, m)vll = C(f™ ()" Az) e o]
3. forv € Ey(z) and m > 0,
Az, m)vll > C(f™ ()~ ()™ e =™ fol].

The set Y is nested by the invariant sets Y}, for which A(z) < A, ,u( ) < pand
€($) <eg ie,Y = UYME and Y)\/#/s/ C Y)\//#HEH provided No< N /L < ,u " and
g’ < €”. On each of these sets the above estimates hold with A(z), u(z) and e(x)

replaced by A, u and € respectively.

Even when a cocycle is continuous or smooth one should expect the functions A,
i, €, C, and K to be only measurable, the function C to be unbounded and K to
have values arbitrarily close to zero.

If these functions turn to be continuous we arrive to the special case of uniformly
hyperbolic cocycles. More precisely, we say that the cocycle A: X x Z — GL(n,R)
over f is uniformly partially hyperbolic in the broad sense if there exist 0 < A <
@ < 00, A <1, and constants ¢ > 0 and v > 0 such that the following conditions
hold

1. there exists a decomposition R" = E1 (z) ® E>(x), depending continuously
on z €Y, such that A(x)E;(x) = E1(f(z)) and A(x)Es(z) = Ex(f(x));
2. (a) for v € Ey(x) and m > 0,

Az, m)o| < eA™[|vl;
(b) for v € Ea(x) and m < 0,
Az, m)v[| < ep™ [o]];

(¢) <(BE1(f™(x)), E2(f™(x))) > ~ for every m € Z.

The principal example of uniformly hyperbolic cocycles are cocycles generated
by Anosov diffeomorphisms and more generally Axiom A diffeomorphisms. The
principal examples of nonuniformly hyperbolic cocycles are cocycles with nonzero
Lyapunov exponents.

We will see below that a nonuniformly hyperbolic cocycle on a set Y of full
measure (with respect to an invariant measure) is in fact, uniformly hyperbolic on
a set Ys C Y of measure at least 1—4 for arbitrarily small § > 0. This observation is
crucial in studying topological and measure-theoretical properties of such cocycles.
However, the “parameters” of uniform hyperbolicity, i.e., the numbers ¢ and v may
vary with § approaching co and 0, respectively. We stress that this can only occur
with a sub-exponential rate. We proceed with the formal description.
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4.5. Regular sets of hyperbolic cocycles. Nonuniformly hyperbolic cocycles
turn out to be uniformly hyperbolic on some compact but noninvariant subsets,
called regular sets. They are nested and exhaust the whole space. Nonuniform
hyperbolic structure appears then as a result of deterioration of the hyperbolic
structure when a trajectory travels from one of these subsets to another. We first
introduce regular sets for arbitrary cocycles and then establish their existence for
nonuniformly hyperbolic cocycles.

Let A be a cocycle over X and £: X — [0,+00) an f-invariant measurable
function. Given 0 < A <y < 00, A < 1, and ¢ > 1, denote by A* = Agu the set of
points z € X for which there exists a decomposition R” = F;, & Fs, such that for
every k € Z and m > 0,

1. if v € A(z, k) E1, then
A (@), myv]| < exmes@ Dy
and
A" (@), —m)v| = €7 IATmem s @UmmEm |
2. if v € A(z, k)E2, then
IA(f* (), =m)v]| < e @Ry

and
IA(F* (), myv]| > 7 pmem =@ ktmitmy |y,

<I(Elfk(w)7E2fk(w)) > Kilefs(x)‘kl.

The set A? is called a regular set (or a Pesin set).
It is easy to see that these sets have the following properties:

1. Af C AT
2. for m € Z we have f™(AY) ¢ AY, where

- lexp (|m| Sup{g((ﬂ) 1T E A@}) :

3. the set A = Ay, = ;o A is f-invariant;

4. if X is a topological space and A and ¢ are continuous then the sets A’ are
closed and the subspaces F1, and FEs, vary continuously with = € At (with
respect to the Grassmannian distance).

Every cocycle A over f, which is nonuniformly hyperbolic on a set ¥ C X,
admits a nonempty regular set. Indeed, for each 0 < A < p < 0o, A < 1, and each
integer ¢ > 1 let Y* C X be the set of points for which

Mz) <A< p < p(x), Clx) <4, and K(z) > 0%
We have Y* Cc Y1, Y* C A and Ey, = Eyi(2), By, = Eo(x) for every 2 € Y.

4.6. Lyapunov exponents for cocycles. We extend the notion of Lyapunov
exponent to cocycles over dynamical systems.

Let A be a cocycle over an invertible measurable transformation f of a measure
space X with generator A: X — GL(n,R). Note that for each € X the cocycle
A generates a sequence of matrices { A, tmez = {A(f™(x)) bmez. Therefore, every
cocycle can be viewed as a collection of sequences of matrices which are indexed
by the trajectories of f. One can associate to each of these sequences of matrices a
Lyapunov exponent.
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However, one should carefully examine the dependence of the Lyapunov exponent
when one moves from a sequence of matrices to another one (see Proposition 4.6
below). This is what constitutes a substantial difference in studying cocycles over
dynamical systems and sequences of matrices (see Sections 5.1 and 5.3 below). We
now proceed with the formal definition of the Lyapunov exponent for cocycles.

Consider the generator A: X — GL(n,R) of the cocycle A. Given a point (x,v)
€ X x R, we define the forward Lyapunov exponent of (x,v) (with respect to the
cocycle A) by

xt(z,v) =x"(z,v,A) = lim %logHA(x,m)vH.

m— 00

Note that the number x*(x,v) does not depend on the norm |-|| induced by an
inner product on R™. With the convention log0 = —oo, we obtain x*(z,0) = —oo
for every z € X.

There exist a positive integer p™(x) < n, a collection of numbers

Xi (@) <xg(x) < < X;‘F(m)(x)’
and a filtration V of linear subspaces

[0} = V@) S Vit (@) G- S Vi, (@) = B,
such that:
L Vi(2) ={veR": x*(x,v) < xF (@)}
2. if v e VT (z) \ Vi, (), then x*(x,v) = x] ().
The numbers Xj'(x) are called the values of the Lyapunov exponent xT at x.
The number
kf(z) = dim V" () — dim V7, (z)

is called the multiplicity of the value x (z). We also write

K2

ni (z) = dim V" (z) = Z k().

The Lyapunov spectrum of xT at x is the collection of pairs
SprA = {(x; (x),kf (z):i=1,...,pT(x)}.
Observe that k; (f(z)) = k" (z) and hence, Sp}"(w)A = SpA.

Proposition 4.6. The following properties hold:
1. the functions x* and pT are measurable;
2. xtof=xT andpT o f=pT;
3. A@)V;" () = V" (f(2)) and X (f(2)) = X (2).
For every (z,v) € X x R", we set
o) =x @)= T g A, m)o.

We call x~(x,v) the backward Lyapunov exponent of (x,v) (with respect to the
cocycle A). One can show that for every z € X there exist a positive integer
p~ (x) < n, the values

(@) > xa (@) > > X (@),
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and the filtration 'V, of R™ associated with x~ at z,

R =Vi(z) 22 pi(x)(x) 2 Vpi(x)+1(x) = {0},
such that V7 (z) = {v € R" : x " (z,v) < x; («)}. The number
K7 (@) = dim V" (2) — dim V7, (o)

(3

is called the multiplicity of the value x; (z). We define the Lyapunov spectrum of
X~ at x by

Spy A ={(x; (@),k; (2)):i=1,...,p (2)}.
Any nonuniformly (partially or completely) hyperbolic cocycle has nonzero Lya-
punov exponents. More precisely,

1. If A is a nonuniformly partially hyperbolic cocycle (in the broad sense) on
Y, then

Y Cc{z € X :xt(x,v)#0 for some v € R™\ {0}}.
2. If A is a nonuniformly hyperbolic cocycle on Y, then
YCc{zeX:xt(x,v)#0foralveR"}.

The converse statement is also true but is much more difficult. It is a manifestation
of the Multiplicative Ergodic Theorem 5.5 of Oseledets. Namely, a cocycle whose
Lyapunov exponents do not vanish almost everywhere is nonuniformly hyperbolic
on a set of full measure (see Theorem 5.11).

Lyapunov exponents of a cocycle are invariants of a coordinate change which
satisfies the tempering property as the following statement shows.

Proposition 4.7. Let A and B be equivalent cocycles on Y over a measurable
transformation f: X — X, and L: X — GL(n,R) a measurable function satisfying
(4.2) that is tempered on'Y. If x € Y then:

1. the forward and backward Lyapunov spectra coincide at x, i.e.,
Sp;rA = Sp;rB and Sp, A = Sp, B;
2. L(x) preserves the forward and backward filtrations of A and B, i.e.,
L)V (2, A) =V (2,B), i=1,...,p"(z),

and
L)V, (x,A) =V (2,B), i=1,...,p (x).

?

5. REGULARITY AND MULTIPLICATIVE ERGODIC THEOREM

5.1. Lyapunov regularity. We extend the concept of regularity to cocycles over
dynamical systems. Let A be a cocycle over an invertible measurable transformation
f of a measure space X. As we saw, given x € X, the cocycle A generates the
sequence of matrices { A, tmez = {A(f™(2)) bmez.

We say that x is forward (respectively, backward) reqular for A if the sequence
of matrices {A(f™(x))}mez is forward (respectively, backward) regular.

Clearly, if = is a forward (respectively, backward) regular point for A then so is
the point f™(z) for every m € Z. Furthermore, if A and B are equivalent cocycles
on Y then the point y € Y is forward (respectively, backward) regular for A if and
only if it is forward (respectively, backward) regular for B.

Consider the filtrations V* = {VI},cx and V= = {V, }.ex of R™ associated
with the Lyapunov exponents x™ and x~ specified by the cocycle A. For each
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x € X these filtrations determine filtrations V" and V, of the Lyapunov exponents
xT(z,-) and x~ (z,) for the sequence of matrices { Ay, }tmez = {A(f™(2)) }mez-
We say that the filtrations V™ and V™~ comply at a point x € X if the filtrations

V¥ and V. comply with respect to the sequence of matrices {A(f™(x))}mez- In
other words, the filtrations V¥ and V~ comply at = € X if the following properties
hold:

L p*(x) =p~(x) < p(x);

2. there exists a decomposition

p(z)
R" = @Ei(x) (5.1)

into subspaces F;(x) such that A(x)F;(x) = E;(f(z)) andfori =1, ..., p(z),
i p(z)
Vii(z) = P Ej(2) and V7 (x) = P E;(x);
j=1 j=i
3. if v € E;j(z) \ {0} then
. 1 _ def
i oA, mpvl) = xi (2) = —x; (@) xile)
with uniform convergence on {v € E;(z) : ||v|| = 1}.
We call the decomposition (5.1) the Oseledets’” decomposition at the point x.

Property 2 requires some degree of compatibility between forward and backward
regularity and is equivalent to the following: for ¢ =1, ..., p(z) the spaces

Ei(z) = Vi () NV, (@) (5.2)

satisfy (5.1).
A point z € X is said to be Lyapunov regular or simply regular for A if the
following conditions hold:

1. z is simultaneously forward and backward regular for A;
2. the filtrations V* and V= comply at x.

The set of regular points is f-invariant. If A and B are equivalent cocycles on Y’
then y € Y is regular for A if and only if it is regular for B. Under fairly general
assumptions the set of regular points has full measure with respect to any invariant
measure (see Theorem 5.5).

For each integer k, 1 < k < n, let (R")"* be the space of alternating k-linear
forms on R™. For any linear transformation A of R™, the k-fold exterior power ANF
of A is the unique linear transformation A"* of (R™)"* such that

A/\k(vl/\---/\vk) = Avy A -+ A Avy,
for any vy, ..., vx € (R")"! = R™. One can define an inner product in (R™)"* by
requiring that for any v; A --- A vy, wy A--- Awy, € (R?)NE,

(Vi A+ Avg,wy A -+ Awg) = det B,
where B = (b;;) is the k x k matrix with entries b;; = (v;, w;) for each 7 and j. The
induced norm satisfies the following properties:

1o fluor Ao Avgll < flor A== Avg|| - |lvesr A -+ - Awg|| for any £ < k;
2. for every linear transformations A, B of R™ and 1 < k, ¢ < n the induced
operator norm in (R™)"* satisfies:
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(a) [[(AB)"*]| < [|ANE| - | BA])s
(b) [JANEFON < AN - AN < [JA]FH
(c) ||ANK|| = H?:l d;, where dy > dy > --- > d,, > 0 are the eigenvalues of
(A*A)1/2,
Proposition 5.1. Let x € X be a regular point for A. The following statements
hold:
1. the exponents xT(z,-) and x~(z,-) are ezact;
2. fori=1, ..., p(x),
(a) dim E;(z) =k (z) = k; (z) = ki(z);
(b) for any vectors vy, ..., Vg, () € Ei(x) with V(vy, ..., Vg, 2)) # 0,

1
lim - log V(A(x,m)vy, ..., A(x,m)vk,(z)) = Xi(x)ki ().

m—too
3. fork=1,..., n,
1 k
: Ak /
lim —log||A(z, m)™"|| = D Xoejia(®)-

Jj=1

m

Identifying the space E;(f™(z)) with R¥(*) one can rewrite Property 2b in the
following way: for i =1, ..., p(z),

lim %log\det(ﬂ(w, m)|E;(x))| = xi(z)ki(z).

m— oo

Furthermore, for every regular point x € X, 1 < 4, j < p(x) with ¢ # j, and
every distinct vectors v, w € H;(z),

lim %log|sin UE(f™(x)), E;(f™(x)))| = 0,

m—too
i.e., the angles between any two spaces F;(x) and E;(z) can grow at most sub-ex-
ponentially along the orbit of x, and

1
lim — log|sin <(d, f™v, d, f™w)| = 0.
o m

m—t
5.2. Lyapunov exponents and basic constructions with cocycles.

Proposition 5.2. For every z € X and every v € R™, if the exponent x* (x,v,A)
is ezact, then x*(z,v, A™) is exact and

xt(z,v, A™) = mxt(z,v,A).

It follows that if z € X is Lyapunov regular with respect to the cocycle A then
so it is with respect to the cocycle A™. Moreover, the Oseledets’ decomposition at
a regular point x € X for the cocycle A provides the Oseledets’ decomposition at
x for the cocycle A™.

Proposition 5.3. Let A be a measurable cocycle over f andY C X a measurable
subset of positive v-measure. For v-almost every x € Y and every v € R", if
xT(z,v,A) is exact then x*(z,v, Ay) is ezact and

X (2,0, Ay) = 1y (2)Xx T (2,0, A).
It follows that v-almost every x € Y is regular with respect to the cocycle Ay

if and only if it is regular with respect to the cocycle A. Moreover, the Oseledets’
decomposition at x for A provides the Oseledets’ decomposition at = for Ay .
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Proposition 5.4. For everyxz € X, k=1, ..., n, and vy A--- ANvg € (RN if
the exponent x+(z,v;, A) is evact fori =1, ..., k, then x*(z,v1 A--- Aoy, AMF) is
exact and

k

Tz, o1 Ao Avg, AN = Z)ﬁ(ﬂ:,vi,ﬂ).

=1

X

It follows that if x € X is Lyapunov regular with respect to the cocycle A then so
it is with respect to the cocycle A"*. Moreover, from the Oseledets’ decomposition
@f(:wl) E;(x) at a regular point € X for the cocycle A we obtain the Oseledets’
decomposition

D E.@" A A B @)

i1, - Uk

of (R™)"* at x for the cocycle ANF,

5.3. Multiplicative Ergodic Theorem I: Oseledets’ approach. Lyapunov
regularity is a strong condition which imposes certain requirements on the forward
and backward behavior of trajectories. It is also not easy to verify this condition.
Nevertheless, it turns out that Lyapunov regularity is “typical” in the measure-
theoretical sense.

Theorem 5.5 (Multiplicative Ergodic Theorem, Oseledets [191]; see also [24] and
[174]). Let f be an invertible measure preserving transformation of a Lebesgue space
(X,v) and A a measurable cocycle over f whose generator satisfies the following
integrability condition

log || All, log || AT} € L'(X,v), (5-3)

where log™ a = max{loga,0}. Then the set of reqular points for A has full v-
measure.

Let us notice that Property (5.3) holds for any cocycle A: X — GL(n,R) for
which there is a positive constant ¢ such that ||A(z)*!| < ¢ for v-almost all x € X.

For one-dimensional cocycles, i.e., cocycles with values in GL(1,R), the Multi-
plicative Ergodic Theorem amounts to Birkhoff’s Ergodic Theorem since

log|A(x, m) Z log| A(f7(x))].
j=0

The main idea of Oseledets in proving the Multiplicative Ergodic Theorem is to
reduce the general case to the case of triangular cocycles and then use a version of
Theorem 3.5 to establish regularity.

The reduction to triangular cocycles goes as follows. First one constructs an
extension of the transformation f,

F: X x SO(n,R) — X x SO(n,R),

where SO(n,R) is the group of orthogonal n x n matrices. Given (z,U) € X X
SO(n,R) one can apply the Gram—Schmidt orthogonalization procedure to the
columns of the matrix A(x)U and write

A(z)U = R(z,U)T(z,U), (5.4)
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where R(z,U) is orthogonal and T'(x,U) is lower triangular (with positive entries
on the diagonal). The two matrices R(x,U) and T'(z,U) are uniquely defined, and
their entries are linear combinations of the entries of U. Set

F(x,U) = (f(2), R(z,U)).
Consider the projection 7: (z,U) +— U. By (5.4), we obtain
T(z,U) = ((ro F)(z,U)) ' A(z)n(x,U). (5.5)

Let A and T be two cocycles over F defined respectively by A(z,U) = A(z) and
T(x,U) = T(z,U). Since ||U|| =1 for every U € SO(n,R), it follows from (5.5)
that the cocycles A and T are equivalent on X x SO(n,R). Therefore a point
(z,U) € X x SO(n,R) is regular for A if and only if it is regular for T.

By the Representation Theorem for Lebesgue spaces we may assume that X is
a compact metric space and that f: X — X is Borel measurable. Let M be the set
of all Borel probability measures 7 on X x SO(n,R) which satisfy

7(B x SO(n,R)) = v(B) (5.6)

for all measurable sets B C X. Then M is a compact convex subset of a locally
convex topological vector space. The map F,: M — M defined by

(E.9)(B) = (F'B)

is a bounded linear operator. By the Tychonoff Fixed Point Theorem, there exists
a fixed point 77y € M for the operator Fy, i.e., a measure 7o such that 7o(F~'B) =
7o (B) for every measurable set B C X x SO(n,R). By (5.6), we conclude that the
set of regular points for A has full v-measure if and only if the set of regular points
for A has full Vg-measure, and hence, if and only if the set of regular points for T
has full 75-measure.

We may now assume that A(z) = (a;;(z)) is a lower triangular matrix (i.e.,
a;j(z) = 0if i < j). Write A(z)~! = (b;;(z)) and note that b;;(z) = 1/a;(x) for
each i. By (5.3), log™|as;|, log™|b;;| € L(X,v). It follows from Birkhoff’s Ergodic
Theorem that for v-almost every x € X,

i logay (/@) = lim o by (7 @)| =0 (57)
Note that
lloglaii|| = log™|ai| + log™ |aii| = log™ |as| + log™|bl. (5.8)
By (5.3) and (5.8), we obtain logla;;| = —log|b;;| € L'(X,v). Birkhoff’s Er-
godic Theorem guarantees the existence of measurable functions \; € L'(X,v),
i=1, ..., n, such that for v-almost every z € X,

m— 00 ——

1= 1
lim — loglai; (f¥(x))| = lim — log|bi; (f¥(2))] = N\i(z). 5.9

mkzzol(())lmoomgl|(())\ (). (5.9)
Let Y C X be the set of points for which (5.7) and (5.9) hold. It is a set of full
v-measure. The proof is concluded by showing that Y consists of regular points
for A. Indeed, by Theorem 3.5, the sequence {A(f™(x))}mez is simultaneously
forward and backward regular for every © € Y. Moreover, the numbers \;(x) are
the forward Lyapunov exponents counted with their multiplicities (but possibly not
ordered), and are the symmetric of the backward Lyapunov exponents counted with
their multiplicities (but possibly not ordered either). We conclude that p*(z) =
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p~(z) = p(x) and x; (¥) = —x; () for i = 1, ..., p(z). The hardest and more
technical part of the proof is to show that the spaces Ey(x), ..., Ep)(z), defined
by (5.2), satisfy (5.1).

Consider the set N of points which are not Lyapunov regular. This set has zero
measure with respect to any invariant Borel probability measure but in general is
not empty. For example, for the derivative cocycle (see below Section 6.1) gener-
ated by a volume-preserving Anosov diffeomorphism the set of nonregular points
has positive Hausdorff dimension provided that the Riemannian volume is not the
measure of maximal entropy (see [26]).

On another end, Herman [109] (see also Section 7.3.1) and Walters [245] con-
structed examples of continuous cocycles with values in SL(2,R) over uniquely
ergodic homeomorphisms of compact metric spaces for which the set of nonregular
points is not empty.

Furman [92] found additional conditions on the cocycle over a uniquely ergodic
homeomorphism which guarantee that every point is Lyapunov regular. Namely,
the generator of the cocycle should be either 1) continuously diagonalizable, i.e.,
continuously equivalent to a diagonal matrix, or 2) one-point Lyapunov spectrum,
or 3) continuously equivalent to an eventually positive function, i.e., for some n > 0
all the entries of A(xz,n) are positive.

5.4. Multiplicative Ergodic Theorem II: Raghunathan’s approach. We de-
scribe another approach to the proof of the Multiplicative Ergodic Theorem due
to Raghunathan [211]. Tt exploits the Sub-Additive Ergodic Theorem. The work
of Raghunathan also contains an extension to local fields (such as the field Q, of
p-adic numbers).

Let f: X — X be a measurable transformation. A measurable function B: X x
Z — R\ {0} is called a sub-additive cocycle over f if for every z € X the following
properties hold:

1. B(z,0) =1,
2. if m, k € Z then
B(z,m+k) < B(f*(x),m) + B(z, k).

If A: X xZ — GL(n,R) is a multiplicative cocycle over f (see (4.1)), then
B = log||A|| is a sub-additive cocycle. Indeed, by (4.1),

log||A(z,m + k)| < log||A(f*(x),m)|| + log|A(z, k).

The following statement is an immediate consequence of Kingman’s Sub-additive
Ergodic Theorem (see [215]).

Theorem 5.6. Let f be an invertible measure preserving transformation of a
Lebesgue space (X, v), and A a measurable multiplicative cocycle over f whose gen-
erator satisfies (5.3). Then there exist f-invariant measurable functions ¢4 : X —
R and p_: X — R such that for v-almost every x € X,

1 1
= lim —log|l4 =— lim —log|A -1
o+ (2) im - log|[A(z,m)] oim - logllA(z, m) ™I,

1 1
~(z) = lim —log|A =— lim —log|A .
p-(z) = lim —loglA(z,m)|| =~ lim -—log|A(z,m)”"|l
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Moreover o1, o € L*(X,v) and

1
dv = i — log||.A d
Joovav=tim_— [ toglate.m)|dvia)

1
- lm L / log | A, m) ™| dv(x),
X

m——oo M

1
/cp,dV: lim —/ log||A(x, m)|| dv(x)
X mmTee MM Jx

) 1 —1
= mL”Eoo - /X log||A(z, m)™"|| dv(x).

As an immediate corollary we obtain that the values of the Lyapunov exponents
X; (%) and x; () are integrable functions provided that (5.3) holds.

Let A be a measurable multiplicative cocycle over a transformation f. For each
i=1, ..., n the function log|.A"| is a sub-additive cocycle.

We present now Raghunathan’s version of the Multiplicative Ergodic Theo-
rem 5.5. Let us stress that Raghunathan considered the case of noninvertible trans-
formations but his methods can be adapted to invertible transformations and we
state the corresponding result here; we refer the reader to Section 5.7 where we
consider the case of noninvertible transformations.

Theorem 5.7 (Raghunathan [211]). Let f be an invertible measure preserving
transformation of a Lebesgue space (X, v), and A a measurable multiplicative cocycle
over [ whose generator satisfies (5.3). Then there exists a set Y C X of full v-
measure such that if x € Y then:

1. z is a reqular point for A;
2. there exist matrices A} and A, such that

lim (A, m)* Az, m)Y @D = 4%,

m—
3. the distinct eigenvalues of A are the numbers exi(@) L eXs@ ().
4. the distinct eigenvalues of A, are the numbers ex1(@) X (@)

5.5. Tempering kernels and the Reduction Theorem. The results in the pre-
vious sections allow one to obtain a “normal form” of a general measurable cocycle
associated with its Lyapunov exponent. Let us begin with the simple particular
case of a rigid cocycle A, i.e., a cocycle whose generator is a constant map A (see
Section 4.6). It is easy to see that the cocycle A is equivalent to the rigid cocycle
B whose generator is the Jordan block form of the matrix A. We consider B as the
“normal form” of A, and say that A is reduced to B.

A general measurable cocycle A satisfying the integrability condition (5.3) is
so to speak “weakly” rigid, i.e., it can be reduced to a constant cocycle up to an
arbitrarily small error. We consider this constant cocycle as a “normal form” of A.
More precisely, by the Oseledets—Pesin Reduction Theorem 5.10 below given ¢ > 0,
there exists a cocycle A, which is equivalent to A and has block form, such that
the generator A% of each block satisfies

eXi@=¢|ly|| < [| AL (z)v] < eXi@Ee||y|

for each regular point = and each v € E;(z), where {E;(z) :i =1, ..., p(x)} is the
Oseledets’ decomposition at = (see (5.1)). We say that A, is the reduced form of A.
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To proceed with the description of normal forms we first introduce a family of
inner products (-, ) = (-, ), on R™ for z € X. We start with the following auxiliary
result.

Proposition 5.8. For each € > 0 and each reqular point x € X for A, the formula
(W, 0)h; = D> (Alz,m)u, A(w, m)v)e2x(@m=2elml (5.10)
mEZ

determines a scalar product on E;(x).

For a fixed € > 0 we introduce a new inner product on R"™ by

p(z)

(u,v)y = Z(quz‘);,m

i=1
where wu; and v; are the projections of the vectors u and v over E;(z) along
@D, Ej(x). We call (-, )} a Lyapunov inner product at x, and the corresponding

norm |||’ a Lyapunov norm at x. The sequence of weights {e~2xi()m=2elmly
in (5.10) is called a Pesin Tempering Kernel. The value of (u,v)!, depends on the
number €. The Lyapunov inner product has the following properties.

Proposition 5.9. The following properties hold:

1. The inner product (-,-)". depends measurably on the regular point x.
2. For every regular point x € X and i # j, the spaces E;(xz) and E;(x) are
orthogonal with respect to the Lyapunov inner product.

A coordinate change C.: X — GL(n,R) is called a Lyapunov change of coordi-
nates if for each regular point € X and u, v € R™ it satisfies:
(u,v)y = (Ce(x)u, Ce(x)v),. (5.11)

Note that the identity (5.11) does not determine the function C.(z) uniquely.
The following result known as Oseledets—Pesin Reduction Theorem provides a
complete description of normal forms for cocycles.

Theorem 5.10 (see [135]). Let f: X — X be an invertible measure preserving
transformation of the Lebesque space (X,v), and A a measurable cocycle over f.
Given € > 0 and a regular point x,

1. there exists a Lyapunov change of coordinates C. which sends the orthogonal
decomposition @) R¥(®) to the decomposition @) E;(z) of R";
2. the cocycle A.(z) = C.(f(x)) L A(z)C.(z) has the block form

Al(z)
Ae(z) = , (5.12)
AS(I) (l‘)

where each block Al(z) is a ki(z) x k;(z) matriz, and the entries are zero
above and below the matrices AL(x);
3. each block Al(z) satisfies
X7 < | AL(w) T T < AL (e)|| < X

4. if the integrability condition (5.3) holds then the map C. is tempered v-almost
everywhere, and the spectra of A and A. coincide v-almost everywhere.
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In the particular case of cocycles with values in GL(2,R) Thieullen [239] showed
that if the two Lyapunov exponents are equal the cocycle is conjugate to one of
the following: a rotation cocycle, an upper triangular cocycle, or a diagonal cocycle
modulo a rotation by /2.

An important manifestation of the Oseledets—Pesin Reduction Theorem is a cri-
terion of nonuniform hyperbolicity (partial or complete) of measurable cocycles via
the values of their Lyapunov exponents.

Theorem 5.11. Let f: X — X be an invertible measure preserving transformation
of the Lebesgue space (X,v), and A a measurable cocycle over f whose generator
satisfies (5.3). Then the following properties hold:

1. if the set
Zpn ={z € X : xT(x,v) #0 for some v € R™\ {0}}

has measure v(Zy,) > 0 then A is nonuniformly partially hyperbolic in the
broad sense on some set Wy, C Zpp, with v(Wyp) = v(Zpp);
2. if the set

Zp ={x € X :x (z,v) #0 for allv e R™\ {0}}
has measure v(Zp,) > 0 then A is nonuniformly hyperbolic on some set W), C

Zh with Z/(Wh) = I/(Zh).

This theorem was first proved by Pesin in [197] for the special case of derivative
cocycles (see the definition of the derivative cocycle in the next section) but the
argument can readily be extended to the case of general cocycle.

The proof of this crucial statement is based upon the following observation.
Given a regular point z and a small e there exists a number m(z,€) such that for
m > m(z,e),

1 1 —m
Xi—€< ElOgHAZZ |<xite, —xi—¢e< ﬁlOgHAiz < —=xi+e,
and
1 1 _
—xi —e s log| Bl < —xite xi—e < log|| B < xi te

where A" = A(z,nm)|E;(z) and B = B(xz,m)|E}(x) with Ef(z) the dual space
to E;(z). Here

(A(2)) A @)L (AP (@)) 7 ifm >0

B(x,m) =< 1Id ifm=0.
A(f 1 @) A 2(@)" - A(f™ ()" if m <0
Set
Df(w,2) = min _min {147, e B el L
1<i<s 0<j<m(z,e)
Df(w,6) = max _max {1, JAf, el Xt |1B], e L
1<i<s 0<j<m(z,e)
and

Dy (z,e) = min{Df(x,ELDf(mﬁ)},
D2(‘T7€) = InaX{D;_(I’,E),DQ_(I,&‘)},
D(z,¢) = max{D;(z,&) ", Do(x,¢)}.
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The function D(z,¢) is measurable, and if m > 0 and 1 < ¢ < p then
D(x,g)*le(ﬂ:xl‘ﬂz)m S”‘Ai:rm” < D(J?,E)e(iXiJrE)m
D(:L‘,g)—le(ixi—a)m SHBim” < D(x’g)e(ixi—ﬁ-s)m'

Moreover, if d > 1 is a number for which the inequalities (5.13) hold for all m > 0

and 1 < i < p with D(z,¢) replaced by d then d > D(x,¢). Therefore,
D(z,e) = inf{d > 1 : the inequalities (5.13) hold for all n > 0

and 1 <4 < p with D(z,¢) replaced by d}.

(5.13)

(5.14)

We wish to compare the values of the function D(z,¢) at the points z and f7(z).
We introduce the identification map 7,: (R™)* — R™ such that (m,(¢),v) = ¢(v)
where v € R and ¢ € (R™)*.

Let {vp* : k=1, ..., ¢} be a basis of E;(f™(z)) and {w}* : k = 1,...,¢} the
dual basis of E*(fm( )) We have 7pm () (wi') = vp*. Denote by Al . and B,

m,J
the matrices corresponding to the linear maps A"} i (2) and B i(2) with respect to

the above bases. We have that
Al o(Bj ) =1d
where * stands for matrix transposition. Hence, for every m > 0 the matrix corre-
sponding to the map A;’}j(x) is
Ain,j = Ain+j,O(A;,O)_1 = Ainﬂ,o(B;',o)*-
Therefore, in view of (5.13), we obtain that if m > 0 then
AT} (|l < D(z,e)2eitOmti+(=xite)i — Dz ¢)2e2T ite)m
A2} | = Dl ) 260 Hx=9 = P, g) 22 eiem,
if m >0 and j —m > 0 then
Ayl < Dia,2)2eletOU=mIHoxt ) — p(a, e)eielxetem
||AW I)H > D(x,e) 2= U=m)H(=xi=e)i = D(g,e) 2e 2T (X EIm
and if m > 0 and m — j > 0 then
AT || < D(z,e)?eite)lm=iH(=xite)i — D(g, g)2e2T (—Xite)m,

3

ifI(z)
| 2 Dl 2) el maHx-95 Py, 2) -2l ximem,
Similar inequalities hold for the maps B?}j ()" Comparing this with the inequalities

(5.13) applied to the point f7(x) and using (5.14) we conclude that if j > 0, then

D(f?(x),e) < D(x,e)*e*. (5.15)
Similar arguments show that if j <0, then
D(f7(x).¢) < D(z,e)%e . (5.16)

It follows from (5.15) and (5.16) that if j € Z, then
D(f7(x),e) < D(x,¢)?e* V.

thus establishing the subexponential behavior of the constant along the trajectory
necessary for nonuniform hyperbolicity.

Another important manifestation of the Oseledets—Pesin Reduction Theorem
is a crucial property of the Lyapunov inner norms. It states that the function
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x = |lv(@)||L/|lv(z)]. is tempered on the set of regular points for every measurable
vector field X 5 z — v(z) € R™\ {0}. We recall that a positive function K: X — R
is called tempered on a set Z C X if for any = € Z,
. 1 m

7n1—l>r£oo p- log K(f™(x)) = 0. (5.17)
Theorem 5.12 (see [135]). For every measurable vector field X > z +— v(x) €
R™ \ {0}, the function z — |v(x)|./||v(x)|lx is tempered on the set of regular
POINts.

The proof uses a technical but crucial statement known as the Tempering-Kernel
Lemma.

Lemma 5.13 ([135]). Let f: X — X be a measurable transformation. If K:
X — R is a positive measurable function tempered on some subset Z C X, then
for any € > 0 there exists a positive measurable function K.: Z — R such that
K(z) < K.(z) and if x € Z then

K,
e K@) .
K.(z)
Note that if f preserves a Lebesgue measure v on the space X, then any positive

function K: X — R with log K € L'(X,v) satisfies (5.17). The following is now
an immediate consequence of Theorem 5.12.

Theorem 5.14. Given € > 0 there is a positive measurable function K.: X — R
such that if x € X is a reqular point then:

1. K.(x)e sI™l < K (f™(x)) < K.(z)ef!™! for every m € Z;

2. n V2], < loll, < Ke@)[lol, for every v € R™.

5.6. The case of flows. We briefly discuss counterparts to the results in the above
sections for flows. Let (X, v) be a Lebesgue space.
The measurable map ¢: R x X — X is called a measurable flow on X if

o = Id, and ¢y 0 @, = ;4 for every t, s € R. (5.18)

A measurable flow ¢: R x X — X is called a measure preserving preserving flow if
01 = o(t,-) is v-invariant for every t € R.
We note that given a family {¢; : t € R} of measurable maps ¢;: X — X
satisfying (5.18) one can define a measurable flow ¢: Rx X — X by ¢(t, z) = ¢ (x).
A measurable function A: X x R — GL(n,R) is called a linear multiplicative
cocycle over ¢ or simply a cocycle if for every x € X the following properties hold:
1. A(z,0) = Id;
2. if t, s € R then
Az, t + s) = A(p(x), s)A(z, t).
The cocycle A induces linear extensions Fy: X x R™ — X x R" by the formula
Fi(z,v) = (p(x), Az, t)v).

Given (z,v) € X x R", the forward Lyapunov exponent of (x,v) (with respect to
the cocycle A) given by

— 1
X (z,v) = xT(2,0,A) = . ligl n log||A(x, t)v]|.
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For every = € X, there exist a positive integer p*(x) < n, a collection of values
X1 (@) < x3 (2) < <X (@),
and linear spaces
{0} =V"(2) G Vi"(2) G -+ G Vi, (2) =R,

such that:
LV (@) = {v € R X (a,0) < v (@)
2. ifv € VT (2) \ V;T,(z), then xT(z,v) = x; (2).
The number
kf(z) = dim VT () — dim V7| (z)
is the multiplicity of the value x; (). In a similar way the quantity
— 1
X (@0) = X~ (,0,4) = Tm —

t——o0 |t|

log|[A(z, t)o||

is the backward Lyapunov exponent of (x,v) (with respect to the cocycle A). There
exist a positive integer p~ (z) < n, a collection of values

X1 (@) > > X (@)
and the filtration V, of R™ associated with x~ at z,
R = Vi (2) 2+ 2V ) (@) 2V (@) = {0},
where V.7 (z) = {v € R" : x " (z,v) < x; (x)}. The number
K7 (@) = dim V™~ (2) — dim Vi3, (o)

is the multiplicity of the value x; (z).
Write V* = {V}},ex and V, = {V, }sex. The filtrations V* and V= comply
at the point x € X if the following properties hold:

L. p*(z) = p~(x) = p(x);
2. there exists a decomposition

p(z)
R" = P Ei(z)
i=1
into subspaces F;(x) such that A(z,t)E;(z) = E;(p:x) for every t € R and
p(z)

Vie) =D Eila) and V(@) = P Ej(a)

30X (2) = —x; () = xi(w);
4. if v € E;(x) \ {0} then

. 1
Jlim =+ TogllA(z, ol = xi(a),

with uniform convergence on {v € E;(x) : ||v]| = 1}.
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A point z is forward regular for A if the following limit exists

*(=)
1 p

: _ o\t
3 logldet A(e. )] = 3 3 @K (o)

and is backward regular for A if the following limit exists

~ (@)

1 p

Jim mlog|detﬂ(x,t)| = > x @k (x).
=1

Finally, a point = is Lyapunov regular or simply regular for A if

1. z is simultaneously forward and backward regular for A;
2. the filtrations V™ and V~ comply at z.

Theorem 5.15 (Multiplicative Ergodic Theorem for flows). Let ¢ be a measure
preserving flow of a Lebesgue space (X, v) such that ¢ is invertible for every t € R.
Let also A be a measurable cocycle over ¢ such that

sup logT||A( )| € L*(X,v). (5.19)
1<t<1

Then the set of reqular points for A has full v-measure.

Given € > 0 and a regular point x € X, we introduce a family of inner products
(-,-)z on R™ by setting

(u,v), = / (A(z, t)u, Az, t)v)e~ 2 (@)t=2elt] g
R

if u, v € E;(x), and (u,v),, = 0 if u € E;j(z) and v € E;(x) with ¢ # j. We call
(-, -, a Lyapunov inner product at x, and the corresponding norm ||-||’, a Lyapunov
norm at x. One can show that there exists a tempered function K.: X — R such
that if z € X is a regular point and v € R™ then

2ol < Jollly < Ke(@)][o]la-
We recall that a positive function K: X — R is called tempered on a set Z C X if
for any = € Z,

1
lim — log K(piz) = 0.
m

t—too

Theorem 5.16 (Reduction Theorem for flows). Let ¢ be a measure preserving flow
of a Lebesgue space (X,v) such that ¢y is invertible for every t € R. Let also A
be a measurable cocycle over ¢. Given € > 0 and a regular point x, there exists a
Lyapunov change of coordinates C. with the following properties:

1. the cocycle A.(z,t) = C(px) L A(x,t)C:(x) has the block form
Al(z,t)
Ae(z,t) = )
AP (z,t)
where each block Al(z,t) is a k;(z) x ki(x) matriz, and the entries are zero

above and below the matrices Al(x,t);
2. each block Ai(x) satisfies

e e I
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3. if the integrability condition (5.19) holds then the map C. is tempered v-
almost everywhere, and the spectra of A and A. coincide v-almost every-
where.

5.7. The case of noninvertible dynamical systems. Consider a measure pre-
serving transformation f: X — X of a Lebesgue space (X,v) (the map f need
not be invertible). We assume that v is a probability measure. Given a mea-
surable function A: X — GL(n,R) and x € X, define the one-sided cocycle
A: X xN— GL(n,R) by

Ala,m) = A(f™ (@) - A(f () Al).
Note that the cocycle equation (4.1) holds for every m, k € N. Given (z,v) €
X x R™, define the forward Lyapunov exponent of (z,v) (with respect to A) by

— 1
@) = (@0, 4) = Tim — log|A(z, m)v].
m—-+oo M,
However, since the map f and the matrices A(z) may not be invertible, one may not
in general define a backward Lyapunov exponent. Therefore, we can only discuss
the forward regularity for A. One can establish a Multiplicative Ergodic Theorem

in this case.

Theorem 5.17. Let f be a measure preserving transformation of a Lebesgue space
(X,v), and A a measurable cocycle over f such that log™ ||A|| € L'(X,v). Then
the set of forward regular points for A has full v-measure and for v-almost every
x € X and every subspace F C Ej (z) such that F N E;" | (x) = {0} we have

1 1
1' 71 i f = 1. 71 3 = +
i loginf|l Az, mjvlf = lim_ - logsup[A(z, m)v]| = X" (2),

with the infimum and supremum taken over {v € F : ||v| = 1}.

When the matrix A(x) is invertible for every z € X and log™||A|, log™||A7Y| €
LY(X,v) for some f-invariant Lebesgue measure v, one can show that for the cocycle
induced by A on the inverse limit of f the set of regular points has full v-measure.

5.8. The case of nonpositively curved spaces. Karlsson and Margulis [128]
obtained an extension of the noninvertible case of the Multiplicative Ergodic The-
orem 5.5 to some nonpositively curved spaces.

Let (Y, p) be a complete metric space. Y is called:

1. convez if any two points x, y € Y have a midpoint, i.e., a point z for which
1
plz,2) = plz,y) = 5p(2,y);
2. uniformly convez if it is convex and there is a strictly decreasing continuous
function g on [0, 1] such that g(0) = 1 and for any z,y, w € Y and midpoint
Mgy of z and y,

p(mgy, w) < g(ﬂ(mxva)>’
R R
where R = max{p(z,w), p(y,w)};
3. nonpositively curved (in the sense of Busemann) if it is convex and for any
z, Y, # € Y and any midpoints m,, of z and z and m,, of y and z,

1
p(mw27 myZ) S 5 p(l‘,y)



SMOOTH ERGODIC THEORY AND NONUNIFORMLY HYPERBOLIC DYNAMICS 45

If Y is uniformly convex then midpoints are unique.

Examples of nonpositively curved spaces include uniformly convex Banach spaces
(e.g., Hilbert spaces or LP for 1 < p < c0), Cartan—Hadamard manifolds (e.g., Eu-
clidean spaces, hyperbolic spaces or GL(n,R)/O(n,R)), and more generally CAT(0)
spaces (e.g., Euclidean buildings or R-trees).

A continuous map : I — Y (I is an interval) is called a (unit speed minimizing)
geodesic if for any s,t € I,

p(v(s),7(t)) = [s —t].
If Y is convex then any two points can be joined by a geodesic and if Y is uniformly
convex then this geodesic is unique.

A geodesic v: [0,00) — Y is called a ray if the limit lim; o v(¢) does not exist.
The two rays 1 and o are called asymptotic if p(y1(t),y2(¢)) < const for ¢ > 0. We
denote by [v] the set of all rays asymptotic to v and by Y (c0) the ideal boundary
of Y , i.e., the set of all classes of asymptotic rays.

Let D C Y be a nonempty subset. A map ¢: D — D is called a semicontrac-
tion (or nonexpanding) if p(¢o(v),o(2)) < d(y,z) for all y,z € D. Isometries are
semicontractions.

Let us fix a semigroup S of semicontractions and equip it with the Borel o-
algebra associated with the compact-open topology on S. Fix y € Y. Consider a
cocycle A with values in S over an ergodic transformation f of a measure space
(X,u). Let A: X — X be the generator.

Theorem 5.18 (Karlsson and Margulis [128]). Assume that

/X oy, Ax)y) du(z) < oo.

Then for almost every x € X the following limit exists
1
lim %d(y,fl(%m)y) =a (5.20)

and if a > 0 then for almost every x € X there exists a unique geodesic ray (-, )
'Y starting at y such that

1
and hence, A(-,m)y converges to [y] in Y UY (c0).

The existence of the limit in (5.20) is an easy corollary of Kingman’s Sub-additive
Ergodic Theorem.

Consider the symmetric space Y = GL(n,R)/O(n,R) and a cocycle A with
values in O(n,R) over an ergodic transformation f of a measure space (X, u). Let
A: X — X be the generator. Fix a point y € O(n,R). For g € GL(n,R) let \;
be the eigenvalues of (gg*)'/? where g* is the transpose of g. The distance in Y’

between y and gy is

n 0\ 1/2

ply.9y) = (3 og 2:)?)

i=1
A geodesic starting at y is of the form (¢) = ey where H is a symmetric matrix.
Then A = el is a positive definite symmetric matrix. We have that

1
lim —d(A™"y, A(m,z)"'y) =0

n—oo M
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for almost every x € X. In view of (3.7) this means that x is forward regular.
Theorem 5.18 has interesting applications to random walks and Hilbert—Schmidt
operators (see [128]). It is shown in [128] with an explicit example that there is no
invertible version of Theorem 5.18, i.e., there is in general no two-sided geodesic
approximating both the forward and backward orbits m — A(z, £m)y.

5.9. Notes. The term “Multiplicative Ergodic Theorem” was introduced by Os-
eledets in [191] where he presented the first proof of the theorem.

In [182], Millionshchikov announced a somewhat independent proof of the Mul-
tiplicative Ergodic Theorem which is based on some subtle properties of the action
of the differential with respect to the Lyapunov exponents.! Maifié used similar
properties in his proof of the entropy formula (see Section 12.2).

Other proofs of the Multiplicative Ergodic Theorem were obtained by Ruelle
[215], by Maiié [174] (see also [172]),% and by Goldsheid and Margulis [98]. A simpler
version of the Multiplicative Ergodic Theorem was considered by Johnson, Palmer
and Sell [126],® and related topics were discussed by Sacker and Sell [221, 222, 226]
and by Johnson [125].

In [141], Kifer established a “random” version of the Multiplicative Ergodic The-
orem—for compositions of independent identically distributed transformations of a
measurable vector bundle. His proof is built on the work of Furstenberg and Kifer
[94] (see also Chapter III in [142]). Under more restrictive conditions a similar
result was obtained by Carverhill [59]. See the book by Arnold [12] for a detailed
description of various versions of the Multiplicative Ergodic Theorem and related
questions in the random dynamical systems setup.

There are also infinite-dimensional versions of the Multiplicative Ergodic Theo-
rem. Namely, it was extended by Ruelle [216] to Hilbert spaces (following closely
his finite-dimensional approach in [215]), and by Mané in [172] to compact trans-
formations in Banach spaces (see also Thieullen [238] for the case of not necessarily
compact transformations). The proof due to Goldsheid and Margulis also extends
to the infinite-dimensional case (see [98]).

6. COCYCLES OVER SMOOTH DYNAMICAL SYSTEMS

6.1. The derivative cocycle. Let f: M — M be a diffeomorphism of a smooth
n-dimensional Riemannian manifold. Given z € M, set X = {f™(z)}mez. Iden-
tifying the tangent spaces Tgm ()M with R™ one can introduce the cocycle A, =
{d¢m(2)f}mez over the transformation f: X — X. It is called the derivative cocy-
cle associated with the diffeomorphism f and the point . The Lyapunov exponent
x1 of x specified by the derivative cocycle is the Lyapunov exponent specified by
the diffeomorphism f at the point z.

The “individual” derivative cocycles A, depend on the individual trajectories
{f™(x)}mez. We now introduce the “global” cocycle associated with f. One can

IMillionshchikov’s proof was never published as a solid piece; instead, it is scattered through
a series of papers with cross-references and is difficult to comprehend.

2In both [215] and [174] a slightly weaker version of Lyapunov regularity, then the one we intro-
duced in Section 5.1, is considered but the proofs contain arguments which are indeed, sufficient
to establish a stronger version.

3They established some but not all properties of Lyapunov regularity referring the reader to
the original work of Oseledets.
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represent M as a finite union [ J; A; of differentiable copies A; of the n-simplex such
that:

1. in each A; one can introduce local coordinates in such a way that TA; can
be identified with A; x R"™;
2. all the nonempty intersections A; N A;, for ¢ # j, are (n — 1)-dimensional
manifolds.
In each A; the derivative of f can be interpreted as a linear cocycle. This implies
that df : M — R™ can be interpreted as a measurable linear cocycle A with d, f to
be the matrix representation of d, f in local coordinates. We call A the derivative
cocycle specified by the diffeomorphism f. It does not depend on the choice of
the decomposition {A;}. Indeed, if we choose another decomposition {Af}, then
the coordinate change in A; N A;- sending one representation to the other one
is effected by maps which are uniformly bounded together with their derivatives,
their inverses, and the inverses of their derivatives. Hence, by Proposition 4.2,
the coordinate change is tempered and the two cocycles corresponding to the two
decompositions {A;} and {Al} are equivalent.
We remark that if v is an f-invariant Borel probability measure on M then the
decomposition {A;} can be chosen such that v(9A;) = 0 for every i.

6.2. Nonuniformly hyperbolic diffeomorphisms. We say that a diffeomor-
phism f is nonuniformly partially hyperbolic in the broad sense if so is the derivative
cocycle generated by f. More precisely, this means® that f possesses an invariant
Borel subset A C M such that there exist: (a) numbers A and p, 0 < A < p, A < 1;
(b) a sufficiently small number ¢ > 0 and Borel functions C, K: A — (0,00); (c)
subspaces Fi(z) and Fy(z), z € A, which satisfy the following conditions:

1. the subspaces F1(z) and Es(z) depend measurably on « and form an invari-

ant splitting of the tangent space, i.e.,

T,M = Ei(z) ® Ez(x),

dSBr(a) = Bx(f(2)), dufBala) = Ba(f(a)) (6
2. for v € Ey(x) and n > 0,
[daf" ]| < C(@)A" ™" [|v]; (6.2)
3. for v € Es(x) and n < 0,
da f™ 0]l < Ca)p™e ™ [Ju]|; (6.3)
4. the angle
Z(Ey(2), B2(2)) = K(2); (6.4)
5. for n € Z,
C(f*(x)) < Cl@)e™,  K(f*(x)) = K(z)e™I". (6.5)

Condition (6.5) means that estimates (6.2), (6.3) and (6.4) may deteriorate along
the trajectory with subexponential rate. We stress that the rates of contraction
along stable subspaces and expansion along unstable subspaces are exponential
and hence, prevail.

Furthermore, f is nonuniformly partially hyperbolic on an f-invariant Borel sub-
set A C M if there exist: (a) numbers A\, X', u, and g/ such that 0 < A <1 < p

4For simplicity, we consider here only one of the nested subsets in the definition of nonuniformly
hyperbolic cocycles; see Section 4.4.
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and A < X <y’ < p; (b) a sufficiently small number € > 0 and Borel functions C,
K: A — (0,00); (c) subspaces E*(z), E°(x), and E“(x), x € A, which satisfy the
following conditions:

1’. the subspaces E*(x), E°(x), and E*(x) depend measurably on 2 and form
an invariant splitting of the tangent space, i.e.,

T.M = E°(z) ® E°(z) ® E*(x),

do fE*(x) = E°(f(2)), dafE“(z) = E°(f(x)),

do fE"(x) = E*(f(2));
2’. the subspaces E°(z) and E"(x) satisfy (6.2) and (6.3); in addition, for v €
E¢(z) and n € Z,

C(a)~ () e lvll < lldo f"oll < C(a) ()" e [Jv]l;

3’. the subspaces E®(x) and E*(x) satisfy (6.4); in addition, Z(E*(x), E°(x)) >
K(x) and Z(E"(z), E¢(x)) > K(x);
4. the functions C(z) and K (z) satisfy (6.5).

In the case E¢(x) = 0 we say that f is nonuniformly (completely) hyperbolic
on A.

Throughout this chapter we deal with three types of nonuniform hyperbolicity:
the partial hyperbolicity in the broad sense, its stronger version of partial hyper-
bolicity (sometimes called partial hyperbolicity in the narrow sense), and yet the
stronger complete hyperbolicity (sometimes simply called nonuniform hyperbolic-
ity). We shall refer to subspaces E;(x) and respectively, E*(x) as stable subspaces,
to E¢(x) as central subspaces and to E¥(z) as unstable subspaces. In the case of
general nonuniform partial hyperbolicity in the broad sense the subspaces Fs(z)
may not be unstable as some vectors may contract under the action of df.

It should be stressed that principle results describing local behavior of the sys-
tem (such as Stable Manifold theorem 8.8 and Absolute Continuity theorems 10.1
and 11.1) as well as some results of a global nature (such as construction of global
invariant manifolds in Section 9 and of the pseudo-m-partition in Theorem 11.16
and the lower bound for the metric entropy in Theorem 12.11) need only nonuni-
form partial hyperbolicity in the broad sense. On the other hand, more advanced
results describing ergodic and topological properties of the system require stronger
nonuniform complete hyperbolicity, see Sections 11-16.

Consider a diffeomorphism f which is nonuniformly partially hyperbolic in the
broad sense on an invariant set A. Given £ > 0, we introduce the regular set (of
level ¢) by

Afz{xeA;C(x)q, K(m)>2}.
Without loss of generality we may assume that the sets A’ are closed (otherwise
they can be replaced by their closures Af).

We describe a special inner product in the tangent bundle T'A which is known
as the Lyapunov inner product. It provides a convenient technical tool in studying
nonuniform hyperbolicity. Choose numbers 0 < N < p’ < oo such that

et < N, p < pec.
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We define a new inner product (-, )., as follows. Set

o0
Ezﬁvdfwﬁ@A
k=0
if v, w € Ey(x), and
oo
= Z<df_kv7 df_kw>f*k(x)//2k
k=0
if v, w € Ea(x).

Using (6.2) and (6.3) one can verify that each series converges. We extend (-, )/,
to all vectors in T, M by declaring the subspaces E;(z) and Es(x) to be mutually
orthogonal with respect to (-,-)., i.e., we set

(v, W) = (v, w1);, + (v2, wa)7,
where v = v1 + v2 and w = w1 + we with vy, w1 € Eq(z) and ve, we € Ea(x).

The norm induced by the Lyapunov inner product is called the Lyapunov norm
and is denoted by ||-||’. We emphasize that the Lyapunov inner product, and hence,
the norm || - ||” depend on the choice of numbers X" and p'.

The Lyapunov inner product has several important properties:

1. the angle between the subspaces F(z) and E3(z) in the inner product (-, -)",
is w/2 for each x € A;

2. [l < X and B, < ()

3. the relation between the Lyapunov inner product and the Riemannian inner
product is given by

1
Ellwllx < fwll; < D(@)[|wlls,
where w € T, M and

D(x) = C(a)K ()7 [(1 = Ae*/N) 7+ (L= 4/ (pe=9)) 71]Y/?
is a measurable function satisfying (in view of (6.5))
D(f™(z)) < D(x)e*I™, meZ. (6.6)

Properties (1) and (2) show that the action of the differential df is uniformly
partially hyperbolic in the broad sense with respect to the Lyapunov inner product.

For a partially hyperbolic in the broad sense C'*# diffeomorphism f the sub-
spaces F1(z) and F5(z) depend continuously on the point z in a regular set. Indeed,
one can prove a stronger statement.

Theorem 6.1. The distribution E\(x) depends Hélder continuously on x € A,
i.e.,

d(Er(x), Ea(y)) < Cp(z,y)*,
where C' > 0 and o € (0,1] are constants, and d is the distance in the Grassmannian
bundle of TM generated by the Riemannian metric.

This theorem is a particular case of a more general result which we now state.

A k-dimensional distribution E on a subset A of a differentiable manifold M is
a family of k-dimensional subspaces F(x) C T, M, € A. A Riemannian metric on
M naturally induces distances in T'M and in the space of k-dimensional subspaces
in TM. The Hélder continuity of a distribution E can be defined using these
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distances. However, by the Whitney Embedding Theorem, every manifold M can

be embedded in R with a sufficiently large N. If M is compact, the Riemannian

metric on M is equivalent to the distance ||z — y|| induced by the embedding.

The Holder exponent does not change if the Riemannian metric is changed for an

equivalent smooth metric, while the Holder constant may change. We assume in

Theorem 6.2, without loss of generality, that the manifold is embedded in R,
For a subspace A C RY and a vector v € RV, set

dist(v, A) = mig [lv —wl.
we

i.e., dist(v, A) is the length of the difference between v and its orthogonal projection
to A. For subspaces A4, B in RN, define

dist(4, B) = max{ max dist(v, B), max dist(w,A)} .
vEA,|lv|l=1 weB,[lw||=1
A k-dimensional distribution E defined on a set A C RY is called Hélder continuous
with Holder exponent a € (0,1] and Holder constant L > 0 if there exists g9 > 0
such that
dist(E(x), E(y)) < Lljz -y

for every z, y € A with ||z — y| < 0.

The subspaces E1, Fs C RY are said to be k-transverse if ||v; — va]| > & for all
unit vectors v1 € 71 and vy € Fs.

Theorem 6.2 (Brin [48]). Let M be a compact m-dimensional C? submanifold
of RN for some m < N, and f: M — M a C'*P map for some 3 € (0,1). Assume
that there exist a set A C M and real numbers 0 < A < u, ¢ > 0, and & > 0 such
that for each x € A there are k-transverse subspaces Ey1(x), Eq(x) C T, M with the
following properties:
2 oS or| < eXtllo]l and ldofmvs]| = ¢ fugl] for every v € Fy(a),
vy € Ea(x), and every positive integer n.

Then for every a > max,epr ||d. f||*+?, the distribution Ey is Hélder continuous
with exponent

_logp —log A

~loga—log\"’

6.3. Regularity of the derivative cocycle. We say that a point z € M is
Lyapunov forward f-regular (or simply forward regular), Lyapunov backward f-
regular (or simply backward f-reqular), or Lyapunov f-regular (or simply regular),
respectively, if it is forward regular, backward regular, or regular with respect to
the cocycle A,.

We recall that for any regular point & € M there exist an integer s(z) < n,
numbers x1(z) < --- < Xs(z)(2) and a decomposition

s(x)
T,M =P Ei(x) (6.7)
i=1

into subspaces F;(x) such that for v € E;(z) \ {0} and i =1, ..., s(x),

1 Myl —
i gl £l = ()
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with uniform convergence on {v € E;(x) : |Jv|| = 1}. Write k;(z) = dim H;(x).

Assume that there exists C' > 0 such that ||d, ||, ||d.f~1|| < C for every z € M.
Note that this property holds when M is compact. Then the derivative cocycle
satisfies the condition (5.3), and by the Multiplicative Ergodic Theorem 5.5 the
set of regular points (as well as the sets of forward and backward regular points)
is nonempty. Moreover, the following statement is an immediate consequence of
Theorem 5.5.

Theorem 6.3. Let f be a diffeomorphism of a smooth Riemannian manifold. Then
the set of reqular points has full measure with respect to any f-invariant Borel
probability measure with compact support.

The set of points which are not regular is negligible from the measure-theoretical
point of view, since it has zero measure with respect to any Borel invariant measure.
However, this set may be large with respect to other characteristics. For example,
it may have positive Lebesgue measure, positive Hausdorff dimension, or positive
topological entropy.

Theorem 6.3 does not allow one to determine whether a given trajectory is
regular (or forward regular or backward regular). We now present some criteria
which guarantee forward and backward regularity of individual trajectories.

Let us first notice that if = is a fixed point or a periodic point for f then the
cocycle A, is rigid with generator A = d, f (if x is a fixed point) or A = d, f? (if =
is a periodic point of period p).

We now consider the case of an arbitrary point x.

Proposition 6.4. Let f be a diffeomorphism of a smooth Riemannian manifold M.
1. If x € M is such that

1
XT(z,v1, ooy vp) = lim —logV(dyf™vy, ..., duf™vr)
m

m——+0o0
(that is, x*(z,v1, ..., vg) s exact), for any choice of linearly independent
vectors vy, ..., vp € T, M and k=1, ..., n, then x is forward reqular.

2. If x € M is such that
1

X (x,v1, ..., v) = lim logV(dy fMv1, ..., def™0k)
m——0Q m|
(that is, X~ (z,v1, ..., vg) is exact), for any choice of linearly independent
vectors vy, ..., vy € T, M and k=1, ..., n, then x is backward regular.

We also formulate a criterion for regularity.
Proposition 6.5. Let f be a diffeomorphism of a smooth Riemannian manifold M
and x € M. Assume that:
1. xT(z,v1, ..., vx) and X~ (z,v1, ..., vg) are exact for any choice of linearly
independent vectors vy, ..., vy € T, M and k=1, ..., n;
2. st(z) = s (x) = s(x) and X (2) = —x; (x) fori=1, ..., s(z);
3. @) (ViH(x)NV, (x)) = R where {V;"} and {V,"} are filtrations associated
with the Lyapunov exponents xT and x~.
Then x is regular.

The diffeomorphism f acts on the cotangent bundle T*M by its codifferential
dof: TjyM — Ty M
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defined by
d;f(p('l}) = QD(dIfU), (S TCDMu Y e T}k(z)M
We denote the inverse map by

df = (dpf)": TyM — Tj M.

Let v be an ergodic f-invariant Borel measure. There exist numbers s = s”,
Xi =X/, and k; = kY for i =1, ..., s such that

for v-almost every x. The collection of pairs

Spx(v) = {(xi, ki) : 1 < i < s}

is called the Lyapunov spectrum of the measure v.

A diffeomorphism f is a dynamical system with nonzero Lyapunov exponents if
there exists an ergodic f-invariant Borel probability measure v on M — a hyperbolic
measure — such that the set

A ={x € L : there exists 1 < k(x) < s(z)
with Xp(2)(7) <0 and Xg(z)41(z) > 0}
has full measure.

Consider the set A = A” of those points in A which are Lyapunov regular and
satisfy (6.8). By the Multiplicative Ergodic Theorem 5.5, we have v(A) = 1. For

every x € A, set

k s

Es(x)z@Ei(x) and E%(x) = @ E;(z).

i=1 i=k+1

Theorem 6.6. The subspaces E*(x) and E*(x), x € A, have the following prop-
erties:

1. they depend Borel measurably on x;
2. they form a splitting of the tangent space, i.e., T, M = E*(x) ® E*(x);
3. they are invariant,

do fE°(x) = E°(f(x)) and dyfE"(x) = E*(f(2));

Furthermore, there exist g > 0, Borel functions C(x,e) > 0 and K(x,e) > 0,
x €A and 0 < e < gy such that

4. the subspace E°(x) is stable: if v € E*(x) and n > 0, then
ldo f™0ll < C(x, €)X o]|;
5. the subspace E"(x) is unstable: if v € E%(x) and n < 0, then

e f™0]| < Ca, £)eXE+1 =2 |y

Z(E(x), E*(2)) 2 K(,¢);
7. for every m € Z,
C(f™(x),e) < Oz, )™ and  K(f™(x),e) > K(z,e)e ™.
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We remark that Condition (7) is crucial and is a manifestation of the regularity
property. _
It follows from Theorem 6.6 that f is nonuniformly completely hyperbolic on A.

6.4. Cocycles over smooth flows. Let ¢; be a smooth flow on a smooth n-
dimensional Riemannian manifold M. It is generated by the vector field X on M
given by

X(a) = 2,
For every xg € M the trajectory {x(zo,t) = @¢(xo) : t € R} represents a solution
of the nonlinear differential equation

v = X(v)
on the manifold M. This solution is uniquely determined by the initial condition
x(zo,0) = xo.
Given a point © € M and the trajectory {¢:(z) : t € R} passing through = we
introduce the variational differential equation

W(t) = Az, thw(t), (6.9)

where
A(z,t) = dX(pe(x)).
This is a linear differential equation along the trajectory {¢:(z) : ¢ € R} known
also as the linear variational equation.
The Lyapunov exponent generated by the cocycle A is defined by
B

— 1
X (z,v) = tl}inoo 7 log ||lw(®)|],

where w(t) is the solution of (6.9) with initial condition w(0) = v, and is called
the Lyapunov exponent of the flow ¢;. In particular, one can speak of trajectories
which are forward or backward regular, and (Lyapunov) regular.

Note that every periodic trajectory is regular. However, this is not true in general
for nonperiodic trajectories. For example, consider a flow on the unit sphere with
the North and the South poles to be, respectively, attracting and repelling points,
and without other fixed points. If the coefficients of contraction and expansion
are different then every trajectory of the flow (except for the North and the South
poles) is nonregular.

One can establish a criterion for regularity of individual trajectories (see [24]).
However, it is not a simple task to apply this criterion and check whether a given
trajectory is regular. On the other hand, let v be a Borel measure which is invariant
under the flow ¢;. It is easy to see that the derivative cocycle A(x,t) satisfies

sup log* [lA(-, ]| € L1 (M, »).
—1<t<1
The Multiplicative Ergodic Theorem for flows (see Theorem 5.15) implies that
almost every trajectory with respect to v is Lyapunov regular.

We say that a smooth flow ¢; is nonuniformly hyperbolic if it possesses an in-
variant Borel subset A C M such that there exist: (a) numbers 0 < A\ < 1 < p;
(b) a sufficiently small number € > 0 and Borel functions C, K: A — (0,00); (c)
subspaces E®(x) and E%(z), € A, which satisfy Conditions (1’)-(4’) in the defi-
nition of nonuniform partial hyperbolicity with E¢(z) = X(z). Note that for every
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t the diffeomorphism ¢ is nonuniformly partially hyperbolic with one-dimensional
central subspace.

Assume that a smooth flow ¢; possesses an invariant Borel subset A and an
invariant Borel measure v with v(A) = 1 such that x(x,v) # 0 for almost every
x € A and every v € T, M not colinear with X. Assume also that for these = there
are vectors v, w € T, M such that x(x,v) > 0 and x(x,w) < 0. Then the flow ¢; is
nonuniformly hyperbolic on A.

7. METHODS FOR ESTIMATING EXPONENTS

The absence of zero Lyapunov exponents implies nonuniform hyperbolicity. In
fact, this seems to be one of the most “practical” universal ways to establish weak
hyperbolic behavior. We discuss a powerful method which allows one to verify that
Lyapunov exponents do not vanish. It was suggested by Wojtkowski in [248] and
is a significant generalization of the initial approach by Alexeyev (see [3, 4, 5]) to
build an invariant family of unstable cones.

The cone of size v > 0 centered around R”~* in the product space R” = RF x
R™F is

C, = {(v,w) eRF x R*F . lv]| < 7||w\|} U {(0,0)}.

Note that {0} x R"=* C C., for every 7.

Consider a cocycle A over an invertible measurable transformation f: X — X
preserving a Borel probability measure v on X, and let A: R® — GL(n,R) be its
generator. Assume that there exist v > 0 and a > 1 such that for v-almost every
reR™

1. A(z)C, C Cy;
2. [JA(z)v|| > a|lv|| for every v € C,.

Then the largest Lyapunov exponent can be shown to be positive v-almost ev-
erywhere. Indeed, n — k values of the Lyapunov exponent, counted with their
multiplicities, are positive.

Wojtkowski’s great insight is that Condition 1 alone is in fact sufficient to es-
tablish positivity of the values of the Lyapunov exponent. The importance of this
observation is that Condition 1 is of pure qualitative nature and thus, no estimates
on the growth of vectors inside the cone are required.

It turns out that Wojtkowski’s approach can be described in a more general
and more convenient framework elaborated by Burns and Katok in [132]. This
approach, in turn, is a further development of that by Lewowicz in [160, 161] and
Markarian in [178] and is based on the notion of infinitesimal Lyapunov function
(see Section 7.1 below; see also Section 7.2 for the version of this approach in the
case of cocycles with values in the symplectic group).

In the later work Wojtkowski himself strengthened his original approach and,
using results of Potapov on monotone operators of a linear space generated by a
quadratic form, obtained estimates of Lyapunov exponents for cocycles with values
in the semigroup of matrices preserving the form (see [249]). These results apply
to estimate Lyapunov exponents for Hamiltonian dynamical systems as well as to
the Boltzmann-Sinai gas of hard spheres and the system of falling balls in one
dimension (see [249] for more details and references therein).
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7.1. Cone and Lyapunov function techniques. Let Q: R® — R be a contin-
uous function which is homogeneous of degree one (i.e., Q(av) = a@Q(v) for any
v € R™ and a € R) and takes on both positive and negative values. The subset

CHQ) = {0} UQ Y0, 4+00) C R" (7.1)

is called the positive (generalized) cone associated with @ or simply the positive
cone of Q. Similarly,

C(Q) = {0}UQ *(—o0,0) CR” (7:2)

is the negative (generalized) cone associated to @ or the negative cone of Q. The
maximal dimension of a linear subspace L C R" such that L. € CT(Q) (respectively,
L Cc C(Q)) is called positive (respectively, negative) rank of @ and is denoted by
rT(Q) (respectively, 7= (Q)). We clearly have r™(Q) + 7= (Q) < n, and since Q
takes on both positive and negative values, we have r™(Q) > 1 and r~(Q) > 1. We
call the function QQ complete if

Q) +17(Q) = n. (7.3)
For example, consider the function
Q(v) = sign K(v,v) - |K(v,v)]"/?, (7.4)

where K is a nondegenerate indefinite quadratic form. @ is complete and its positive
and negative ranks are equal to the number of positive and negative eigenvalues of
the quadratic form K, respectively.

More generally, let A be a positive real number and K a real function on R"
which is homogeneous of degree A (i.e., Ky(av) = a*Ky(v) for any v € R™ and
«a > 0) and takes on both positive and negative values. Define a homogeneous
function @) of degree one by

Q(v) = sign K (v) - | Kx(v)[*/*.

We say that K is complete if @ is complete, and we define the positive and negative
cones, and positive and negative ranks of K as those of Q.

Let A: X x Z — GL(n,R) be a cocycle, and F': X x R" — X x R" its linear

extension defined by
F(z,v) = (f(z), A(z)v)
where A(x) = A(x,1) is the generator of A.

A real-valued measurable function @ on X x R™ is called a Lyapunov function
for the extension F or for the cocycle A (with respect to a measure v in X) if there
exist positive integers Tér and rg, such that for v-almost every x € X,

1. the function @, given by Q.(v) = Q(x,v) is continuous, homogeneous of
degree one and takes on both positive and negative values;
g. Q. is complete and r(Q,) = 7’5 and r~(Qq) = 7g;
Q(2)(A(z)v) > Qr(v) for all v € R™. (7.5)

The numbers rg and g, are called the positive and negative ranks of Q.

When @ is a Lyapunov function, it follows from (7.5) that for v-almost every
T e X,

A@)CT(Qs) C CT(Qpw), A(fTH(2)7'C7(Qx) C CT(Q1m)-  (76)
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A Lyapunov function @ on X x R™ is called strict if the inequality in (7.5) is strict
for every v # 0 and eventually strict if for v-almost every x € X there exists a
positive integer m = m(z) such that for every v € R™\ {0},

Q pm (2) (A(z, m)v) > Qp(v) (7.7)

and
Q- (@) (Ax, —=m)v) < Qu(v). (7.8)
If a Lyapunov function @ is eventually strict then by (7.5), for v-almost every

x € X the inequalities (7.7) and (7.8) hold for all m > m(z).
When @ is a strict Lyapunov function, it follows from (7.5) that

A@)CH(Q2) G CH(Qpw), AUTH(@)'C(Q2) G C(Qf-1(w) (7.9)
for v-almost every x € X. Furthermore, if @) is an eventually strict Lyapunov
function it follows from (7.7) and (7.8) that

'A(x7m)c+(Qx) ; CJF(Qfm(w))a .A(J?, _m)ilc_(Qaf) ; Ci(Qf*m(m)) (710)

for v-almost every = € X and every m > m(x).
The following result establishes a criterion for nonvanishing Lyapunov exponents.

Theorem 7.1 (Burns and Katok [132]). If A possesses an eventually strict Lya-
punov function @ then

1. A has v-almost everywhere TZS positive and rg, negative values of the Lya-
punov exponent counted with their multiplicities;
2. for v-almost every x € X we have

Et(z) = () AU ™ (2),m)CH(Qsm() C CH(Qu)
and
E_(QT) = m ‘A(fm(‘r>7_m)c_(Qfm(z)) - C_(Qz)

Lyapunov functions are intimately related to the invariant families of cones. Here
we give a detailed description of this relationship.

A (generalized) cone C in R™ is a homogeneous set (i.e., av € C whenever v € C
and « € R) such that C'\ {0} is open. In particular, C need not be convex and int C
need not be connected. The rank of C is the maximal dimension of a linear subspace
L C R™ which is contained in C. We denote it by r(C). The complimentary cone
C to C is defined by

C = (R"\C)u{0}.

Obviously the complementary cone to C is C. We have r(C) + r(C) < n and this
inequality may be strict (this is the case for example, when C # R™ but C' = R").
A pair of complementary cones C and C is called complete if r(C)+ r(a) =n.

Let A: X XZ — GL(n,R) be a cocycle over X with generator A: X — GL(n,R).
Consider a measurable family of cones C' = {C, : x € X} in R"”. Given a measure
v in X, we say that

1. C is complete if the pair of complementary cones (Cy, @) is complete for
v-almost every x € X;
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2. C'is A-invariant if for v-almost every x € X,
A(x)Cy € Cpyy A(fH (@) Co € Cpmigay.
Let C be an A-invariant measurable family of cones. We say that

1. C is strict if for v-almost every = € X,
A@)Cy S Crayr A(f () ' Co S Cpmray;

2. C'is eventually strict if for v-almost every x € X there exists m = m(z) € N
such that

A(x,m)Cq G Cpm(zy, Alz, —-m)~'C, S Crm(a)-
Let C be a complete A-invariant measurable family of cones in R™. Any Lya-
punov function @: X x R™ — R satisfying
Cp =CT(Q.), C,=C(Qy)for v-almost every = € X
is called a Lyapunov function associated with C. Any complete A-invariant mea-
surable family of cones has an associated Lyapunov function. It is given by

d(v/||v||, 0CL)||lv ifveC,
0oy {A@/1OCI]  itveC,
—d(v/||v]l,0C)|lv|| ifveCy

Furthermore, if a complete invariant family of cones is strict (respectively even-
tually strict) then any of its associated Lyapunov functions is strict (respectively
eventually strict).

The above discussion allows us to rephrase Theorem 7.1 in the following fashion.

Theorem 7.2. If (5.3) holds for some f-invariant measure v, and there exists a
complete A-invariant measurable family of cones C = {C, : v € X}, then
1. A has v-almost everywhere 7“5 positive and rg, negative values of the Lya-

punov exponent counted with their multiplicities;
2. for v-almost every x € X we have

ET(z) = () A(f (@), m)Ci=n(a) C Ca
m=1

and

E-(z) = () A(f™ (@), —m)Cm) C Co.
m=1

Let @ be a Lyapunov function on X x R™ for a cocycle A. We consider the
family of cones C'={C, : x € X} in R" given by

Ca: = C+(Qz)

Conditions 2 and 3 in the definition of Lyapunov function imply that C' is complete
and A-invariant. Note that the complementary cone ég; is not always equal to the
cone C7(Q;), and thus @ may not be a Lyapunov function associated with C.
However, we have C, = C~(Q,) provided that for each v such that Q,(v) = 0 one
can find w arbitrarily close to v such that @, (w) > 0. Furthermore, if @ is strict
(respectively eventually strict) then C' is strict (respectively eventually strict).
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7.2. Cocycles with values in the symplectic group. Let A: X XZ — GL(n,R)
be a cocycle and ) a homogeneous function of degree one on X x Z. Consider the
corresponding families of cones C(Q,) and C~(Q) given by (7.1) and (7.2). If Q
is complete (see (7.3)) and (7.6) holds, then @ is a Lyapunov function. Moreover,
if (7.9) (respectively (7.10)) holds then @ is strict (respectively eventually strict).
On the other hand, if Condition (7.6) is satisfied only with respect to the family
of cones CT(Q,) then Q may not be a Lyapunov function. However, this does
occur for some interesting classes of cocycles and cones. The most important case
for applications involves cocycles with values in the symplectic group Sp(2m,R),
m > 1 and the so-called symplectic cones which we define later.

We begin with the simple case of SL(2,R) cocycles.

We call a cone in R™ connected if its projection to the projective space RP"~!
is a connected set. A connected cone in R? is simply the union of two opposite
sectors bounded by two different straight lines intersecting at the origin plus the
origin itself. By a linear coordinate change such a cone can always be reduced to
the following standard cone

S ={(v,w) € R:vw >0} U{(0,0)}.

Theorem 7.3. If a cocycle with values in SL(2,R) has an eventually strictly in-
variant family of connected cones C = {C, : © € X}, then it has an eventually
strict Lyapunov function Q such that for v-almost every x € X the function Q,
has the form (7.4) and its zero set coincides with the boundary of the cone Cj.

Let us now proceed with the general symplectic case. We denote by w the
standard symplectic form in R2™,
m
w(v,w) = Z(vime — WiVmti),
i=1

and by K the following nondegenerate quadratic form of signature zero:
m
K(v) = Zvivmﬂ-.
i=1

The cone

S={veR*™:K()>0}uU{0}
is called the standard symplectic cone. The image of this cone under an invertible
linear symplectic map (i.e., a map with values in Sp(2m,R)) is called a symplectic
cone.

Let L; and Lo be two transverse Lagrangian subspaces in a 2m-dimensional
symplectic space (H,w), i.e., complementary m-dimensional subspaces on which
the symplectic form w vanishes identically. Then for any v € H there is a unique
decomposition

v =wv, + vy withv; € L; fori =1, 2.
Let
Kp,.1,(v) = w(vi,v2) and Cp, 1, = K1 ((0,00)) U {0}.
Then Cp, 1, is a symplectic cone and K7, 1, is the corresponding quadratic form.

It is easy to see (for example, by a direct calculation for the case of standard
cones), that for a given symplectic cone C' in a symplectic space there are exactly
two isolated Lagrangian subspaces L; and Lo that belong to the boundary of C
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and that C = Cr, 1, or C = Cp, r,. Thus, the cone C canonically determines the
form K
K(C) = KL17L2 or K(C) = KLz,L17
depending on whether the form Ky, r, or the form Ky, 1, is positive on C.
For example, the standard cone S is Cf, r,, where

Ly ={(z,0): 2 € R"} and Ly = {(0,z) : z € R™}.

Proposition 7.4. Let H and H' be two 2m-dimensional spaces, L1, Lo C H and
L}, Ly € H' pairs of transverse Lagrangian subspaces and T: H — H' a symplectic
linear transformation such that TCL, 1, C CL, L,. Then for allv € H \ {0} we
have

KL&,L'Q(TU) > KLl,Lg(v)~

Proposition 7.4 immediately implies the following relation between invariant cone
families and Lyapunov functions.

Theorem 7.5. Let A: X — Sp(2m,R) be a cocycle over a measurable transfor-
mation f: X — X which preserves a measure v. If A has an eventually strictly
invariant family of symplectic cones C = {C, : x € X}, then it also has an eventu-
ally strict Lyapunov function Q such that for v-almost every x € X the function Q,
has the form (7.4) with a quadratic form K = K, of signature zero. Furthermore,
the zero set of the function Q, coincides with the boundary of the cone C.

Combining Theorem 7.5 with Theorem 7.1 we immediately obtain the following.

Corollary 7.6. If a cocycle A: X — Sp(2m,R) satisfies (5.3) and has an eventu-
ally strictly invariant family of symplectic cones, then the linear extension F of f
has v-almost everywhere m positive and m negative values of the Lyapunov expo-
nent.

7.3. Lyapunov exponents estimates for some particular cocycles. The cone
techniques provide some general methodology for establishing positivity of Lya-
punov exponents for cocycles and in particular, for dynamical systems. However,
in some particular cases one can use more effective tools and obtain sharper esti-
mates of Lyapunov exponents.

7.3.1. Herman’s method. We describe a method due to Herman [110] for obtaining
a lower bound for the maximal Lyapunov exponent of a holomorphic cocycle with
values in a Banach algebra, in particular, with values in CP. This method is based
on some properties of pluri-subharmonic functions.

For r > 0, let

B*(0,7) = {(21,.-.,2n) €C" : || <71, 1 <i<n},
be the closed ball and
T ={(z1,...,2n) €C" : |z| =7, 1 <i<n}

the torus in C™. Let also f: U — C" be a holomorphic function in a neighborhood
U of B™(0,r) satisfying f(0) = 0, f(B™(0,r)) C B™(0,r), and f(Tr) C T. We
also consider a Banach algebra B over C and a cocycle A: T} x N — B over f with
values in B. We have

A(z,m) = A(f"7H(2)) - A(f(2)A(2),
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where A: X — B is the generator of the cocycle. Denote by
p(B) = lim || B™|V/™ = ir;flllelll/m

the spectral radius of the element B € B (where ||| is the norm in C).

Theorem 7.7. If f preserves the Lebesgue measure p in Ty, and A is a holomor-

phic map in a neighborhood of B™(0,r) with values in a Banach algebra B, then the
cocycle A over f with generator A satisfies

lm L / log [ A(z,m) | du(z) > log p(A(0)).
7

To see this set
o = / log A (2, m) | du(2).

Since the function z — log||A(z, m)|| is pluri-subharmonic for each m (see [117]),
am > 10g[A(0, 2)| = log[|A(0)™]].
Therefore,
am
i — > .
Jnf > log p(A(0))

Since f preserves pu, the sequence a,, is subadditive and thus,

. Am . Am . Qm
lim — = lim — = inf —
m—oo M m—oo 1M m>1 m

and the desired result follows.

7.3.2. Parameter-exclusion techniques. In [258], Young considered a C! family of
cocycles over irrational rotations R, (x) by 2ra with generators A;: S — SL(2,R)
such that |A¢(z)| = x (uniformly in ¢ and x) where x > 0 is a number. The cocycles
are not uniformly hyperbolic. The statement is that for sufficiently large x and for
a generic family the set of parameters (a,t), for which the Lyapunov exponents
of (Ru, At) are = £x, has nearly full measure. The proof exploits a parameter-
exclusion procedure which goes back to the work of Jacobson [123] and of Benedicks
and Carleson [29]: inductively, one identifies certain regions of criticality, studies
orbit segments that begin and end near those regions and tries to concatenate long
blocks of matrices that have been shown to be hyperbolic; parameters are deleted
to ensure the hyperbolicity of the concatenated blocks, and the induction moves
forward.

The parameter-exclusion techniques is used to study hyperbolic and ergodic
properties of Hénon-like attractors, see Section 14.4.

7.3.3. Open set of nmonuniformly hyperbolic cocycles with values in SL(2,R). In
[257], Young constructed an open set, in the C! topology, of cocycles with values
in SL(2,R) over a hyperbolic automorphism T of the 2-torus T? such that every
cocycle in this set has positive Lyapunov exponent but is not uniformly hyperbolic.
Choose A > /1t + 1 where 1 > 1 is the eigenvalue of the matrix T' (the other
eigenvalue is u~1). Given £ > 0, we define a cocycle over T' with the generator
A.: T2 — SL(2,R) as follows. Let 0 < 8 < 27 be a number, J. C S! an interval,
and ¢.: T? — R/27R a C! function such that
1. ¢ = 0 outside of J. x S;
2. on J. x S, . increases monotonically from 0 to 27 along the leaves of W*;
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3. on o 13,21 — B3], the directional derivatives of ¢. along the leaves of W*
are > 1.
— €&

The cocycle A, is defined to be

A0
As(x) = <O /1\> o Rtpg(x)a

where Ry is the rotation by the angle . The statement is that one can choose
B and, for all sufficiently small €, the interval J. and a neighborhood U, of A. in
C1(T?,SL(2,R)) such that for any B € U. the cocycle over T with the generator
B is not uniformly hyperbolic and has a positive Lyapunov exponent with respect to
the Lebesgue measure.

7.3.4. Cocycles associated with the Jacobi—Perron (JP) algorithm. This algorithm
is a higher-dimensional generalization of the continued fraction algorithm and is
used to construct simultaneous rational approximations of real numbers (see [225],
[152]). The map f defining the JP algorithm acts on the d-dimensional cube I¢ by

the formula
flx) = (E mod 1,...,ﬁ mod 1,i mod 1)
I I I
provided x1 # 0. The map f preserves a probability measure v which is absolutely
continuous with respect to the Lebesgue measure in the cube and is ergodic with
respect to v.

The JP algorithm associates to almost every point z € I? a matrix A(zx) such
that = can be expressed as © = aj o --- 0 a, o f"(x) where a,, are the projective
maps defined by the matrices A, = A(f"~(x)) in the space R® C P". The d + 1
points

Jp=a10--0ap(0),...,Jp4d =010 0antq(0)
form a simplex o, (za) in R? which contains x. Its asymptotic form turns out
to be determined by the Lyapunov exponents of the measure v. The latter are
closely related to the Lyapunov exponents x;, ¢ = 1,...,d + 1, of the cocycle over
f generated by the matrix function A = A(x).
In [49], Broise-Alamichel and Guivarc’h showed that for the JP algorithm:

d
1. Zlill x;i =0and x1 > x2 >+ > Xdit1;
2. x1+ Xd+1 > 0.
In the case d = 2 we have that xo < 0.

7.3.5. Partially hyperbolic cocycles over locally mazimal hyperbolic sets. Let f be a
diffeomorphism of a compact smooth manifold possessing a locally maximal hyper-
bolic set A. Assume that f|A is topologically transitive. Let u be an equilibrium
measure on A corresponding to a Holder continuous potential ¢.

Consider a cocycle A over f with values in SL(p,R) and let A be the generator of
the cocycle. We assume that A depends smoothly on z and that it is dominated by
the hyperbolicity of f, i.e., A(xz) expands vectors less than the minimum expansion
induced by d f on the unstable subbundle and A(z) contracts vectors less than the
minimum contraction induced by d, f on the stable subbundle. In other words, the
cocycle is partially hyperbolic on X x RP.

In [39], Bonatti, Gémez-Mont and Viana showed that the maximal Lyapunov
exponent of u, X, is zero only in the following very special situation: there exists
a continuous family of probability measures m,, z € A, on the projective space
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CPP~! which is simultaneously invariant under f, and under the holonomies along
the strongly stable and strongly unstable foliations. One can deduce from here that
the set of cocycles with a nonzero upper Lyapunov exponent with respect to all the
equilibrium measures is an open and dense set in the C! topology. It is also shown
that for generic C! families of cocycles with finitely many parameters, the set of
parameters for which the upper Lyapunov exponent is zero for some equilibrium
measure is discrete.

8. LOCAL MANIFOLD THEORY

We consider the problem of local stability of trajectories for nonuniformly par-
tially and completely hyperbolic systems. This includes constructing local stable
and unstable manifolds and studying their properties. Let us emphasize that the
construction of stable (unstable) manifolds can be carried out if only one nonuni-
formly hyperbolic trajectory is present, i.e., the nonuniformly partially (or com-
pletely) hyperbolic set A consists of a single trajectory. In particular, the construc-
tion does not involve any invariant measure.

There are two well-known methods of building local stable manifolds originated
in works of Hadamard [103] and Perron [193, 194]. Hadamard’s approach is more
geometrical and can be effected for Lipschitz (not necessarily differentiable) maps
while Perron’s approach allows more flexibility.

These methods work well in the case of uniform hyperbolicity and extending them
to nonuniformly hyperbolic systems faces substantial problems. One of them is that
the size of local stable manifolds may deteriorate along the trajectory and indeed,
may become arbitrarily small. The crucial requirement (6.5) in the definition of
nonuniform hyperbolicity provides a control of the deterioration: it can occur with
at most subexponential rate.

Both Hadamard and Perron methods allow substantial generalizations to se-
quences of local diffeomorphisms (instead of iterations of a single diffeomorphism)
or maps of Banach spaces (instead of Euclidean spaces), etc.

8.1. Nonuniformly hyperbolic sequences of diffeomorphisms. Let f,,: U,
— R", m € Z (U,, C R" is an open set) be a (two-sided) sequence of C* local
diffeomorphisms, and {(:,)m}mez a (two-sided) sequence of metrics. Write F =
{fm}mez. We assume that f,,(0) =0,

We say that F is nonuniformly hyperbolic if so is the sequence of matrices
{Am}mGZ = {dOfm}m€Z~

Let R® = E} @ E2 be the invariant splitting associated with nonuniform hy-
perbolic structure. For every m € Z and (x,y) € U,, one can write f,, in the
form

Sm(@,y) = (A + g3, (2,9), Bmy + gon (2, 1)),

where A, = dofn|E} and B, = dofm|E? are linear invertible transformations
and g, = (g},,92,): Uy — R™ are C! maps satisfying g,,(0) = 0, dyg,,,(0) = 0.
Set

om =sup {||d ) gmll : (x,y) €Un}, o =sup{on,:meZ}.

Note that o need not be finite in general.



SMOOTH ERGODIC THEORY AND NONUNIFORMLY HYPERBOLIC DYNAMICS 63

Let A = {An}mez and B = {By,}mez. Define new sequences of matrices
{‘Am}mEZ and {Bm}mEZ using
Am—1---A1Ao if m >0
Am = q1d iftm=0.

(An) t o (A) AL ™Y ifm <0
We also set

fm—10---0fiofo ifm>0

(fm) Fo-ro(fia) to(fa)t ifm<O

whenever it is defined. The map (A, B,,) is a linear approximation of ¥, in a
neighborhood of 0. We shall describe in the following sections how the stability of
the linear approximation effects the stability of the sequence of C'! local diffeomor-
phisms.

8.2. Admissible manifolds and the graph transform. Let v > 0, k, n € N|
k < n be given. A map ¢: U — R** with U C R* is called v-Lipschitz if for
every x, ' € U,
le(z) — (@) < Al — 2.
A set V C R” is said to be
1. an admissible (s,7y)-set if there exists a y-Lipschitz map ¢: U C¢ RF — R"7F
such that
V = Graph(p) = {(z, ¢(x)) : x € U}.
If, in addition, ¢ is differentiable then V is called an admissible (s,7)-
manifold.
2. an admissible (u,~)-set if there exists a y-Lipschitz map ¢: U € R"~% — R¥
such that
V = Graph(y) = {(p(z),z) : z € U}.
If, in addition, ¢ is differentiable then V is called an admissible (u,7)-
manifold.
Given v > 0, let I'(u, v) be the space of sequences {V;, } mez of admissible (u,y)-
sets such that 0 € V,,,. We define a metric on I'(u, ) by

dF(u,’y)({Vlm}mGZa {‘ém}mGZ) = SUP{dm(Sﬁlm, @Qm) 1m e Z}a

where

dm(gplma ‘PQm) = sup { ||Q01m(1')|;”§02m(1')” LT € U \ {0}}

and V,,, = Graph(;,) for each m € Z and i = 1, 2. Since ©1,,(0) = ¢2,,(0) = 0,
and 1, and g, are y-Lipschitz we have d,(¢1m, P2m) < 27 and the metric
dr(u,~) is well-defined. One can verify that I'(u,~) is a complete metric space.

We define the graph transform G: T'(u,~y) — I'(u,7y) induced by F on I'(u,~y) by

G({Vm}mEZ) = {fm(vm)}mez-
Proposition 8.1. IfV,, is an admissible (u,y)-set such that

I\
o < WA
(1+7)?

then fm Vi is an admissible (u,y)-set.
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It follow that under assumption (8.1) the map G is well-defined.
Proposition 8.2. Assume that
H, _ A/
2(1+7)

Then the graph transform G is a contraction on T'(u,7y).

o<

As an immediate corollary we obtain existence of (u,7y)-sets.

Theorem 8.3. Assume that

(1 =Ny p=N
< d —_—.
e E N TE
Then there exists a unique family {V%},.cz of admissible (u,v)-sets such that 0 €
Ve and fr (Vi) = Vi .

(8.2)

Note that for v < 1 the second inequality in (8.2) follows from the first one.
We now briefly describe how to obtain similar results for (s,~)-manifolds. For
every m € Z and (2,9) € fyn(Un) one can write f,,, ' in the form

N y) = (Am ™ @+ by (2,), B~y + hi (2,9)),
where hy, = (h,h2): fm(Un) — R is a C' map satisfying h,,,(0) = 0 and
dohy = 0. Let
Tm = sup {||dphmll : (2,9) € fmUn}, 7=sup{r, :meZ}.
Theorem 8.4. Assume that

(W =Ny p=N
<2V and S
TENpE? M T (i)

Then there exists a unique family {V.2 },.cz of admissible (s,v)-sets such that 0 €
Vi and fr (Vi) = V5.

The following theorem substantially strengthen the above result by claiming that
(s,7v) and (u,~y)-sets are indeed smooth manifolds.

Theorem 8.5 (see [135]). Let {fm }mez be a nonuniformly hyperbolic sequence of
C! local diffeomorphisms defined on the whole R™. Given v > 0 and a sufficiently
small o > 0, there exist a unique family {V.3 }mez of C1 admissible (s,~y)-manifolds
and a unique family {V,"}mez of Ct admissible (u,~)-manifolds such that:

1.0EVENVY;

2. fm(Vin) = Viia and (Vi) = Vinyas
3. TyV: = E2, and TyVY = EY;

4.

if (z,y) € V2 then
[fm (@ 9) | < (1 +7) A+ om)ll (2, y)
and if (x,y) € V¥ then

[ (@, )l = 1/ (L +7) = o)l (2, 9)]l,
where 0 < A <1 < py
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5. for every (1+v)(A+0) <v<pu/(1+7v)—0c and (x,y) € R", if there exists
C > 0 such that
1Fimtk 0 F ™ (2, 9)| < CV¥[|(, 9)|
for every k > 0 then (x,y) € V.2, and if there exists C > 0 such that
1Fmik 0 Fo ™z, y) || < CVF[|(, 9)|
for every k <0 then (z,y) € V.

Notice that an admissible (s, ~y)-manifold (respectively, (u,y)-manifold) is also an
admissible (s,~’)-manifold (respectively, (u,~’)-manifold) for every 4’ > 7. There-
fore, the uniqueness property in Theorem 8.5 implies that both families {V,%} ez
and {V,»},,cz are independent of 4. These families are called, respectively, family
of invariant s-manifolds and family of invariant u-manifolds. They can be charac-
terized as follows.

Proposition 8.6. For each v € (0,/u//N — 1) and each sufficiently small o > 0:

1. if
eI+ +0a),u/(1+7)—o0)
then

) — 1 _
Vi {e) € R T p1onlF o T )] < e
and

— 1
Vi={@ R T toglF 05, @)l < - logv |

2. A+ (A+0)<1l<u/(1+7v)—o then

n T 1 -
z,y) €R": Tim - log|Frpk 0 Tom 1(Sc,y)|<0}

={xyeR%amwm%mm*mwm<w}
k>0

{ z, ) ER":&"m+k0?m_1(x,y) —0 ask’—>—|—oo}

1 -
VY= {(z,y) ER": kg@mmlogllﬁmk o Fm x| < 0}

={mweR%amwm%u%*uwm<m}
E<0

={(z,y) €R" : Fpnyse oF,n Ha,y) =0 ask — —o0}.
The following result provides some additional information on higher differentia-
bility of (s,v)- and (u,~y)-manifolds.

Theorem 8.7. Let F be a sequence of C" local diffeomorphisms, for some r > 0.
Then the unique family {V.*} ez of admissible (u,~)-sets given by Theorem 8.3 is
composed of C" manifolds.
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8.3. Hadamard—Perron Theorem: Perron’s method. We describe a version
of Perron’s approach to the proof of the Stable Manifold Theorem which originated
in [196] and allows one to construct stable (and unstable) invariant manifolds along
a single nonuniformly partially hyperbolic trajectory in the broad sense.’

Let f be a C'* diffeomorphism of a compact smooth Riemannian manifold M
and x € M. Assume that f is nonuniformly partially hyperbolic in the broad sense
on the set A = {f™(z)}nez (see Section 6.2). We obtain the local stable manifold
in the form

V(z) = exp,{(z,¥(x)) : @ € Ba(r)}, (8
where 1¢: Bi(r) — E3(x) is a smooth map, satisfying ¢(0) = 0 and dy(0) =
0, Ei(x), Ea(z) are invariant distributions in the tangent space (see (6.1)), and
Bi(r) € Ey(z) is the ball of radius r centered at the origin. The number r = r(z)
is called the size of the local stable manifold.

We now describe how to construct the function v. Fix x € M and consider the
map

o
=

fo=expylyof oexp,: Bi(r) x Ba(r) — Ty M,

which is well-defined if r is sufficiently small. Here By(r) is the ball of radius r in
E;(z) centered at the origin. The map f can be written in the following form:

Jo(v1,02) = (Agv1 + g12(v1,v2), Bova + g2z (v1,v2)),
where v; € Fy(x) and vy € Ea(z). Furthermore,
Az: Eri(z) — Ea(f(x)) and By: Es(z) — Ea(f(x))

are linear maps. The map A, is a contraction and the map B, is an expansion.
Since f is of class C'*® we also have for g = (g1, g2),

gz ()II < C ol (8.4)

and
ldgz(v) = dga(w)|| < Cifjo —w], (8.5)
where C7 > 0 is constant (which may depend on z).

In other words the map fx can be viewed as a small perturbation of the linear
map (v1,v2) — (Azv1, Byvs) by the map g, (v1,vs) satisfying Conditions (8.4) and
(8.5) in a small neighborhood U, of the point x.

Note that size of U, depends on z and may decay along the trajectory of x
with subexponential rate (see (6.6)). This requires a substantial modification of
the classical Perron’s approach.

Proceeding further with Perron’s approach we identify each of the tangent spaces
Tpm (oM with RP = R* x RP~* (recall that p = dimM and 1 < k < p) via an
isomorphism 7,,, such that 7,,(E;(z)) = RF and 7,,(F2(z)) = RP~%. The map
Fyy = Tynir 0 Fyy 0 7y L is of the form

Fm ('Ula 02) - (Amvl + gdim (Uh 'U2)a BmUZ + gom (Uh ’02)), (86)

5In [196], the system is assumed to preserve a hyperbolic smooth measure. However, the proof
does not use this assumption and readily extends to the case of a single nonuniformly partially
hyperbolic trajectory in the broad sense. This was observed in [215].
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where A,,: R¥ — R* and B,,: RP~%* — RP~* are linear maps, and g: R® — RF is
a nonlinear map defined for each v; € By(rg) C R* and vy € Bo(rg) C RP™F. With
respect to the Lyapunov inner product these maps satisfy:

ALl <N, (IBn ')t >4/, where 0 < N < min{1, '} (8.7)
and
gm(0) =0, dgm,(0) =0,
[dgm (v) = dgm(w)||" < Coy™™|lv — w|'®,
where

N'<~v<1l, 0<a<l, C>0
(see (8.5)). We now state a general version of the Stable Manifold Theorem.
Theorem 8.8 (Pesin [196]). Let x be any number satisfying
N <K< min{,u’,fy%}. (8.8)
There exist D >0 and ro > >0, and a map ¥: By(r) — RP~F such that:
1. ¢ is of class C*T and ¥(0) = 0, dip(0) =

2. g (v) — (@)’ < Dllo — w]™ for any v, w € By(r);
3. ifm >0 and v € By(r) then

(H F) EBl()XBQ(T),
(Hﬁ)mwm

where H?igl E denotes the composition ﬁm_l 0-+:0 150 (with the convention
that T, Fi = 1d;
4. given v € B1(r) and w € Ba(r), if there is a number K > 0 such that

(HF)vweBl()ng H(HF)vw

1=0 =0

< De"|(v, ()l

/

< Krg™

for every m > 0, then w = ¥ (v);
5. the numbers D and r depend only on the numbers N, i, v, «, k, and C.

We outline the proof of the theorem. Consider the linear space I'; of sequences
of vectors z = {z(m) € RP},,cn satisfying

2]l = sup (s~™[|z(m)]") < o0
m>0

T',; is a Banach space with the norm ||z||,.. Given r > 0, set
W ={zeTly: z(m) € Bi(r) x Ba(r) for every m € N}.

Since 0 < k < 1 the set W is open. Consider the map ®,: Bi(rg) x W — I’y given
by

D,(y, 2)(0) = Z<H3> gar(2(k)) |

k=0
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and for m > 0,

B (3,2)(m) = —=(m) + ((H Ai> y,o>

Z ( H A ) gl” Z (H Bler) aner(z(n—I—m))

n=0 \i=n+1 n=0

Using Conditions (8.7)—(8.8) one can show that the map ®,, is well-defined, con-
tinuously differentiable over y and z and ®,(0,0) = (0,0). Moreover, ®,, is of class
C! with partial derivatives given by

Oy Py (y, 2)(m) = Ak(z) — Id,

where
(Aw(2))t(m) = < ) dgin(z(n))t(n),
n=0 i=n—+1
- Z <H Bz+m> dg2 ntm(z(n +m))t(m +n)
n=0 \7=0
Furthermore,

Ak (21) = A (22)ll < Cllz1 — 22", (8.9)

where C' > 0 is a constant. We have, in particular, that 9,®,(y,0) = —Id and the
map 0,P,(y,z) is continuous. Therefore, the map P, satisfies the conditions of

the Implicit Function Theorem, and hence, there exist a number r < rg and a map
©: By(r) — W of class C* with

©(0) =0 and @.(y,e(y)) =0. (8.10)

Note that the derivatives 9,®, and 0,9, are Holder continuous. It is clear for the
former and follows for the latter in view of (8.9):

||az®n(y17 21) - az(bn(y% ZZ)H S Hazq)n(yh 21) - azq)n(yly zQ)H
+ ||az¢)n(y17 22) - azq)n(y% 22)”
= 2[|Ax(21) — Ax(22)|| < CM||z1 — 22"

There is a special version of the Implicit Function Theorem for maps with Holder
continuous derivatives (see [24]) which enables one to obtain an explicit estimate
of the number 7 and to show that it depends only on X, i/, v, a, k, and C.

We now describe some properties of the map ¢. Differentiating the second equal-
ity in (8.10) with respect to y we obtain

dp(y) = =10y, (1)) 9y Py, (v))-
Setting y = 0 in this equality yields
m—1
= (H Ai,0> .
i=0

One can write the vector ¢(y)(m) in the form

p(y)(m) = (p1(y)(m), pa(y)(m)),
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where ¢1(y)(m) € R¥ and @o(y)(m) € RP~*. It follows from (8.10) that if m > 0

then
e1(y)(m) = (H Ai) y+ Y ( 11 Ai) g1n(0(y)(n)), (8.11)

1=n—+1
and

o] n -1
p2(y)(m) = =) ( Bi+m> g2n+m((y)(n +m)). (8.12)
0

n=0 \i=
These equalities imply that
e1(y)(m+1) = A1 (y)(m) + gim (e1(y)(m), p2(y)(m)),
2(y)(m + 1) = Brpa(y)(m) + g2m (1 (y)(m), p2(y) (m)).

Indeed, iterating the first equality “forward” one easily obtains (8.11). Rewriting
the second equality in the form

w2(y)(m) = B, 02(y)(m + 1) — By gam (01 (y) (m), @2(y) (m))

and iterating it “backward” yields (8.12).
Thus, we obtain that the function ¢(y) is invariant under the family of maps
Fp, ie.,

Fon(e(y)(m)) = e(y)(m +1).
The desired map 9° is now defined by ¥ (v) = 2(v)(0) for each v € B*(r).
Applying the above result to a diffeomorphism f which is nonuniformly partially
hyperbolic in the broad sense along the trajectory of a point x € M we obtain the
following version of the Stable Manifold Theorem.

Theorem 8.9. There exists a local stable manifold V(x) such that © € V(x),
T,V (z) = Ey(x), and fory € V(z) and n > 0,

p(f"(), f"(y)) < T(x)A"e"p(z,y), (8.13)
where T: A — (0,00) is a Borel function satisfying
T(f™(z)) < T(x)e!%™  mez. (8.14)

In [207], Pugh constructed an explicit example of a nonuniformly completely
hyperbolic diffeomorphism of a 4-dimensional manifold of class C! (and not of
class C1*< for any a > 0) for which the statement of Theorem 8.9 fails. More
precisely, there exists no manifold tangent to F1(z) such that (8.13) holds on some
open neighborhood of x. This example illustrates that the assumption o > 0 in
Theorem 8.9 is crucial. The situation is different for systems with continuous time:
Barreira and Valls [27] has shown that there is a class of C! vector fields that are
not C'*+¢ for any o > 0 whose nonuniformly hyperbolic trajectories possess stable
manifolds.

One can obtain a more refined information about smoothness of local stable
manifolds. More precisely, let f be a diffeomorphism of class CP*%, with p > 1
and 0 < a < 1. Assume that f is nonuniformly partially hyperbolic in the broad
sense along a trajectory of a point € M. Then the local stable manifold V' (x) is
of class CP; in particular, if f is of class CP for some p > 2, then V(z) is of class
CP~1 (and even of class CP~17 for any 0 < a < 1). These results are immediate
consequences of the following version of Theorem 8.8.
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Theorem 8.10. Assume that the conditions of Theorem 8.8 hold. In addition,
assume that:

1. gm are of class CP for some p > 2;
2. there exists K > 0 such that for ¢ =1, ..., p,

sup [|dgm (2)|" < Ky™™,  sup [d°hp(2)] < Ky,
z€B z€B

where B = By(rg) X Ba(rg) (see (8.6));
3. for z1, z2 € B and some a € (0,1),

1d7gm (21) = d¥ gm (22)[I" < Ky~ ([l21 — 22]')*.

If (u) is the map constructed in Theorem 8.8, then there exists a number N > 0,
which depends only on the numbers X, ', v, o, k, and K, such that:

1. % is of class CPT%;
2. SuPyep, () 19 ()| <N for =1, ..., p.

In [208], Pugh and Shub strengthened the above result and showed that in fact,
if f is of class CP for some p > 2, then V(z) is also of class CP.

In the case of diffeomorphisms which are nonuniformly partially hyperbolic, in
particular, nonuniformly completely hyperbolic, there is a symmetry between the
objects marked by the index “s” and those marked by the index “u”. Namely, when
the time direction is reversed the statements concerning objects with index “s”
become the statements about the corresponding objects with index “w”. In these
cases we shall denote the local stable manifold at « by V*(z). We can also construct
the local unstable manifolds.

Theorem 8.11 (Unstable Manifold Theorem). Let f be a C*** diffeomorphism
of a compact smooth Riemannian manifold M which is nonuniformly partially hy-
perbolic along the trajectory of a point x € M. Then there exists a local unstable
manifold V¥(x) such that v € V¥(x), T,V"(z) = E*(x), and if y € V¥(z) and
n <0 then

p(f" (@), F*(y) < T(@)u"e ™ p(a,y),
where T: A — (0,00) is a Borel function satisfying (8.14).

Stable Manifold Theorem 8.9 was first established by Pesin in [196]. His proof is
built upon classical work of Perron. Katok and Strelcyn [138] extended Stable Man-
ifold Theorem to smooth maps with singularities (see Section 18). They essentially
followed Pesin’s approach. Ruelle [215] obtained another proof of Theorem 8.9,
based on his study of perturbations of the matrix products in the Multiplicative
Ergodic Theorem 5.5. Fathi, Herman, and Yoccoz [84] provided a detailed exposi-
tion of Theorem 8.9 which essentially follows the approaches of Pesin and Ruelle.
Pugh and Shub [208] proved Stable Manifold Theorem for nonuniformly partially
hyperbolic systems using graph transform techniques.

On another direction, Liu and Qian [164] established a version of Theorem 8.9
for random maps (see the article by Kifer and Liu [143] in this volume). One can
extend the Stable Manifold Theorem 8.9 to infinite-dimensional spaces. Ruelle [216]
proved this theorem for Hilbert spaces, closely following his approach in [215], and
Mané [172] considered Banach spaces (under certain compactness assumptions on
the dynamics).
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8.4. Stable Manifold Theorem for flows. Let ¢, be a smooth flow on a compact
smooth Riemannian manifold M. The following is an analog of Theorem 8.9 for
flows.

Theorem 8.12. Assume that o; is nonuniformly hyperbolic along a trajectory
(). Then there exists a local stable manifold V*(z) satisfying: (a) x € V*(x),
(b)) T,V*(x) = E*(z), (¢)ify € V(z) and t > 0 then

p(ee(@), 0e(y)) < T(x)X e p(x,y),
where T: A — (0,00) is a Borel function such that for s € R,

T(ps(x)) < T(x)e L.

The proof of Theorem 8.12 can be obtained by applying Theorem 8.9 to the
diffeomorphism f = ¢ (that is nonuniformly partially hyperbolic). We call V*(z)
a local stable manifold at x.

By reversing the time one can construct a local unstable manifold V¥ (z) at x.
It has the properties similar to those of the stable manifold.

8.5. Continuity and sizes of local manifolds. Recall that the size of the local
stable manifold V(z) at a point z € A (with A as in Section 8.3) is the number
r = r(z) that is determined by Theorem 8.8 and such that (8.3) holds. It follows
from Statement 5 of Theorem 8.8 that the sizes of the local stable manifold at a
point & and any point y = f™(x) along the trajectory of = are related by

r(f™(x)) > Ke =™l (x), (8.15)

where K > 0 is a constant.

Assume now that f is nonuniformly partially hyperbolic in the broad sense on an
invariant set A, and let v be an f-invariant ergodic Borel measure with v(A) = 1.
For all sufficiently large ¢ the regular set A’ has positive measure. Therefore, the
trajectory of almost every point visits A¢ infinitely many times. It follows that for
typical points x the function r(f™(x)) is an oscillating function of m which is of
the same order as r(z) for many values of m. Nevertheless, for some integers m the
value r(f™(x)) may become as small as it is allowed by (8.15). Let us emphasize
that the rate with which the sizes of the local stable manifolds V (f™(x)) decreases
as m — oo is smaller than the rate with which the trajectories {f™(x)} and
{f/™(y)}, y € V(x) approach each other.

It follows from Statement 5 of Theorem 8.8 that the sizes of local manifolds are
bounded from below on any regular set A, i.e., there exists a number r, > 0 that
depends only on £ such that

r(z) > ry for x € A" (8.16)

Local stable manifolds depend uniformly continuously on z € A’ in the C* topology,
i.e., if 2, € A’ is a sequence of points converging to = then dei (V(2,,), V(z)) — 0
as n — oo. Furthermore, by the Holder continuity of stable distributions, local
stable manifolds depend Hélder continuously on x € Af. More precisely, for every
¢>1,z € A’ and points z;, 2 € V (),

d(Tzlv(x)’ TZ2V(£U)) < Cp('zla ZQ)O(,
where C' > 0 is a constant depending only on £.

In the case when f is nonuniformly partially hyperbolic on an invariant subset
A we have, for almost every x € A, the local stable and unstable manifolds. Their
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sizes vary along the trajectory according to (8.15) and are bounded below by (8.16)
on any regular set A’.

Finally, if f is nonuniformly completely hyperbolic on an invariant subset A then
continuity of local stable and unstable manifolds on a regular set A¢ implies that
there exists a number § > 0 such that for every x € A* and y € AN B(z, &)
the intersection V*(z) N V%(y) is nonempty and consists of a single point which
depends continuously (and in fact, Holder continuously) on x and y.

8.6. Graph transform property. There is a version of the Stable Manifold Theo-
rem known as Graph Transform Property (usually referred to as Inclination Lemma
or A-Lemma).

Consider a C'*® diffeomorphism f which is nonuniformly partially hyperbolic
in the broad sense along the trajectory of a point x € M. Choose numbers 7q, by,
and cg and for every m > 0, set

&

T =10€ <, by = bopt em

e ey = cpe”

Consider the class ¥ of C1T@ functions on {(m,v) : m > 0,v € By(r,,)} with values
Y(m,v) € Eo(f~™(x)) (where By (ry,) is the ball in Ey(f~™(z)) centered at 0 of
radius r,,) satisfying the following conditions:
[9(m, 0)| < b, max|[dy(m, )| < cp.
vEB1(Tm)
Theorem 8.13. There are positive constants 1o, by, and co such that for every
¥ € U one can find a function ¥ € ¥ for which

F ' ({(v,9(m,0)) 10 € Bi(rm)}) D {(v,(m +1,0)) : v € Bi(rmy1)}
for all m > 0.

8.7. Regular neighborhoods. Let f: M — M be a C'*® diffeomorphism of
a compact smooth n-dimensional Riemannian manifold M which is nonuniformly
completely hyperbolic on an invariant set A. Viewing df as a linear cocycle over f
we shall use the theory of linear extensions of cocycles (see Section 4) to construct
a special coordinate system for every regular point x € A. Applying the Reduc-
tion Theorem 5.10, given € > 0 and a regular point x € M, there exists a linear
transformation C.(x): R™ — T, M such that:

1. the matrix
A(x) = C.(fr) tod,foC(x).
has the Lyapunov block form (5.12) (see Theorem 5.10);
2. {C.(f™(x)) }mez is a tempered sequence of linear transformations.

For every regular point € M there is a neighborhood N(z) of x such that f
acts in N (z) very much like the linear map A.(x) in a neighborhood of the origin.

Denote by A the set of regular points for f and by B(0, r) the standard Euclidean
r-ball in R™ centered at the origin.

Theorem 8.14 (see [135]). For every € > 0 the following properties hold:
1. there exists a tempered function q: A — (0,1] and a collection of embed-
dings ¥, : B(0,q(z)) — M for each x € A such that ¥,(0) = = and
e ¢ < q(fzx)/q(x) < €°; these embeddings satisfy ¥, = exp, oC.(z), where
C.(z) is the Lyapunov change of coordinates;
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2. if fr & \Ilj?xl ofoW,: B(0,q(x)) — R™, then dof, has the Lyapunov block
form (5.12);

3. the O distance dci (fu,dofs) < € in B(0,q(x));

4. there exist a constant K > 0 and a measurable function A: A — R such that
for every y, z € B(0, ¢(x)),

K7 p(Way, ¥o2) < |ly — 2] < A(@)p(Yay, Us2)
with e= < A(fz)/A(x) < €°.

We note that for each « € A there exists a constant B(z) > 1 such that for every
y, z € B(0,q(x)),

B(z) ' p(V,y, Upz) < pl(exp, y, exp, 2) < B(2)p(V,y, U,2),

where p’, (-, -) is the distance on exp, B(0, g(x)) with respect to the Lyapunov metric
I]|%.. By Lusin’s Theorem, given ¢ > 0 there exists a set of measure at least 1 — §
where x +— B(x) as well as  — A(x) in Theorem 8.14 are bounded.

For each regular point = € A the set

R(x) = W, (B(0,q()))

is called a regular neighborhood of x or a Lyapunov chart at x.
We stress that the existence of regular neighborhoods uses the fact that f is of
class C11% in an essential way.

9. GLOBAL MANIFOLD THEORY

Let f: M — M be a C'** diffeomorphism of a smooth compact Riemannian
manifold M which is nonuniformly partially hyperbolic in the broad sense on an
invariant set A C M. Starting with local stable manifolds we will construct global
stable manifolds for f.

In the case of uniformly partially hyperbolic systems (in the broad sense) global
manifolds are integral manifolds of the stable distribution F;. The latter is, in
general, continuous but not smooth and hence, the classical Frobenius method
fails. Instead, one can glue local manifolds to obtain leaves of the foliation.

In the case of nonuniformly hyperbolic systems (in the broad sense) the sta-
ble distribution F; may not even be continuous but measurable. The resulting
“foliation” is measurable in a sense but has smooth leaves.

9.1. Global stable and unstable manifolds. Given a point & € A, the global
stable manifold is given by

W)= F (V@) (9.1)
n=0

This is a finite-dimensional immersed smooth submanifold of class C™+¢ if f is of
class C"T®. It has the following properties which are immediate consequences of
the Stable Manifold Theorem 8.8.

Theorem 9.1. If x, y € A, then:
1. W)NnW(y) =2 ify ¢ W(zx);
2. W(x)=Wl(y) if y € W(x);
3. f(W(x)) = W(f(x));
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4. W(x) is characterized as follows

W(z)={y e M: lim —logp(f"(x),["(y)) <logA}
(see section 6.2 for the definition of \).

Note that local stable manifolds are not uniquely defined. Indeed, one can choose
a “smaller” submanifold containing z and lying inside V(z), and view it as a “new”
local manifold at x. However, such variations in the choice of local manifolds do
not effect the global stable manifolds in the following sense. Fix = € A. Consider
its trajectory f™(x). For each m > 0, choose a ball B,, C V(f™(x)) centered at
f™(z) of radius r,, > 0.

Theorem 9.2. Assume that ry,41 > rpe” <™. Then
oo

W) = | F(Ba):
n=0

We give another useful characterization of global stable manifolds in the case
when the diffeomorphism f possesses an invariant measure y. Given £ > 1, consider
the regular set A*. For x € A¢, denote by n;(x) > 0 the successive moments of
time for which f™(®)(z) € A’. For almost every x € A’ the sequence {n;(x)} is
unbounded.

Theorem 9.3 (Pesin [197]). For almost every x € A*,
o0
W(a) = F @O (@ (@)
n=0

We recall that a partition W of M is called a foliation of M with smooth leaves
if there exist § > 0, ¢ > 0, and k € N such that for each z € M,

1. the element W (z) of the partition W containing x is a smooth k-dimensional
immersed submanifold; it is called the (global) leaf of the foliation at x; the
connected component of the intersection W(x) N B(x,d) that contains x is
called the local leaf at x and is denoted by V(x);

2. there exists a continuous map ¢, : B(z,q) — CY(D, M) (where D C R¥ is
the unit ball) such that for every y € B(x, ¢) the manifold V (y) is the image
of the map ¢, (y): D — M.

The function @, (y,2) = p.(y)(z) is called the foliation coordinate chart. This
function is continuous and has continuous derivative 68%'

In this section we deal only with foliations with smooth leaves and simply call
them foliations. One can extend the notion of foliation to compact subsets of M
(see [113] for more details).

In view of Theorem 9.1 global stable manifolds form a partition of A. When
f is uniformly (partially) hyperbolic on A (which is compact), this partition is a
foliation. When f is nonuniformly (partially) hyperbolic this partition is a “mea-
surable” foliation in a certain sense (note that the partition by global manifolds may
not be a measurable partition). We shall not discuss measurable foliations in this
section (see Section 11.3 where we consider a very special class of such partitions).

Assume now that f is nonuniformly hyperbolic in the narrow sense on a set A.
For every x € A we define the global stable manifold W*(z) as well as global unstable
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manifold by
wh(@) = J v @)
n=0

This is a finite-dimensional immersed smooth submanifold (of class C"t¢ if f is of
class C"*%) invariant under f.
Theorem 9.4 (Pesin [197]). If z, y € A, then:

L W(z) nW(y) = @ if y § W"(x);
2. W(z) = W(y) ify € W(z);
3. W¥(z) is characterized as follows

1 —-n -n
W¥(z) ={y € M: lim —logp(f"(z),f™"(y)) < —logu}
(see Section 6.2 for the definition of ).

We describe global manifolds for nonuniformly hyperbolic flows. Let ¢; be a
smooth flow on M which is nonuniformly partially hyperbolic on an invariant set A.
For every x € A we define the global stable manifold at x by

We (@) = | o-e(V*(pe())). (9-2)
t>0

This is a finite-dimensional immersed smooth submanifold of class O™+ if o, is of

class C™ e, It satisfies Statements 1, 2, and 3 of Theorem 9.1. Furthermore, for

every y € W4 (z) we have p(p(x), 0:(y)) — 0 as t — +oo with an exponential rate.
We also define the global weakly stable manifold at x by

W (z) = |J W*(pi(2)).
teR
It follows from (9.2) that
W (z) = | e(W*(2)).
teR
Furthermore, for every x € A define the global unstable manifold at x by
WH(z) = | eV (p-t(2))).
t>0

These are finite-dimensional immersed smooth submanifolds of class C"¢ if ¢, is
of class C" <. They satisfy Statements 1, 2, and 3 of Theorem 9.1.
We also define the global weakly unstable manifold at x by

wee(z) = | W (eu(=)).
teR
It follows from (9.2) that
W (z) = |J oW (@), W*(2) = | e:e(W*(@)).
teR teR

Global (weakly) stable and unstable manifolds form partitions of the set A.
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9.2. Filtrations of stable manifolds. Given a point x € A, consider the Os-
eledets decomposition at x,

p(x)
T,.M =P E;()
j=1

Set s(z) = max{j : x;(x) <0} and for i =1, ..., s(x),

= @Ej(l“)

The Stable Manifold Theorem 8.9 applies to the distribution F;(z) and provides
a C1T“ local stable manifold V;(x). It is characterized as follows: there exists
r(z) > 0 such that

— 1 " ,
Vito) = {v € Blario) T Dlogd(£"(0). ") < (o)}
Local stable manifolds form the filtration of local stable manifolds at x:
reVi(x) C Va(x) C - C V(). (9.3)
We define the i-th global stable manifold at x by

= @)
n=0

It is a finite-dimensional immersed smooth submanifold of class C"T if f is of
class C™t2. Tt does not depend on the particular choice of local stable manifolds
in the sense of Theorem 9.2 and has the following properties which are immediate
corollaries of the Stable Manifold Theorem 8.8.

Theorem 9.5. Ifx, y € A, then:
Wi(x) N Wily) = @ if y & Wi(x)
- Wilz) = i()ifyGW()
f(Wz)(I)) Wi(f(z));

Wi(zx) is characterized by

—

= N

Wita) = {ye M5 T Tlogd(" (). ") < xilo) .

For each x € A we have the filtration of global stable manifolds
x € Wi(x) C Wax) C - C Wy (o),
Consider the case when f is a nonuniformly partially hyperbolic diffeomorphism

on an f-invariant set A. In a similar way, let u(z) = min{j : x;(z) > 0} and for

i=u(a), ... p(x),
p(x)

= @Ej(x)

The Unstable Manifold Theorem 8.11 applies to the distribution G;(x) and provides
a O local manifold V;(x). It is characterized as follows: there exists r(x) > 0
such that

Vilo) = {u € Blavr(@) s B logd(f"(@).£(0) < ~xilo)}.

n——oo |
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We obtain the filtration of local unstable manifolds at x:
T e Vu(gj)(.r) C Vu(a;)Jr]_(x) cC---C Vp(w) (1‘)

Finally, we have V*(z) = Vy(;)(#) and V*(z) = Vi(u)(2).°
We define the i-th global unstable manifold at x by

Wi(x) = |J £ (Vi(f " ())).
n=0
It is a finite-dimensional immersed smooth submanifold of class C"¢ if f is of class
C™ <, Tt does not depend on the particular choice of local unstable manifolds in
the sense of Theorem 9.2 and is characterized as follows

1

Wile) = {y e M T o logd( (o). £ 0) < (o))

For each x € A we have the filtration of global unstable manifolds
xr e Wu(w) (1’) C Wu(w)ﬂ(x) c---C Wp(i) (:c)

Finally, consider a diffeomorphism f which is a nonuniformly completely hyperbolic
on an f-invariant set A.

Given r € (0,7(z)) we denote by B;(z,r) C V;(x) the ball centered at = of radius
r with respect to the induced metric on V;(x).

By Theorem 8.14 there exists a special Lyapunov chart at x associated with the
Oseledets decomposition at x.

1. there exists a local diffeomorphism ¢, : U, — R™ with the property that the
spaces E; = ¢, (exp, E;(z)) form an orthogonal decomposition of R";

2. the subspaces Fy, = @, (exp, Fi(x)) and G = ¢, (exp, Gi(z)) are indepen-
dent of x;

3.ifi=1,..., p(x) and v € E;(z) then

MO (exp, V)| < @ f @) (€xP ) dafv) |
< MO (exp, v)|;

4. there is a constant K and a tempered function A: A — R such that if y,
z € U, then

Kooy — woz| < d(y, z) < A(x)||0ey — @22l);

5. there exists #(z) € (0,7(x)) such that B;(z,7(z)) C Vi(x) N U, for every
xe€Aandi=1, ... k(z) with \;(z) # 0. Moreover, for 1 < i < s(x), the
manifolds ¢, (V;(x)) are graphs of smooth functions v;: F; — F;;1 and for
u(z) < i < p(x), of smooth functions ¢;: G; — G;_1; the first derivatives of
; are bounded by 1/3.

It follows that for 1 <14 < s(x),
fVi(z)NUz) C Vi(f(2)) N Uy

6This notation is a bit awkward as the supscripts s and u stand for the words “stable” and
“unstable”, while s(z) and u(z) are numbers. It may get even more confusing since the functions
s(z) and u(x), being measurable and invariant, are constant almost everywhere with respect to
any invariant measure and the constant value is often denoted by s and u. We hope the reader
will excuse us for such an abuse of notation.
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and for u(x) < i < p(x),
Vi) N Us) C Vi(f 7M@) N Ug-1a)-

9.3. Lipschitz property of intermediate stable manifolds. Local manifold
Vi(y) in (9.3) depends Lipschitz continuously on y € Vi1 (2)NA for every k < s(z).
In order to state this result explicitly we shall first introduce the holonomy maps
associated with families of local stable manifolds. Fix ¢ > 1 and z € Af. Given
transversals T, T? C Vi41() to the family of local stable manifolds

Lip(x) = {Ve(w) : w € AN B(x,7)},
we define the holonomy map
e Q)N T — QYz)NT?
using the relation
me(y) = T? N Vi(w), where y = T N Vi (w) and w € Q(x) N B(x,r).

Theorem 9.6 (Barreira, Pesin and Schmeling [25]). Given £ > 1, x € AY, and
transversals T', T? C Viy1(x) to the family Ly (x), the holonomy map my, is Lips-
chitz continuous with Lipschitz constant depending only on £.

The set A can be decomposed into sets Ag in which the numbers k(z), dim E;(z),
and \;(x) are constant for each i. For every ergodic measure p invariant under f
there exists a unique [ for which the set Ag has full y-measure. From now on we
restrict our consideration to a subset Ag C A and set k(z) =k, s(z) = s, u(z) = u,
and \;(z) = A; for each i and = € Ag.

Given £ > 0, consider the set Aj;, defined by

1
v € Ag:p(x) > 1/L, Ax) <, Z(Ei(z), P Ej(x)) > pi=1k
J#i

Let Age be the closure of Aj,. For each x € Aj, there exists an invariant de-
composition T, M = @ffl) E;(x), filtration of local stable manifolds V;(z) and
Lyapunov chart (U, p..) at x (see the previous section). In particular, the func-
tions p(z) and A(x) can be extended to Aj;, such that p(x) > 1/¢, A(x) < ¢,
and Z(E;(z), @, Ej(x)) > 1/€ for i = 1...,k. The set Ag, is compact and
Age C Ag(err), Ag = Upso Age (mod 0).

Let us fix ¢ > 0, £ > 0, x € Agp, and ¥ € Agp N Bi1(x,¢/l). For each i < s,
consider two local smooth manifolds T, and T, in Vi4q(z), containing z and ¢/,
respectively and transverse to V;(z) for all z € Agy N B;y1(x, ¢/f). The holonomy
map

m =i (Ty, Ty ): Tp N Age N Biga(z,c/l) — Ty
is given by
mi(x') = Vi(a")NT,
with 2’ € T,,. This map is well-defined if ¢ is sufficiently small (¢ may depend on ¢
but does not depend on x and y).

Theorem 9.7. Let f be a C1** diffeomorphism. For each { >0, i < s, z € Agy,
andy' € AgeNB'(x,c/l) the holonomy map 7;(Ty,T,) is Lipschitz continuous with
the Lipschitz constant depending only on 3 and £.
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10. ABSOLUTE CONTINUITY

Let f be a C'T® diffeomorphism of a compact smooth Riemannian manifold M.
We describe one of the most crucial properties of local stable and unstable manifolds
which is known as absolute continuity.

Consider a foliation with smooth leaves W of M (see Section 9.2). Fix z € M
and let € be the partition of the ball B(xz,q) by local manifolds V(y), y € B(z,q).

The absolute continuity property addresses the following question:

If E C B(z,q) is a Borel set of positive volume, can the intersection ENV (y)
have zero Lebesgue measure (with respect to the Riemannian volume on 'V (y))
for almost every y € E?

If the foliation W is indeed, smooth then due to the Fubini theorem, the intersec-
tion ENV (y) has positive measure for almost all y € B(z, q). If the foliation is only
continuous the absolute continuity property may not hold. A simple example which
illustrates this paradoxical phenomenon was constructed by Katok (see below). A
continuous but not absolutely continuous foliation does not satisfy the conditions
of the Fubini theorem—a set of full Lebesgue measure may meet almost every leaf
of the foliation at a single point—the phenomenon known as “Fubini’s nightmare”.
Such pathological foliations appears generically in the stable ergodicity theory (see
Section 13.8).

A celebrated result by Anosov claims that the stable and unstable invariant
foliations for Anosov diffeomorphisms are absolutely continuous. We stress that
generically these foliations are not smooth and therefore, the absolute continuity
property is not at all trivial and requires a deep study of the structure of these
foliations.

In [10], Anosov and Sinai suggested an approach to absolute continuity which is
based on the study of the holonomy maps associated with the foliation. To explain
this, consider a foliation W. Given x, choose two transversals T and T2 to the
family of local manifolds V(y), y € B(x,q). The holonomy map associates to a
point z € T! the point w = V(z) N T?. This map is a homeomorphism. If it is
absolutely continuous (see the definition below) for all points  and transversals T
and T2 then the absolute continuity property follows.

For nonuniformly hyperbolic diffeomorphisms the study of absolute continuity
is technically much more complicated due to the fact that the global stable and
unstable manifolds may not form foliations (they may not even exist for some
points in M) and the sizes of local manifolds may vary wildly from point to point.
In order to overcome this difficulty one should define and study the holonomy maps
associated with local stable (or unstable) manifolds on regular sets.

10.1. Absolute continuity of stable manifolds. Let A be the set of nonuni-
formly partially hyperbolic points in the broad sense for f so that Conditions (6.2)—
(6.5) hold. Let also {Af : ¢ > 1} be the associated collection of regular sets. We
assume that A is nonempty. Without loss of generality we may assume that each set
Af is compact. We have A* € A+ for every ¢. Furthermore, the stable subspaces
Ey(x) depend continuously on z € A* and their sizes are bounded away from zero
by a number ¢ (see (8.16)).
Fix z € AY, a number r, 0 < r < r, and set

Q= U V), (10.1)

weANB(z,r)
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where B(xz,r) is the ball at = of radius r. Consider the family of local stable
manifolds
L(z) ={V(w):we A NB(z,r)}

and a local open submanifold T which is uniformly transverse to it. For sufficiently
small r we can chose T such that the set exp, ! 7T is the graph of a smooth map
¥ Ba(q) C Ea(x) — Ey(x) (for some ¢ > 0) with sufficiently small C* norm. In
this case T intersects each local stable manifold V(w) € L(x) and this intersection
is transverse. We will consider local open submanifolds constructed only in this
way and call them transversals to the family L(x). We also say that the map
represents T

Let 71 and T2 be two transversals to the family £(z). We define the holonomy
map

7 QYx)NT! — QYx)NT?
by setting
m(y) =T>NV(w),if y =T NV(w) and w € Q*(x) N B(x,r).

The holonomy map = is a homeomorphism onto its image. It depends on z, ¢, T,
and T?2. Set

A(THT?) = [[9t = ¢?[|en, (10.2)
where the maps 9! and 2 represent 7' and T2 respectively.

Given a smooth submanifold W in M, we denote by vy the Riemannian volume
on W induced by the restriction of the Riemannian metric to W. We denote by
Jac () (y) the Jacobian of the holonomy map 7 at the point y € Q*(z)NT" specified
by the measures vr1 and vp2.

Theorem 10.1 (Absolute Continuity). Given ¢ > 1, x € A’, and transversals
T' and T? to the family L(x), the holonomy map 7 is absolutely continuous (with
respect to the measures v and vpz2) and the Jacobian Jac () is bounded from
above and bounded away from zero.

Remark 10.2. (1) One can obtain an explicit formula for the Jacobian. Namely,
for every y € Q(x) N T,
Jac ()(y) = ﬁ Jac(dpi iy f~H Tpe e £(T2))
izo Jac(dpriy) f7HTpn ) fH(T)
(in particular, the infinite product on the right hand-side converges).
(2) In the case when f is nonuniformly hyperbolic on A, one can show that the
Jacobian Jac(m) satisfies

|Jac () — 1] < CA(T*, T?), (10.3)

where C > 0 is a constant and A(T*,T?) is given by (10.2).

(8) If the holonomy map w is absolutely continuous then the foliation W has the
absolute continuity property (see Theorem 11.1). However, the absolute continuity
property of the foliation W does not necessarily imply that the the holonomy map
7 is absolutely continuous.

The first basic proof of the Absolute Continuity theorem for nonuniformly par-
tially hyperbolic diffeomorphisms (in the broad sense) was obtained by Pesin in
[196]. A more conceptual and lucid proof (but for a less general case of nonuniform
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complete hyperbolicity) can be found in [24]. A somewhat different approach to
absolute continuity was suggested by Pugh and Shub (see [208]).

Let us outline the main idea of the proof following the line of Pesin’s argument.
To estimate the Jacobian Jac (m) choose a small open set A C T' and let B =
m(A) C T%. We need to compare the measures vy (A N AY) and vp2(B N AY).
Consider the images f™(A) and f™(B), m > 0 which are smooth submanifolds
of M. When m increases the sets AN Af and B N A* may get stretched and/or
shrunk in the “unstable” direction F5. This may occur with at most an exponential
uniform rate v with some A < v < min{1,u}. On the other hand, the distance
between the sets f™(A N Af) and f™(B N A’) gets exponentially small with a
uniform rate \" where A < X < 7.

We then cover the set f™(ANA?) and f™(B N A*) by specially chosen open sets
whose sizes are of order ~™ such that the multiplicity of these covers is finite and
depends only on the dimension of 7. More precisely, given a point w € A*‘NB(x,r),
let y; = V(w) NT% i = 1,2. Fix a number ¢ > 0. In view of Theorem 8.13 there
exists an open neighborhood T (w, q) C T¢, of the point f™(y;) such that

T (w, q) = expy, {(¥,(v),v): v € Ba(qm)},

where the map ¢, : B2(qm) — Ei(f™(w)) represents T (w,q) and Ba(gm) C
Ey(f™(w)) is the ball centered at zero of radius g, = ¢y™. If ¢ = q(m) is suffi-
ciently small then for any w € A* N\ B(z,r) and k =0, ..., m we have that

fﬁl(le(wacD) - Tl’é—l(waQ)a 1= 17 2.

We now compare the measures vz |TL (w,q) and vrz |T, 2 (w, q) for sufficiently large
m.

Lemma 10.3. There exists C7 > 0 such that the following holds: for any m > 0
there exists qo = qo(m) > 0 such that for any 0 < q < qo we have

VT%L (TT}FL(’LU,C])) < C]
vrg (To(w,2q)) =

Lemma 10.4. For any sufficiently large m > 0 there are points w; € AN B(x,r),
j=1,....,p=p(m) and a number ¢ = q(m) > 0 such that the sets W}, (w;,q) form
an open cover of the set f™(Q%(x) NTY) (see (10.1)) of finite multiplicity which
depends only on the dimension of T".

crt <

For sufficiently large m the sets T2 (w, 2q) cover the set f™(B N Af). Tt follows
from Lemmas 10.3 and 10.4 that the ratio of the measures of the sets f™(A N A?)
and f™(B N A’) is bounded.

To return back to the measure vp1 (A N A¥) we use the well-known relation

128! (A N AZ) = / Jac (df_m|Tyfm(T1)>dl/fm(T1) (y)
F™(ANA®)

Similar relation holds for the measures vp2(B N AY) and vym(72)(f™(B N AY)). Tt

remains to estimate the ratio of the Jacobians of the pullbacks df ~™|T, f™(T") and

df =™ Ty f™(T?) for y € f™(ANAY). To do this choose a point z € f~" (T}, (w, q))

and set z,, = f™(z) and

D'(z,m) = Jac (ds,, [T, Ty, (w, q)).

Zm T m
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Lemma 10.5. There exist Cy > 0 and my(f) > 0 such that for every w € A*N
B(x,r) and m > mq(f) one can find ¢ = q(m) such that
20,2
02—1 < ‘D (ymvm)

—_ \Imo 7 <C
=Dk, m)| =%

and for z € f~™(T} (w,q)),
D' (zm,m)

cyl <
- ‘Dl(y}mm)

‘ <0,
This result allows one to compare the measures of the preimages under f~™ of
T} (w,q) and T2 (w,q). More precisely, the following statement holds.

Lemma 10.6. There exist C3 > 0 and mo(f) > 0 such that if w € A*N B(z,r) and
m > ma({), then one can find g = q(m) such that

v (f " (Thw,0) _

vz (f~™(T5,(w, q)))

10.2. Non-absolutely continuous foliation. We describe an example due to
Katok of a nonabsolutely continuous foliation (another version of this example
can be found in [183]; see also Section 6.2 of the Chapter “Partially hyperbolic
dynamical systems” by B. Hasselblatt and Ya. Pesin in this volume [106]). Consider
a hyperbolic automorphism A of the torus T? and let {f; : t € S} be a family of
diffeomorphisms preserving the area m and satisfying the following conditions:

Cyl <

1. f; is a small perturbation of A for every t € S*;

2. fi depends smoothly on t;

3. the function h(t) = hp,(fi) is strictly monotone in a small neighborhood of
t =0 (here h,,(f;) is the metric entropy of the diffeomorphism f;).

Note that for any family f; the entropy is given by
() = [ og ld: £ (@) dm(a),
T

where E}'(z) denotes the unstable subspace of f; at the point x (see Section 14).
Hence, one can modify A in a small neighborhood such that h(t) is strictly mono-
tone.

We introduce the diffeomorphism F': T2 x S1 — T? x S* by F(x,t) = (fi(x),1).
Since f; is sufficiently close to A, they are conjugate via a Holder homeomorphism
gi, e, fr=gi0Ao g{l. Given = € T?, consider the set

H(z) = {(gs(x),t) : t € S*}.
It is diffeomorphic to the circle S* and the collection of these sets forms an F-
invariant foliation H of T? x S! = T3 with F(H(z)) = H(A(z)). Note that H(x)
depends Hélder continuously on x. However, the holonomy maps associated with
the foliation H are not absolutely continuous. To see this consider the holonomy
map
Tty o - T2 X {tl} — r]r2 X {tQ}
We have that
m0,.(2,0) = (ge(2), t) and F(mg (z,0)) = mo ¢ (A(z),0).

If the map m ¢ (with ¢ being fixed) were absolutely continuous the measure (g ;)«m
would be absolutely continuous with respect to m. Note that each map f; is ergodic
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(it is conjugate to the ergodic map A) and hence, m is the only absolutely continuous
fi-invariant probability measure. Thus, (79 +).m = m. In particular, h(t) = h(0).
Since the entropy function h(t) is strictly monotone in a small neighborhood of
t = 0, the map g; is not absolutely continuous for small ¢ and so is the map g ;.

This example is a particular case of a more general situation of partially hyper-
bolic systems with nonintegrable central foliations, see [112].

11. SMOOTH INVARIANT MEASURES

In this section we deal with dynamical systems on compact manifolds which
preserve smooth measures and are nonuniformly hyperbolic on some invariant sub-
sets of positive measure (in particularly, on the whole manifold). We will present
a sufficiently complete description of ergodic properties of the system. Note that
most complete results (for example, on ergodicity, K-property and Bernoulli prop-
erty) can be obtained when the system is completely hyperbolic. However, some
results (for example, on Pinsker partition) hold true if only partial hyperbolicity
in the broad sense is assumed. One of the main technical tools to in the study is
the absolute continuity property of local stable and unstable invariant manifolds
established in the previous section.

11.1. Absolute continuity and smooth measures. We begin with a more de-
tailed description of absolute continuity of local stable and unstable manifolds for
diffeomorphisms with respect to smooth measures.

Let f be a C'* diffeomorphism of a smooth compact Riemannian manifold M
without boundary and let v be a smooth measure, i.e., a probability measure which
is equivalent to the Riemannian volume m. Let also A be the set of nonuniformly
partially hyperbolic points in the broad sense for f. We assume that v(A) = 1.

Consider a regular set A’ of positive measure. For every z € A’ we have the
filtration of stable subspaces at x:

0€ Fi(z) C Fy(z) C - C Fyay(x)
and the corresponding filtration of local stable manifolds at x:
z € Vi(z) C Va(a) C -+ C Vi ()

(see Section 9.2). Since V. (z) depends continuously on z € A*, without loss of
generality we may assume that s(z) = s, dim Vj(z) = dj, for every x € A’ and
1<s<p. Fixze A and consider the family of local stable manifolds

Lf;(x) ={Vi(y) : y € B(z,7)N Ae}.

For y € B(x,r) N A*, denote by m*(y) the Riemannian volume on Vj(w) induced
by the Riemannian metric on M. Consider the set

Plz,r)= | Vil(w)
yEB(x,m)NAL

and its partition ¢* by local manifolds Vi (y). Denote by v*(y) the conditional
measure on Vi(y) generated by the partition €* and the measure v. The factor
space P’(x,7)/¢F can be identified with the subset

Ap(x) = {w € T : there is y € A* N B(z,7) such that w = T N Vi (y)},

where T is a transverse to the family Li.
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Theorem 11.1. The following statements hold:

1. for v-almost every y € A’ N B(x,r), the measures v*(y) and mF(y) are
equivalent, i.e.,

A" (y)(2) = iy, 2)dm" (y)(2),
where ki (y, 2), z € Vi(y) is the density function;

2.
17 Jac(df|Fu(f(2)))
02 = L Gac B )
3. the function ki (y, z) is Hélder continuous;

4. there is C = C(£) > 0 such that
C™ldm" (y)(2) < dv*(y)(2) < Cdm" (y)(2);
5. mF(z)(V¥(x) \ A) = 0 for v-almost every x € A.

We now consider the case when A is a nonuniformly completely hyperbolic set
for f. The above results apply to the families of local stable and unstable manifolds.
For y € B(x,r)NA* let m*(y) and m“(y) be the Riemannian volumes on V*(y) and
V*(y) respectively. Let also £* and £* be the partitions of B(x,r) by local stable
and unstable manifolds, and v*(y) (respectively v*(y)) the conditional measures on
V*(y) (respectively V¥%(y)) generated by v and the partitions £° (respectively £%).
Finally, let ©° (respectively 7*) be the factor measures.

Theorem 11.2. The following statements hold:

1. for v-almost every y € A* N B(z,r) the measures v*(y) and m*®(y) are equiv-
alent; moreover, dv®(y)(z) = k(y, z)dm*(y)(z) where

7 Jac (df[B°(f(2))

L Goctar Bty

2. the factor measures U*° is equivalent to the measure m*(x)|Ag(z);
3. m*(z)(Vo(x) \ A) =0 for v-almost every x € A;

4. similar statements hold for the family of local unstable manifolds.

Ky, z) =

11.2. Ergodic components. The following statement is one of the main results
of smooth ergodic theory. It describes the decomposition of a hyperbolic smooth
invariant measure into its ergodic components.

Theorem 11.3 (Pesin [197]). Let f be a C*** diffeomorphism of a smooth com-
pact Riemannian manifold M and v an f-invariant smooth (completely) hyperbolic
measure on M. There exist invariant sets Ay, A1, ... such that:

1. UisoAi = A, and Ay N Aj = & whenever i # j;

2. v(Ao) =0, and v(A;) > 0 for each i > 1;

3. fIA; is ergodic for each i > 1.

The proof of this theorem exploits a simple yet deep argument due to Hopf [116].
Consider the regular sets A¢ of positive measure and let = € A’ be a Lebesgue point.
For each r > 0 set

Plr= ) V.

yEANB(z,r)
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Clearly, P‘(x,r) has positive measure. It turns out that for a sufficiently small
r = r({) the set
Q) = | (P!(z,1))
nez
is an ergodic component, i.e., the map f|Q(z) is ergodic. Indeed, given an f-
invariant continuous function ¢, consider the functions
n

> e(ff (),

=—n

:1' _—
?(2) n5&2n+1k

P = Tm S (@), and p(x) = Tm 3 o(f ()
k=1 k=1

which are well-defined for v-almost every point x. We also have that p(z) =
o7 (z) = ¢~ (z) outside a subset N C M of zero measure.
Since p(f"(z), f"(w)) — 0 as n — oo and ¢ is continuous, we obtain
B2) =9t (2) = o () = Plu).
Notice that the continuous functions are dense in L'(M, v) and hence, the functions
of the form @ are dense in the set of f-invariant Borel functions.

It remains to show that the function $(z) is constant almost everywhere. By
Theorem 11.2 there exists a point y € (A* N B(x, 7))\ N such that m*(y)(V*(y) N
N) = 0 (recall that v*(y) and v*(y) are, respectively, the measures induced on
V*(y) and V*(y) by the Riemannian volume). Let

P = JVve(w),

where the union is taken over all points w € A* N B(z,7) for which, respectively,
Ve(w) N V*(y) € N. By absolute continuity property, we have v(P*) = 0.

Let z1, zo € P(x,7)\ (P*UN). There are points w; € A* N B(x,r) such that
zi € V3(w;) for i = 1, 2. Note that the intersection V*(w;) N V¥(y) is nonempty
and consists of a single point y;, i = 1, 2. We have that

?(2)(21) = 8(2) (1) = P(2)(y2) = P(2)(22)
and the ergodicity of f|Q(z) follows.

Since almost every point # € A is a Lebesgue point of A? for some ¢, the invariant
sets Q(x) cover the set A (mod 0) and there is at most countable many such sets.
We denote them by Q1, Q2, .... We have v(Q;) > 0 for each i« > 1, and the
set Ag = A\ U;>; @i has zero measure. Since f|Q; is ergodic Q; N Q; = @
(mod 0) whenever i # j. If we set A, = Qn \ U?;ll Q; then A; NA; = @ and
v(Q;) = v(A;) > 0.

We describe an example of a diffeomorphism with nonzero Lyapunov exponents
that has more than one ergodic component. Consider the diffeomorphism Gr2 of
the torus T? constructed in Section 2.2. This map is ergodic. The punched torus
T2\ {0} is C*°-diffeomorphic to the manifold T? \ U, where U is a small open disk
around 0 and U denotes its closure. Therefore, we obtain a C*° diffeomorphism
Fr2 of the manifold T?\ U with Frz|0U = Id. We have that Fr2 preserves a smooth
measure, has nonzero Lyapunov exponents, and is ergodic. .

Let (M, f‘p) be a copy of (M, Frz). By gluing the manifolds M and M along 0U
we obtain a smooth compact manifold M without boundary and a diffeomorphism
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F of M which preserves a smooth measure and has nonzero Lyapunov exponents
almost everywhere. However, the map J is not ergodic and has two ergodic com-
ponents of positive measure (M and M).

Similarly, one can obtain a diffeomorphism with nonzero Lyapunov exponents
with n ergodic components of positive measure for an arbitrary n. However, it does
not seem feasible to push this construction further and obtain a diffeomorphism with
nonzero Lyapunov exponents with countably many ergodic components of positive
measure. Such an example was constructed by Dolgopyat, Hu and Pesin in [77]
using a different approach. It illustrates that Theorem 11.3 cannot be improved.

Example 11.4. There exists a volume-preserving C* diffeomorphism f of the
three-dimensional torus T with nonzero Lyapunov ezponents almost everywhere
and countably many ergodic components which are open (mod 0).

The construction starts with a linear hyperbolic automorphism A: T? — T2
which has at least two fixed points p and p’. The desired map f is obtained as a
perturbation of the map F = A x Id of the three-dimensional torus T3 = T2 x S!.
More precisely, consider a countable collection of intervals {I,,}5°; on the circle S*,
where

Ly=[n+2)""(n+1)7"], Lya=[1-(mn+1)""1-n+2)""].

Clearly, U,—, I, = (0,1) and int I,, are pairwise disjoint.
The main result in [77] states that for any k > 2 and § > 0, there exists a map
g of the three-dimensional manifold M = T? x I such that:

1. g is a C'*° volume-preserving diffeomorphism of M;

2. |[F = gllox <6;

3. for all 0 < m < oo, D™g|T? x {2z} = D™F|T? x {z} for 2 =0 and 1;

4. g is ergodic with respect to the Riemannian volume and has nonzero Lya-
punov exponents almost everywhere.

Applying this result, for each n, one can construct a C'°° volume-preserving
ergodic diffeomorphism f,,: T? x [0,1] — T? x [0, 1] satisfying
L |[F = fallen <™
2. D™ f,|T? x {z} = D™F|T? x {2z} for z=0or 1 and all 0 < m < o0;
3. fn has nonzero Lyapunov exponents p-almost everywhere.
Let L, : I, — [0,1] be the affine map and 7, = (Id, L,,): T? x I,, — T? x [0, 1].
The desired map f is given by f|T? x I, = m, * o f, om, for all n and f|T? x {0} =
F|T? x {0}. Note that for every n > 0 and 0 < m < n,

HDmFHrQ X In — 777:1 o D" fnomyllcn < H7T1:1 o(D™F —D™f,) O7rn||C"
Seinz'(nﬁ’l)nﬂo

as n — oo. It follows that f is C°° on M and it has the required properties.

In the following section we describe a result (see Theorem 11.9) which provides
some additional conditions guaranteeing that the number of ergodic component in
Theorem 11.3 is finite. Roughly speaking one should require that: 1) the global
stable (or unstable) foliation extends to a continuous foliation of the manifold and
that 2) the Lyapunov exponents x;(x) are away from zero uniformly over x.

We now consider the case of a smooth flow ¢; on a compact manifold M pre-
serving a smooth hyperbolic measure v. We also assume that v vanishes on the set
of fixed points of ;.
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Since the time-one map of the flow is nonuniformly partially hyperbolic we con-
clude that the families of local stable and unstable manifolds possess the absolute
continuity property. This is a key fact which allows one to study the ergodic prop-
erties of nonuniformly hyperbolic flows.

Theorem 11.5 (Pesin [197]). There exist invariant sets Ao, A1, ... such that
1. Uizo A=A, and Ay N Aj = @ whenever i # j;
2. v(Ao) =0, and v(A;) > 0 for each i > 1;
3. wi|A; is ergodic for each i > 1.

Using the flow described in Section 2.6 one can construct an example of a flow
with nonzero Lyapunov exponents which has an arbitrary finite number of ergodic
components.

11.3. Local ergodicity. Consider a C'T® diffeomorphism of a compact manifold
M preserving a smooth hyperbolic measure. In this section we discuss the local
ergodicity problem. — under what conditions ergodic components are open (up to a
set of measure zero).

In this connection the following two problems are of interest:

Problem 11.6. Is there a volume-preserving diffeomorphism which has nonzero
Lyapunov exponents almost everywhere such that some (or even all) of its ergodic
components with positive measure are not open (mod 0) ¢

Problem 11.7. Is there a volume-preserving diffeomorphism which has nonzero
Lyapunov exponents on an open (mod 0) and dense set U such that U has positive
but not full measure? Is there a volume preserving diffeornorphism with the above
property such that f|U is ergodic?

The main obstacles for local ergodicity are the following:

1. the stable and unstable distributions are measurable but not necessarily
continuous;

2. the global stable (or unstable) leaves may not form a foliation;

3. the unstable leaves may not expand under the action of f™ (note that they
are defined as being exponentially contracting under f~", so that they are
determined by the negative semi-trajectory); the same is true for stable leaves
with respect to the action of f~™.

There are three different ways to obtain sufficient conditions for local ergodicity.
Each of them is based on requirements which eliminate one or more of the above
mentioned obstacles.

1. The first one is due to Pesin [197]. It requires a special structure of the
global stable or unstable manifolds and is used to establish local ergodicity
of geodesic flows (see Section 17).

2. The second one is due to Katok and Burns [132]. Its main advantage is that
it relies on requirements on the local behavior of the system.

3. The third one is due to Liverani and Wojtkovski [167]. It deals with sym-
plectic dynamical systems and is an adaptation of the Sinai method (that
was developed for billiard dynamical systems; see [233]) to nonuniformly hy-
perbolic dynamical systems (both smooth and smooth with singularities; see
Section 18).
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1. We first describe the approach in [197]. Roughly speaking it requires that the
stable (or unstable) leaves form a foliation of a measurable subset of full measure
in M. First, we extend the notion of foliation of M with smooth leaves, introduced
in Section 9.2, to foliation of a measurable subset.

Given a subset X C M, we call a partition £ of X a (4, q)-foliation of X with
smooth leaves or simply a (6, q)-foliation of X if there exist continuous functions
0: X — (0,00) and ¢: X — (0,00) and an integer k > 0 such that for each x € X:

1. there exists a smooth immersed k-dimensional submanifold W (z) containing
x for which £(z) = W(x) N X where {(x) is the element of the partition
¢ containing z; the manifold W (x) is called the (global) leaf of the (4, q)-
foliation at x; the connected component of the intersection W (z)NB(z, d(z))
that contains x is called the local leaf at x and is denoted by V (z);

2. there exists a continuous map ¢, : B(z,q(x)) — C*(D,M) (D C R” is the
open unit ball) such that for every y € X N B(x,q(z)) the manifold V(y) is
the image of the map ¢, (y): D — M.

For every x € X and y € B(z,q(x)) we set U(y) = ¢(y)(D) and we call it the
local leaf of the (6, q)-foliation at y. Note that U(y) = V(y) for y € X.

The following result establishes the local ergodicity property in the case when
the stable (or unstable) foliation for f extends to a continuous foliation of M with
smooth leaves.

Theorem 11.8 (Pesin [197]). Let f be a C** diffeomorphism of a compact smooth
Riemannian manifold M preserving a smooth measure v and nonuniformly hyper-
bolic on an invariant set A. Assume that v(A) > 0 and that there exists a (9, q)-
foliation W of A such that W(xz) = W*(x) for every x € A (where W*(x) is the
global stable manifold at x; see Section 8). Then every ergodic component of [ of
positive measure is open (mod 0) in A (with respect to the induced topology).

This theorem provides a way to establish the ergodicity of the map f|A. Namely,
under the conditions of Theorem 11.8 every ergodic component of f of positive
measure that lies in A is open (mod 0), hence, the set A is open (mod 0) and, if
f|A is topologically transitive, then f|A is ergodic.

In general, a diffeomorphism f preserving a smooth hyperbolic measure may have
countably many ergodic components which are open (mod 0) (see Example 11.4).
We describe a criterion which guarantees that the number of open (mod 0) ergodic
components is finite.

Theorem 11.9. Let f be a C'+* diffeomorphism of a compact smooth Riemannian
manifold M preserving a smooth measure v and nonuniformly hyperbolic on an
invariant set A. Assume that v(A) > 0 and that there exists a continuous foliation
W of M with smooth leaves such that W (x) = W?*(z) for every v € A. Assume, in
addition, that there exists a number a > 0 such that for almost every x € M,

Ixi(z)] > a. (11.1)
Then f|A has at most finitely many ergodic components of positive measure.

To see this observe that Assumption (11.1) allows one to apply Proposition 13.16
and find a number r > 0 with the following property: for almost every x € A there
is n = n(x) such that the size of a local unstable manifold V*(f"(x)) is at least r.
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Let x be a density point of A. Consider the set

Par)= |J B,

yeV (f(x))

where B?(y,r) is the ball in W*(y) centered at y of radius r. This set is contained
in an ergodic component. It is also open and contains a ball of radius € > 0 which
does not depend on x. Thus, every ergodic component contains a ball of radius e.

For a general diffeomorphism preserving a smooth hyperbolic measure, one
should not expect the unstable (and stable) leaves to form a (d, ¢)-foliation for
some functions §(z) and ¢(z). In order to explain why this can happen consider a
local unstable manifold V*(x) passing through a point € A. For a typical z and
sufficiently large ¢, the set V*(z) N A’ has positive Riemannian volume (as a subset
of the smooth manifold V*(z)) but is, in general, a Cantor-like set. When the local
manifold is moved forward a given time n one should expect a sufficiently small
neighborhood of the set V*(x) N A to expand. Other pieces of the local manifold
(corresponding to bigger values of ¢) will also expand but with smaller rates. As
a result the global leaf W*(z) (defined by (9.1)) may bend “uncontrollably” —the
phenomenon that is yet to be observed but is thought to be “real” and even “typi-
cal” in some sense. As a result the map x — ¢, in the definition of a (4, ¢)-foliation
may not be, indeed, continuous.

Furthermore, the global manifold W*(z) may be “bounded”, i.e., it may not
admit an embedding of an arbitrarily large ball in R* (where k& = dim W"(z)).
This phenomenon is yet to be observed too.

The local continuity of the global unstable leaves often comes up in the follow-
ing setting. Using some additional information on the system one can build an
invariant foliation whose leaves contain local unstable leaves. This alone may not
yet guarantee that global unstable leaves form a foliation. However, one often may
find that the local unstable leaves expand in a “controllable” and somewhat uni-
form way when they are moved forward. We will see below that this guarantees
the desired properties of unstable leaves. Such a situation occurs, for example,
for geodesic flows on compact Riemannian manifolds of nonpositive curvature (see
Section 17.1).

We now state a formal criterion for local ergodicity.

Theorem 11.10 (Pesin [197]). Let f be a C'* diffeomorphism of a compact
smooth Riemannian manifold, preserving a smooth hyperbolic measure v, and non-
uniformly hyperbolic on an invariant set A of full measure. Let also W be a (9, q)-
foliation of A with the following properties:

1. W(z) D V() for every x € A;
2. there exists a number 0o > 0 and a measurable function n(x) on A such that
for almost every x € A and any n > n(x),

f7"(V2(x)) O Bw (f " (x), o).
Then every ergodic component of f of positive measure is open (mod 0).

In the case of one-dimensional (4, q)-foliations the second condition of Theo-
rem 11.10 holds automatically and hence, can be omitted.

Theorem 11.11 (Pesin [197]). Let W be a one-dimensional (9, q)-foliation of A,
satisfying the following property: W(x) D V*(x) for every x € A. Then every
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ergodic component of [ of positive measure is open (mod 0). Moreover, W*(x) =
W(zx) for almost every x € A.

One can readily extend Theorems 11.10 and 11.11 to the case when the set A is
open (mod 0) and has positive (not necessarily full) measure as well as to dynamical
systems with continuous time.

Theorem 11.12. Let f be a C*+* diffeomorphism of a compact smooth Riemann-
ian manifold preserving a smooth measure v and nonuniformly hyperbolic on an
invariant set A. Assume that A is open (mod 0) and has positive measure. Let also
W be a (9, q)-foliation of A which satisfies properties 1 and 2 in Theorem 11.10.
Then every ergodic component of f|A of positive measure is open (mod 0).

Theorem 11.13. Let p; be a smooth flow of a compact smooth Riemannian man-
ifold preserving a smooth measure v and nonuniformly hyperbolic on an invariant
set A. Assume that A is open (mod 0) and has positive measure. Let also W be a
(6, q)-foliation of A with the following properties:
1. W(z) D V*(z) for every x € A;
2. there exists a number §g > 0 and a measurable function t(z) on A such that
for almost every x € A and any t > t(x),

p—1(V*(z)) D Bw (p-t(z), o).
Then every ergodic component of the flow p¢|A of positive measure is open (mod 0).
2. We now describe the approach in [132] to study the local ergodicity. A con-

tinuous function Q: TM — R is called an infinitesimal eventually strict Lyapunov
function for f over a set U C M if:

1. for each z € U the function Q, = Q|T, M is homogeneous of degree one,
and takes on both positive and negative values;
2. there exist continuous distributions D3 C C?(x) and D¥ C C*(x) such that
T.M = D} & D for all x € U, where
C*(x) = Q7 ((—00,0)) U{0} and C*(z) = Q71((0,00)) U {0};
3. foreveryz e U,neN, f*(z) eU,and v € T, M,

Qn(a) (da f"0) 2 Qu(v);
4. for v-almost every & € U there exist k = k(z), £ = ¢(z) € N such that
fE(x) e U, f~*(z) € U, and for v € T, M \ {0},
Qpr(a) (Ao ffv) > Qu(v) and  Qp-r(y)(daf ~"v) < Qu(v).
A function @ is called an infinitesimal eventually uniform Lyapunov function for f
over a set U C M if it satisfies Conditions 1-3 and the following condition: there
exists € > 0 such that for v-almost every x € M one can find k = k(z), £ = ¢(z) € N
for which f*(x) € U, f~%(z) € U, and if v € T, M \ {0} then
Qv @) (de fF0) > Qu(v) +£lv]
and
Qft(a)(def ~0) < Qu(v) —ello]-

The following result gives a criterion for local ergodicity in terms of infinitesimal
Lyapunov functions.

Theorem 11.14 (Katok and Burns [132]). The following properties hold:
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1. If f possesses an infinitesimal eventually strict Lyapunov function QQ over
an open set U C M, then almost every ergodic component of f on the set
Unez [ (U) is open (mod 0).

2. If f possesses an infinitesimal eventually uniform Lyapunov function Q over
an open set U C M, then every connected component of the set | J, o, f"(U)
belongs to one ergodic component of f. Moreover, if U is connected then f|U
1s a Bernoulli transformation.

This theorem was first proved by Burns and Gerber [54] for flows in dimension 3.

We sketch the proof of this theorem. When ) is an infinitesimal eventually
strict Lyapunov function, given a compact set K C U, one can use the uniform
continuity of x — @, on the set K, and Requirement 3 in the definition of Lyapunov
function to show that the size of the stable and unstable manifolds on K is uniformly
bounded away from zero. Furthermore, using Requirement 4 one can show that for
v-almost every point z € M there exist # = 6(z) > 0 and a neighborhood N of z
such that for v-almost every x € N and y € V*(z) N N the tangent space T, V" (x)
is in the f-interior of C*(y). A similar statement holds for stable manifolds.

Together with Requirement 2 this implies that the stable and unstable manifolds
have almost everywhere a “uniform” product structure; namely, for almost every
x € U there exist a neighborhood N(x) of  and § > 0 such that:

1. V*(y) and V*(y) have size at least ¢ for almost every y € N(x);
2. Vo(y) NV¥(z) # @ for v x v-almost every (y,z) € N(z) x N(x).

The proof of Statement 1 follows now by applying the Hopf argument.

When @ is an infinitesimal eventually uniform Lyapunov function, the function
0(z) is uniformly bounded away from zero. This can be used to establish that for
every z (and not only almost every z) there exists a neighborhood N(z) of « and
0 > 0 with the above properties. A similar argument now yields the first claim in
Statement 2. The last claim is an immediate consequence of Theorem 11.19.

3. Finally we outline the approach in [167] to study the local ergodicity in the
symplectic case. This approach is built upon a method which was developed by
Sinai [233] in his pioneering work on billiard systems. It has been later improved
by Sinai and Chernov [234] and by Kramli, Simdnyi and Szdsz [150] who considered
semidispersing billiards.

Let M be a smooth compact symplectic manifold of dimension 2d with the sym-
plectic form w. Let also f: M — M be a symplectomorphism (i.e., a diffeomorphism
of M which preserves the symplectic structure).

Fix x € M. A subspace V C T, M is called Lagrangian if V is a maximal sub-
space on which w vanishes (it has dimension d). Given two transverse Lagrangian
subspaces V7 and V5 define the sector between them by

C=CWV,Va)={veT,M:w(,vy) >0forv=uv4uvy v; €V, i =1,2}.

Define the quadratic form associated with an ordered pair of transverse Lagrangian
subspaces V7 and V5 by

Q) = Q(V1, Va,v) = w(vy,vg) for v=v1 +va, v; €V;, i=1,2.
Using this quadratic form we can write the cone C(V1, V2) in the form

C(Vl,VQ) = {’U e T, M : Q(’U) > 0}
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We define the interior of the cone by
int C(Vy,Va) ={veT,M:Q(v) > 0}.

We assume that two continuous subbundles of transverse Lagrangian subspaces are
chosen in an open (not necessarily dense) subset U C M. We denote them by
{Vi(2)}rev and {Va(x)}rev respectively. For x € U let C(x) = C(Vi(z), Va(z))
and C'(z) = C(Va(z), V1(2)).

If x € U and f™(z) € U let us define

o(d.f*) = inf \/Q(Vl(x)’v2(z)7dzf"v).

v€int C(zx) Q(V1($),‘/2(33)7'U)

Theorem 11.15. Assume that the following conditions hold:
1. Monotonicity condition: if v € U and f*(z) € U for k > 0 then

dy f*C(x) C O(f*(2));

2. Strict monotonicity condition: for almost every point x € U there existn > 0
and m < 0 such that f™(z), f™(z) € U and

de f"C(x) Cint C(f™(z)) U{0}, dpf™C'(z) CintC'(f™(x))U{0}. (11.2)

Then for any n > 1 and any point x € U such that f*(z) € U and o(d, f") > 1
there is a neighborhood of x which is contained in one ergodic component of f.

It follows from this theorem that if U is connected and every point in it is strictly
monotone (i.e., (11.2) holds) then (J, ., f*(U) belongs to one ergodic component
of f. This is a symplectic version of Theorem 11.14. We observe that Theorem 11.15
is a particular case of a more general result by Liverani and Wojtkowski for smooth
dynamical systems with singularities (see Section 18).

11.4. Pinsker partition, K-property and Bernoulli property. In the ergodic
theory there is a hierarchy of ergodic properties of which ergodicity (or the de-
scription of ergodic components) is the first and weakest one. Among the stronger
properties are (weak and strong) mixing, K-property (including the description of
the Pinsker or w-partition) and the strongest among them — the Bernoulli property
(or the description of Bernoulli components). The latter means essentially that
the system is isomorphic in the measure-theoretical sense to the classical Bernoulli
scheme.

We shall see that dynamical systems with nonzero Lyapunov exponents (nonuni-
formly hyperbolic systems) have all of these properties with respect to smooth
invariant measures.

Let f: M — M be a C'** diffeomorphism of a smooth compact Riemannian
manifold M preserving a smooth measure v. Assume that f is nonuniformly par-
tially hyperbolic in the broad sense on an invariant set A of positive measure. For
every x € A we have that

Xl(x) << Xs(:p)(x) <0< Xs(w)+1(x) <---< Xp(w)(x)a
where y;(x), ¢ = 1,...,p(x) are the distinct values of the Lyapunov exponent at x
each with multiplicity k;(z). We also have the filtration of local (stable) manifolds
at x
r e Vi(x) C Va(x) C - C Vg (x) (11.3)
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as well as the filtration of global (stable) manifolds at x

r e Wi(x) C Wa(z) C - C Wyip)(2) (11.4)
(see Section 9.2). Fix j > 0 and m > 0 and consider the sets
Ajm ={z € A dimWj(z) =m}, Ajm= (] W) (11.5)
TEAj m

For some j and m we have that v(A;,,) > 0. Note that Wj(z) C A;,, (mod 0) for
almost every « € A, ,,. Hence, /A\jm =Ajm (mod 0).

Consider the partition W; of A;,, by global manifolds W;(z). In general, this
partition is not measurable. However, one can construct a special sub-partition of
W; which we call pseudo m-partition for f|A; ,,—when f is nonuniformly completely
hyperbolic on the set A this partition is the m-partition for f|A; n, i.e., the maximal
partition with zero entropy.

We denote the measurable hull of a partition £ by H(£) and we use the notation
¢ for the partition by points.

Theorem 11.16. There exists a measurable partition n = 1;.m of Aj,m with the
following properties:

. for almost every x € A; ., the set Cy(z) is an open (mod 0) subset of Wj(x);
- fnz=zn; ‘

=V f'n=c¢;

Nis—oo 1= H(W;);

if f is nonuniformly completely hyperbolic on A then H(W;) = n(f|Ajm)-

OU w0

Sinai [232, Theorem 5.2] proved this theorem for a class of dynamical systems
with transverse foliation. Pesin [197] adapted this approach for nonuniformly hy-
perbolic dynamical systems.

We stress that the measurable hull 3{(W;) does not depend on j (see Statement 1
of Theorem 11.17); this is a manifestation of the Lipschitz property of intermediate
stable manifolds (see Theorem 9.6). One can estimate the entropy of f with respect
to n from below (see Theorem 12.11).

In order to construct the partition 1, given ¢ > 1, consider the regular set A‘.
For a sufficiently small 7 = r(¢) > 0 and = € A*, set

Pix)=  |J Vily, Q@)= |J @@ (11.6)

yEANB(z,r) n=-—o00

It suffices to construct the partition 1 on the set Q(z). Consider the partition E of
Pf(m) by local manifolds V;(y), y € A*N B(z,r). Adding the element Q(z) \ Pf(m)
we obtain a partition of Q(z) which we denote by £. The partition

n=¢ =\ r¢
i<0
has the desired properties.

In [158], Ledrappier and Young constructed a special countable partition of M
of finite entropy which is a refinement of the partition 7. We describe this partition
in Section 16.3.

An important manifestation of Theorem 11.16 is the establishment of the K-
property of a C'*® diffeomorphism f which preserves a smooth measure v and is
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nonuniformly completely hyperbolic on an invariant set A of positive measure. By
Theorem 11.3 the set A can be decomposed into ergodic components A;, i = 1,2, ...
of positive measure. Fix 7 and denote by 7; the measurable partition of A; associated
with the foliation W}, see Theorem 11.16.

Theorem 11.17 (Pesin [197]). The following properties hold:
L 3CW;, [Ai) = H(W,|As) = m(fIN:) for any 1 < ji < jo <5 0rs+1< 1 <
j2 < p;
2. the w-partition of f|A; is finite and consists of n; elements A¥, k=1,...,n;
such that f(A¥) =AM k=1,... n; — 1 and f(A}) = A};
3. fr|A¥ is a K-automorphism.

We now discuss the Bernoulli property. There are examples in general ergodic
theory of systems which have K-property but fail to be Bernoulli. This cannot
happen for smooth systems with nonzero exponents: Bernoulli property holds au-
tomatically as long as the system has the K-property (indeed, the mixing property
is already sufficient).

Theorem 11.18. Let f be a C'T* diffeomorphism of a smooth compact Riemann-
ian manifold M preserving a smooth hyperbolic measure v. Assume that f is weakly
mixing with respect to v. Then f is a Bernoulli automorphism.

Ornstein and Weiss [190] established the Bernoulli property for geodesic flows
on compact manifolds of negative curvature. Pesin [197] used a substantially more
general version of their approach to prove Theorem 11.18. The proof exploits the
characterization of a Bernoulli map in terms of very weakly Bernoulli partitions
(see [190]). More precisely, there is a finite measurable partition o of the manifold M
whose elements have piecewise smooth boundaries and arbitrarily small diameter.
Indeed, one can construct a sequence of such partitions a; < as < --- such that
a, — &. The proof goes to show that each partition «,, is very weakly Bernoulli and
the result follows. An important technical tool of the proof is the refined estimate
(10.3) of the Jacobian of the holonomy map.

Combining Theorems 11.17 and 11.18 we obtain the following Spectral Decom-
position Theorem for systems with nonzero Lyapunov exponents preserving smooth
measures.

Theorem 11.19. For each i > 1 the following properties hold:

1. A; is a disjoint union of sets AZ, for j =1, ..., n;, which are cyclically
permuted by f, i.e., f(A]) = Af‘H forj=1,...,n;—1, and f(A}) = A};
2. fmi

A} is a Bernoulli automorphism for each j.

We consider the case of dynamical systems with continuous time. Let ¢; be a C?
flow on a smooth compact Riemannian manifold M preserving a smooth measure v
and nonuniformly hyperbolic on M. By Theorem 11.5, M can be decomposed into
ergodic components A;, 1 = 1,2,... of positive measure. Applying Theorem 11.16
to the nonuniformly partially hyperbolic diffeomorphism ¢1|A; we obtain the fol-
lowing result.

Theorem 11.20 (Pesin [197]). There exists a partition n = 1; of A; for which:

1. for almost every x € A; the element C,(x) is an open (mod 0) subset of

W (z);
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2. p1m=m;
3. V%-):o i =¢€;
4. Nis _oo pin = H(W?) = m(pilAs).

The following result establishes the K-property of the flow ¢4 on the set A;. For
simplicity we will drop the index ¢. We remind the reader that a flow ¢, is a K-flow
if and only if the diffeomorphism ¢, is a K-automorphism for every ¢ € R.

Theorem 11.21 (Pesin [197]). Assume that the flow @i|A has continuous spectrum.
Then it is a Bernoulli flow and in particular, a K-flow.

The following result is an immediate consequence of this theorem.

Corollary 11.22. Let p; be a smooth flow on a compact smooth Riemannian man-
ifold M preserving a smooth measure v. Assume that v is hyperbolic and that ¢, is
mixing with respect to v. Then @; is a Bernoulli flow.

12. METRIC ENTROPY

A crucial idea in Smooth Ergodic Theory is that sufficient instability of tra-
jectories yields rich ergodic properties of the system. The entropy formula is in
a sense a “quantitative manifestation” of this idea and is yet another pearl of
Smooth Ergodic Theory. It expresses the Kolmogorov—Sinai entropy h,(f) of a
diffeomorphism, preserving a smooth hyperbolic measure, in terms of the values of
the Lyapunov exponent.

12.1. Margulis—Ruelle inequality. Let f be a C'*! diffeomorphism of a compact
smooth manifold M. The following very general result provides an upper bound
for the entropy of f with respect to any Borel invariant probability measure v.

Theorem 12.1 (Margulis—Ruelle Inequality). The following estimate holds

min)< [ Sedvia), (12.1)

where

Xy = Z ki(z)xi(z).

i:xi(z)>0

In the case of volume-preserving diffeomorphisms this estimate was obtained
by Margulis (unpublished). The inequality in the general case was established by
Ruelle in [212] (see also [24] and [174]).

We sketch the proof of the theorem. By decomposing v into its ergodic compo-
nents we may assume without loss of generality that v is ergodic. Then s(z) = s
and k;(z) = k4, xi(xz) = x; are constant v-almost everywhere for each 1 < i < s.
Fix m > 0. Since M is compact, there exists t,, > 0 such that for every 0 < t < t,,,
y € M, and = € B(y,t) we have

1 —_ -_ m m -
0= f™ (exp7 ! B(y,1)) C exppm, [ (B(y,t) C 2do f™ (exp; " By, 1)),

where for a set A C T, M and z € M, we write aAd = {awv : v € A}
There is a special partition of the manifold M which is described in the following
statement.

Lemma 12.2. Given € > 0, there is a partition & of M such that:



96 LUIS BARREIRA AND YAKOV PESIN

1. diam & < ¢,,,/10 and h,(f™,€) > h,(f™) —¢;

2. for every element C € & there exist balls B(x,r) and B(xz,r'), such that
r < 2r' <t,/20 and B(z,r") C C C B(z,r);

3. there exists 0 < r < t,,/20 such that if C € £ then C C B(y,r) for some
y € M, and if x € C then

1 — — m m -
§d$fm (eXpac 1 B(y,r)) C expf,i,w fmC c2d,f (eXPx 1 B(y,r)) .

To construct such a partition, given o > 0, consider a maximal a-separated set
T, i.e., a finite set of points for which d(z,y) > « whenever x, y € . For x € T set

Dr(z) ={y € M : d(y,z) <d(y,z) for all ze T\ {z}}.

Obviously, B(z,a/2) C Dr(x) C B(x,«). Note that the sets Dr(z) corresponding
to different points x € I intersect only along their boundaries, i.e., at a finite number
of submanifolds of codimension greater than zero. Since v is a Borel measure, if
necessary, we can move the boundaries slightly so that they have zero measure.
Thus, we obtain a partition £ with diam £ < « which can be chosen to satisfy

ho(f™,8) > hy(f™) —e and diam¢ < t,,/10.

This guarantees the properties in the lemma.
Continuing with the proof of the theorem observe that

<H, (") = Y v(D)H(ED)
Defm¢

< Z v(D)logcard{C € (£ : CN D # &},
Defmg

(12.2)

where H({|D) is the entropy of ¢ with respect to the conditional measure on D
induced by v. The following is a uniform exponential estimate for the number of
elements C' € £ which have nonempty intersection with a given element D € f™¢.

Lemma 12.3. There exists a constant K1 > 0 such that for D € f™¢,
card{C € £: DNC =@} < Ky sup{||d, f||™" : x € M},
where n = dim M.

This can be shown by estimating the volume of each element C' and using Prop-
erty 2 of the partition &.

We also have an exponential bound for the number of those sets D € f™¢ which
contain regular points. Namely, given ¢ > 0, let R,,, = R,,(¢) be the set of forward
regular points x € M which satisfy the following condition: for k > mand v € T, M,

ek(X(w,v)—s)”v” < HdszUH < ek(X(w,v)-&-E)HvH.

Lemma 12.4. If D € f™¢ has nonempty intersection with R, then there exists a
constant Ko > 0 such that

card{C’ c f :DnC # @} < Kyef™ H em(XiJr&)ki'
i:xq >0
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To establish the inequality note that
card{C € £: DNC # &} < vol(B)(diam&) ™",
where vol(B) denotes the volume of
B = {y € M: d(y, expymp (duf" (exp;? B))) < diamé}

and B’ = B(z,2diam C”) for some C’ € & such that C'N R, # @ and f™(C") = D
and some z € C' N f~™(R,,). Up to a bounded factor, vol(B) is bounded by
the product of the lengths of the axes of the ellipsoid d, f™(exp; ! B’). Those of
them that correspond to nonpositive exponents are at most subexponentially large.
The remaining ones are of size at most ¢™Xit<) up to a bounded factor, for all
sufficiently large m. Thus,

vol(By) < Ke™*(diam B)" H embate)k:
i:xi >0
< Ke™#(2diam &)™ H emixitelk:
i:xi >0

for some constant K > 0. The lemma follows.
By Lemmas 12.3 and 12.4 and (12.2), we obtain

mh, (f) = € = ho(f™) — € < hy(f™,€)

< Z v(D) | log Ky +em +m Z (xi +e)k;
DNR,,#9 x>0

+ Z v(D)(log K1 + nmlogsup{||d. f|| : x € M})
DNR,,=2
<logKy+em+m Y (xi+e)ki
x>0
+ (log K1 4+ nmlogsup{||d. f|| : x € M})v(M \ R,,).

By the Multiplicative Ergodic Theorem 5.5, we have 5 Rm(e) = M (mod 0)
for every sufficiently small . It follows that

ho(f) <e+ D (xi+ ks
x>0
Letting € — 0 we obtain the desired upper bound.
As an immediate consequence of Theorem 12.1 we obtain an upper bound for
the topological entropy h(f) of a diffeomorphism f. Namely,

M) = suphu(f) < sup /M 5 dv, (12.3)

where the suprema are taken over all f-invariant Borel probability measures on M.

In general Inequalities (12.1) and (12.3) can be strict. In fact, as the following
example shows, there are C* diffeomorphisms for which h(f) < inf, [,, ¥ dv, and
hence, h,(f) < [,; X4 dv for any invariant measure v.

Example 12.5 (Figure-Eight; Bowen and Katok (see [131])). Let f be a diffeo-
morphism of the two-dimensional sphere S with three repelling fized points p1, pa,
ps and one saddle fized point q. Suppose that the stable and unstable manifolds of
the point q form two loops vy, 2 that divide S? into three regions A1, Ay, and As.
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Fori=1, 2, 3, we have p; € A; and any point in A; \ {p;} tends, respectively, to
Y1, Y2, and y1 Uvye. Thus, any f-invariant finite measure v is supported on the
finite set {p1,p2,ps,q}. Therefore, h,(f) =0 while [,, ¥4 dv > ¢ >0 for some ¢
independent of v. In addition, we have

h(f) =suph,(f) < irl}f/ Yidv

M

where the supremum and infimum are taken over all f-invariant Borel probability
measures on S2.

Example 12.6 (Two-dimensional Horseshoes). Let A be a basic set (i.e., a locally
mazimal hyperbolic set), of a topologically transitive Axiom A surface diffeomor-
phism of class C*. McCluskey and Manning [181] showed that for every x € A the
Hausdorff dimension of the set W*(x) N A is the unique root s of Bowen’s equation

P(—slog|df[E"]) = 0,

where P is the topological pressure on f|A. In particular, s is independent of x.
Assume that s < 1. Since s — P(—slog||df|E"||) is decreasing, we obtain

P(—log||df|E*|) < 0.

By the Variational Principle for the topological pressure, for every f-invariant mea-
sure v,

hf) < [ o8l 1B @) i) = [ 2o
(we use here Birkhoff’s Ergodic Theorem and the fact that dim E* = 1).

Note that h,(f~!) = h,(f) and the Lyapunov exponents of f~1 are those of f
taken with opposite sign. Therefore, it follows from Theorem 12.1 that

/ S xilw)ki(e) di(e).

i:xq () <0
Set
a= / Z Xi(z)k;i(x) dv(z)
irxi(z)>0
and
/ Z Xi(@ x) dv(z )
M ;. Xi(z)<0

In Example 12.5 one can choose the eigenvalues of df at the critical points, and the
measure v to guarantee any of the relations: a < b or a = b or a > b. One can also
show that if v is the Riemannian volume on M, then a = b.

An important manifestation of Margulis—Ruelle’s inequality is that positivity of
topological entropy implies the existence of at least one nonzero Lyapunov expo-
nent.

Corollary 12.7. If the topological entropy of a C* diffeomorphism f of a compact
manifold is positive, then there exists an ergodic f-invariant measure with at least
one positive and one negative Lyapunov exponent.
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For surface diffeomorphisms, Corollary 12.7 means that any diffeomorphism with
positive topological entropy possesses an ergodic invariant measure whose Lyapunov
exponents are all nonzero.

Let us point out that the positivity of topological entropy can sometimes be
determined using pure topological information. For example, theorems of Manning
[176], Misiurewicz and Przytycki [186, 185], and Yomdin [253, 254] relate the topo-
logical entropy to the action of the diffeomorphism on the homology groups (see
also [129]); see Section 15.5.

Other immediate consequences of Theorem 12.1 are as follows.

Corollary 12.8. Let v be a measure which is invariant under a C diffeomorphism
f of a compact manifold. If h,(f) > 0 then v has at least one positive and one
negative Lyapunov exponent.

For surface diffeomorphisms, Corollary 12.8 implies that if h,(f) > 0 then the
Lyapunov exponents of v are all nonzero, i.e., v is hyperbolic (see Sections 10.1
and 15).

Corollary 12.9. We have
1
h(f) < dim M x inf —log™ sup||d, f™||
m>1m zEM

=dim M x lim i1og+ sup ||da f™|.
m—00 M reM

12.2. The entropy formula. Let f: M — M be a C''** diffeomorphism, a > 0
and v an f-invariant measure which is absolutely continuous with respect to the
Riemannian volume. The main result of this section is the Pesin entropy formula
which expresses the entropy of f with respect to v via its Lyapunov exponents. It
was first proved by Pesin in [197]. The proof relies on properties of the unstable
foliation and in particular, absolute continuity. Another proof of the entropy for-
mula was obtained by Mané in [171] (see also [174]). It does not involve directly the
existence of stable and unstable foliations but instead uses some subtle properties
of the action of the differential df with respect to the Lyapunov exponents in the
presence of a smooth invariant measure.

Theorem 12.10 (Pesin [197]). The following formula holds true:

ho(f) = /M Sy dv. (12.4)

In view of the Margulis—Ruelle inequality we only need to establish the lower
bound

)z [ Y ko)),
M i:x4 (x)>0
or equivalently (by replacing f by f~! and using Theorem 5.5)

iz [ 3 k) )
M iy () <0
This inequality is a corollary of a more general result which we now state.
Let f: M — M be a C'** diffeomorphism of a smooth compact Riemannian
manifold M preserving a smooth measure v and nonuniformly partially hyperbolic
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in the broad sense on an invariant set A of positive measure. For every z € A we
have that

X1(2) <0 < Xo(@) (7) <0< Xs@)41(2) < -+ < Xp(a) (2),
where x;(x), i = 1,...,p(x) are the distinct values of the Lyapunov exponent at x
each with multiplicity k;(z). We also have the filtration of local (stable) manifolds
(11.3) as well as the filtration of global (stable) manifolds (11.4) at z. Given j > 0
and m > 0, consider the sets (11.5). Note that v(A;,,) > 0 for some j and m and
W;(z) C Aj, (mod 0) for almost every & € Aj,,,. Hence, Aj,, = Aj,,, (mod 0).
Consider the partition 17 = 7, of [\j,m constructed in Theorem 11.16.

Theorem 12.11 (Pesin [198]). The entropy of f with respect to n admits the
following estimate from below

/ Zk: 2)xi(2) dv(2).

J"'zl

We shall sketch the proof of the theorem. Given ¢ > 0 consider the regular
set A’. For sufficiently small r = 7(¢) and = € A* consider also the sets P%J(x) and
Q(z) defined by (11.6). Let ¥ be the measure on Q(x) given for any measurable
subset A C Q(z) by v(A) = V(A)(V(Q(x))*l. It suffices to show that

h(f1Q / 3 R d2), (12.5)
“L =1

Consider the function

= [T explau(2)) ).

Given € > 0, let @, = {2z € Q(z) : pe < g(z) < (p + 1)e}. It suffices to show
the inequality (12.5) for the restriction f = f|@Q, and the measure 7 defined by
v(A) = v(A)(¥(Q,))~! for any measurable subset A C Q,.

Set J,(z) = Jac (df™*|T,W?(z)). It follows from the Multiplicative Ergodic The-
orem 5.5 that there exists a positive Borel function T'(z,¢), z € @, and € > 0 such
that for n > 0,

In(z) < T(z,2)g(2) exp(en).
Set for ¢t > 0,
={z€Qp: T(z,¢6) <t}
We have that for any o > 0 and all sufficiently large ¢,
(@) >1—a. (12.6)

It follows from Theorem 10.1 that there exists C; = C;(t) > 0 such that for any
z € Q) and n >0,

VI (2)(f"(Cn(2))) < C1J"(2). (12.7)
Denote by B, (z,r) the ball in Cy,(2) centered at z of radius r.
Lemma 12.12. For any (3 > 0 there exists ¢ = q(t) and a subset A* C Q! such
that:

L v(Q,\ A") < 5;
2. for any z € A" the element C,)(z) contains the ball B,(z,q).
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Denote by v,(z) the conditional measure on the element C),(z) of the partition
1 generated by the measure v. For every z € A,

ot < C‘;:;(()) <y (12.8)

where Cy = C4(t) > 0 is a constant independent of z. For any n > 0,

1 1
v =—hs(f") > —H(f" .
holf) = ~ho(f") = —H(f"nl)
We use here the fact that ‘
=0~ =\ fn

i<0
(see Theorem 11.16). It follows from (12.6), (12.7), and (12.8) that for every z € A’
and n > 0,

n v (Cy(x) N Cpny(2))
H{"alCy () = = /Cn(;c) : nun(On(yi)n Wnly) (12.9)
—log[C4*Cit((p + 1)) eV (By (2, (1)) "] = In,
q(t))) is the Riemannian volume of the ball B, (z,¢(t)). We have
( ))) > Cs5q™(t) where C5 > 0 is a constant. It follows that
—1og(C4?C1t)(C5q™ ()~ — n (log((p + 1)e) +¢)
> Cs —n(logg(z) +¢).
By (12.6) and Statement 1 of Lemma 12.12, we obtain that v(Q, \ 4%) < a + .

Therefore, integrating inequality (12.9) over the elements C,,(x) and taking (12.10)
into account we conclude that

,H(f”n|77)> I p(AY) > 1/ I,dv(1 — ap)

p

/Q () di(z) - 7,

P 4=1

where

V(By(z,
that V(B,(z,q
I

(12.10)

where v can be made arbitrary small if £, o, and 3 are chosen sufficiently small and
n sufficiently large. The desired result follows.

In the two-dimensional case the assumption that f € C11% can be relaxed for a
residual set of diffeomorphisms.

Theorem 12.13 (Tahzibi [237]). Let M be a compact smooth surface. There exists
a residual subset G in the space Diffl(M7 m) of C volume preserving diffeomor-
phisms of M such that every f € G satisfies the entropy formula (12.4). Moreover,
G contains all volume-preserving diffeomorphisms of class C'+e.

The main idea of the proof is the following. In the two dimensional case a
volume-preserving diffeomorphism f has at most one positive Lyapunov exponents
x*(z) almost everywhere. For f € Diff' (M, m) set L(f) = [,, x* () du. One can
show that the set of continuity points of the functions L(f) and h,,(f) is residual
in the C! topology. Let f be a continuity point. One obtains the entropy formula
for f by approximating f by a sequence f,, of C'*® diffeomorphisms for which the
entropy formula (12.4) holds.

Ledrappier and Strelcyn [138] extended the entropy formula to SRB-measures
invariant under C'*® diffeomorphisms (see Section 14) and Ledrappier and Young
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[158] obtained a general version of the entropy formula for arbitrary C? diffeomor-
phisms (see Section 16.1).

13. GENERICITY OF SYSTEMS WITH NONZERO EXPONENTS

13.1. Existence of diffeomorphisms with nonzero exponents. Presence of an
Anosov diffeomorphism f on a compact Riemannian manifold M imposes strong
conditions on the topology of the manifold. For example, M should admit two
foliations with smooth leaves (invariant under f). Anosov diffeomorphisms are only
known to exist on multi-dimensional tori or more generally on factors of nilpotent
Lie groups. On the contrary nonuniform hyperbolicity imposes no restrictions on
the topology of M.

Theorem 13.1 (Dolgopyat and Pesin [78]). Given a compact smooth Riemannian
manifold M # St there exists a C™ volume-preserving Bernoulli diffeomorphism
f of M with nonzero Lyapunov exponents almost everywhere.

Let us comment on the proof of this theorem.

1. Katok [130] proved this theorem in the two dimensional case. His argument
goes as follows. Consider the diffeomorphism Gg2 of the sphere, constructed in
Section 2.3. It has four singularity points p; = ((x;). Let £ be a C*° map which
blows up the point ps. Consider the map Gp2 = £ o Gg2 0 €1 of the closed unit
disk D2. It is a C*° diffeomorphism which preserves the area, has the Bernoulli
property and nonzero Lyapunov exponents almost everywhere.

The disk D? can be embedded into any surface. This is a corollary of a more
general statement (see [130]).

Proposition 13.2. Given a p-dimensional compact C*° manifold M and a smooth
measure 1 on M, there exists a continuous map h: DP — M (DP is the unit ball
in RP) such that

1. the restriction hlint DP is a diffeomorphic embedding;
2. h(DP) = M;

3. u(M\ h(D?)) = 0;

4. hym = p where m is the volume in RP.

Note that G p2 is identity on the boundary dD?. Moreover, one can choose the
function v in the construction of maps G2 and Gg2 such that the map Gp2 is
“sufficiently flat” near the boundary of the disk.

More precisely, let p = {p,} be a sequence of nonnegative real-valued continuous
functions on D? which are strictly positive inside the disc. Let C5°(DP) be the set
of all C'*° functions on DP satisfying the following condition: for any n > 0 there

exists a sequence of numbers &, > 0 such that for all (z1,...,z,) € DP for which
i+ +a3 > (1—¢e,)* we have

O"h(zy,...,xp)

‘81;83: < Pal@r-o ),

where i1, ...%, are nonnegative integers and i; + ...7, = n.
Any diffeomorphism G of the disc DP can be written in the form G(x1,...,zp) =
(Gi(z1,...,xp),...Gpla1,...,zp)). Set

Diff>*(D?) = {g € Diff®(D"): Gy(w1,...,a,) — 2 € C*(DP), i=1,...,p}.
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Proposition 13.3 (Katok [130]). Given a compact C* Riemannian manifold M
there exists a sequence of functions p such that for any G € Diﬁzo(Dp) the map
g defined as g(x) = h(G(h™1(x))) for z € h(int DP) and g(x) = x otherwise, is a
C> diffeomorphism of M (the map h is from Proposition 13.2).

The function 1 can be chosen so that Gpz € Diffgo (D?) and hence, the map f,
defined as f(z) = h(Gpz(h=%(z))) for x € h(int DP) and f(x) = x otherwise, has
all the desired properties: it preserves area, has nonzero Lyapunov exponents and
is a Bernoulli map.

2. For any smooth compact Riemannian manifold M of dimension p = dim M >
5, Brin [47] constructed a C'*° volume-preserving Bernoulli diffeomorphism which
has all but one nonzero Lyapunov exponents. His construction goes as follows.

Let A be a volume-preserving hyperbolic automorphism of the torus T?~3 and
¢ the suspension flow over A with the roof function

H(z) = Hy + eH(x),

where Hy is a constant and the function H(z) is such that |[H(z)| < 1. The flow ¢,
is an Anosov flow on the phase space Y?~2 which is diffeomorphic to the product
TP=3 x [0, 1], where the tori TP~3 x {0} and TP~3 x {1} are identified by the action
of A. Consider the skew product map R of the manifold N = D? x Y"~2 given by

R(Z) = R(w,y) = (GD2 (x)790a(:c)(y))v z = (xay)v (131)

where a: D? — R is a nonnegative C°° function which is equal to zero in a small
neighborhood U of the singularity set {qi,q2,q3} N OD? and is strictly positive
otherwise. The map R is of class C*° and preserves volume. One can choose the
function H(x) such that R is a Bernoulli diffeomorphism which has all but one
nonzero Lyapunov exponents (the zero exponent corresponds to the direction of
the flow ¢y).

Brin proved that there exists a smooth embedding of the manifold Y72 into
RP. Tt follows that there is a smooth embedding x1: D? x Y?~2 — DP which is a
diffeomorphism except for the boundary dD? x YP~2. Using Proposition 13.2 one
can find a smooth embedding x: D? — M which is a diffeomorphism except for
the boundary dDP. Since the map R is identity on the boundary 0D? x YP~2 the
map h = (x10x) o Ro (x10%) ! has all the desired properties.

3. Dolgopyat and Pesin [78] constructed the required map P as a small pertur-
bation of the map R (defined by (13.1)). The diffeomorphism P can be found in
the form P = ¢ o R where ¢(z,y) = (7,¢.(y)) and ¢,: YP72 — YP=2 z € N is
a family of volume preserving C*° diffeomorphisms satisfying de1 (¢4, Id) < e. To
construct such a family fix a sufficiently small number v > 0, any point 3y € Y?~2,
and a point 2o € D? such that

G%Q(B(x07'y))ﬂ3(x0,'y):®, _N<]<N7.77é07
G, (B(20,7))NOD? =@, —N <j<N.

Set A = B(xo,7) x B(qo,7) and choose a coordinate system {1, &2, m,...,Mp—2}
in A such that z = (£1,62), y = (1, ..., Mp—2), dm = dxdy (recall that m is the
volume) and

9 B) 0 0 0
ES (yo) = -—, FE: =\5—5-) Ep)=
. (Wo) on o (%0) (6172 3771<;) o (40) (ank+1 877;72)
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for some k, 2 < k < p— 2. Let ¥(t) be a C* function with compact support. Set

1
T= ?(”&”2 + &l + Imll* + -+ ||77p—2||2)

and define
¢z ' (y) =(&1,&2,m cos(ey(7)) + o sin(eyp(7)),
— 1 sin(e (7)) + 2 cos(e (7)), N3, - - s Np—2)-
The family ¢, determines the map ¢ so that the map P = ¢ o R is a volume-
preserving Bernoulli diffeomorphism with nonzero Lyapunov exponents.

4. We discuss the case dim M = 3. Consider the manifold N = D? x S! and
the skew product map R

R(Z) = R(xvy) = (GD2 (J;)aRa(z) (y))’ = (x7y)7 (132)
where R,z is the rotation by the angle a(x) and a: D? — R is a nonnegative
C® function which is equal to zero in a small neighborhood of the singularity set
{q1,q2,q3} N AD? and is strictly positive otherwise.

We define a perturbation P of R in the form P = ¢ o R. Consider a coordinate
system & = {&1, &2, &3} in a small neighborhood of a point zg € N such that dm = d¢

and
0 0 0

Bl = s Bh(0) = oy FhG0) =

Let 1(t) be a C* function with compact support. Set 7 = ||£|?/+? and define
97 1(€) = (&1 cos(ed (1)) + &z sin(et(7)), —€1 sin(erh(7)) + &2 cos(ed(T)), &) (13.3)

One can choose the function a(x) and the point zy such that the map P has all the
desired properties.

5. We now proceed with the case dim M = 4. Consider the manifold N = D? x
T? and the skew product map R defined by (13.2) where R,y is the translation by
the vector a(z) and the function «a(z) is chosen as above. Consider a perturbation
P of R in the form P = ¢ o R and choose the map ¢ as above to ensure that

/ XE(2 P) + x5z P)] dz < 0,
N

where x§(z, P) > x5(z, P) are the Lyapunov exponents of P along the central
subspace E%(z). One can further perturb the map P in the C! topology to a map
P to guarantee that

[ P exse P de <o, [ [ P) - (P de <
N N

where x§(z, P) > x5(z, P) are the Lyapunov exponents of P along the central
subspace E%(z) and ¢ > 0 is sufficiently small. This can be done using the approach
described in the proof of Theorem 13.8 (this is one of the reasons why P is close to
P in the C' topology only). The map P has all the desired properties.

13.2. Existence of flows with nonzero exponents. In [121], Hu, Pesin and
Talitskaya established a continuous time version of Theorem 13.1.

Theorem 13.4. Given a compact smooth Riemannian manifold M of dim M > 3,
there exists a C'°° volume-preserving Bernoulli flow p; such that at m-almost every
point x € M it has nonzero Lyapunov exponent except for the exponent in the
direction of the flow.
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We sketch the proof of this theorem. Assume first that dim M > 5. Consider
the map

R=Gp2x A: D x TP~3 — D? x TP73,

where p = dim M, Gp= is the above constructed diffeomorphism of the two-
dimensional disk with nonzero Lyapunov exponents and A is a linear automorphism
of the torus TP~3.

Consider further the suspension flow g; over R with the roof function H = 1 and
the suspension manifold K = D? x TP~3 x [0, 1]/ ~, where ~ is the identification
(z,y,1) = (Gp2(x), A(y),0). Denote by Z the vector field of the suspension flow.

Finally, consider the suspension flow h; over A with the roof function H = 1
and the suspension manifold L = TP~3 x [0,1]/ ~, where ~ is the identification
(y,1) = (Ay,0). Let N = D? x TP~3 x [0,1]/ ~, where ~ is the identification
(r,y,1) = (x, Ay,0) for any x € D?, y € TP~3.

The proof goes by showing that there exists a volume-preserving C*° diffeomor-
phism F': K — N so that the vector field Y = dF'Z is divergence free and

Y(:L"ya t) = (Yl(:c,y,t),(), 1)

Choose a C* function a: D? — [0, 1] which vanishes on the boundary dD? with all
its partial derivatives of any order, strictly positive otherwise and a(z) = 1 outside
small neighborhood of the boundary. Define the vector field V on N by

V(a:,yﬂf) = (Y1(37»y7t)a O,G(.’Iﬁ)).

The flow on K corresponding to the vector field dF~'V F is volume-preserving, has
nonzero Lyapunov exponents (except for the exponent in the flow direction) and is
Bernoulli. The manifold K can be embedded into M and this embedding carries
over the flow into a flow on M with all the desired properties.

13.3. Genericity conjecture. Little is known about genericity of systems with
nonzero Lyapunov exponents. On any manifold M of dimension dim M > 2 and for
sufficiently large r there are open sets of volume-preserving C" diffeomorphisms of
M which possess positive measure sets with all of the exponents to be zero: these
sets consist of codimension one invariant tori on which the system is conjugate to
a diophantine translation (see [60, 111, 251, 252]).

In this regard the following conjecture is of a great interest in the field.

Conjecture 13.5. Let f be a C'** diffeomorphism of a compact smooth Rie-
mannian manifold M preserving a smooth measure . Assume that f has nonzero
Lyapunov exponents almost everywhere. Then there exists a neighborhood U of f
in DIff' (M, 1) and a Gs-set A C U such that any diffeomorphism g € A has
nonzero Lyapunov exponents on a set Ay of positive measure.

13.4. C'-genericity for maps. We stress that the assumption on the regularity
of f (i.e., f is of class C1T?) is crucial: in the C'* topology one should expect quite
a different behavior. Let us describe some relevant results. We first consider the
case of a compact surface M.

Theorem 13.6 (Bochi [35]). There exists a residual subset U in the space of area
preserving C diffeomorphisms such that any f € U is either Anosov or has zero
Lyapunov exponents almost everywhere.
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This theorem was first announced by Mané around 1983. Although the proof
was never published a sketch of it appeared in [173] (see also [175] for a symplectic
version of this result). A version of Theorem 13.6 for manifolds of higher dimension
was obtained by Bochi and Viana in [37].

Let f be a volume-preserving ergodic C! diffeomorphism of a compact smooth
Riemannian manifold M and z a Lyapunov regular point for f. Consider the
Oseledets decomposition (6.7) along the orbit of x and two subspaces E;(z) and
E;(x) corresponding to two distinct values of the Lyapunov exponent, x; > X;
(since f is ergodic these values do not depend on z). Given a point y in the orbit
of  there is m = m(y,¢,7j) > 1 such that

1
ldf™ | E:) - df™ 25wl < 5-

Let m(y) = max;; m(y,i,7). We say that the Oseledets decomposition has the
dominated property if m(y) does not depend on y. In other words, the fact that df™
eventually expends F;(y) more than F;(y) can be observed in finite time uniformly
over the orbit of f. The dominated property implies that the angles between the
Oseledets subspaces are bounded away from zero along the orbit.

Theorem 13.7 ([37, 36, 38]). Let M be a compact smooth Riemannian manifold.
There exists a residual subset U in the space of volume-preserving C diffeomor-
phisms such that for any f € U and almost every x € M the Oseledets decomposition
is either dominated along the orbit of x or is trivial, i.e., all Lyapunov exponents
at T are zero.

This theorem is a corollary of the following result that provides necessary con-
ditions for continuity of Lyapunov exponents x;(f,z) over f. For j=1,...,p—1
define

LE(f) = [ Dalfoo) + 4 xy(f,0)) dim(a),
It is well-known that the funcfi[on
f € Diff' (M, m) — LE;(f)
is upper semi-continuous.
Theorem 13.8 (Bochi and Viana [37]). Let fo € Diff' (M, m) be such that the map
f € Diff' (M, m) — (LE\(f),...,LE, 1(f)) € RP™?
is continuous at f = fo. Then for almost every x € M the Oseledets decomposition

is either dominated along the orbit of x or is trivial.

The main idea of the proof can be described as follows (we borrow this description
from [37]). If the Oseledets decomposition is neither dominated nor trivial over a
set of orbits of positive volume then for some ¢ and arbitrary large m there exist
infinitely many iterates y; = f™ («) for which

m| p— m - 1
ldf™ 1 B @)™ 1B ) 7HE > 5 (13.4)
where
Ef(y) = Ei(y) @~ © Ei(y)

and
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Applying a small perturbation one can move a vector originally in E; (y) to E; (y)
thus “blending” different expansion rates.

More precisely, fix € > 0, sufficiently large m and a point x € M. For n much
bigger than m choose an iterate y = f*(z) with { ~ % as in (13.4). By composing
df with small rotations near the first m iterates of y one can cause the orbit of
some dffv € E} (y) to move to E; (2). This creates a perturbation g = f o h which
preserves the orbit segment {z,..., f"(z)} and is such that dg3v € E;" during the
first £ iterates and dgjv € E; during the last n — £ —m ~ 3 iterates. We wish to
conclude that dg? lost some expansion if compared to dfy. To this end we compare

the kth exterior products of these linear maps with k¥ = dim E;". We have

1
AP (dg)ll < exp(nxy + - 4 xr—1 + 5 Ok + Xw+1));
where the Lyapunov exponents are computed at (f,z). Notice that xp+1 = 5\i+1 is
strictly smaller than y, = A;. This local procedure is then repeated for a positive
volume set of points x € M. Using the fact that

1
LEx(g) = inf - / log | A? (dg?)|| dm
nn

one can show that LEg(g) drops under such arbitrary small perturbations contra-
dicting continuity.

For the above construction to work one should arrange various intermediate
perturbations around each f*(y) not to interfere with each other nor with other
iterates of x in the time interval {0,...,n}. One can achieve this by rescaling the
perturbation g = f o h near each f*(y) if necessary to ensure that its support is
contained in a sufficiently small neighborhood of the point. In a local coordinate
w around f*(y) rescaling corresponds to replacing h(w) by rh(w/r) for some small
r > 0. This does not affect the value of the derivative at f*(y) nor the C! norm of
the perturbation and thus it can be made close to f in the C* topology. It is not
clear whether the argument can be modified to work in C? with g > 1.

One can establish a version of Theorem 13.7 in the symplectic case.

Theorem 13.9 (Bochi and Viana [37]). Let M be a compact smooth Riemannian
manifold. There exists a residual subset U in the space of C' symplectic diffeomor-
phisms such that every f € U is either Anosov or has at least two zero Lyapunov
exponents at almost every x € M.

13.5. C°-genericity for cocycles. We now describe a version of Theorem 13.7
for linear cocycles.

Let S € GL(n,R) be an embedded submanifold (with or without boundary).
We say that S is accessible if it acts transitively on the projective space RP™ 1.
More precisely, for any C' > 0, € > 0 there are m > 0 and « > 0 with the following
property: given ¢, € RP"! with Z(£,1) < a and any Ao,...,A,,_1 € S with
| AEY| < C one can find Ag, ..., Ap_1 € S such that ||A; — A|| < e and

Aoy A 1(8) = Ao, ..., Apa (n).

Let X be a compact Hausdorff space and f: X — X a homeomorphism preserving
a Borel probability measure p. Let also A: X x Z — GL(n,R) be the cocycle over
f generated by a function A: X — GL(n,R).
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Theorem 13.10 (Bochi and Viana [37]). For any accessible set S C GL(n,R)
there exists a residual set R C C(X,S) such that for every A € R and almost every
x € X either all Lyapunov exponents of the cocycle A, generated by A, are equal to
each other or the Oseledets decomposition for A (see (5.1)) is dominated.

This result applies to cocycles associated with Schrédinger operators. In this
case X = St f: S — S'is an irrational rotation, f(z) = x + «, and the generator
A: S — SL(2,R) is given by

A(0) = (E —1V(9) —01) 7

where E € R is the total energy and V: S' — R is the potential energy. The
cocycle generated by A is a point of discontinuity for the Lyapunov exponents, as
functions of V € C°(S!, R), if and only if the exponents are nonzero and F lies in the
spectrum of the associated Schrodinger operator (E lies in the complement of the
spectrum if and only if the cocycle is uniformly hyperbolic which for cocycles with
values in SL(2,R) is equivalent to domination; see also Ruelle [214], Bourgain [44]
and Bourgain and Jitomirskaya [45]).

For V € C"(S8Y,R) with r = w, 00, Avila and Krikorian [14] proved the follow-
ing result on nonuniform hyperbolicity for Schrodinger cocycles: if a satisfies the
recurrent Diophantine condition (i.e, there are infinitely many n > 0 for which the
nth image of a under the Gauss map satisfies the Diophantine condition with fixed
constant and power) then for almost every E the Schridinger cocycle either has
nonzero Lyapunov exponents or is C"-equivalent to a constant cocycle.

For some C''-genericity results on positivity of the maximal Lyapunov exponents
see Sections 7.3.3 and 7.3.5.

13.6. LP-genericity for cocycles. Let (X, u) be a probability space and f: X —
X ameasure preserving automorphism. Consider the cocycle A : X xZ — GL(n,R)
over f generated by a measurable function A: X — GL(n,R). We endow the space
G of these functions with a special LP-like topology. Set for 1 < p < oo,

4, = ([ haP duta) )

[A]lso = esssup,ex [A]-
We have 0 < [|A]|, < co. For A,B € G let

(4, B) = [|A = B, + A~ = B7'|,

and

and (A B)
Tp(A,
P4, B) = 1+7,(A,B)

Here we agree that ||A—B]||, = co or ||[A™'—B™!||, = oo if and only if p, (4, B) = 1.
One can check that p, is a metric on § and that the space (G, pp) is complete.

Assume that f is ergodic. Following Arbieto and Bochi [11] we denote by G;¢ C §
the subset of all maps A satisfying the integrability condition (5.3) and by Gops
the subset of all those A € G;¢ which have one-point spectrum, i.e., for which the
Lyapunov spectrum of the cocycle A consists of a single point. It turns out that the
“one-point spectrum property” is typical in the following sense (see Arbieto and
Bochi [11]; an earlier but weaker result is obtained by Arnold and Cong in [13]).
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Theorem 13.11. Assume that f is ergodic. Then Sops is a residual subset of
Src in the LP topology for any 1 < p < oo.

The proof of this result is based upon the study of the functions Ag: §;¢ — R,
k=1,...,n given by

A(4) = /X (a(Ay2) + -+ (A, @) du(e)

Theorem 13.12. The following statements hold:

1. the function Ay is upper semi-continuous (i.e., for any A € G and e > 0
there exists 6 > 0 such that Ap(B) < Ap(A) + € for any B € Gic with
ppl(A, B) < 8);

2. the function A, is continuous;

3. if f is ergodic then Ay is continuous at A € Gr¢ if and only if A € Gops.

For some other results on genericity of cocycles with low differentiability see [42].

13.7. Mixed hyperbolicity. We consider the situation of mized hyperbolicity,
i.e., hyperbolicity is uniform throughout the manifold in some but not all directions.
More precisely, we assume that f is partially hyperbolic, i.e., the tangent bundle
T M is split into three df-invariant continuous subbundles

TM = E°® E°® E“. (13.5)

The differential df contracts uniformly over x € M along the strongly stable sub-
space E*(z), it expands uniformly along the strongly unstable subspace E"(x), and
it can act either as nonuniform contraction or expansion with weaker rates along
the central direction E°(x). More precisely, there exist numbers

0< A <AL<1I< N <)\,

such that for every x € M,

[def ()| < Asllvll, v e E*(x)
Xelloll < ldaf (o)l < Mol v € E%(x)
Aalloll < ldaf ), v € E%(a).

We say that a partially hyperbolic diffeomorphism preserving a smooth measure
u has negative central exponents on a set A of positive measure if x(z,v) < 0 for
every ¢ € A and every nonzero v € E¢(x). The definition of positive central ex-
ponents is analogous. Partially hyperbolic systems with negative (positive) central
exponents as explained above were introduced by Burns, Dolgopyat and Pesin [53]
in connection to stable ergodicity of partially hyperbolic systems (see below). Their
work is based upon earlier results of Alves, Bonatti and Viana [8] who studied SRB-
measures for partially hyperbolic systems for which the tangent bundle is split into
two invariant subbundles, one uniformly contracting and the other nonuniformly
expanding (see Section 14.3).

For € M one can construct local stable manifolds V*(x) and local unstable
manifolds V%(x) and their sizes are bounded away from zero uniformly over x € M.
In addition, for x € A one can construct local weakly stable manifolds V*¢(x) whose
size varies with z and may be arbitrary close to zero.
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Theorem 13.13 (Burns, Dolgopyat and Pesin [53]). Let f be a C? diffeomorphism
of a compact smooth Riemannian manifold M preserving a smooth measure .
Assume that there exists an invariant subset A C M with u(A) > 0 on which f has
negative central exponents. Then every ergodic component of f|A is open (mod 0)
and so is the set A.

To see this let us take a density point z € A and consider the sets

Pz)= |J V'), Q@) =] f(PrE). (13.6)

yeVse neZ

P(z) is open and so is Q(z). Using absolute continuity of local unstable manifolds
and repeating argument in the proof of Theorem 11.3 we obtain that f|Q(z) is
ergodic.

In general, one should not expect the set A to be of full measure nor the map
f]A to be ergodic. We introduce a sufficiently strong condition which guarantees
this.

We call two points p, ¢ € M accessible if there are points p = 2z, 21, ..., 20-1,2¢ =
q, zi € M such that z; € V¥(z;_1) or z; € V®(z;_1) for i = 1,...,£. The collection
of points zg, z1,...,2¢ is called a us-path connecting p and ¢. Accessibility is an

equivalence relation. The diffeomorphism f is said to have the accessibility property
if any two points p, ¢ € M are accessible and to have the essential accessibility
property if the partition into accessibility classes is trivial (i.e., a measurable union
of equivalence classes must have zero or full measure).

A crucial manifestation of the essential accessibility property is that the orbit of
almost every point x € M is dense in M. This implies the following result.

Theorem 13.14. Let f be a C? partially hyperbolic diffeomorphism of a compact
smooth Riemannian manifold M preserving a smooth measure . Assume that f
has negative central exponents on an invariant set A of positive measure and is
essentially accessible. Then f has negative central exponents on the whole of M,
the set A has full measure, f has nonzero Lyapunov exponents almost everywhere,
and f is ergodic.

Accessibility plays a crucial role in stable ergodicity theory. A C? diffeomorphism
f preserving a Borel measure y is called stably ergodic if any C? diffeomorphism
g which is sufficiently close to f in the C'' topology, which preserves y, is ergodic.
Volume-preserving Anosov diffeomorphisms are stably ergodic.

Theorem 13.15. Under the assumption of Theorem 13.14, f is stably ergodic.

One can show that indeed, f is stably Bernoulli, i.e., any C? diffeomorphism g
which is sufficiently close to f in the C'! topology, which preserves j, is Bernoulli.

The proof of Theorem 13.15 is based upon some delicate properties of Lyapunov
exponents for systems with mixed hyperbolicity which are of interest by themselves.

1. Since the map f is ergodic the values of the Lyapunov exponents are constant
almost everywhere. Therefore,

x(z,v) <a<0 (13.7)

uniformly over z and v € E¢(x). It follows that

/ log ||df | E€(z)| dp < a < 0.
M
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Since the splitting (13.5) depends continually on the perturbation g of f we obtain
that

a
| toglaniEs@)ldu < 5 <0
M

(we assume that g is sufficiently close to f and preserves the measure u). This,
in turn, implies that g has negative central exponents on a set A, of positive u-
measure.

2. Condition (13.7) allows one to estimate the sizes of global weakly stable
manifolds along a typical trajectory of g.

Proposition 13.16. Under the assumption (13.7) there is a number r > 0 such
that for any C? diffeomorphism g which is sufficiently close to f in the C' topology
and for any v € Ay one can find n > 0 such that the size of the global manifold
Wee(g=™(x)) is at least r.

The proof of this statement uses the notion of o-hyperbolic times which is of
interest by itself and provides a convenient technical tool in studying the behavior
of local manifolds along trajectories. It was introduced by Alves in [6] (see also [8])
but some basic ideas behind this notion go back to the work of Pliss [204] and Mafié
[174]. Given a partially hyperbolic diffeomorphism f and a number 0 < o < 1, we
call the number n a o-hyperbolic time for f at x if for every 0 < j < n,

[T ldrIEG (5 (@) < o7, (13.8)

k=1

It is shown by Alves, Bonatti and Viana in [8] that if f satisfies (13.7) then any
point € Ay has infinitely many hyperbolic times. The proof of this statement is
based on a remarkable result known as Pliss lemma. Although technical this lemma
provides an important observation related to nonuniform hyperbolicity.

Lemma 13.17 (Pliss [204]; see also [174, Chapter IV.11]). Let H > ¢3 > ¢1 > 0

and ¢ = (ca — c1)/(H — ¢1). Given real numbers aq,...,an satisfying
N
ZGjZCzN and a; < H forall1 < j <N,
j=1

there are £ > (N and 1 <ny < --- <ng < N such that

n;
Z a; > c1(N; —n) foreach 0 <n<n;, i=1,...,¢L
j=n+1

Alves and Aratjo [7] estimated the frequency of o-hyperbolic times. More pre-
cisely, given 8 > 0 and « € M we say that the frequency of o-hyperbolic times
ny < ng < --- < ny at x exceeds 6 if for large n we have ny < n and £ > 0n. We
also introduce the function i on M which is defined almost everywhere and assigns
to z € M its first o-hyperbolic time.

Theorem 13.18. If for some o € (0,1) the function h is Lebesgue integrable then
there are & > 0 and 6 > 0 such that almost every x € M has frequency of hyperbolic
times bigger than 6.
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We return to the proof of the proposition. As we saw the map g also satisfies
(13.7). Applying (13.8) to g we obtain that there is a number r > 0 such that for
any o-hyperbolic time n and 0 < j < n,

diam(g’ (B**(9~" (2),7))) < o7,

where B*¢(y,r) is the ball in the global manifold W?*¢(y) centered at y of radius r.
Since o < 1 and the hyperbolic time n can be arbitrary large this ensures that
g™ (B*¢(g~"(x),r)) lies in the local manifold V*¢(z) and hence, B*¢(¢g~"(x),r) is
contained in the global manifold W*¢(g~"(z)).

3. The perturbation g possesses the e-accessibility property where € = de1(f, g).
This means that for any two points p,q € M there exists a us-path connecting
p with the ball centered at ¢ of radius €. Although e-accessibility is weaker then
accessibility it still allows one to establish ergodicity of the perturbation g. Indeed,
choosing a density point © € A, and a number n such that the size of W*¢(¢7"(x))
is at least r we obtain that the set P(z) (see (13.6)) contains a ball of radius r > 2e.

13.8. Open sets of diffeomorphisms with nonzero Lyapunov exponents.
It is shown in [40] that any partially hyperbolic diffeomorphism fy with one dimen-
sional central direction preserving a smooth measure p can be slightly perturbed
such that the new map f is partially hyperbolic, preserves p and has negative cen-
tral exponents (hence, the results of the previous section apply to f). This result
was first obtained by Shub and Wilkinson [229] in the particular case when fy is
the direct product of a hyperbolic automorphism of two-torus and the identity map
of the circle. The perturbation that remove zero exponents can be arranged in the
form (13.3). The proof in the general case is a modification of the argument in
[229] (see also [23] and [74]).

One can use this observation to obtain an open set of non-Anosov diffeomor-
phisms with nonzero Lyapunov exponents on multi-dimensional tori. Consider a
diffeomorphism fy = A x Id of the torus TP = TP~! x S, p > 3 where A is a linear
hyperbolic automorphism of TP~!. It is partially hyperbolic and preserves volume.
Let f be a small C? perturbation of f, preserving volume and having negative
central exponents. One can arrange the perturbation f to have the accessibility
property. Then any volume-preserving C? diffeomorphism g which is sufficiently
close to f is ergodic and has nonzero Lyapunov exponents almost everywhere.

Note that g is partially hyperbolic and the central distribution E°¢ is one di-
mensional. By a result in [113] this distribution is integrable and the leaves W*¢
of the corresponding foliation are smooth closed curves which are diffeomorphic to
circles. The foliation ¢ is continuous (indeed, it is Holder continuous) but is not
absolutely continuous (see [229]). Moreover, there exists a set E of full measure
and an integer k > 1 such that E intersects almost every leaf W¢(z) at exactly k
points (see [219]; the example in Section 10.2 is of this type).

14. SRB-MEASURES

We shall consider hyperbolic invariant measures which are not smooth. This
includes, in particular, dissipative systems for which the support of such measures
is attracting invariant sets. A general hyperbolic measure may not have “nice”
ergodic properties: its ergodic components may be of zero measure and it may
have zero metric entropy. There is, however, an important class of hyperbolic
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measures known as SRB-measures (after Sinai, Ruelle, and Bowen). They appear
naturally in applications due to the following observation.

Let f be a diffeomorphism of a smooth Riemannian p-dimensional manifold M.
An open set U C M is called a trapping region if f(U) C U (where A denotes the
closure of the set A). The closed f-invariant set

A=) )

n>0

is an attractor for f so that f is dissipative in U.
Consider the evolution of the Riemannian volume m under f, i.e., the sequence
of measures

n—1
1 k
n = — ‘m, 14.1
v, - ,;_0 fim ( )

where the measure f¥m is defined by fFm(A) =m(f~!(A)) for any Borel set A C
FE(U). Any limit measure v of this sequence is supported on A. If indeed, the
sequence (14.1) converges the limit measure v is the physical (or natural) measure
on A. The latter plays an important role in applications and is defined by the
following property: for any continuous function ¢ on M, called observable, and
m-almost every point x € U,

1 n—1
lim — (f¥(x)) = dv. (14.2)

We call v an SRB-measure if there is a set B = B(v) C U of positive Lebesgue
measure such that for any continuous observable ¢ the identity (14.2) holds for
x € B (in this case A is a Milnor attractor, see [184]). The set B(v) is the basin of
attraction of v.

Assume that for m-almost every point € U the Lyapunov exponents x;(z),
i=1,...,p are not equal to zero. More precisely, there is a number 1 < k(z) < p
such that y;(z) < 0 for i = 1,...,k(x) and x;(x) > 0 for i = k(x) +1,...,p. It is
not known whether under this assumption the measure v is hyperbolic.

We stress that a physical measure need not be an SRB-measure as Example 12.5
of the figure-eight attractor shows. In the following sections we give another (equiv-
alent) definition of SRB-measures in the case when these measures are hyperbolic.
We also discuss their ergodic properties, and present some examples of systems with
SRB-measures (for a somewhat less elaborated account of SRB-measures see [65]).
In uniformly hyperbolic dynamics SRB-measures are examples of more general
Gibbs measures (see the recent excellent survey on this topic by Ruelle [218]).
It is an open problem to extend the theory of Gibbs measures to nonuniformly
hyperbolic dynamical systems.

14.1. Definition and ergodic properties of SRB-measures. Let f be a C1T¢
diffeomorphism of a compact smooth Riemannian manifold M and v a hyperbolic
invariant measure for f. Denote by A = A, the set of points with nonzero Lyapunov
exponents. We have that v(A) = 1. Fix a regular set A* of positive measure, a
point € AY, and a number 0 < 7 < 7, (see (8.16)). Set

R€($7 )= U V*(y)

yeANB(z,r)
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and denote by &‘(z) the partition of Rf(x,r) by local unstable manifolds V*(y),
y € AN B(x,r).

A hyperbolic measure v is called an SRB-measure if for every £ > 0 and almost
every € AY, y € AN B(x,r), the conditional measure v"(y), generated by v and
partition &“(x) on V¥(y), is absolutely continuous with respect to the Riemannian
volume m*(y) on V*(y).

There is a measurable density function x(y, z), z € V¥(y) such that dv*(y)(z) =
k(y, z) dm™(y)(z). The following result gives a description of the density func-
tion k(y, 2).

Theorem 14.1. For any y € A* N B(z,r) and z € V¥(y),

(dfHE"(f7'(2))
Hde HEY(f~(y)

The density function x(y, z) is Holder continuous and strictly positive.

SRB-measures have ergodic properties similar to those of smooth measures. The
proofs of the corresponding results use Theorem 14.1 and are modifications of ar-
guments in the case of smooth measures (those proofs in the latter case use only
absolute continuity of local unstable manifolds), see [154].

Theorem 14.2. There exist invariant sets Ao, A1, ... such that:

1. UisoNi = A, and A; N Aj = & whenever i # j;

2. v(Ao) =0, and v(A;) > 0 for each i > 1;

3. f|A; is ergodic for each i > 1.
Theorem 14.3. There exists a measurable partition n of A with the following
properties:

1. for almost every x € A the element Cy(x) is open (mod 0) subset of W"(x);

2 fnzmn;
3. 77+ = Vi;o f'n=c¢;
4. /\?>7oo f'n=HW™) = n(f|A) = v (the trivial partition of A);
5. for each i = 1,2,... the mw-partition of f|A; is finite and consists of n;
elements A¥, k = 1,...,n; such that f(A¥) = Af“, k=1,...,n;, —1 and
F(AT) = AL
Theorem 14.4. 1. f7i|A¥ is a Bernoulli automorphism.

2. If the map f|A is mizing then it is a Bernoulli automorphism.
3. (Ledrappier and Strelcyn [156]) The entropy of f is

m)=htr = [ Y k) ).

i:x; () >0

Let v be an SRB-measure for a C'*® diffeomorphism of a compact smooth
Riemannian manifold M and A the set of points with nonzero Lyapunov exponents.
We have that v(A) = 1 and V*(z) C A (mod 0) for almost every x € A. In view of
the absolute continuity of local stable manifolds we obtain that the set | J ., V*()
has positive volume. As an immediate corollary of this observation we have the
following result.

Theorem 14.5. A C'*® diffeomorphism of a compact smooth Riemannian mani-
fold possesses at most countably many ergodic SRB-measures. The basin of attrac-
tion of every SRB-measure has positive volume.
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14.2. Characterization of SRB-measures. It turns out that the entropy for-
mula (see Statement 3 of Theorem 14.4) completely characterizes SRB-measures.

Theorem 14.6. For a Borel measure v invariant under a C? diffeomorphism, the
entropy formula holds if and only if v is an SRB-measure.

This characterization was first established by Ledrappier [154] for systems with
nonzero Lyapunov exponents and in the general case by Ledrappier and Young (see
[157]; see also Section 16.1 for a discussion of this result). It is also shown in [157]
that the Radon—Nikodym derivatives dv*(z)/dm™(x) are strictly positive functions
which are C' along unstable manifolds.

Qian and Zhu [210] extended the notion of SRB-measures to C? endomorphism
via their inverse limits. They also established the entropy formula and the same
characterization of SRB-measures as in the above theorem.

14.3. Existence of SRB-measures I: some general results. We describe here
results on existence of SRB-measures in some general situations.

1. A topologically transitive Anosov diffeomorphism f possesses an ergodic
SRB-measure: it is the limit of the sequence of measures (14.1). This result ex-
tends to uniformly hyperbolic attractors, i.e., attractors which are hyperbolic sets.
For “almost Anosov” diffeomorphisms Hu [118] found conditions which guaran-
tee existence of SRB-measures, while Hu and Young [120] described examples of
such maps with no finite SRB-measures (see the articles [104, Section 3.6] and [65,
Section 3] for relevant definitions and details).

2. More generally, consider a partially hyperbolic attractor A, i.e., an attractor
such that f|A is partially hyperbolic (see Section 9 in the Chapter “Partially hy-
perbolic dynamical systems” by B. Hasselblatt and Ya. Pesin in this volume [106]).
Observe that W (z) C A for every x € A.

Let v be an invariant Borel probability measure supported on A. Given a point
x € A, and a small number r > 0, set

R(z,r) = U V*(y).
yEANB(z,r)
Denote by &(z) the partition of R(z,r) by V¥(y), y € AN B(x,r). Following [203]
we call v a u-measure if for almost every x € A and y € AN B(x,r), the conditional
measure v*(y), generated by v and partition £(x) on V¥(y), is absolutely continuous
with respect to m“(y).

Theorem 14.7 (Pesin and Sinai [203]). Any limit measure of the sequence of
measures (14.1) is a u-measure on A.

Since partially hyperbolic attractors may not admit Markov partitions, the proof
of this theorem exploits quite a different approach than the one used to establish
existence of SRB-measures for classical hyperbolic attractors (see Section 19 where
this approach is outlined).

In general, the sequence of measures (14.1) may not converge and some strong
conditions are required to guarantee convergence.

Theorem 14.8 (Bonatti and Viana [41]). Assume that:

1. every leaf of the foliation W™ is everywhere dense in A;
2. there exists a limit measure v for the sequence of measures (14.1) with respect
to which f has negative central exponents.
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Then the sequence of measures (14.1) converges and the limit measure is the unique
u-measure on A. It is an SRB-measure.

Every SRB-measure on A is a u-measure. The converse statement is not true in
general but it is true in the following two cases:

a. A is a (completely) hyperbolic attractor;
b. f has negative central exponents.

Here are two results in this direction.

Theorem 14.9 (Alves, Bonatti and Viana [8]). Assume that f is nonuniformly
expanding along the center-unstable direction, i.e.,

T 1 S —1 cu

Jim Z: log ||df ~[E |l <0 (14.3)
j:

for all z in a positive Lebesque measure set A C M. Then f has an ergodic SRB-

measure supported in ﬂ;’;o I (M). Moreover, if the limit in (14.3) is bounded away

from zero then A is contained (mod 0) in the union of the basins of finitely many

SRB-measures.

Theorem 14.10 (Burns, Dolgopyat and Pesin [53]). Let v be a u-measure on A.
Assume that there exists an invariant subset A C A with p(A) > 0 on which f has
negative central exponents. Assume also that for every x € A the global unstable
manifold W¥(x) is dense in A. Then v is the only u-measure for f and f has
negative central exponents at v-almost every x € A; hence, (f,v) is ergodic, v is an
SRB-measure and its basin contains the topological basin of A (mod 0).

3. The following general statement links convergence of the sequence of mea-
sures (14.1) to the existence of SRB-measures.

Theorem 14.11 (Tsujii [241]). Let f be a C'**t% diffeomorphism of a compact
smooth Riemannian manifold M and A C M a set of positive volume such that for
every © € A the sequence of measures

P fE(z)
n =0

converges weakly to an ergodic hyperbolic measure v,,. If the Lyapunov exponents at
x coincide with those of v, then v, is an SRB-measure for Lebesgue almost every
x e A.

4. In [259], Young suggested an axiomatic approach for constructing SRB-
measures. It is built upon her work on tower constructions for nonuniformly hy-
perbolic systems and presents the system as a Markov extension (see Appendix).
This approach is a basis to establish existence of SRB-measures for Hénon-type
attractors as well as existence of absolutely continuous invariant measures for some
piecewise hyperbolic maps and logistic maps.

Let f be a C't diffeomorphism of a compact smooth Riemannian manifold M.

An embedded disk v C M is called an unstable disk if for any z,y € v the
distance p(f~"(x), f~™(y)) — 0 exponentially fast as n — oo; it is called a stable
disk if for any z,y € ~ the distance p(f"(x), f"(y)) — 0 exponentially fast as
n — 0o.
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We say that a set A has a hyperbolic product structure if there exist a continuous
family of unstable disks I'* = {*} and a continuous family of stable disks I'* =
{7*} such that

1. dim~" + dim~® = dim M;

2. the ~4“-disks are transversal to the y°-disks with the angles between them

bounded away from zero;

3. each y“-disk meets each y°-disk at exactly one point;

4. A = (Uy™) N (WUy®).
We impose some conditions on the map f (see Conditions (P1)—(P5) below) which
guarantee the existence of an SRB-measure for f. Roughly speaking they mean
that there exists a set A with a hyperbolic product structure and a return map fF
from A to itself such that f is a Markov extension over ff (see Appendix). More
precisely, we assume the following.

(P1) There exists A C M with a hyperbolic product structure and such that
pyu{y* N A} > 0 for every y* € T'™.

(P2) There are pairwise disjoint subsets A1, Ag, - -+ C A with the properties that

1. each A; has a hyperbolic product structure and its defining families can be
chosen to be I'* and I'; C I'*; we call A; an s-subset; similarly, one defines
u-subsets;

2. on each y"-disk, gy« {(A\ UA;) Ny*} =0;

3. there exists R; > 0 such that ff(A;) is a u-subset of A; moreover, for all x €
Ai we require that £ (v(z)) © 7°(f7(x)) and £ (v (z)) 2 1*(f7 (2);

4. for each n, there are at most finitely many #’s with R; = n;

5. min R; > Ry for some Ry > 0 depending only on f.

Condition (P2) means that the set A has the structure of a “horseshoe”, however,
infinitely many branches returning at variable times.

In order to state remaining Conditions (P3)—(P5) we assume that there is a
function so(z,y) — a separation time of the points x and y — which satisfy:

(i) so(z,y) > 0 and depends only on the *-disks containing the two points;
(ii) the maximum number of orbits starting from A that are pairwise separated
before time n is finite for each n;

(iii) for =,y € A, so(x,y) > R; + so(fT(x), f(y)); in particular, so(x,y) > R;;

(iv) for z € A;, y € Aj, i # j but R; = Rj, we have so(z,y) < R; — 1.
Conditions (iii) and (iv) describe the relations between so(z,y) and returns to A,
namely, that points in the same A; must not separate before they return, while
points in distinct Als must first separate if they are to return simultaneously.

We assume that there exist C' > 0 and o < 1 such that for all z,y € A the
following conditions hold:

(P3) contraction along ~*-disks: p(f™(x), f*(y)) < Ca™ for all n > 0 and
y € v (2);

(P4) backward contraction and distortion along v*: for y € y*(x) and 0 < k <
n < so(z,y), we have

(a) p(f™(x), fr(y)) < Caso@v)—n
(b)

det df“(f( detdf*(f'(z)) () —
< so(z,y)—n.
H dedfe(fiy)
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(P5) convergence of d(fi|v*) and absolute continuity of T'*:
(a) for y € I'*(x) and n > 0,
det df“(f( detdf*(f'(z))

< Ca™;

H devdfi (i) = O
(b) for ~,7" € T* define ©: yNA — v NA by ©(x) = v°(z) N+'. Then O is

absolutely continuous and
40: ) ﬁ det df*(f'(z))
i, detdr (7 (0()))

In [259], Young showed that a map f satisfying Conditions (P1)—(P5) admits a

Markov extension (see Appendix). As an important corollary one has the following
result.

Theorem 14.12 (Young [259]). Assume that for some v € T'*,

/ Rdu., < oo.
yNA

Then f admits an SRB-measure.

14.4. Existence of SRB-measures II: Hénon attractors. Constructing SRB-
measures for nonuniformly hyperbolic dissipative systems is a challenging problem
and few examples have been successfully studied.

In Section 19 we will discuss existence of SRB-measures for uniformly hyper-
bolic dissipative maps with singularities possessing generalized hyperbolic attrac-
tors. The behavior of trajectories in these systems is essentially nonuniformly hy-
perbolic.

An example of nonuniformly hyperbolic dissipative systems possessing SRB-
measures is the Hénon map. It was introduced by Hénon in 1977 (see [108]) as
a simplified model for the Poincaré first return time map of the Lorenz system of
ordinary differential equations. The Hénon family is given by

Hap(x,y) = (1 — az? + by, x).

Hénon carried out numerical studies of this family and suggested the presence of a
“chaotic” attractor for parameter values near ¢ = 1.4 and b = 0.3. Observe that
for b = 0 the family H,; reduces to the logistic family ),. By continuity, given

€ (0,2), there is a rectangle in the plane which is mapped by H,p into itself. It
follows that H,; has an attractor provided b is sufficiently small. This attractor is
called the Hénon attractor.

In the seminal paper [29], Benedicks and Carleson, treating H, ; as small pertur-
bations of @Q),, developed highly sophisticated techniques to describe the dynamics
near the attractor. Building on this analysis, Benedicks and Young [30] established
existence of SRB-measures for the Hénon attractors and described their ergodic
properties.

Theorem 14.13. There exist € > 0 and by > 0 such that for every 0 < b < by one
can find a set Ay € (2 — ¢,2) of positive Lebesque measure with the property that
for each a € Ay the map H,p admits a unique SRB-measure vg,p.
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In [31], Benedicks and Young studied ergodic properties of the measure v, j, show-
ing that besides being Bernoulli this measure has exponential decay of correlations
and satisfies a central limit theorem. More precisely, they proved the following
result.

Let f be a transformation of a Lebesgue space X preserving a probability mea-
sure v and £ be a class of functions on X. We say that f has ezponential decay of
correlations for functions in L if there is a number 7 < 1 such that for every pair
of functions ¢, € L there is a constant C' = C(p, ) > 0 such that for all n > 0,

‘/@(wof”)dy—/¢dy/¢dy‘ <o

(see Appendix for more information on decay of correlations). Further, we say that
[ satisfies a central limit theorem for ¢ with [@dv = 0 if for some ¢ > 0 and all
t e R,

1 = 1t 22
Ve —— o i<t}—> / e W27 gy
{\/ﬁ lz:;(p f \/%0' —00
as n — o0.

Theorem 14.14. [31] With respect to v, the map Hy

1. has exponential decay of correlations for Hélder continuous functions (the
rate of decay may depend on the Hoélder exponent);

2. satisfies the central limit theorem for Hoélder continuous functions with zero
mean; the standard deviation o is strictly positive if and only if p # o f—1)
for some ¢ € L%(v).

In [246], Wang and Young introduced a 2-parameter family of maps of the plane
to which the above results extend. This family is defined as follows.
Let A = S' x [-1,1] and a 2-parameter family T,,: A — A, a € [ag,a1],
b € [0,b1], be constructed via the following four steps.
Step I. Let f: S' — S satisfies the Misiurewicz conditions: if C' = {z: f'(z) =
0} then
1. f"#£0forall z € C;
2. f has negative Schwarzian derivative on S\ C;
3. f*(x) #x and |(f*)'(z)| <1 for any x € S! and n € Z;
4. inf,>od(f"(z),C) >0 forall x € C.

Observe that for p € S* with inf,,>0 d(f™(p),C) > 0, and any g sufficiently close
to f in the C? topology there is a unique point p(g) having the same symbolic
dynamics with respect to g as p does with respect to f. If f, is a l-parameter
family through f with f, sufficiently close to f in the C? topology for all a we let
p(a) = p(fa). For x € C we denote by x(a) the corresponding critical point of f,.

Step II. Let f,: S* — S!' be a l-parameter family for which f = f,« for
some a* € [ag,a1] with f as in Step I. We assume that the following transversality
condition holds: for every x € C and p = f(z),

d d .
@fa(x(a’)) # %p(a) at a = a*.
Step IIL. Let f,;: S' x {0} — A be a 2-parameter family which is an extension

of the 1-parameter family in Step II, i.e., f,0 = f, and f, is an embedding for
b>0.
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Step IV. Let T, ,: A — A be an extension of f,; in such a way that T, o C
St — A and T, maps A diffeomorphically onto its image for b > 0. Assume also
that the following nondegeneracy condition holds:

9y To o(x,0) # 0 whenever f..(z) = 0.

For a version of this construction in higher dimensions see [247].

On another direction, Mora and Viana [187] modified Benedicks and Carleson’s
approach in a way which allowed them to treat Hénon-like maps using some tech-
niques from the general bifurcation theory such as homoclinic tangencies. Later
Viana [244] extended results from [187] to higher dimensions; see [169] for a more
detailed account of these results and further references.

15. HYPERBOLIC MEASURES I: TOPOLOGICAL PROPERTIES

One can extend some techniques widely used in the theory of locally maximal
hyperbolic sets to measures with nonzero exponents. These tools are not only
important for applications but they provide a crucial nontrivial geometric struc-
ture to measures with nonzero exponents. In particular, one can close recurrent
orbits, shadow pseudo-orbits, construct almost Markov covers, and determine the
cohomology class of Holder cocycles by periodic data.

Let f be a C1*@ diffeomorphism of a compact Riemannian manifold M, for some
a >0, and v an f-invariant hyperbolic probability measure.

15.1. Closing and shadowing lemmas. We address the following two funda-
mental problems:

1. Given a recurrent point x is it possible to find a nearby periodic point y
which follows the orbit of = during the period of time that the points in the
orbit of x return very close to x?

2. Given a sequence of points {x,} with the property that the image of z,, is
very close to x4 for every n (such a sequence {x,, } is called a pseudo-orbit),
is it possible to find a point x such that f™(x) is close to x, for every i? In
other words, if a sequence of points {x,} resembles an orbit can one find a
real orbit that shadows (or closely follows) the pseudo-orbit?

This sort of problems are known respectively as closing problem and shadowing
problem, while the corresponding properties are called the closing property and the
shadowing property.

The following result by Katok [131] establishes the closing property for nonuni-
formly hyperbolic diffeomorphisms.

Theorem 15.1. For every £ > 0 and n > 0 there exists § = 0(¢,n) > 0 with the
following property: if x € A* and f™(x) € A* with d(f™(x),x) < &, then there
exists z = z(x) such that
1. z is a hyperbolic periodic point for f with f™(z) = z;
2. fori=0, ..., m,
d(f'(2), f'(x)) < nAgmax{e, es™ I},

where Ay is a constant depending only on £.

An immediate corollary of this result is the existence of periodic orbits in a
regular set A? of a nonuniformly hyperbolic diffeomorphism. In fact, a stronger
result holds. Denote by Per,(f) the set of hyperbolic periodic points for f.
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Theorem 15.2 (Katok [131]). We have suppv C Pery(f).

The proof of Theorem 15.2 is an application of Theorem 15.1. Fix xg¢ € supp p,
a > 0 and ¢ > 1 such that p(B(xg,a/2) N AY) > 0. Choose § > 0 according to
Theorem 15.1 and such that nA, < a/2 and a set B C B(zq,a/2) N A’ of positive
measure and diameter at most . By the Poincaré Recurrence Theorem, for u-
almost every x € B there exists a positive integer n(z) such that f"(*)(x) € B and
hence, d(f™®)(z),z) < §. By Theorem 15.1, there exists a hyperbolic periodic point
z of period n(x) such that d(z, z) < /2, and thus d(zo, z) < d(zg,x)+d(z,2) < a.

A further application of Theorem 15.1 is the following statement.

Corollary 15.3. For an ergodic measure v, if all the Lyapunov exponents of f are
negative (respectively, all are positive) on a set of full v-measure, then supp v is an
attracting (respectively, repelling) periodic orbit.

See also Corollaries 15.7, 15.15, and 15.16 below for related results.

We now present an analog of the shadowing lemma for nonuniformly hyperbolic
diffeomorphisms. Given a € Z U {—oo} and b € Z U {0}, a sequence {x,, }a<n<p 18
called an e-orbit or e-pseudo-orbit for f if d(x,y1,2,) <eforalla<n <b. Itis
0-shadowed by the orbit of z if d(x,, f™(z)) < d for all a < n < b.

Given ¢ > 0, denote by

A= |J R,
TzENL
where R(z) is a regular neighborhood of = (see Section 8.7).

Theorem 15.4 (Katok and Mendoza [135]). For every sufficiently small o > 0

there exists 8 = B(a,£) such that given a (-pseudo-orbit {x,} C 5%@, there exists
y € M such that its orbit a-shadows {x.,}.

The following result is a nonuniformly hyperbolic version of the famous Livshitz
theorem that determines the cohomology class of Holder cocycles by periodic data.

Theorem 15.5 (Katok and Mendoza [135]). Let ¢: M — R be a Holder con-
tinuous function such that for each periodic point p with f™(p) = p we have
Z?Z)l ©(f¥(p)) = 0. Then there exists a Borel measurable function h such that
for v-almost every x,
o(x) = h(f(x)) — h(z).

15.2. Continuous measures and transverse homoclinic points. In the neigh-
borhood of any transverse homoclinic point there exists a hyperbolic horseshoe, that
is, a (uniformly) hyperbolic invariant set obtained by a horseshoe-like construction
(see, for example, [133, Theorem 6.5.5]). This phenomenon persists under small
perturbations. It turns out that transverse homoclinic points are present whenever
the diffeomorphism possesses hyperbolic continuous measures.

Theorem 15.6 ([131]). Let v be a continuous and nonatomic Borel invariant mea-
sure. Then
1. suppv is contained in the closure of the set of hyperbolic periodic points that
have transverse homoclinic points;
2. if v is ergodic, then supp v is contained in the closure of the set of transverse
homoclinic points of exactly one hyperbolic periodic point.

Let P,,(f) be the number of periodic points of f of period m.



122 LUIS BARREIRA AND YAKOV PESIN

Corollary 15.7. Let v be a continuous and nonatomic Borel invariant measure.
Then f has a compact f-invariant set A C M such that

1.
T log P(f) > (f]A) > 0 (15.1)

m— 00

2. A is a horseshoe for f, i.e., A is a (uniformly) hyperbolic set for f and f|A
1s topologically conjugate to a topological Markov chain.

In particular, hA(f) > 0 whenever there exists a continuous nonatomic hyper-
bolic invariant measure. One can strengthen Theorem 15.6 and obtain a Spectral
Decomposition Theorem for hyperbolic measures.

Theorem 15.8 ([135]). For each £ > 0, the Pesin set A* can be decomposed into
finitely many closed f-invariant sets A; such that for each i there exists x; € M
with A; C {f*(z;) : n € Z}.

Set now
x(z) = min{|x;(z)| : 1 <14 < s},

where x;(z) are the values of the Lyapunov exponent at x. If v is an ergodic
hyperbolic measure, then x(x) = x,, where X, is a nonzero constant.

Theorem 15.9 ([135]). Let v be ergodic. If x € suppv, then for any p > 0, any
neighborhoods V' of x and W of supp v, and any continuous functions 1, ..., Yk,
there exists a hyperbolic periodic point z € V' such that:

1. the orbit of z is contained in W;

2. x(2) > x» — p;
3. if m(z) is the period of z, then fori=1, ..., k,

1 m(z)—1 .
W 1;0 wilf (x))—/M%‘dV <p.

Theorem 15.9 has the following consequence.

Corollary 15.10. If {f,}n>1 is a sequence of C*+* diffeomorphisms converging to
f in the C* topology, then for each n > 1, f, has a hyperbolic invariant probability
measure vy, such that {v,}n>1 converges weakly to v. Furthermore, v, may be
chosen such that supp v, C Pery,(f,) for each n > 1.

An application of Corollary 15.10 to a constant sequence of diffeomorphisms
yields the following result.

Corollary 15.11. For a C't® diffeomorphism f: M — M of a compact smooth
manifold one of the following mutually exclusive alternatives holds:

1. the measures supported on hyperbolic periodic points are weakly dense in the
set of hyperbolic measures;

2. there are no hyperbolic measures (and hence, there are no hyperbolic periodic
points).

Corollaries 15.10 and 15.11 suggest a “weak stability” of hyperbolic measures.
The estimate (15.1) can be strengthened in the following way to become some-
what a multiplicative estimate.
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Theorem 15.12 (Ugarcovici [242]). Assume that h,(f) > 0. If v is not a locally
maximal ergodic measure in the class of f-invariant ergodic measures then there
exist multiplicatively enough periodic orbits which are equidistributed with respect
to v. In other words, for any r > 0 and any collection of continuous functions
©1,--., 0k there exist a sequence N, — oo and sets P, = P, (r,¢1,...,¢k) of
periodic orbits of period n,, such that for any z € P, ,

Y ale - [ e

=1

<r

and 4P
— Car Mo,
n}gnoo e”mhu(f) 2 1

15.3. Entropy, horseshoes, and periodic points. Recall that a set A is a horse-
shoe for a diffeomorphism f if there exist s, k and sets Ag, ..., Agx_1 such that
A=AgU---UA,_1, fF(A) = Ay, f(A) = Ajry mod k, and f¥|Ag is conjugate to
a full shift in s symbols. For a horseshoe A we set

X(A) = inf{y, : supp v is a periodic orbit on A}.

Theorem 15.13 (Katok and Mendoza [135]). Assume that v is ergodic and h,(f) >
0. Then for any € > 0 and any continuous functions o1, ..., pr on M, there exists
a hyperbolic horseshoe A such that:

L R(fIA) > ho(f) —&;

2. A is contained in an e-neighborhood of supp v;

3.x(A) > Xy —&;

4. there exists a measure vy supported on A such that fori=1, ..., k,

/goiduof/ p; dv
M M

We outline the proof of this result. Given ¢ > 1, let ¢ be a finite measurable
partition of M refining the partition {A?, M \ A‘}. Fix r > 0. For each m > 1, let
AY, be the set of points x € A? such that f9(x) € ((x) for some ¢ € [m, (14 7)m)],
and

< 6.

12 4 T
;jgo%(f](x)) _/MSDdV <3

for s>mand i =1, ..., k. Using Birkhoft’s Ergodic Theorem, one can show that
v(AL)) — v(AY) as m — oo. From now on we choose m such that v(A?)) > v(A?)—r.
Given § > 0, there exists a cover {R(z1), ..., R(z¢)} of A* by closed rectangles (with
z; € AY)) and numbers X € (0, 1), satisfying e =% < A < e7X»*9 and v > 0 such
that

1. A c Ui_, B(x;,0), with B(x;,8) C int R(x;) for each i;

2. diam R(z;) < r for each i;

3. if z € A* N B(x;,6) and f™(z) € A*N B(x;,8) for some m > 0, then
the connected component C(R(z;) N f~"(R(x;)),x) of R(z;) N f~"(R(x;)
containing x is an admissible (s,~v)-rectangle in R(x;) and f™(C(R(z;) N
f~™(R(x;)),x)) is an admissible (u,y)-rectangle in R(z;);

4. for k=0, ..., m,

diam f*(C(R(x;) N f~™(R(z;)),x)) < 3diam R(x;) max{\* A"}
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Here an admissible (s,~)-rectangle is the set of points
{(v,u) € [=h,h)* : u = 01 (v) + (1 — O)12(v),0 < 0 < 1}

where 11 and 9 are two (s,v)-curves (for some h < 1 and some appropriate
parametrization in each Lyapunov chart; see Section 8.2). The definition of (u,~y)-
rectangles is analogous. The cover can be easily obtained from the behavior of (s, 7)-
and (u,y)-curves under iteration by f, and by using Theorem 15.1 to establish the
last property.

Let E,, C A%, be an (m,¢)-separated set of maximal cardinality. By the Brin—
Katok formula for the metric entropy, there exist infinitely many m such that
card E,, > ™ ()= For each q € [m, (1 +r)m], let V, = {x € E,, : fi(x) €
¢(z)} and let n be the value of ¢ that maximizes card V;. Since e™” > mr we have
cardV;, > em™(h(/)=31) " Consider now the value j for which card(V,, N R(x;)) is
maximal. Then

1 1
card(V,, N R(z;)) > n card V,, > gem(h”(-f)_?”). (15.2)

Each point z € V,, N R(z;) returns to the rectangle R(z;) in n iterations, and
thus C(R(z;) N f*(R(x;)), f*(z)) is an admissible (u,y)-rectangle in R(x;) and
F™(C(R(z;) N f"(R(x;)), f*(x)) is an admissible (s,)-rectangle in R(x;). This
follows from the fact that d(x;,z) < ¢ and d(f"(z),z;) < J, and from Property 2
of the cover. If y € C(R(x;) N f~™(R(x;)),x) then by the last property of the
cover, d(fi(z), fi(y)) < 3r for i = 0, ..., n. This implies that given a point
y € C(R(z;) N f~™(R(z;)),x) \ {z}, we must have y ¢ V,,; otherwise it would
contradict the separability of V,,. Hence, there exist cardV,, disjoint admissible
(s,7)-rectangles mapped by f™ onto card V,, admissible (u,~)-rectangles.

Let

Am=Ur [ U eRre)n ).
lEZ xeVpNR(x;)
The map f™|A(m) is conjugate to the full shift on card(V,, N R(x;)) symbols. Now
observe that for each y € A(m) its orbit remains in the union of the regular neigh-
borhoods R(x;), ..., R(f"(x;)), and thus f*|A(m) is a hyperbolic horseshoe.
The entropy of f"|A(m) equals log card(V,, N R(x;)). By (15.2),
B(FIAGm)) = - log card(V,, 1 R(z)) > — log pem ()3,

Since m/n > 1/(1 + ), we obtain the desired properties.
The following are immediate consequences of Theorem 15.13.

Corollary 15.14. Assume that v is ergodic and h,(f) > 0. There exists a sequence
of f-invariant measures v, supported on hyperbolic horseshoes A,, such that:

1. v, — v in the weak™ topology;
2 if hy(f) > 0 then hy, (f) — hy(f).

Corollary 15.15. Assume that v is ergodic and h,(f) > 0. Given e > 0,
1
h,(f) < lim —log™ card{x € M : f™(z) =z and x(x) > x(v) — €}.
m—oo M

In particular,
— 1
h(f) < Tlim —log™ Pn(f).

T m—oom
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In the two-dimensional case, any measure with positive entropy is hyperbolic (see
Corollary 12.8). Therefore, Corollary 15.15 implies the following relation between
periodic points and topological entropy.

Corollary 15.16. For any C'T% diffeomorphism f of a two-dimensional manifold,
— 1
h(f) < lim — log" P (f). (15.3)

In the multi-dimensional case, the inequality (15.3) does not hold for arbitrary
diffeomorphisms.

The following result shows that hyperbolic measures persist under C' perturba-
tions. This is a consequence of the structural stability of hyperbolic measures.

Corollary 15.17. Assume that v is ergodic and h,(f) > 0. Given C*** diffeo-
morphisms f, for each n > 1 such that f, converges to f in the C' topology, there
exist fn-invariant ergodic measures v, satisfying the following properties:

1. v, — v in the weak topology;

2. hvn(fn) - hu(f);
3. Xv, — Xv-

15.4. Continuity properties of entropy. It follows from Theorem 15.13 that
h(f) = sup{h(f|A) : A is a hyperbolic horseshoe}.
The following two results describe continuity-like properties of topological and
metric entropies on the space of diffeomorphisms. The first result deals with dif-

feomorphisms of class C*** and follows from Corollary 15.17 and the structural
stability of horseshoes.

Theorem 15.18. The topological entropy on the space of C'T diffeomorphisms
of a given surface is lower-semicontinuous.

The second result deals with C'*° diffeomorphisms.

Theorem 15.19. For a C* map f: M — M of a compact manifold

1. the map p — hu(f) is upper-semicontinuous on the space of f-invariant
probability measures on M ;
2. the map [ — h(f) is upper-semicontinuous.

The first statement is due to Newhouse [189] and the second one was established
independently by Newhouse [189] and Yomdin [253]. We refer to [189] for refer-
ences in the case of interval maps. It follows from Theorems 15.18 and 15.19 that
the topological entropy is continuous for C* diffeomorphisms of a given compact
surface.

15.5. Yomdin-type estimates and the entropy conjecture. In [227, §V], Shub
conjectured that for any C' map f: M — M of a compact manifold,

h(f) = logo(f.), (15.4)

where f.: H.(M,R) — H,(M,R) is the linear map induced by f on the total
homology of M,
dim M
H.(M,R) = €P Hi(M,R)
i=0



126 LUIS BARREIRA AND YAKOV PESIN

and
o(f.) = lim || /™" = max{o(f.;) :i=0,...,dim M}

is the spectral radius of f.. This is referred to as the entropy conjecture. For a
C1*« diffeomorphism f one could use (15.4) if available to establish positivity of the
topological entropy and hence, existence of a measure with some positive Lyapunov
exponents and the associated nontrivial stochastic behavior (see Section 15.2). We
give here an account of the results in the direction of the conjecture (see also the
survey by Katok [129] for the status of the conjecture prior to 1986).

In the case of the first homology f.1: Hy(M,R) — H;(M,R) we have the fol-
lowing result for arbitrary continuous maps.

Theorem 15.20 (Manning [176]). If f is a continuous map of a smooth compact
manifold then h(f) > logo(fs1)-

There exists a stronger version of Theorem 15.20 due to Katok [129] with the
number log o(f.1) replaced by the so-called algebraic entropy of the action induced
by f on the (not necessarily commutative) fundamental group 71 (M). It follows
from Theorem 15.20 and Poincaré duality that the entropy conjecture holds for any
homeomorphism of a manifold M with dim M < 3 (see [176]).

In the case of the top homology group the following result holds (recall that
fxdim pr 18 the same as multiplication by the degree deg f).

Theorem 15.21 (Misiurewicz and Przytycki [185]). If f is a C* map of a compact
smooth manifold, then h(f) > log|deg f|.

In particular, this implies that the entropy conjecture holds for any smooth map
of a sphere (in any dimension) and any smooth map of a compact manifold with
dimension at most 2.

On some manifolds the entropy conjecture turns out to hold for arbitrary con-
tinuous maps.

Theorem 15.22 (Misiurewicz and Przytycki [186]). The entropy conjecture holds
for any continuous map of a torus (in any dimension,).

Since any Anosov automorphism of the torus is topologically conjugate to an
algebraic automorphism (see [133, Theorem 18.6.1]), we conclude that if f is an
Anosov diffeomorphism of a torus, then h(f) =logo(f.).

Shub formulated the entropy conjecture in connection with the problem of defin-
ing the simplest diffeomorphisms in each isotopy class of diffeomorphisms. From
this point of view, it is important to discuss the entropy conjecture for example
for structurally stable diffeomorphisms. In [228], Shub and Sullivan described an
open and dense subset (in the C°-topology) of the set of structurally stable dif-
feomorphisms for which the entropy conjecture holds. Later Shub and Williams
obtained a more general result which does no require the nonwandering set to have
zero dimension.

Theorem 15.23 (Shub and Williams [230]). The entropy conjecture holds for any
azxiom A no-cycles diffeomorphism.

More recently Yomdin established the C'*° version of the entropy conjecture with
an approach using semi-algebraic geometry.

Theorem 15.24 (Yomdin [253, 254]). The entropy conjecture holds for any C*
map of a compact manifold.
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Yomdin also proved more generally that for a C* map f: M — M of a compact
manifold, with 1 <k < oo, and j =0, ..., dim M,

J oo 1 "
B + 2 lim ~logmax|d, [ = v;(f) = log ()

Here v;(f) is the exponential growth rate of j-volumes,

() = sup T~ logvol(/"(4)),

where the supremum is taken over all submanifolds A C M of dimension j, and
the volume is counted with multiplicities. Newhouse proved earlier in [188] that
h(f) < max;v;(f) for a C'* map of a compact manifold. In particular, we have
h(f) = max; v;(f) = logo(fs) for a C* map.

16. HYPERBOLIC MEASURES II: ENTROPY AND DIMENSION

16.1. Entropy formula. We describe results of Ledrappier and Young [157, 158]
including the general formula for the entropy of a diffeomorphism. Let f be a C?
diffeomorphism of a compact smooth Riemannian manifold M preserving a Borel
measure on M. For a regular point x € M and i =1, ..., u(x) = max{i : \;(z) >
0}, consider the ith-unstable global manifold W;(z) of f at x (see Section 9.2). We
introduce the notion of the entropy “along” the W;-foliation.

For n > 0, and € > 0 set

Vi(w,n,e) = {y € Wia) : pws (F5 (@), F5(y) <  for 0 < k < n}.

Consider a measurable partition & of M. We say that £ is subordinate to the W;-
foliation if for v-almost every x € M we have {(x) C W;(z) and £(z) contains an
open neighborhood of z in the topology of W;(x). Let {v;(x)} be the system of
conditional measures associated with €. Define

hy(,€) = I Tim —~ logwi()(Vi(z, m, <)),

e=0p oo

R, €) = lim T — - log y(2)(Vi(z, m, 2)).

e—0n—oo n
Theorem 16.1 ([158]). The following properties hold:
1. hi(z) := hy(z,€) = hi(x,€) for v-almost every x € M, independently of the
choice of the partition &;
2. [i Pu(e) (@) dv(z) = hy(f).

The number h;(z) is called the local entropy of f at = along the W;-foliation.
We also consider the pointwise dimension of conditional measures “along” the
We-foliation. Let B;(x,r) be the ball in W;(x) centered at x of radius £ and £ a
measurable partition subordinate to W;. For a regular point x € M define
log vi(z) (Bi(z, 7)) 7 logvi(z)(Bi(z,))

J i Ei T
—l/(xvg) 'rlilr(l) IOgT ’ U(x7£) Tl_r)l’(l) logT

Theorem 16.2 (Ledrappier and Young [158]). The following properties hold:

1. di(z) :=d' (z,6) = E,i,(x,f) for v-almost every x € M, independently of the
choice of the partition &;
2. 0 < di(z) —dit(x) < dim E;(z) for 2 <i < u(x).
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The number d¢ (z) is called the pointwise dimension of v along the W;-foliation.
The number di(z) — d5"!(x) can be interpreted as a “transverse dimension” of v
on the quotient W;/W;_; (recall that each leaf of W; is foliated by leaves of W;_1).

In the particular cases ¢ = s and ¢ = u the quantities

. I s(B* ) 1 u(gu
() 2t OEVEEIETN) gty JOBVEB 7))
= ogr r— ogr

are called stable and wunstable local (pointwise) dimensions of v. They are well-
defined for almost every x € M and are constant almost everywhere; we denote
these constants by d$ and d“. Set also d°(z) = 0.

Theorem 16.3 (Ledrappier and Young [158]). The metric entropy of a C? diffeo-
morphism f is expressed by the following formula

u(x)

ho(f) = /M S (@) (A () — i () ().
=1

The proof goes by showing that for v-almost every x € M and i =2, ..., u(z),
hi(z) = Mi(2)dy(2),  hi(z) = hi—i(z) = Xi(2)(d),(x) — &7 (@)).
To prove this Ledrappier and Young constructed a special countable partition P

of M of finite entropy related to the Pinsker partition (see Theorem 11.16). Given
integers k, £ € N we also consider the partition P} = \/ln=_k f .

Theorem 16.4 (Ledrappier and Young [157, 158]). Let v be ergodic. Given 0 <
e < 1, there exists a set T' C M of measure v(T') > 1 —¢€/2, an integer ng > 1, and
a number C > 1 such that for every x € I' and any integer n > ng, the following
statements hold:

1. for all integers k, 1 > 1,

O~ le—(HR)h=(l+k)e < Z/(f]’gg(x)) < Ce—(l+k)h+(l+k)s7 (16.1)
Cle Mh=ke < p3(PY(x)) < CeFhthe, (16.2)
Clemth=le < pu(Pl(z)) < Ce it (16.3)
where h = h,(f);

2.

& (x)n ﬂ Po(x) D B(z, e ), &“(z)N ﬂ PO(x) D B*(z,e”™);  (16.4)
n>0 n>0

3.
e—dsn—na < V;(Bs(l',e_n)) < e—dsnﬁ-ne’ (165)
e e < (B (w, e ™)) < e e (16.6)

4.
Por(x) C B(z,e™™) C P(x), (16.7)
PO (x)NES(x) € B¥(x,e”™) C P(x) NE (), (16.8)
Pt (@) N (x) € B (z,e7") C Plx) N € (), (16.9)

where a is the integer part of 2(1 + ¢) max{A1, —A,, 1};
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5. if Qn(x) is defined by
Qn(z) = JPin(y)

where the union is taken over y € I' for which

Pan(y) N BY(x,2¢”") # @ and P°, (y) N B*(x,2e™ ") # @;

then
B(z,e™™)NT C Qn(z) C B(z,4e™ ™), (16.10)
Bé(xz, e ™")NT C Qn(x)NE(z) C B¥(x,4e™™), (16.11)
BY(z,e™™")NT C Qu(x)NE“(x) C BY(x,4e™"). (16.12)

We outline here the construction of the partition P, and its relation to the Pinsker
partition (compare with Theorem 11.16). We proceed in a manner similar to that
in Section 11.4. Consider a regular set A* with v(A?) > 0. For a sufficiently small
r=r)>0and x € A’ set

Pllay= U V', Q@)= {J @)

yeANB(x,r) n=—o0

Since v is ergodic the set Q(x) has full v-measure. Let & be the partition of Q(x)
by local unstable manifolds V%(y), y € A* N B(z,r), and the element Q(z) \ P*(z).
Then £ = \/,~ %€ is the Pinsker partition subordinate to the partition into global
unstable manifolds.

Let now A C M be the set of regular points, and ¥,.: B(0,¢(z)) — M a family of
Lyapunov charts for € A (see Theorem 8.14). Fix ¢ > 0 and consider a partition
P of finite entropy satisfying:

1. P is “adapted” to the Lyapunov charts in the sense that the elements of the
partition P* =\/>° | f"P satisfy for each z € A,

PH(a) € Wal{y € B(0,q(2)) : 10972, ) 0 f7" 0 Wa) ()| < dq(f " (2))});

2. hl/(f? :P) > hV(f) — &

3. the partition P refines {F, M \ E} for some measurable set F of positive
measure such that there exists a transversal T' to W with the following
property: if an element C € £V intersects E, then T intersects C in exactly
one point.

It is shown by Ledrappier and Young in [157] that a certain partition constructed
by Mafié in [171] possesses Property 1. Property 3 is related to the construction
of “transverse metrics” to £T. Namely, consider the partitions n; = ¢+ Vv P+ and
n2 = PT. Under the above properties one can define a metric on 9y (x)/n; for every
z € U, [M(E).

The inclusions (16.4) can be obtained from the fact that the partition P is
adapted to the Lyapunov charts. Since the Lyapunov exponents at almost every
point are constant, (16.7), (16.8), and (16.9) follow from (16.4) and an appropriate
choice of a. The inequalities (16.5) and (16.6) are easy consequences of existence
of the stable and unstable pointwise dimensions df and d¥% (see Theorem 16.7).
The inclusions (16.10) are based upon the continuous dependence of stable and
unstable manifolds in the C1T< topology on the base point in each regular set. The
inclusions in (16.11) and (16.12) follow readily from (16.10).
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Property (16.1) is an immediate corollary of Shannon-McMillan—Breiman’s The-
orem applied to the partition P. Properties (16.2) and (16.3) follow from “leaf-wise”
versions of this theorem. More precisely, Ledrappier and Young have shown (see
[158, Lemma 9.3.1] and [157, Proposition 5.1]) that for v-almost every x,

1
lim = log (2 (2)) = hu (f),
n

n—oo

where Q is any partition of finite entropy. Since P (z) D (€T NP)§(x), we conclude
that

T~ log (P («) < () (16.13)

n—oo
for v-almost every z. Moreover, using the fact that P is adapted to the Lyapunov
charts one can show that the partition P additionally possesses the property that
given § > 0 there exists ng > 0 such that Py (z)NE"(x) C Viya) (2, n,0) for v-almost
every = and every n > ng (see [158, Lemma 9.3.3]). It follows from Theorem 16.1
that for v-almost every z,
lim 1 logvy (PG (x)) > lim lim ! log v}/ (Viyez)(z,m,8)) = hy(f).  (16.14)

n—oo T 0=0p—co N
Putting together (16.13) and (16.14) we obtain (16.3). A similar argument can be
used to obtain (16.2).

Note that the Margulis—Ruelle inequality is an immediate corollary of Theo-
rem 16.3 and so is the fact that any measure v with absolutely continuous condi-
tional measures on unstable manifolds satisfies Pesin’s entropy formula.

16.2. Dimension of measures. Local dimension. For a Borel measure v on a

complete metric space X define the Hausdorff dimension dimgyv, and lower and
upper box dimensions, dimpv, and dimpr by

dimpv = inf{dimy Z : v(Z) =1

dimpr = girr%)inf{dimBZ v(Z)>1

1
_5}7
dimpr = ;i%inf{mBZ v(Z) > 1-6},

where dimy Z, dimpZ and dim 3 Z are respectively the Hausdorff dimension, lower
and upper box dimensions of the set Z. It follows from the definition that

dimpr < dimpr < dimpv.

Another important characteristic of dimension type of v is its information dimen-
sion. Given a partition £ of X, define the entropy of & with respect to v by

H,(&) = =Y _ v(Ce)logv(Ce)

Ce
where C¢ is an element of the partition £. Given a number € > 0, set
H,(e) =inf {H,(§): diam¢ < e}

where diam ¢ = maxdiam C¢. We define the lower and upper information dimen-

sions of v by
Hl/ T 1 Hl/
I(v)= liimi, I(v) = lim 7(8)
c—0 log(1/e) e—0 log(1/¢)
Young established a powerful criterion that guarantees the coincidence of the Haus-
dorff dimension and lower and upper box dimensions of measures as well as their
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lower and upper information dimensions. Define the local (pointwise) dimension of
v by
1 B
dl,(x) — hm Og V( (.’,C,'r'))

16.15
r—0 logr ( )

where B(z, ) is the ball centered at x of radius r (provided the limit exists). It was
introduced by Young in [255] and characterizes the local geometrical structure of v
with respect to the metric in X. If the limit in (16.15) does not exist we consider
the lower and upper limits and introduce respectively the lower and upper local
(pointwise) dimensions of v at x and we denote them by d,(z) and d, (z).

Theorem 16.5 (Young [255]). Let X be a compact metric space of finite topological
dimension and v a Borel probability measure on X. Assume that

d, (r)=d,(z)=d, (16.16)
for v-almost every x € X. Then
dimpv = dimgv = dimpr = I(v) = I(v) = d,,.

A measure v satisfying (16.16) is called exact dimensional.

We will discuss the problem of existence of the limit in (16.15) for hyperbolic
invariant measures. This problem is often referred to as the Eckmann—Ruelle con-
jecture. Its affirmative solution was obtained by Barreira, Pesin and Schmeling
in [25].

Theorem 16.6. Let f be a C'* diffeomorphism of a smooth Riemannian man-
ifold M without boundary, and v an f-invariant compactly supported hyperbolic
ergodic Borel probability measure. Then v is exact dimensional and

d,=d;, +d.
In general, when the measure v is not ergodic the stable and unstable local

dimensions as well as the local dimension itself depend on the point x. In this case
one can prove that for v-almost every z € M,

dy () = d;(x) + dy ().

Let us comment on the proof of Theorem 16.6. The upper bound for the pointwise
dimension of any Borel f-invariant measure v was obtained by Ledrappier and
Young in [158].

Theorem 16.7. Let f be a C? diffeomorphism of M. For v-almost every x € M,
d, < d +d¥ + dim E°(z).

In the case when the measure v is hyperbolic (i.e., dim E¢(z) = 0 for v-almost
every x € M) this result can be extended to C1T* diffeomorphisms (not necessar-
ily C?). Namely it is shown in [25] that

d, < dj +dy.

The lower bound for the pointwise dimension, d, > dJ + d, is an immediate
corollary of Theorem 16.9.
Young proved Theorem 16.6 for surface diffeomorphisms.
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Theorem 16.8 (Young [255]). Let f be a C**t% diffeomorphism of a smooth
compact surface M and v a hyperbolic ergodic measure with Lyapunov exponents
AL>0> A2, Then

du:auzhu(f) (/\11_)\12>

Let us point out that neither of the assumptions of Theorem 16.6 can be omitted.
Pesin and Weiss presented an example of a Hélder homeomorphism with Hélder
constant arbitrarily close to 1 whose ergodic measure of maximal entropy is not
exact dimensional (see [202]). Ledrappier and Misiurewicz [155] constructed an
example of a smooth map of a circle preserving an ergodic measure with zero
Lyapunov exponent which is not exact dimensional. Kalinin and Sadovskaya [127]
strengthened this result by showing that for a residual set of circle diffeomorphisms
with irrational rotation number the unique invariant measure has lower pointwise
dimension 0 and upper pointwise dimension 1 for almost every point in S*.

16.3. Local product structure of hyperbolic measures. The following prin-
ciple result establishes a crucial property of hyperbolic measures: these measures
have asymptotically “almost” local product structure.

Theorem 16.9 (Barreira, Pesin and Schmeling [25]). Let f be a C*** diffeomor-
phism of a smooth Riemannian manifold M without boundary, and v an f-invariant
compactly supported hyperbolic ergodic Borel probability measure. Then for every
0 > 0 there exist a set A C M with v(A) > 1 —§ such that for every x € A and
every sufficiently small r (depending on x), we have

s (B (z,r)vy (B (2,1)) < v(Bx,r)) < r=°wi(B*(z,r)vy (B (z,7)).

The proof of Theorem 16.9 uses the crucial Markov property of the special count-
able partition P of M constructed in Theorem 16.4.

Theorem 16.10 (Barreira, Pesin and Schmeling [25]). For everyx € T and n > nyg,
Pan (@) N € () = Pg, (2) NE (2);
Pan (@) N &4 (x) = P (x) N ¥ ().

Note that any SRB-measure possesses a stronger property of local product struc-
ture and so does any Gibbs measure on a locally maximal hyperbolic set.

We emphasize that Theorem 16.9 is not trivial even for measures supported on
locally maximal uniformly hyperbolic sets. In this situation the stable and unstable
foliations need not be Lipschitz (in fact, they are “generically” not Lipschitz), and
in general, the measure need not have a local product structure despite the fact
that the set itself does.

Let us illustrate Theorems 16.6 and 16.9 by considering the full shift o on the
space X, of two-sided infinite sequences of numbers in {1,...,p}. This space is
endowed with the usual “symbolic” metric dg, for each fixed number 8 > 1, defined
as follows:

dﬁ(w17w2) = Z/B_Ii”wil - wi2|»
i€l

D) and w? = (w2).

where w! = (w]
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Let v be a o-invariant ergodic measure on %,,. By Shannon-McMillan-Breiman’s
Theorem, for v-almost every w € 3,

nler;o T log v(Cp(w)) = hy(0), (16.17)
were Cy, (w) is the cylinder at w of “size” n. Since Cj,(w) is the ball in the symbolic
metric centered at w of radius ", the quantity in the right-hand side in (16.17)
is the local dimension of v at w. Thus, Shannon—McMillan—Breiman’s Theorem
claims that the local dimension of v is almost everywhere constant and that the
common value is the measure-theoretical entropy of v.

Further, fix w = (w;) € £,. The cylinder C,,(w) can be identified with the direct

product CF (w) x C (w) where
Clw)={o=(&):w=w;fori=0,...,n}

and
C,(w)={w= (@) : @; =w,; for i = —n,...,0}

are the “positive” and “negative” cylinders at w of “size” n. Define measures

vi(w)=v|CH(w) and v, (w)="v|C, (w).

n

It follows from Theorem 16.9 that for every d > 0 there exist a set A C ¥, with
v(A) > 1—4 and an integer m > 1 such that for every w € A and every sufficiently
large n (depending on w), we have

golnly ¢ (@) < VICu(w) < B (@) X v ().

n+m(w) X V.

n+m

17. GEODESIC FLOWS ON MANIFOLDS WITHOUT CONJUGATE POINTS

For a long time geodesic flows have played an important stimulating role in
developing the hyperbolic theory. Already in the beginning of the 20th century
Hadamard and Morse, while studying the statistics of geodesics on surfaces of
negative curvature, observed that the local instability of trajectories is the prime
reason for the geodesic flow to be ergodic and topologically transitive. The further
study of geodesic flows has led researchers to introduce different classes of hyperbolic
dynamical systems (Anosov systems, uniformly partially hyperbolic systems, and
nonuniformly hyperbolic systems). On the other hand, geodesic flows always were
one of the main areas for applying new advanced methods of the hyperbolic theory
of dynamical systems. This in particular, has led to some new interesting results
in differential and Riemannian geometry.

17.1. Ergodic properties of geodesic flows. Consider the geodesic flow g; on a
compact smooth Riemannian p-dimensional manifold M without conjugate points.
The flow preserves the Liouville measure p on the tangent bundle. Let the set
A be given by (2.10). We assume that A is of positive Liouville measure. By
Theorem 2.3 the geodesic flow is nonuniformly hyperbolic on A and hence, the
results of Section 11.2 apply and show that ergodic components of g;|A are of
positive Liouville measure (see Theorem 11.3). Indeed, under some mild geometric
assumptions the geodesic flow on A is ergodic. To see this we will first observe that
every ergodic component of positive measure is open (mod 0) and then will use a
remarkable result by Eberlein on topological transitivity of geodesic flows.
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To establish local ergodicity of g;|A we shall describe two invariant foliations
(known as the stable and unstable horospherical foliations) of SM, W~ and W,
such that W#(z) = W~ (x) and W"(z) = W (z) for almost every xz € A.

We denote by H the universal Riemannian cover of M, i.e., a simply connected
p-dimensional complete Riemannian manifold for which M = H/T where T is a
discrete subgroup of the group of isometries of H, isomorphic to 71 (M). According
to the Hadamard—Cartan theorem, any two points x, y € H are joined by a single
geodesic which we denote by ~;,. For any x € H, the exponential map exp,: R —
H is a diffeomorphism. Hence, the map

Y
Pa(y) = exp, <) (17.1)
1= lyll
is a homeomorphism of the open p-dimensional unit disk D onto H.
Two geodesics 71 (t) and 2(t) in H are said to be asymptotic if

iggp(%(t% Y2(t)) < oo.

The asymptoticity is an equivalence relation, and the equivalence class v(c0) cor-
responding to a geodesic v is called a point at infinity. The set of these classes is
denoted by H(oo) and is called the ideal boundary of H. Using (17.1) one can ex-
tend the topology of the space H to H = H U H(co) so that H becomes a compact
space.

The map ¢, can be extended to a homeomorphism (still denoted by ¢,) of the
closed p-dimensional disk D = D U SP~! onto H by the equality

Pa(y) = vy(+0), yeSPL

In particular, ¢, maps SP~! homeomorphically onto H(c0).

For any two distinct points z and y on the ideal boundary there is a geodesic
which joins them. This geodesic is uniquely defined if the Riemannian metric is
of strictly negative curvature (i.e., if inequality (2.7) is strict). Otherwise, there
may exist a pair of distinct points x, y € H(oco) which can be joined by more than
one geodesic. If the manifold has no focal points there exists a geodesic isometric
embedding into H of an infinite strip of zero curvature which consists of geodesics
joining x and y. This statement is know as the flat strip theorem.

The fundamental group 71 (M) of the manifold M acts on the universal cover H
by isometries. This action can be extended to the ideal boundary H(co). Namely, if
p = yy(+00) € H(c0) and ¢ € w1 (M), then ((p) is the equivalent class of geodesics
which are asymptotic to the geodesic (v, (¢)).

We now describe the invariant foliations for the geodesic flow.

Fix a point € H and a vector v € SH. Consider a sequence of vectors v,, € SH,
v, — v, a sequence of points x,, € H, x,, — x and a sequence of numbers ¢, — oo.
Denote by 7, the geodesic joining the points z,, and +,, (t,). Since the sequence o
vectors 4, (0) is compact the sequence of geodesics has a limit geodesic. Following
[199] we say that the manifold M satisfies the asymptoticity aziom if for any choice
of xp,x € H, vy,v € SH, x,, — x, v, — v and t, — oo any limit geodesic of the
sequence of geodesic 7, is asymptotic to the geodesic 7.

If the manifold M satisfies the asymptoticity axiom then the sequence +,,, indeed,
converges to 7. Moreover, given a geodesic v and a point x € H, there exists a
unique geodesic 7' passing through z and asymptotic to .
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Proposition 17.1 (Pesin [199]). If the manifold M has no focal points then it
satisfies the asymptoticity axiom.

We consider the distributions £~ and E™ introduced by (2.8) and (2.9).

Proposition 17.2 (Pesin [199]). Assume that the manifold M satisfies the asymp-
toticity axiom. Then the distributions E~ and ET are integrable. Their integral
manifolds form continuous foliations of SM with smooth leaves. These foliations
are invariant under the geodesic flow.

Denote by W~ and W the foliations of SM corresponding to the invariant
distributions £~ and E*. These foliations can be lifted from SM to SH and we
denote these lifts by W~ and W™ respectively.

Given z € H and p € H(o0), set

L(z,p) = n(W~(v))

where z = 7(v) and p = ,(c0). The set L(z,p) is called the horosphere through x
centered at p.

We summarize the properties of the foliations and horospheres in the following
statement.

Proposition 17.3. The following statements hold:

1. for any x € H and p € H(co) there exists a unique horosphere L(x,p)
centered at p which passes through x; it is a limit in the C1 topology of
spheres SP(v(t),t) as t — +oo where 7 is the unique geodesic joining x and

p?

2. the leaf W~ (v) is the framing of the horosphere L(x,p) (x = w(v) and p =
Yo (+00) ) by orthonormal vectors which have the same direction as the vector
v (i.e., they are “inside” the horosphere). The leaf W (v) is the framing
of the horosphere L(z,p) (x = w(v) and p = ~,(—00) = v_,(+00)) by
orthonormal vectors which have the same direction as the vector v (i.e.,
they are “outside” the horosphere);

3. for every ¢ € m (M),

¢(L(z,p)) = L(¢(x),¢(p)),
do (W™ (v) = W (dyCv),  doCWT(v) = WH(dyCo);

4. for every v, w € SH, for which ,(4+00) = v, (+00) = p, the geodesic ~,,(t)
intersects the horosphere L(m(v),p) at some point.

Theorem 17.4 (Pesin [199]). Assume that the manifold M satisfies the asymp-
toticity axiom. Assume also that the set A has positive Liouville measure. Then
for almost every v € SM we have that W~ (v) = W#(v) and W (v) = W¥(v).

By Theorem 11.8 we conclude that ergodic components of g:|A of positive mea-
sure are open (mod 0). In particular, the set A is open (mod 0). See Theorem 2.5
that gives sufficient conditions for the set A to be of positive Liouville measure.

We describe the topological transitivity of geodesic flows. Following Eberlein
[79] we say that the manifold M satisfies the uniform wvisibility axiom if for any
e > 0 there exists R = R(g) > 0 such that from each point © € H any geodesic
segment v with d(x,v) > R is visible at an angle less than ¢.

Proposition 17.5 (Eberlein [79]). The following statements hold:
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1. if a manifold satisfies the uniform visibility axiom with respect to a Riemann-
ian metric then it satisfies this aziom with respect to any other Riemannian
metric with no conjugate points;

2. a manifold of nonpositive curvature satisfies the uniform visibility axiom if
its universal cover does not admit an isometric geodesic embedding of R?;

3. a compact two-dimensional manifold M of genus > 1 satisfies the uniform
visibility axiom;

4. if M satisfies the uniform visibility axiom the it also satisfies the asymptotic-
ity axiom.

Theorem 17.6 (Eberlein [79]). Assume that the compact manifold M satisfies the
uniform visibility axiom. Then the geodesic flow g; is topologically transitive.

Theorem 17.7. Let M be a compact smooth Riemannian manifold without focal
points satisfying the uniform wvisibility axiom. If the set A has positive Liouville
measure then it is open (mod 0) and is everywhere dense. The geodesic flow g¢|A
is nonuniformly hyperbolic and ergodic. Indeed, gi|A is Bernoulli.

The Bernoulli property follows from Theorem 11.21 and from a result by Arnold
(see [9, §23]) implying that the geodesic flow has continuous spectrum.

It is an open problem whether the set A has full Liouville measure. Brin and
Burago have proved this under the additional assumption that the set of negative
curvature in M has finitely many connected components. The same result was
obtained by Hertz who used different methods. None of these results is published.

Further results on ergodic and topological properties of geodesic flows on man-
ifolds of nonpositive curvature were obtained by Knieper [144, 145, 146]. His cel-
ebrated result establishes existence and uniqueness of the measure of maximal en-
tropy thus extending the classical result by Margulis to nonpositively curved man-
ifolds. Knieper also obtained multiplicative asymptotic bounds for the growth of
volume of spheres (and hence, also that of balls) and the number of periodic orbits.
For a detailed account of this work see the chapter [147].

In [101, 102], Gunesch strengthened Knieper’s results and obtained precise as-
ymptotic formulae for the growth of volume of spheres and the number of homotopy
classes of periodic orbits for the geodesic flow on rank 1 manifolds of nonpositive
curvature. This extends results by Margulis to the nonuniformly hyperbolic case.

Let M be a compact Riemannian manifold of nonpositive curvature. Given a
tangent vector v € SM, rank(v) is the dimension of the space of parallel Jacobi
fields along the geodesic 7,. The minimum of rank(v) over all v € SM is called the
rank of M, rank(M). If rank(v) = rank(M) the geodesic v, and the corresponding
vector v are called regular. It is easy to see that 1 < rank(M) < dim M.

The following result describes the fundamental rank rigidity for nonpositively
curved manifolds. It was obtained independently by Ballmann [21] (see also [22])
and by Burns and Spatzier [55] (see also [81]).

Theorem 17.8. Let M be a compact smooth Riemannian manifold of nonpositive
curvature with irreducible universal cover H. Then the manifold has either rank 1
or H is a symmetric space of higher rank.

In other words, the universal cover of a nonpositively curved manifold can be
represented as a product of Euclidean, symmetric, and rank 1 spaces.

Theorem 17.9 (see [101, 102]).
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1. Given x € H, let b.(x) = vol(B(x,r)) be the Riemannian volume of the ball
centered at x of radius v in the universal cover H of M. Then

b.(x) ~ c(w)e}”,

where c¢(z) is a continuous function on M and h = h(g') is the topological
entropy of the geodesic flow.

2. Let P(t) be the number of homotopy classes of periodic orbits of length at
most t. Then

1

ht

Observe that unlike in the case of negatively curved manifolds, for nonpositively
curved manifolds there may be uncountably many periodic geodesics homotopic to
a given one but they all have the same length.

ht

P(t) ~ —e

17.2. Entropy of geodesic flows. For v € SM let v be the set of vectors w €
S M which are orthogonal to v. Consider the linear map S, : v+ — v+ defined by the
equality: S,w = K¢(w), where £(w) is the vector in £~ (v) such that dmé(w) = w.

Theorem 17.10. For a Riemannian metric of class C* of nonpositive curvature
Sy 18 a linear self-adjoint operator of the second quadratic form for the horosphere
L(7(v), v (+00)) at the point w(v) (which is a submanifold in H of class C?).

Denote by {e;(v)}, i = 1,...,p — 1, the orthonormal basis in v consisting of

eigenvectors of S,. Let K;(v) be the corresponding eigenvalues. The numbers
K;(v) are called the principal curvatures and the directions determined by the
vectors e;(v) the directions of principal curvatures for the limit sphere at 7(v).

Theorem 17.11 (Pesin [201], Freire and Mané [91]).
1. The entropy of the geodesic flow is

where p is the Liouville measure and tr S, denotes the trace of S,.
2. Let v be a g'-invariant probability measure. Then

hu(gh) < —/M trS, dv(v).

Statement 1 of Theorem 17.11 is analogous to a result of [234] for dispersing
billiards.

For the topological entropy h(g?) of the geodesic flow on manifolds without
conjugate points Freire and Mané [91] established the following formula.

Theorem 17.12.
1 (B
h(gt) = lim 0g vo ( (.’E,T’))7
7—00 r
where x € H is a point in the universal cover of M (the limit exists and does not
depend on x).



138 LUIS BARREIRA AND YAKOV PESIN

18. DYNAMICAL SYSTEMS WITH SINGULARITIES: THE CONSERVATIVE CASE

In this and the following sections we shall discuss how the core results of smooth
ergodic theory can be extended to dynamical systems with singularities (where the
map or its differential are discontinuous). We consider two cases: the conservative
one when the system preserves volume and the dissipative one when the system
possesses an attractor. The main example in the first case is billiards while the
main example in the second case is the Lorenz attractor. In both cases the system
is uniformly hyperbolic either on the whole phase space or in an neighborhood of
the attractor. However, the presence of singularities may effect the behavior of
trajectories in a crucial way so that along some trajectories Lyapunov exponents
are zero. We shall describe some general conditions on the singularity set which
guarantee that Lyapunov exponents along the “majority” of trajectories are nonzero
and methods of nonuniform hyperbolicity theory apply.

Let M be a compact smooth Riemannian manifold and S C M a closed set.
Following Katok and Strelcyn [138] we call amap f: M\S — f(M\S) a map with
singularities and the set S the singularity set for f if the following conditions hold:

(A1) fis a C? diffeomorphism;
(A2) there exist constants C; > 0 and @ > 0 such that

2 f]| < Cipl(e,S)™* we M\ S,

ld2f7H < Cip(e, S7)7, @€ f(M\S),
where S~ = {y € M : thereare z € S and z, € M \ S such that z, —
2, f(zn) — y} is the singularity set for f~1.
Let p be a probability measure on M invariant under f. We assume that

(A3)
[ gt ldflldi < o0 and [ 1o dy < o
M M
(A4) for every € > 0 there exist constants Co > 0 and b € (0, 1] such that
p({x € M : p(x,8) < e}) < Cpe®.

Condition (A2) means that the derivative of f may grow with a “moderate” poly-
nomial rate near the singularity set and Condition (A4) implies that u(S) =0, i.e.,
the singularity set is “small”.

Conditions (A1)—(A4) constitute the basis of the Katok-Strelcyn theory and
allow one to extend results of smooth ergodic theory to smooth systems with sin-
gularities. In particular, at every Lyapunov regular point with nonzero Lyapunov
exponents one can construct local stable and unstable manifolds, establish the
crucial absolute continuity property, describe ergodic properties of the map with
respect to a smooth hyperbolic invariant measure and obtain the entropy formula.

We shall now proceed with a formal description. Set N* = {z € M: f"(z) ¢
S for all n > 0} and let N =(,~, f"(NT). For each a € (0,1) and v > 0 set

QY ={x e N: p(f(x), A) > ya™ for every n € Z}.
Proposition 18.1. We have that u(N) =0 and p(Q2*7) — 1 as v — 0.
To see this note that
N\ Q¥ ={z e N:p(f(z),A) <~ya"l for some n € Z}
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and hence, by (A4),

PNAQT) <Y p({z € N2 p(f7(x), 4) < val"l})

neZ
<> p{z e X i pla, A) < val"l})
neEZ
209"
< C a a\n\ <
% T 1—a’

Let A C M\ N be the set of points with nonzero Lyapunov exponents. We assume
that u(A) > 0 and we consider the collection of regular sets A, £ > 1 for f (see
Section 4.5). Denote by

ALY = AN Qe

From now on we fix a sufficiently large £ > 0, @ = a(¢) and v = () such that the
set AL = ALO(8) hag positive measure.
As an immediate corollary of Proposition 18.1 we obtain the following statement.

Theorem 18.2 (Stable manifold theorem). Let f be a diffeomorphism with singu-
larities satisfying conditions (A1)-(A4). Then for every x € A’ there exists a local
stable manifold V°(x) such that x € V*(z), T,V*(x) = E*(x), and for y € V*(z)
and n > 0,

p(f" (@), f"(y)) < T(@)A"e" pla, y),

where T: X — (0,00) is a Borel function satisfying
T(f™(x)) < T(x)e'™, meZ.

Furthermore, for every x € A’ there exists a local unstable manifold V*(z) which
have similar properties.

When a point moves under f its stable (and/or unstable) manifold may “meet”
the singularity set and be cut by it into several pieces whose sizes, in general, may
be uncontrollably small. Tt is Condition (A4) that allows one to control this process
for almost every trajectory, see Proposition 18.1. In particular, the size of the
local manifolds V*(x) and V*(z) may depend on the point « and may deteriorate
along the trajectory but only with subexponential rate. Moreover, local manifolds
satisfy the absolute continuity property, see Section 10.1. This provides the basis
for obtaining a complete description of ergodic and topological properties of the
system including: 1) descriptions of ergodic and K-components (see Theorems 11.3
and 11.17), 2) the entropy formula’ (see Theorems 12.1 and 12.10), and 3) density
of periodic points (see Theorem 15.2).

Liverani and Wojtkowski [167] designed a method which allows one to study
local ergodicity of smooth systems with singularities. The systems to which this
method applies are defined axiomatically by a number of conditions. They include
some assumptions on the singularity set, existence of invariant cone families which
are monotone and strictly monotone (see Section 11.3), and an adaptation of the
Sinai-Chernov Ansatz for billiards (see [66]).

"To establish the upper bound for the entropy, one needs to assume, in addition to (A2), that
llda fll < Cip(z, S)~* and ||de f~Y|| < Cip(x, ST)~9; see [138] for details.
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Other results on local ergodicity of smooth systems with singularities were ob-
tained by Chernov [61], Markarian [177], and Vaienti [243] (for some particular
map).

In [250], Wojtkowski and Liverani introduced a special class of dynamical sys-
tems with singularities—conformally Hamiltonian systems with collisions. They are
determined by a nondegenerate 2-form © and a function H (called Hamiltonian).
The form does not have to be closed but d© = v A © for some closed 1-form ~.
This condition guarantees that, at least locally, the form © can be multiplied by
a nonzero function to give a bona fide symplectic structure (such a structure is
called conformally symplectic). Examples of systems with conformally symplectic
structure include the Gaussian isokinetic dynamics and the Nosé—Hoover dynamics.
The main result in [250] claims that the Lyapunov spectrum of the corresponding
conformally Hamiltonian flow is symmetric. This recovers and generalizes results
by Benettin, Galgani, Giorgilli and Strelcyn [32], Dettmann and Morriss [69, 70],
Garrido and Galavotti [95], Dellago, Posch and Hoover [68], and Bonetto, Galavotti
and Garrido [43].

18.1. Billiards. We consider billiards in the plane which form a special class of
maps with singularities. Let @ be a compact connected subset of R? such that 0Q
consists of a finite number of curves of class C3. The billiard flow in Q is generated
by the free motion of a particle in the interior of ), with unit speed and elastic
reflections at the boundary (reflection is elastic if the angle of reflection equals the
angle of incidence). The flow acts on the unit tangent bundle S@Q but is not well-
defined in the corners of Q. It can be shown that the billiard flow preserves the
Liouville measure on SQ. We refer to [67] for more details.

Consider the set X C S@ consisting of the unit vectors in SQ at the boundary
0@ and pointing inside . The billiard map on @ is defined as the first return
map f: X — X induced by the billiard flow. Given (q,v) € X, its image f(gq,v)
is the point (¢’,v') € X, where ¢’ and v’ are the position and velocity of the
particle with initial condition (g,v) immediately after the next reflection at 9Q.
We introduce the coordinates (s, 8) for a point (¢,v) € X where s is the length of
0Q up to ¢ measured with respect to a given point in 9Q and 6 € [—x/2,7/2] is
the angle that the vector v makes with the inward normal of 9Q at ¢q. We endow
X with the Riemannian metric ds? + df?. The billiard map preserves the measure
dv = (2¢) ! cos 0dsdf where c is the length of 9Q.

The billiard map, in general, is not well-defined everywhere in X. Let Z be the
set of corners of 0Q, i.e., the points where 9Q is not of class C'', and let ¢’ # ¢ be
the first point of Q) where the particle with initial condition (g,v) € X hits 9Q.
Then f is not defined on the set

ST ={(q,v) € X : ¢ € Z or the segment qq’ is tangent to 9Q at ¢'}.

Thus, f is not defined at (gq,v) if the particle with initial condition (g,v) either
hits a corner of 9Q or reflects at 0Q with a null angle. Define R: X — X by
R(s,0) = (s,m—0) for (s,0) € X. The map f~! is not defined on the set S~ = RS™T.
One can show that the sets ST and S~ consist of a finite number of curves of class
C? that intersect only at their endpoints (see [138]). They are called respectively
the singularity sets for f and f~1. For each n > 0, the sets where f and f~" are
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not defined are respectively

St=8Tuftstu...uf st

S- =S UfSTU---UflsT.
Let

st=sH s.=J 8, and Soo = S nSL.
n>0 n>0
The points in S (respectively S ) hit a corner of dQ after a finite number of
iterations of f (respectively f~1). The points in S hit a corner of Q after a
finite number of iterations of f and after a finite number of iterations of f~!, and
thus they have orbits of finite length. Clearly, v(S;) = v(S,,) = 0 for every n > 0.
According to the former observations, there exists an integer m > 0 such that the

sets X \ ST and X \ S~ consist both of a finite number of open connected sets, say
Xfr, ., X band Xi,..., X, such that f: X;r — X, is a C? diffeomorphism for
i =1, ..., m. Therefore, the billiard map f is a map with singularities on X (in this
case S = ST). Following Katok and Strelcyn [138] we will describe a sufficiently
large class of billiards which satisfy Conditions (A1)—(AT7).

Theorem 18.3. Let f be a billiard map on Q. If 0Q is piecewise C?, has finite
length, and has a uniformly bounded curvature, then Condition (A3) holds with
respect to the measure v.

For example, any billiard whose boundary is a union of a finite number of closed
arcs and closed curves of class C? satisfies the hypotheses of Theorem 18.3.

To establish Condition (A4) we consider the class Py, k > 2 of billiards whose
boundary is a union of a finite number of intervals and strictly convex or strictly
concave C* curves.

Theorem 18.4. Let f be a billiard map of class Py, k > 2. Then the singularity
set for f is a union of a finite number of closed curves of class C*¥=1 of finite length
and of a finite number of isolated points. In particular, f satisfies Condition (A4).

We now discuss Condition (A2). Let 7 be a strictly convex smooth curve in the
plane. For each p € v, let ¢1 be the oriented tangent line to v at p (one-sided tangent
line if p is an endpoint of ), and let ¢5 be the line through p orthogonal to ¢;.
Orienting the line ¢ in a suitable way, one can assume that in a neighborhood of p,
with respect to the orthogonal coordinate system given by ¢; and /s, the curve ~
is the graph of a smooth strictly convex function (that we also denote by 7). We
consider the class IIy, &k > 2 of billiards in P, for which there exists C' > 0 such
that all strictly convex pieces of 9Q satisfy

(s —)7"(s) =v(s) +(8) o

V(s) = () = (s =t)7'(t) —
for every s # t in a neighborhood of zero (at the endpoints we consider appropriate
one-sided neighborhoods of zero). It is shown in [138] that the class II; includes
the billiards in P}, for which the following holds: for each v of class C™*2 as above,
7D (0) =0 for 2 <i <m — 1, and v™(0) # 0.
Theorem 18.5 ([138]). Any billiard map f € Iy, k > 3 satisfies Condition (A2).

It follows from Theorems 18.3-18.5 that billiard maps of class Ilg, k > 3, satisfy
Conditions (A1)-(A4). Thus, the results of the previous section apply. Particular
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cases include dispersing (Sinai’s) billiards and some semi-dispersing billiards. Recall
that a curve I' in the boundary 0Q of a billiard is dispersing, focusing, or flat if I is
respectively strictly concave outward (with respect to @), strictly convex outward,
or I' is a straight segment. We denote by I'_, I', and I'y the unions of the curves
forming 0Q) that are respectively dispersing, focusing, and flat. A billiard is called
dispersing if 'y =T'g = @, and semi-dispersing if 'y = @, I'_ # @.

We refer to the survey [52] for more details. See also the collection of surveys
in [236].

19. HYPERBOLIC ATTRACTORS WITH SINGULARITIES

In this section we consider dissipative hyperbolic dynamical systems with sin-
gularities. They possess attractors and act uniformly hyperbolic in their vicinity.
However, due to singularities the behavior of trajectories is effectively nonuniformly
hyperbolic. We call these attractors generalized hyperbolic attractors. They were
introduced by Pesin in [200]. Examples include Lorenz attractor, Lozi attractor
and Belykh attractor. We describe a construction SRB-measures for these systems.

19.1. Definitions and local properties. Let M be a smooth Riemannian man-
ifold, K C M an open bounded connected set and N C K a closed set. Let also
f: K\ N — K be a map satisfying the following conditions:
(H1) f is a C? diffeomorphism from the open set K \ N onto its image;
(H2) there exist constants C' > 0 and « > 0 such that
ldofIl < Cp(x, NT)™*, [ldzf]| < Cp(a, N¥)™ z€ K\N,

defH < Cpla, NT)™,  [|d2f7H] < Cp(a, N7)™, =z € f(K\N),
where NT = N U 9K is the singularity set for f and N~ = {y € K :
there are z € NT and 2, € K \ N* such that z, — z, f(z,) — y} is the
singularity set for f~1.

Set
Kt={ze€K: f"(z)¢ N for all n € N}
and
D= ()K"
neN

The set A = D is called the attractor. We have that
D=A\J (N
nez
and that the maps f and f~! are defined on D, with f(D) = D.
Let us fix € > 0 and set for £ > 1,

D:,é ={zeA:p(f"(2),NT)>¢"te " for n > 0},
Doy={z€A:p(f"(2),N7) > ~tem=" for n > 0},
Df=|JDZf, D!=D"nD_.

£>1
The set DY is f- and f~!-invariant and DO C D for every e. This set is an “essential

part” of the attractor and in general, may be empty. Even if it is not it may not
support any f-invariant Borel finite measure. We say that A is observable if
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(H3) for all sufficiently small ¢ the set D? supports an f-invariant Borel finite
measure.

We shall provide some conditions that ensure that A is observable. Given A C A,
write f71(A) = {z € A\ N* : f(z) € A}. We denote by U(e, N*) the open
e-neighborhood (in K) of N, by My the family of f-invariant Borel probability
measures on A and by p(z) = p(z, NT).
Proposition 19.1. The set A is observable if one of the following conditions holds:
1. there exists p € My such that (D) > 0 and [, [log ¢|dp < oo;
2. there exist C >0, q > 0 such that for any e > 0 and n € N,
v(fT"(U(e, NT)n fH*(KT))) < Ce? (19.1)
(here v is the Riemannian volume in K ).

Let us stress that Condition (19.1) is similar to Condition (A4) for conservative
systems with singularities.

Denote by C(xz,«, P) the cone at x € M (a > 0 is a real number and P is a
linear subspace of T, M), composed of all vectors v € T, M for which

= mi <a.
Z(v, P) glelgé(v,w)_a

We say that A is a generalized hyperbolic attractor if there exist C' > 0, A € (0,1),
a function «(z), and two fields of subspaces P*(z), P%(z) C T.M, dim P*(z) = q,
dimP%(z) = p—q (p = dim M) for z € K \ NT such that the cones C%(z) =
C*(z,a(z), P(z)) and C"(z) = C(z,a(z), P*(z)) satisty the following conditions:
(H4) the angle between C*®(x) and C*(z) is uniformly bounded away from zero
over x € M \ S; in particular, C*(z) N C%(x) = &;
(H5)
df (C*(z)) Cc C*(f(x)) for any = € M \ S;
df 7H(C*(x)) € C*(f (@) for any @ € f(M \ S);
(H6) for any n > 0,
|ldf™v|| > CA~™||v|| for any x € Nt v € C¥(z);
ldf ~"v|| > CA™"||v|| for any = € f*(NT),v € C*(z).
Given z € D, the subspaces
E*(z) = () df"Co(f"(2)), E“(2) =) df"C*(f (=)
n>0 n>0
satisfy
(E1) T.M = E*() & B*(2), F*(:) 1 B*(2) = {0};
(E2) the angle between E*(z) and E"(z) is uniformly bounded away from zero;
(E3) for each n > 0,

ldf" vl < CA™[Joll, v € E*(2),
ldf =" oll = CTIAT o], v € B ().
The subspaces E*(z) and E%(z) determine a uniform hyperbolic structure for f on

the set D. One can construct local stable and unstable manifolds V*(z), V¥%(z),

at every point z € D?; in fact, local stable (respectively, unstable) manifolds can

be constructed for every z € DI (respectively, for every z € D). Since f has
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singularities the “size” of local manifolds is a measurable (not continuous) function
on DY, despite the fact that the hyperbolic structure on D is uniform. The size can
deteriorate along trajectories but with subexponential rate; it is uniform over the
points in Dg,e~

To simplify our notations we drop the subscript € from in Dsi, D:Z, Dge, etc.

Proposition 19.2. V¥(z) C D~ for any z € D™.
Let A C A. Define

FA) = FLANNT), fHA) =fHA\N).
The sets f"(A) and f~"(A) for n > 1 are defined in the same way. Given z € D°
we set

W) = J v, wee) = U v e).

n>0 n>0
The set W#(z) is a smooth embedded, but possibly not connected, submanifold in
K. Tt is called the global stable manifold at z. If y € W*(z) then all images f"(y),
n > 0 are well-defined. Similar statements hold for W*(z), the global unstable
manifold at z.

For y € W#(z) denote by B*(y,r) the ball in W*(z) of radius r centered at y
(we restrict ourselves to a connected component of W#(z)). Fix r > 0 and take
y € W4(z), w € B5(y,r), n > 0 (respectively y € W*(z), w € B%(y,r), n <0). We
have

p*(f*(y), [ (w)) < Cp"p*(y, w)
and respectively,
pt(f7" (), 7 (w)) < Cup*(y, w),
where C' = C(r) > 0 is a constant, p® and p* are respectively the distances induced
by p on W?(z) and W*(z).

19.2. SRB-measures: existence and ergodic properties. We outline a con-
struction of SRB-measures for diffeomorphisms with generalized hyperbolic attrac-
tors. Denote by J“(z) the Jacobian of the map df|E%(z) at a point z € D°. Fix
0>0,z€ DY yeWuz),and n > 0, and set

Proposition 19.3. The following properties hold:
1. For any ¢ >1 and z € DY, y € W(2) there exists the limit

k(z,y) = lim k,(z,y) > 0.
Moreover, there is v} > 0 such that for any e > 0, r € (0,r}) one can find
N = N(e,r) such that for any n > N,

max max |kn(2,y) — k(z,y)| <e.
z€D yeB" (z,r)

2. The function k(z,y) is continuous on DY.
3. For any z € DY and y1, yo € W"(2),

k(2 91)6(1, y2) = K(2, 42)-
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Fix £ > 1, z € DY and let B(z,7) be a ball in K centered at z of radius r. Define
a rectangle at z by

O=T(zr) = J By,
yGB(z,r)ﬁDg

where [y, z] = V*(y)NV*(z). Consider the partition £ = £{(IT) of II(z,r) by the sets
Ce(y) = B“(ly, 2],7), y € B(z,7)NDY. This partition is continuous and measurable
with respect to any Borel measure i on A.

Fix z € D? and a rectangle IT = II(z,r) at z. Assume that p(II) > 0 and denote
by pe(y), y € B(z,7) N DY the family of conditional measures on the sets Ce(y).
We say that p is an SRB-measure if for any ¢ > 0, z € DY, and II = II(z,r) with
p(I1) >0,

dpe(y') = r(y)r([z,yl,y")dv" (y').
Here v* is the Riemannian volume on W*(z) induced by the Riemannian metric,
y € B(z,r)N DY,y € B*([z,y],r) and r(y) is the “normalizing factor”,

) = ( [ CURAL >> .

Denote by M’f the family of measures 1 € My for which pu(D°) =1 and by M the
family of SRB-measures in M’f Any p € M} is a measure with nonzero Lyapunov

exponents x'(x), ..., xP(z) and if u is ergodic the function y'(x) are constant
p-almost everywhere. We denote the corresponding values by x;, and assume that

Xp == x> 0> X > >
Fix z € DY, r > 0 and set
UO :Bu(za/r)u (70 = UO> [7’1’7, = f(U’I’Lfl)J U’I’L = ij’n\N+7

and

n—1 -1
co=1, cn= (H J“(fk(z))> :
k=0
We define measures v, on U, by
dvn(y) = cni(f"(2),y)dv* (y),n = 0,
and measures v, on A by
Un(A) =v,(ANU,),n >0 (19.2)

for each Borel set A C A.
We say that the attractor A satisfies Condition (H7) if there exist a point z € DY
and constants C > 0, t > 0, €9 > 0 such that for any 0 < € < ¢gg and n > 0,

VUVE() N f(U (e, NT))) < Ce.

If A satisfies Condition (H7) then v, (A) = vo(f~™A)) for any n > 0 and any Borel
set A C A.

Theorem 19.4 (Pesin [200]). Assume that A is a generalized hyperbolic attractor
satisfying Condition (H7). Then there exists a measure p € MY supported on DO
which satisfies Conditions 1 and 2 of Proposition 19.1.
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We outline the proof of the theorem. Let z € D° be the point mentioned in
Condition (H7) and vy the sequence of measures on A as in (19.2). Consider the
sequence of measures on A defined by

n—1
1
n=— . 19.3
fn = kE_O vk (19.3)

First, using Condition (H7), one can show that for any v > 0 there exists £y > 0
such that p, (DY) > 1 — for any n > 0 and £ > {y. It follows that some limit
measure j for the sequence of measures p, is supported on DY. Next, one can
prove that p is f-invariant and an SRB-measure on A.

From now on we assume that A is a generalized hyperbolic attractor satisfy-
ing Condition (H7) and that p € M4%, u(D%) = 1. We will describe the ergodic
properties of p.

Proposition 19.5. For u-almost every z € DO,
p“(D°NVY(2)) =1. (19.4)

Fix z € D° for which (19.4) holds and choose ¢ such that v*(D? N V%(z)) > 0.
Let W be a smooth submanifold in a small neighborhood of V*(z) of the form

W = {exp,(w, p(w)) : w e I C E“(z)},

where I is an open subset and ¢: I — E*(z) is a diffeomorphism. W has the same
dimension as V%(z) and is transverse to V*(y) for all y € Dy N V*(z). Consider
the map p: DY N V¥(z) — W where p(y) is the point of intersection of V*(y)
and W. We denote by vy the measure on W induced by the Riemannian metric
on W (considered as a submanifold of M). One can prove the following result using
arguments in the proof of Theorem 10.1.

U

Proposition 19.6. The measure p,v" is absolutely continuous with respect to vyy .

Fix z € D% and for each £ > 0 set

o= U vwna

yeDINV™(z)

One can show that for p-almost every z € A and any sufficiently large ¢ > 0 we
have pu(Q(¢,2z)) > 0 and the set Q = |,z f"(Q(4, 2)) is an ergodic component
of positive measure for the map f|A. This implies the following description of the
ergodic properties of the map f|A with respect to the SRB-measure p.

Theorem 19.7 (Pesin [200]). Let u € M}. Then there exist sets A; C A, i =0, 1,
2, ... such that:
1. A:UiZOAi’ AlﬂA] :@fori;ﬁj, i,j:O, 1, 2, “eay
2. u(Ag) =0, p(A;) >0 fori>0;
3. fori>0,N; C D, f(N;) =N, fIA; is ergodic; _
4. fori >0, there exists a decomposition A; = \Jj2, A}, n; € N, where
(a) AT QAgz = for j1 # jo;
(b) fFAD) =A™ forj=1,2, ..., n;— 1, and f(A}*) = A};

(c) f"i|A} is isomorphic to a Bernoulli automorphism;
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5. the metric entropy h,(f|A) satisfies

()
mI) = [ 30 (@) duo)

where x1(x), X2(x), ..., Xu(z)(x) is the collection of positive values of the
Lyapunov exponent, counted with multiplicities;
6. there exists a partition n of A with the following properties:
(a) for p-almost every x € A the element Cy(x) of the partition n is an
open subset in W*(x);
(b) 12 1 Vi £1 = £, Ao F11 = v(W), where (W) is the mea-
surable hull of the partition of A consisting of single leaves W(x) if
x € DY and single points {z} if x € A\ D°;
(c) h(fIA,n) = hu(fIA).
Set
W) = | We(2).
z€DO0
The following is a direct consequence of Proposition 19.1 and Theorem 19.7.

Theorem 19.8 (Pesin [200]). Let u € M. Then for any set A; with i > 0 as in
Theorem 19.7 we have:
1. the Riemannian volume of W*(A;) is positive;
2. there exists A; C A such that u(A;) = p(A;) and for any z € W*9(A;) and
any continuous function @ on M there exists the limit

n—1
1 1
lim — o(fF(z :7/ wd.
Using the above results one can now describe the class of all SRB-measures on A.

Theorem 19.9 (Pesin [200]). There exists sets A, n =0, 1, 2, ... and measures
L € MT;, n=1,2, ... such that:
L A=U,soMn, An N Ay = forn#m;
2. the Riemannian volume of W*(A,) NW*(A,,) is zero for n # m, n, m > 0;
3. forn >0, A, C D, f(An) = A, un(An) = 1, and f|A,, is ergodic with
respect 10 iy ;
4. for n > 0, there exist k, > 0 and a subset A, C A, such that
(a) the sets A, = f'(A,) are pairwise disjoint fori =1, ..., k, — 1 and
A, = Ang, A= A
(b) f*|An1 is a Bernoulli automorphism with respect to ji,;
5. ifp € M?, then =3, oo Qnpin With oy >0 and - o, = 1;
6. if v is a measure on K absolutely continuous with respect to the Riemannian
volume and v, = v|W*(A,), n > 0, then

lim %Zfiyn = Hn-

To conclude let us mention a connection between SRB-measures and Condition
(HT7). Notice that any accumulation point of the sequence of measures in (19.3)
is an SRB-measure (this essentially follows from Theorem 19.4). We describe a
special property of such measures.
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Proposition 19.10. If p is the SRB-measure constructed in Theorem 19.4 then
there exists g > 0 such that for any e € (0,e9) and any n > 0,

w(U(e, NT)) < Ce, (19.5)
where C' > 0, t > 0 are constants independent of € and n.

We have seen that Condition (H7) is sufficient to prove the existence of an SRB-
measure on a generalized hyperbolic attractor. We will now show that it is “almost”
necessary.

Proposition 19.11. Let p € M% (i is an SRB-measure on A and p(D°) = 1)
satisfy (19.5) for some constants C, t, €. Then for u-almost every point z € D°

there exists €(z) > 0 such that Condition (H7) holds with respect to z and any
e € (0,e(2)).

19.3. Examples. We now consider a number of examples of maps with generalized
hyperbolic attractor when M is a two-dimensional manifold. First we formulate
some general assumptions which guarantee the validity of Properties (H3) and (H7).
Let f be a map satisfying Condition (H1) and assume that:

(G1) K = %, K', with K" to be a closed sets, int K* Nint K/ = & whenever
i F
Ti qi
0K = J Ni; u | Mj;,
j=1 j=1

where N;; and M;; are smooth curves, and

m T m  qi
i=1j=1 i=1j=1
(G2) f is continuous, and differentiable on each K, i =1, ..., m;
(G3) f possesses two families of stable and unstable cones C*(z) and C%(z2), z €

KA\UiL, 0K
(G4) the unstable cone C*(z) at z depends continuously on z € K® and there
exists a > 0 such that for any z € N;; \ ON;;, v € C%(2), and any vector w
tangent to IN;; we have Z(v,w) > a;
(G5) there exists 7 > 0 such that f*(N)NN =@, k=0, ..., 7 and a” > 2 where
a= inf inf ||d,fv] > 1.
z€EK\N veCU(z)
Theorem 19.12 (Pesin [200]). If f satisfies Conditions (H1) and (G1)-(G5), then
it also satisfies Condition (H7) for any z € D° and (19.1) (in particular, f satisfies
Condition (H3)).

Assume now that f satisfies Conditions (H1)-(H2), (G1)—(G2), (G4), and (in-
stead of (G3) and (G5)) the following holds:
(G3) p(fH(N),n) > Aexp(—k), k=1,2, ...,
where A > 0 is a constant and « > 0 is sufficiently small (when compared with \;
in particular, f*(N)NN =@, k=1, 2, ...). Then f satisfies Condition (H7) for
any z € D% and Condition (H3).

We now describe some particular two-dimensional maps with generalized hyper-
bolic attractors.
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Lorenz type attractors. Let I = (—1,1) and K =TI x I. Let also —1 =ag < a1 <
s <ag < age1 = 1. Set

Pi =1x (ai,ai+1),i = O,. ..q, {=1x {ao,al,...,aq,aq+1}.
Let T: K \ £ — K be an injective map,
T(z,y) = (f(z,9).9(z,y)), =zy€l, (19.6)

where the functions f and g satisfy the following conditions:
(L1) f and g are continuous on P; and

lim f(z,y)=f, lim g(z,y) =g,
y/aif( y) = f; y/al_g( y) =9;

lim f(z,y) = fi", lim g(z,y) =g,
Y\

y\ai
where fii and gii do not depend on z, i =1, 2, ..., q;
(L2) f and g have continuous second derivatives on P; and if (z,y) € P;, i = 1,
... @, then

df (z,y) = Bj(y — a;) ™"
dg(z,y) = Ci(y —a;)™"

whenever y — a; < v, and
_,8
df(z,y) = B (aip1 —y) " (1 4+ A7 (2,y))
4
dg(z,y) = C(aiy1 —y) ™" (1+ D} (z,y))
whenever a; 11 —y < 7, where v > 0 is sufficiently small, B}, B?, C}, C?

3
are some positive constants, 0 < v}, v2, 13, v} < 1, and Al(z,y), A?(x,y),
D}(z,y), D?(x,y) are continuous functions, which tend to zero when y —
a; or y — a;y1 uniformly over z; furthermore, the norms of the second
derivatives || fuz ||, || faylls |92y ], and [|gzz| are bounded;

(L3) we have the inequalities

If:0l <1 llgy 'l <1,

L= llgy - 1l > 24/1lgs - Nlgll - g,

gy I llgall < (1 = [1£2ID @ = llgy )
where [|-[| = max;—o,... ¢ SUP(, y)cp,
The class of maps satisfying (L1)—(L3) was introduced in [2]. It includes the

famous geometric model of the Lorenz attractor. The latter can be described as
follows.

Theorem 19.13. Assume that { =1 x {0}, K =Ix1I, and thatT: \{ — K is a
map of the form (19.6) where the functions f and g are given by

f(z,y) = (=Bly|” + Brsgny|y|” + 1) sgny,

g(z,y) = (1 + A)ly["* — A) sgny.

If0<A<1,0<B<1/2,v>1 and 1/1+ A) < vy < 1, then T satisfies
Conditions (L1)-(L3).

The class of maps introduced above is somewhat representative.
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Theorem 19.14. On an arbitrary smooth compact Riemannian manifold of di-
mension at least 3 there exists a vector field X having the following property: there
is a smooth submanifold S such that the first-return map T induced on S by the
flow of X satisfies Conditions (L1)-(L3).

We now describe the ergodic and topological properties of the maps with Lorenz
type attractors.

Theorem 19.15 (Pesin [200]). The following properties hold:

1. A map T satisfying (L1)-(L3) also satisfies Conditions (H1), (H2) and the
attractor A for T is an observable generalized hyperbolic attractor; the stable
(unstable) cone at each point z € K is the set of vectors having angle at most
/6 with the horizontal (vertical) line.

2. The stable lamination W* can be extended to a continuous C-foliation in K.

3. Assume that one of the following condition holds:

(@) v/ =0,i=1,...,¢,j=1,2,3,4;

(b) p(T”(fii,gii),[) > Ciexp(—yn) foranyn >0,i=1, ..., q (C; >0
are constants independent of n; v is sufficiently small).

Then T satisfies Conditions (G1)—(G5) (as well as (G1), (G2), (G3’), and

(G4)). In particular, it satisfies Condition (H7) for any z € D° and (19.1).

The existence of an SRB-measure for the classical geometric model of Lorenz
attractor (when K is a square, and £ consists of a single interval) was shown in [51].
The proof uses Markov partitions. If the stable foliation W* is smooth (it takes
place, for example, when g does not depend on z) the existence of an SRB-measure
follows from a well-known result in the theory of one-dimensional maps (one can
show that A is isomorphic to the inverse limit of a one-dimensional piecewise ex-
panding map for which (a;,a;41), 7 =0, ..., ¢ are intervals of monotonicity; see [2]
for details and references).

We now give an example of Lorenz type attractor for which the discontinuity set
consists of countable number of intervals and the corresponding map has countable
number of components of topological transitivity. Consider a one-dimensional map
9(y), y € [0,1] given by

1 2 o1 2n+1
9(y) = {n+2 + 71y if 57 <y< 2(::-5-1)
2n+41 1 e 2n+1 1
snat) T amin ¥ sy SY <,
forn =1, 2, 3, .... One can show that there exists a function f(x,y) such that

the map T'(z,y) = (f(x,y), g(y)) satisfies Conditions (L1)-(L3). However, each set
ANTx[1/(n+1),1/n] is a component of topological transitivity for T

Lozi type attractors. Let ¢ >0, I = (0,¢), K=IxI,and0=ag < a1 <--- <
ag < agy1 =c. Set £ ={ag,a1,...,aq,aq4+1} X I and let T: K — K be an injective
continuous map

T(z,y) = (f(z,9),9(x,9), zyel
satisfying the following conditions:
Lozl. T|(K \ ¢) is a C?-diffeomorphism and the second derivatives of the maps T
and T~! are bounded from above;
Loz2. Jac(T) < 1;
Loz3. inf{(|5| = [551) = (152 + 152D} = 0;

ox
Lozd. inf{| 5L — L[} & u > 1;

X
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Loz. sup{(|5| + 52D /(155 = 155)%}y < 1;
Loz6. there exists N > 0 such that TFU)NL =2 for 1 <k <N and u?V > 2.

This class of maps was introduced by Young in [256]. It includes the map
T(x,y) = (1+ by — alz|, ) (19.7)

which is obtained from the well-known Lozi map by a change of coordinates (see
[159]). It is easy to verify that there exist open intervals of a and b such that (19.7)
takes some square [0, ] x [0, ¢] into itself and satisfies Loz1-Loz6.

Theorem 19.16 (Pesin [200]). The following properties hold:

1. A map T satisfying Loz1-Loz6 also satisfies Conditions (H1), (G1)-(G5),
and the attractor A for T is an observable generalized hyperbolic attractor;
the stable (respectively unstable) cone at each point z € K has a vertical
(respectively horizontal) line as the center line. This map also satisfies Con-
dition (H7) for any z € D° and (19.1).

2. The stable lamination W* can be extended to a continuous CV-foliation in K.

Belykh type attractors. Let [ = [—-1,1], K =1 x I, and £ = {(z,y) : y = kx}.
Consider the map

M=) 4+ 1Ly —1)+1) fory>ka
T y)_{(ul(m+1)—l,u2(y+1)—1) fory < kx

In the case Ay = p1, Aa = o this map was introduced by Belykh in [28] and was
the simplest model in the so-called phase synchronization theory.

Theorem 19.17. The following properties hold:
1. Assume that

1 1
O<>\1< O0<m <z, 1< A< k| < 1.

2 2
2’ 1— [k’ 1— [k’
Then T is a map from K\ £ into K satisfying Conditions (H1), (G1)-(G4),
and the attractor A for T is a generalized hyperbolic attractor (the stable and
unstable one-dimensional subspaces at each point z € D are respectively
horizontal and wvertical lines; the stable and unstable cones at each point
z € K are the set of vectors having angle at most w/4 with the horizontal or
vertical lines).
2. If \a > 2 and Ay > 2, then T satisfies Condition (G5), and hence, Condition
(H7) for any z € D° and (19.1).

1< pg <

APPENDIX A. DECAY OF CORRELATIONS, BY OMRI SARIG

A.1. Introduction. One way of saying that a probability preserving transforma-
tion (X, B, m,T) has unpredictable dynamics is to claim that the results of a ‘mea-
surement at time zero’ f(x) and a ‘measurement at time n’ g(T™x) are correlated
very weakly for large n. The correlation coefficient of two random variables f1, fo

is defined to be % where Couv(f1, f2) := [ fifo — [ f1 [ fo- This suggests

the following definition:

Definition 1. A probability preserving transformation (X,B,m,T) is called
strongly mixing if for every f,g € L?, Cov(f,goT™) := [ fgoT"— [ f [ g —— 0.
n—oo
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It is natural to ask for the speed of convergence (the faster it is the less pre-
dictable the system seems to be). Unfortunately, without extra assumptions, the
convergence can be arbitrarily slow: For all sequences &, | 0 and all 0 # g € L? s.t.
[g=0,3f € L? with Cov(f,goT") # O(g,,).?

We will therefore refine the question stated above and ask: How fast does
Cov(f,goT™) — 0 for f,g in a given collection of functions L C L?? The collection
L varies from problem to problem. In practice, the challenge often reduces to the
problem of identifying a class of functions £ which is large enough to generate B,
but small enough to admit analysis.

We discuss this problem below. The literature on this subject is vast, and cannot
be covered in an appendix of this size. We will therefore focus on the methods used
to attack the problem, rather than their actual application (which is almost always
highly non-trivial, but also frequently very technical). The reader is referred to
Baladi’s book [17] for a more detailed account and a more complete bibliography.

In what follows, (X, B, m,T) is a probability preserving transformation, and L is
a collection of square integrable functions. We assume for simplicity that T is non—
invertible (the methods we describe below can be applied in invertible situations,
but are easier to understand in the non-invertible setting). A key concept is:

Definition 2. The transfer operator (or dual operator, or Frobenius—Perron op-
erator) of T is T : L* — L' where Tf is the unique L' —function s.t.:

Vg e L™, /g-ff:/goT~f.

The definition of T is tailored to make the following statement correct: If duy = fdm,
then dpoT ! = =T fdm. Thus T is the action of T on density functions.

It is easy to check that T is a positive operator, a contraction (i.e. ||Tf|| 1 <|Ifllh)
and that ||Tf||1 = ||fH1 for all f > 0. The T—invariance of m implies that 71 = 1.
The relation between T' and Cov(f,goT™) is the following identity:

C’ov(f,goT”):/ T” /f (A1)

We see that the asymptotic behavior of Cov(f,goT"™) can be studied by analyzing
the asymptotic behavior of T™ as n — oo. This is the viewpoint we adopt here.

A.2. Spectral gap and exponential decay of correlations. Suppose L is a
Banach space of square integrable functions s.t. 1 € £, T(£) C £, and |||z > [|-|1.
We already mentioned that 1 is an eigenvalue of T. The operator Pf := [ fisa
projection onto 1ts eigenspace.

We say that 7" has a spectral gap in £, if the spectrum of T — P € Hom(L, L)
is a proper subset of the open unit disc, or equivalently, if the L—spectral radius of
T - P, which we denote by p,, is strictly less than one.

To see the connection with decay of correlations, note that " —P= (f - P)",
because TP = PT and P? = P. Therefore, if p; < A <1, f € £L and g € L™,

then [Cov(f, g0 T)| < [ |o(T ~ P)"f| < gl |(T ~ PY"flle = OO ]Lcllg e
Thus, a spectral gap in £ implies exponential decay of correlations in L.

801:herwise7 the functionals ¢y, (f) := é J fgoT™ are pointwise bounded on L2, whence by
the Banach—Steinhaus theorem uniformly bounded. But ||¢n|| = é”g“g — oo. (Y. Shalom)
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The question arises how to find a space £ such that T:L— L hasa spectral
gap. We discuss two general methods. The first establishes a spectral gap directly,
and the second indirectly.

A.2.1. Double norm inequalities. Consider the action of T" on mass distributions
fdm. If T is very chaotic, then its action will tend to flatten the mountains of fdm
and to fill-up its crevices. After many iterations, the irregularity of the original
mass distribution disappears, and the shape of " fdm = (fdm) o T™" depends
only on the size (total mass) of fdm, and not on its shape.

It is a deep insight of Doeblin & Fortet [71] that this phenomena is captured
by the following double norm inequality, and that this inequality can be used to
establish a spectral gap:

IT"flle < 6" flc + M flle  (n€N).

Here || - ||z measures regularity (Lipschitz, BV, etc.), || - ||c measures size (L>, L!,
etc.), and 0 < 6 < 1, M > 0 are independent of n. We present the functional-
analytic machinery in the form given by Ionescu-Tulcea & Marinescu [122] (see
Hennion [107] for refinements):

Theorem A.1 (Doeblin & Fortet, Ionescu-Tulcea & Marinescu). Let C O L be two
Banach spaces such that L-bounded sets are precompact in C, and such that

Ty, € Lysup |||z < 00, [|[2n —2llc = 0= € L, and ||z|z < sup ||z, c.
Let S be a bounded linear operator on L. If AM,H >0,0< 0 <1 s.t. forallz € L

sup [|S"zlle < Hlz||z and |||z < 0||z|c + M||z|c,
n>1

then S =35""  X\iPi+N wherep < oo, P? = P,, ,P; =0 (i # j), PN = NP, =0,
dimIm(P;) < oo, and ||[N™|| = O(k™) for some 0 < k < 1.

In other words, the theorem gives sufficient conditions for the L—spectrum of
S to consist of a compact subset of the open unit disc, and a finite number of
eigenvalues \; with finite multiplicity. The assumptions of the theorem clearly also
imply that |A\;| < 1 for all 4.

It follows that if S has no eigenvalues of modulus one other than a simple eigen-
value A = 1, then S has a spectral gap. This is always the case for the transfer opera-
tor as soon as £ C L' and (X, B,m,T) is exact (i.e. (—; T "B = {@, X} modm).
Indeed, a theorem of M. Lin [163] says that for exact systems Hf”le — 0 for
all f € L' with integral zero, so there can be no non-constant L'-eigenfunctions
with eigenvalue A such that || = 1.

The key step in applying the double—norm method is the choice of Banach spaces
L and C: It is here that the specifics of the dynamics enter the picture. We indicate
some typical choices (our list is by no means complete).

Maps with Markov partitions can be studied in terms of their symbolic dynamics
using the sup norm for ‘size’ and the (symbolic) Hélder norm for ‘regularity’ (see
Ruelle [213], Bowen [46] for finite partitions, and Aaronson & Denker [1] for infinite
partitions). The resulting spaces depend on the Markov partition, and they there-
fore change when the map is perturbed. This makes the study of some stability
questions difficult. In the case of Anosov diffeomorphisms, there is an alternative
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choice of Banach spaces due to Gouézel & Liverani [100] and Blank, Keller & Liv-
erani [34] which avoids symbolic dynamics, and is thus better suited to the study
of such issues.

Without Markov partitions, it is not reasonable to expect the transfer operator to
preserve Holder continuity, and a different choice for £ is needed. In one dimensional
systems, one can sometime use the choice £ = BV, C = L', see Lasota & Yorke
[153], Rychlik [220], Hofbauer & Keller [114], Baladi & Keller [18], Keller [139], and
Baladi [17] and references therein.

The multi-dimensional non-Markovian expanding case is more intricate, because
of the absence of a canonical BV norm, and because of the difficulty in controlling
the propagation of singularities in high iterates. Various generalizations of the BV
norm have been suggested in this context, see Saussol [224] and Buzzi & Keller [56],
and references therein.

Skew—products, i.e. maps of the form (x,&) — (T'z, fz(§)), can also be treated
using double norm inequalities, at least when the transfer operator of T' is well-
behaved. Additional conditions are required, however, to guarantee mixing: it is
possible for the transfer operator of the skew product to have non-trivial eigenvalues
of modulus one, even when 7T is mixing. We refer the reader to the works by
Kowalski [149], Dolgopyat [76], Parry and Pollicott [192], Field, Melbourne & Torsk
[88], and references therein.

A.2.2. Cones. This method is to find a cone of functions C' such that T(C) C C.
If f(C) is sufficiently ‘small’ in C, then span{f" f} converges exponentially fast
to span{1} (the precise statements follow shortly). This convergence can then be
used to derive a spectral gap on a suitable space, or to prove exponential decay of
correlations in C' directly.

We present the necessary machinery due to G. Birkhoff [33], and introduced to
the study of decay of correlations by Liverani [165] (see also Ferrero & Schmitt [87]
and Bakhtin [15, 16]).

A subset C of a normed vector space V is a cone, if f e CA>0=\feC. A
cone is called proper it CN —C = @, convez if f,g € C = f+ g € C, and closed if
C U {0} is closed. Hilbert’s projective metric is the following pseudo-metric on C:

- inf{p >0:9 =< puf}uU{0}
Of»g) = log (sup{A >0:Af < g}U{oo)

),Wherefjgégfeo.

Alternatively, ©(f, g) = log % where o, 3* are the best constants in the inequality
o*f < g < f*f. Observe that ©(af, Bg) = O(f,g) for all o, 3 > 0: © measures the
distance between the directions generated by f, g, not between f,g themselves.

Theorem A.2 (G. Birkhoff). Let C be a closed convex proper cone inside a normed
vector space (V.|| - 1), and let S : V — V be a linear operator such that S(C) C C.
If A :=sup{O(Sf,Sg): f,g € C} < 00, then S contracts © uniformly:

O(5,59) < tanh(3)0(f0)  (f.9€C). (A2)

In particular, if we can find a closed convex proper cone C' C L' which contains the
constants and for which f(C) C C and A < oo, then the iteration of (A.2) gives
for every f € L1, @(f“ﬂ Pf)= @(f”f, f"Pf) < tanh”fl(%)A, and this tends to
zero exponentially. (Recall that Pf = [ f.) We see that the ©—distance between
the rays determined by " f and Pf tends to zero geometrically.



SMOOTH ERGODIC THEORY AND NONUNIFORMLY HYPERBOLIC DYNAMICS 155

The next step is to estimate the L'-distance between g fand Pf. In general,
this step depends on the cone in a non-canonical way, and cannot be described
in a general terms. If we add the assumption that all functions in C' are non-
negative and that f,g € C, f £ g € C = || f|l1 > |lgll1, then the situation simplifies
considerably, because in this case (see e.g. [165]),

’ f g
Iflle Ngl
Since |T"f|ly = |Iflli = ||Pf]; whenever f > 0, we see that for all f € C,

17 = Pl = Il | e — 1 |, < @I H TP —1yj£ll = OGSl

<P 1 (f,ge ).
1

1T fllx -
with p = tanh £. It now follows from (A.1) that [Cov(f, goT™)| = O(p™)||fll1 |9/l
uniformly for f € C,g € L°° and we proved exponential decay of correlations.

The assumption f,g € C,f g € C = ||fll1 > |lg|1 is not satisfied in many
dynamical situations of interest. In these cases other relations between the Banach
distance and Hilbert distance occur, depending on the type of the cone that is used.
We refer the reader to [165] for methods which handle this difficulty.

Finally, we mention that Birkhoff’s inequality can be generalized for operators
mapping one cone to another cone (see Liverani [165], Theorem 1.1). This is im-
portant in non-uniformly expanding situations, where one is forced to consider a
chain of cones T(C;) € Cy41, see Maume-Deschampes [180] for examples.

A.2.3. Decay of correlations for flows. We now turn from discrete time to contin-
uous time.

Let 04 : X — X be a strongly mixing probability preserving semi-flow on
(X,B,m,T). The decay of correlations of o; is captured by the asymptotic be-
havior as t — oo of the correlation function:®

p(t) :=/f-gootdu—/fdu/gdu (t>0).

In order to keep the exposition as simple as possible, we assume that the semi-
flow is given as a suspension over a map T : ¥ — ¥ with roof function r : ¥ — R*:

X={(z,§) e ExR:0<&<r(x)},
oy(x,§) = (x,£ + t) with the identifications (z,&) ~ (T, £ — r(z)),

1
Am(a,) = 0 )
The reader may want to think of ¥ ~ ¥ x {0} as of a Poincaré section for the
(semi)flow with section map T : ¥ — X, and first return time function r : ¥ — R.
This is the standard way to obtain such a representation.

The main difficulty in continuous time is that the decay of correlations of o
depends in a subtle way on the properties of r : ¥ — Ry and T : ¥ — ¥ as a pair.
There are examples of Ruelle [217] and Pollicott [205] which show that o; may
not have exponential decay of correlations, even when T : 3 — ¥ does. In fact,
they exhibit (strongly mixing) suspensions over the same section map which have
exponential decay of correlations with one roof function, but not with another. In
the other direction, there are examples by Kocergin [148] and Khanin & Sinai [140]

9This is a standard abuse of terminology: p(t) is the covariance, not the correlation.
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of mixing suspension flows built over non-mixing base transformations (see Fayad
[86] for the decay of correlations for examples of this type).

It is only recently that Chernov [62] has identified the properties of T' and r which
are responsible for super-polynomial mixing for Anosov flows, and that Dolgopyat
[72] has shown how to use these properties to show that the rate of mixing is in
fact exponential for smooth observables, thus settling a problem that has remained
open since the early days of hyperbolic dynamics.

Ruelle [217] and Pollicott [205, 206] suggested to study p(t) as ¢ — oo by con-
sidering the analytic properties of its Fourier transform

P i= [ Ol (Ot = [
—00 0

and then appealing to a suitable Tauberian theorem, for example ([231], IX.14):
Proposition A.3. If p(s) extends analytically to a strip {s =x+iy : |y| < e} and

the functions R 3 z +— p(x + iy) (Jy| < €) are absolutely integrable, with uniformly
bounded L' -norm, then |p(t)| = O(e=%t) for every 0 < g¢ < €.

To apply this method, we must first find an analytic extension of p to some hori-
zontal strip, and then control the growth of this extension.
The starting point is a formula for p(s) in terms of the transfer operator T'

of T. To obtain such a formula we break [;°dt into Or(x)_f + 1 :"’(;1)(_32_5

in accordance to the times ¢t when the flow ‘hits the roof’ (here and throughout

n—1 () — .
rn =y roT¥). Setting E(s) := [ fOT(l) Se~istfg o gydtdm, and
k=0

~

r(x) ) r(z)
Fula) = / % . €)dE, Gulx) = / €% gz, €)dE,

and assuming f, g both have integral zero and [ rdu = 1, we obtain

E(s) + i /E ™ (eisr”ﬁ) gsdp
n=1

E(s) + Z /Z T (f,)gsdp, where T, is defined by T, : F — T(¢**"F).

n=1

pls)

The point of this representation is that, as long as r is bounded, s — fs has
an obvious extension to s € C. When 7T has a spectral gap, one can study the
analyticity of this extension using the analytic perturbation theory of bounded
linear operators (Pollicott [206]). The term E(s) is of no importance, because it is
an entire function of s.

The integrability conditions of proposition A.3 turn out to be more delicate.
The problem is to control the infinite sum; the term E(s) can be handled in a
standard way under some reasonable assumptions on g. This sum is majorized by
Il Fslloo l1sl 2 Yot |77l so is natural to try to bound Yot 77| in some strip
S ={s=a+iy: |yl < e}, at least for |z| large. This amounts to considering
expressions of the form

fs"F = T (e eV F) (s=x+iyes)
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and showing that the cancellation effect of €*™ is powerful enough to make ff
small. It is at this point that the counterexamples of Ruelle and Pollicott we
mentioned before behave badly, and where additional structure is required.

In the case of Anosov flows, Dolgopyat was able to carry out the estimate using
Chernov’s ‘axiom of uniform non-integrability’!?. We present his result in a special
case, where this axiom is satisfied, and in a weaker form than that used in his paper.
The reader is referred to [72] for more general statements.

Theorem A.4 (D. Dolgopyat). Let gt be a geodesic flow on the unit tangent bundle
of a smooth, compact, negatively curved surface M. There exist a Poincaré section
¥, a Banach space L, and an e > 0 s.t. Y ”fan = O(|Re(s)|®) for some
O<a<landals€{s=x+iy: |yl <e} with [Re(s)| large.

We get [0(s)| < |E(s)+[ fslloc1Gsllc 3onzy T3] = [E(s) [+ fslloo 135 [ cO(IRe(s)[*).

Under certain smoothness assumptions on f, g, || fslloos1Gsllz, |E(s)| can be
shown to decay fast enough so that the integrability conditions of proposition A.3
hold. Exponential decay of correlations follows.

We end this section by mentioning the works of Pollicott [206] and Baladi &
Vallée [19] for versions of Dolgopyat’s estimate for semi-flows over piecewise ex-
panding maps of the interval, Dolgopyat’s study of exponential and rapid mixing
for generic hyperbolic flows [73, 75], the paper by Stoyanov [235] for the case of open
billiard flows, and the recent paper by Liverani [166] for an extension of Dolgopyat’s
work to contact Anosov flows.

A.3. No spectral gap and sub-exponential decay of correlations. There are
examples (typically non-uniformly hyperbolic systems) where the decay of correla-
tions is slower than exponential. Obviously, the transfer operator for these examples
cannot have a spectral gap. We discuss two methods which can be used in this case.

Both methods rely on Kakutani’s induced transformation construction, which
we now review. Let (X, B, m,T) be a probability preserving transformation and fix
A € B with m(A) # 0. By Poincaré’s Recurrence Theorem,

palx) :=1a(x)inf{n >1:T"z € A}

is finite a.e., so Ty : A — A given by Ty(z) = T%4®) () is well-defined almost
everywhere. The map T4 is called the induced transformation on A. It is known
that if T' preserves m, then T4 preserves the measure my(E) := m(E|A).

Observe that one iteration of T4 corresponds to several iterations of T', so T4
is more ‘chaotic’ than T. As a result, Ta averages densities much faster than f,
and it is natural to expect it to behave better as an operator. The first method we
describe applies when fA has better spectral properties than T. The second applies
when it has better distortion properties.

A.3.1. Renewal Theory. This is a method for determining the asymptotic behavior

of T when T has no spectral gap but fA does. Define the following operators on
LY(A) = {f € L' : f is zero outside A}:

Tnf = 1Afn(f1A) and Rnf = 1Afn(f1[¢A=n]).

1O‘Non-integrability7 here refers to foliations, not functions.
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Now form the generating functions T'(z) := I +3_, 5, 2" Ty, R(2) =, 5, 2" Ry
Note that R(1) = Ty. The renewal equation is the following identity [223]:

T(z)= (I-R(z)" (|2 <1).

The left/\hand side contains information on 7T, which are almost the same as "
(T.f =T"f on A whenever f € L'(A)), whereas the right hand side involves R(z)
which is a (singular) perturbation of R(1) = Ty.

The spectral gap of R(1), if it exists, allows us to analyze R(z) using perturbation
theory. The analytic problem we are facing is how to translate information on
R(z) to information on T'(z). If R(z) were an ordinary power series with non-
negative coefficients, this problem would be covered by classical renewal theory.
The following result [223] is an operator theoretic version of parts of this theory.
In what follows, D ={z € C: |z| < 1}:

Theorem A.5 (O. Sarig). Let T, be bounded linear operators on a Banach space L
such that T(z) = 1+, <, 2" T, converges in Hom(L, L) for every z € D. Assume
that: -
1. Renewal Equation: for every z € D, T(z) = (I — R(2))~! where R(z) =
Yot 2Ry, Ry € Hom(L, L) and Y ||R, | < oo.
2. Spectral Gap: the spectrum of R(1) consists of an isolated simple eigen-
value at 1 and a compact subset of D.
3. Aperiodicity: the spectral radius of R(z) is strictly less than one for all
ze D)\ {1}.
Let P be the eigenprojection of R(1) at 1. If Y, ., | Rkl = O(1/n®) for some B > 2
and PR'(1)P # 0, then for alln

1 1 o
T,=—-P+— Y Pi+E,
H w k=n-+1
where p is given by PR'(1)P = pP, P, = >, PR,P, and E, € Hom(L, L)
satisfy || Eall = O(1/nl%).

Gouézel has relaxed some of the conditions of this theorem, and has shown how to
get higher order terms in this asymptotic expansion [99].

In the special case Ty, f = 14T"(f1a), Rnf = 14T"(f1;,=n)), one checks that
1= may PF = lagga Jafdm, Puf = Lagrge Yespmlea > 4 [, fdm. The
theorem then implies that if f, g are supported inside A, g € L>°, f € L, then

oI =g [f+9 Y mlpa> ) [ £+ 9Bt

k=n+1
It follows from (A.1) that if || - |1 < - ||z, then
Cov(f,goT") = ( > mlpa> k]) /f/9+0(n‘“”)-
k=n-+1

This is often enough to determine Cov(f, goT™) up to asymptotic equivalence (see
[223],[99] for examples). In particular, unlike the other methods we discuss here,
the renewal method — when applicable — yields lower bounds, not just upper bounds
for the decay of correlations.
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A.3.2. Coupling. Fix a set A, and consider two positive functions f, g such that
I/l = llglli- The coupling method for estimating ||T”f T is based on the
following heuristic: Suppose Je; > 0 such that Tf =¢e1la + fi, Tg =ecila+g

with f1, g1 positive. If 61 :=1 — l}lffll}lll and n > 1, then

Tf=Trg=T""'fr =T" ‘g1, and || filli = [lgallr = (1 = 61)[I £l
A fraction d; of the total mass was ‘coupled’ and cancelled out. We now iterate this

procedure. If this is possible, then df; > 0 and e, d; such that ffk = fr+1+erla

and | fillr = llgglls = TTizy (1 = )| fllx, where 6; = 1 — (2l For all n > N,

7" f =T gl = 17"V fx = T" " Ngnlh <
N

< TN in e+ 1T Vgnll = Inlla + lonll =2 [T = a1/l
i=1

If we start with ¢ = Pf, we get an upper bound for ||f"f — Pf]|1 which we can
then translate using (A.1) to an upper bound for Cov(f,hoT™) for all h € L*°.

The upper bound that we get depends on how much we were able to ‘couple’
away at every stage. It is a deep insight of L.-S. Young [259, 260] that this can
be done very efficiently in many important non-uniformly hyperbolic systems, if
the set A is such that the induced transformation T4 is a piecewise onto map with
uniform bounded distortion.

We describe the class of examples which can be treated this way abstractly. The
reader interested in applications to ‘real’ systems is referred to Balint & Téth [20],
Markarian [179], Chernov [63], Chernov & Young [64], Young [259] for a treat-
ment of Billiard systems; Young [260], Bruin, van Strien & Luzzatto [50], and
Holland [115] for interval maps; and Benedicks & Young [31] and Buzzi & Maume-
Deschampes [57] for some higher dimensional examples.

A L.-S. Young tower is a non-singular conservative transformation (A, B, m, F')
equipped with a generating measurable partition {A,; : i € N,/ =0,..., R, — 1}
with the following properties:

(T1) The measure of Ay ; is positive and finite for every ¢ and ¢, and m(Ag) < oo
where AQ = Lﬂizl A()J.

(T2) g.cd{R;:i=1,2,3,...} = 1.

(T3) If £+1 < Ry, then F : Ay — Agy,; is a measurable bijection, and m|a,, , , 0
F|A2,i = m|A£,i'

(T4) If £+ 1= Ry, then F: Ay; — Ay is a measurable bijection.

(T5) Let R : Ag — N be the function R|a,, = R; and set ¢ := log drn|A7|AoOFR' ®

has an a.e. version for which 3C > 0,60 € (0,1) s.t. Vi and Vx,y € Ay,

R(z)—1 R(y)—1

>0 e(Fra)— Y e(Fy)| < cor ey

k=0 k=0
where s(x,y) = min{n > 0 : (FF)"z, (FF)"y lie in distinct Ag;}.
Theorem A.6 (L.-S. Young). Suppose (A, B,m, F) is a probability preserving L.-S.

Young tower with 0 as above. Set £ := {f: A — R :sup|f(z)—f(y)|/0°@¥) < o0},
and define R(x) :=inf{n > 0: F"(z) € Ao}. For every f € L and g € L™,
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_if m[R > n] = O(n=%) for some a > 0, then |Cov(f,goT™)| = O(n=2).

2. if m[R > n] = O(pl) with 0 < pg < 1, then |Cov(f,goT™) = O(p™) for

some 0 < p < 1;
Cdifm[R >n] = O(py°) with 0 < pg < 1,0 < v9 < 1, then |Cov(f,goT")| =
O(p™") for some 0 < p<1,0 << .

We remark that if m[R > n] = n~%, then the bound in (1) was shown to be optimal
in a particular example by Hu [119] and in the general case using the methods of
the previous subsection by Sarig [223] and Gouézel [99].
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(8, g)-foliation, 88
with smooth leaves, 88

A 17
A(T',T?), 80
A, 52

At 48

Ag, 84, 114
A, 94
xT(z,v), 3
X3

X~ (z,v), 4
X; 54
d-shadowed sequence, 121
e-orbit, 121

e-pseudo-orbit, 121
7-Lipschitz map, 63
A-lemma, 72

vy, 80

m-partition, pseudo —, 93
m(y), 80

m (M), 134

Wk(?/), 78

A, 52

R (y), 83

At(t), 16
A~(t), 16
absolute continuity, 79
theorem, 80
accessibility
e-— property, 112
essential — property, 110
property, 110
accessible
manifold, 107
points, 110
admissible
(s,7)-manifold, 63
(s,7)-rectangle, 124
(s,7)-set, 63
(4, v)-manifold, 63
(u,v)-rectangle, 124
(u,y)-set, 63
asymptotic
geodesics, 134
rays, 45
asymptoticity axiom, 134
attractor, 113, 142
Belykh type —, 151
generalized hyperbolic —, 143
Hénon —, 118
hyperbolic — with singularities, 142
Lorenz type —, 149
Lozi type —, 150
Milnor —, 113
observable —, 142

INDEX

axiom
asymptoticity —, 134
uniform visibility —, 135

backward
f-regular, 50
Lyapunov — f-regular, 50
Lyapunov exponent, 42
Lyapunov exponent of a sequence of ma-
trices, 19
regular, 21, 43
regular point, 4
regularity, 20
basin of attraction, 113
basis, normal —, 21
Belykh type attractor, 151
billiard, 140
dispersing —, 142
flow, 140
map, 140
semi-dispersing —, 142
box dimension
lower —, 130
upper —, 130
Busemann, nonpositively curved space in the
sense of —, 44

C*(x), 90

C¥(z), 90

canonical metric, 15

central
direction, 109
limit theorem, 119
negative — exponents, 109
positive — exponents, 109
subspace, 48

chart
foliation coordinate —, 74
Lyapunov —, 73

closing
problem, 120
property, 120

cocycle, 24, 41
m-th power —, 26
derivative —, 46, 47
equivalence, 26
exterior power —, 27
generator, 24
induced —, 27
measurable linear —, 24
multiplicative —, 24, 41
nonuniformly completely hyperbolic —, 28
nonuniformly partially hyperbolic — in the

broad sense, 27

reduced form of a —, 37
rigid —, 26
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sub-additive —, 36

uniformly partially hyperbolic — in the broad

sense, 28
cocycles
cohomologous —, 26
equivalent —, 26
forward multiplicity for —, 30

forward upper Lyapunov exponent for —,

30
cohomology, 25
equation, 26
complete
family of cones, 56
function, 55
compliance of filtrations, 22, 42
complimentary cone, 56
cone, 54
complimentary —, 56
connected —, 58
generalized —, 56
negative —, 55
negative generalized —, 55
positive —, 55
positive generalized —, 55
standard symplectic —, 58
symplectic —, 58
cones
complete family of —, 56
eventually strict family of —, 57
invariant family of —, 57
strict family of —, 57
conformally symplectic, 140
conjugate points, 16
connected cone, 58
continuity, absolute —, 79
continuously diagonalizable, 36
convex
space, 44
uniformly — space, 44
coordinate chart, foliation —, 74
correlations, 151
decay of —, 151
exponential decay of —, 119
curvature
direction of principal —, 137
principal —, 137

curve
dispersing —, 142
flat —, 142

focusing —, 142

d f, 52
d*f, 52
decay of correlations, 119, 151
exponential —, 119
derivative cocycle, 46, 47
diffeomorphism
Lyapunov exponent of a —, 3

pseudo-Anosov —, 11

differential equation, variational —, 53

dimension
Hausdorff —, 130
information —, 130
lower box —, 130
lower information —, 130
lower pointwise —, 131
pointwise —, 128, 131
upper box —, 130
upper information —, 130
upper pointwise —, 131

direction of principal curvature, 137

disk

stable —, 116

unstable —, 116
dispersing

billiard, 142

curve, 142
dist(A, B), 50
dist(v, A), 50
distribution, 50

Holder continuous —, 50
dominated property, 106
dynamical system

with nonzero Lyapunov exponents, 52

with singularities, 138

E*(v), 16
E~(v), 16
Es(z), 52
EY(z), 52
entropy

conjecture, 126

formula, 99

local —, 127

of a partition, 130

Pesin — formula, 99
equation

linear variational —, 53

variational differential —, 53
equivalent

cocycles, 26

sequences of matrices, 20
ergodic, stably — measure, 110
ergodicity, local —, 87
essential accessibility property, 110
eventually

positive function, 36

strict family of cones, 57

strict Lyapunov function, 56
exact

dimensional measure, 131

Lyapunov exponent, 20
exponent

backward Lyapunov —, 42

forward Lyapunov —, 41, 44

Holder —, 50
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Lyapunov —, 3, 18 hyperbolic attractor, 143
Lyapunov — of a diffeomorphism, 3 pseudo-Anosov homeomorphism, 12
multiplicity of a value of a Lyapunov —, 4 geodesic, 45
value of a Lyapunov —, 3 flow, 15, 133
exponential decay of correlations, 119 regular —, 136
exterior power, 32 geodesics, asymptotic —, 134
cocycle, 27 global
i-th stable — manifold, 76
f-regular i-th unstable — manifold, 77
Lyapunov - 50 leaf, 747 88
L}/apunov backward -, 50 stable manifold, 73-75, 144
family unstable manifold, 75, 144

of invariant s-manifolds, 65 weakly stable manifold, 75

weakly unstable manifold, 75
graph

transform, 63

transform property, 72

of invariant u-manifolds, 65
filtration, 18, 19, 31, 42

of global stable manifolds, 76

of global unstable manifolds, 77

of local stable manifolds, 76

of local unstable manifolds, 77 Holder
first return map, 27 constant, 50
flat continuous distribution, 50
curve, 142 exponent, 50
strip theorem, 134 Hénon attractor, 118
flow Hausdorff dimension, 130
K-—, 95 holonomy map, 78, 80
billiard —, 140 horosphere, 135
geodesic —, 15, 133 hyperbolic
Lyapunov exponent of a —, 53 attractor with singularities, 142
measurable —, 41 generalized — attractor, 143
measure preserving —, 41 invariant measure, 6
nonuniformly hyperbolic —, 53 measure, 6, 7, 52
focal points, 16 nonuniformly — flow, 53
focusing curve, 142 nonuniformly — sequence of diffeomorphisms,
foliation, 74 62
(0,9)—, 88 nonuniformly completely — diffeomorphism,
(8, ¢)-— with smooth leaves, 88 48
coordinate chart, 74 product structure, 117
measurable —, 74 time, 111
measured —, 11 hyperbolicity, mixed —, 109
with spines, 11
nonabsolutely continuous, 82 ideal boundary, 134
stable —, 12 inclination lemma, 72
transverse, 93 induced transformation, 27
unstable —, 12 inequality
with smooth leaves, 74, 88 Margulis—Ruelle’s —, 95
formula, Pesin entropy —, 99 Ruelle’s —, 95
forward infinitesimal eventually
Lyapunov exponent, 41, 44 strict Lyapunov function, 90
Lyapunov exponent of a sequence of ma- uniform Lyapunov function, 90
trices, 18 information
regular, 20, 43, 50 dimension, 130
regular point, 4 lower — dimension, 130
regularity, 20 upper — dimension, 130
function, complete —, 55 inner product, Lyapunov —, 43, 48
invariant
Ggz, 10 family of cones, 57
G2, 9 hyperbolic — measure, 6
generalized

cone, 56 Jac(m)(y), 80
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Jacobi equation, 15

K-flow, 95

Ky (v1,v2), 16

k-dimensional Lyapunov exponent
backward —, 19

forward —, 19
K (2), 4
ki (z), 4
L(z), 80
L (x), 78
Lagrangian subspace, 91
leaf
global — 74, 88
local —, 74, 88
of foliation, 11
limit

negative — solution, 16
positive — solution, 16
linear
extension, 24, 41
variational equation, 53
Lipschitz, y-— map, 63
local
entropy, 127
ergodicity, 87
leaf, 74, 88
pointwise dimension, 131
stable manifold, 71
unstable manifold, 70, 71
weakly stable manifolds, 109
Lorenz type attractor, 149
lower
box dimension, 130
information dimension, 130
local pointwise dimension, 131
pointwise dimension, 131
Lozi type attractor, 150
Lyapunov
f-regular, 50
backward — exponent, 42
backward — exponent of a cocycle, 30
backward — exponent of a sequence of ma-
trices, 19
backward regular, 4
change of coordinates, 38
chart, 73
dynamical system with nonzero — expo-
nents, 52
eventually strict — function, 56
exact — exponent, 20
exponent, 3, 18
exponent of a diffeomorphism, 3
exponent of a flow, 53
forward f-regular point, 50
forward — exponent, 41, 44
forward — exponent of a cocycle, 30

forward — exponent of a sequence of ma-
trices, 18

forward regular point, 4

function, 57

function associated to a family of cones,
57

function for a cocycle, 55

function for an extension, 55

infinitesimal eventually strict — function,
90

infinitesimal eventually uniform — function,
90

inner product, 38, 43, 48

multiplicity of a value of a — exponent, 4

norm, 38, 43, 49

one-point — spectrum, 36

regular, 23, 32, 43

regular point, 5

regularity, 22

spectrum, 4, 18, 19, 30, 31

spectrum of a measure, 6, 52

strict — function, 56

value of a — exponent, 3, 19

m*(y), 83
manifold

accessible —, 107
admissible (s,~)-—, 63
admissible (u,~)-—, 63
global stable —, 144
global unstable —, 144

map

~-Lipschitz —, 63
billiard —, 140
holonomy —, 78, 80
nonexpanding —, 45
pseudo-Anosov —, 10
with singularities, 138

Margulis—Ruelle’s inequality, 95
Markov extension, 151
matrices

criterion of regularity for —, 22
sequence of —, 18

measurable

flow, 41
foliation, 74
vector bundle, 24

measurably conjugated, 26
measure

u-—, 115

exact dimensional —, 131
hyperbolic —, 6, 7, 52
hyperbolic invariant —, 6
natural —, 113

physical —, 113
preserving flow, 41
smooth —, 7, 83

SRB-—, 2, 7, 113, 114
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stably ergodic —, 110

transverse —, 11
measured foliation, 11

with spines, 11
metric

canonical —, 15
midpoint, 44
Milnor attractor, 113
Misiurewicz conditions, 119
mixed hyperbolicity, 109
multiplicative

cocycle, 41

ergodic theorem, 6, 31
multiplicity, 31, 42

forward — for cocycles, 30

of a value of a Lyapunov exponent, 4, 18,

19

narrow sense, nonuniformly partially hyper-
bolic diffeomorphism in the —, 47
natural measure, 113
negative
central exponents, 109
cone, 55
generalized cone, 55
limit solution, 16
rank, 55
neighborhood, regular —, 73
nonabsolutely continuous foliation, 82
nonexpanding map, 45
nonpositive curvature, 16
nonpositively curved space, 44
in the sense of Busemann, 44
nonuniformly
completely hyperbolic diffeomorphism, 48
hyperbolic flow, 53
hyperbolic sequence of diffeomorphisms,
62
partially hyperbolic diffeomorphism, 47
partially hyperbolic diffeomorphism in the
broad sense, 47
nonzero Lyapunov exponents, dynamical sys-
tem with — 52
norm, Lyapunov —, 43, 49
normal basis, 21

observable, 113

attractor, 142
one-point Lyapunov spectrum, 36
one-sided cocycle, 44

orbit
e-pseudo-—, 121
e—, 121
pseudo-—, 120

Oseledets’ decomposition, 32
Oseledets—Pesin reduction theorem, 38

pair of complementary cones, complete —, 56
parameter-exclusion techniques, 60

partially hyperbolic
nonuniformly — diffeomorphism, 47
nonuniformly — diffeomorphism in the broad
sense, 47
partition
subordinate —, 127
very weakly Bernoulli —, 94
path, us-—, 110
Pesin
entropy formula, 99
set, 29
tempering kernel, 38
physical measure, 113
point
at infinity, 134
Lyapunov backward regular —, 4
Lyapunov forward regular —, 4
Lyapunov regular —, 5
regular —, 5
singular —, 11
points
accessible —, 110
conjugate —, 16
focal —, 16
pointwise dimension, 128, 131
stable local —, 128
unstable local —, 128
positive
central exponents, 109
cone, 55
generalized cone, 55
limit solution, 16
rank, 55
principal curvature, 137
direction of —, 137
product structure, hyperbolic —, 117
prong, 11
singularity, 11
stable —, 12
unstable —, 12
property
e-accessibility —, 112
accessibility —, 110
closing —, 120
dominated —, 106
essential accessibility —, 110
shadowing —, 120
pseudo
e-—orbit, 121
m-partition, 93
pseudo-Anosov
diffeomorphism, 11
generalized — homeomorphism, 12
map, 10
pseudo-orbit, 120

Q(z), 85
Q(x), 79
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re, 71
rank, 56, 136
negative —, 55
positive —, 55
ray, 45
rectangle, 145
reduction theorem, 37
region, trapping —, 113
regular, 23, 32, 43, 44, 50
backward —, 21, 43, 50
backward — point, 4, 31
forward —, 20, 43, 50
forward — point, 4, 31
geodesic, 136
Lyapunov f-—, 50
Lyapunov —, 43
Lyapunov backward f-—, 50
Lyapunov backward — point, 4
Lyapunov forward f-—, 50
Lyapunov forward — point, 4
neighborhood, 73
point, 5
set, 29, 48
set of level ¢, 48
regularity
backward —, 20
forward —, 20
Lyapunov —, 22
return time, 27
Riemannian volume, 80
rigid cocycle, 26
Ruelle’s inequality, 95

(s,7)-rectangle, admissible —, 124

Spx(v), 52
Sp X+ (z), 4
Spx~ (), 4
Spx”, 6
Schwarzian derivative, 119
sector, 91
stable —, 12

unstable —, 12
semi-dispersing billiard, 142
semicontraction, 45
separation time, 117
sequence

nonuniformly hyperbolic — of diffeomor-

phisms, 62

of matrices, 18
sequences of matrices, equivalent —, 20
set

admissible (s,~)-—, 63

admissible (u,~)-—, 63

Pesin —, 29

regular —, 29, 48

singularity —, 138, 140, 142
shadowing

problem, 120

property, 120
singular point, 11
singularities
dynamical system with —, 138
hyperbolic attractor with —, 142
map with —, 138
singularity, 10
prong —, 11
set, 138, 140, 142
size of local stable manifold, 66
skew product, 24
smooth measure, 7, 83
space, nonpositively curved —, 44
spectral
decomposition theorem, 94
spectrum
Lyapunov —, 4, 18, 19, 30, 31
Lyapunov — of a measure, 6, 52
spine, 11
SRB-measure, 2, 7, 113, 114, 144, 145
stable
disk, 116
foliation, 12
global — manifold, 73-75, 144
local — manifold, 71
local pointwise dimension, 128
local weakly — manifold, 109
manifold theorem, 69
manifold theorem for flows, 71
prong, 12
sector, 12
strongly — subspace, 109
subspace, 17, 48, 52
stably ergodic measure, 110
standard symplectic cone, 58
strict
eventually — family of cones, 57
eventually — Lyapunov function, 56
family of cones, 57
Lyapunov function, 56
strongly
stable subspace, 109
unstable subspace, 109
sub-additive cocycle, 36
subspace
central —, 48
Lagrangian —, 91
stable —, 17, 48, 52
strongly stable —, 109
strongly unstable —, 109
unstable —, 17, 48, 52
subspaces, transverse, 50
symplectic
cone, 58
conformal —, 140
standard — cone, 58

T (w,q), 81
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tempered, 41, 43 variational
cocycle, 25 differential equation, 53
equivalence, 25 linear — equation, 53
function, 25 vector bundle, measurable —, 24
tempering kernel, 37 very weakly Bernoulli partition, 94
lemma, 41 visibility axiom, uniform —, 135
theorem volume, Riemannian —, 80

absolute continuity —, 80

flat strip —, 134 ng)v 73

multiplicative ergodic —, 6 Wuc($)’ 75

spectral decomposition —, 94 wue(z), 75 ]

stable manifold —. 69 weakly, local — stable manifolds, 109

stable manifold — for flows, 71

unstable manifold —, 70
time

hyperbolic —, 111

separation —, 117
transform, graph —, 63
transversal to family, 80
transverse

foliation, 93

measure, 11

subspaces, 50

uniformly — submanifold, 80
trapping region, 113

(u, v)-rectangle, admissible —, 124
u-measure, 115
uniform visibility axiom, 135
uniformly
convex space, 44
partially hyperbolic cocycle in the broad
sense, 28
transverse submanifold, 80
uniquely ergodic, 36
unstable
disk, 116
foliation, 12
global — manifold, 75, 144
global weakly — manifold, 75
local — manifold, 70, 71
local pointwise dimension, 128
manifold theorem, 70
prong, 12
sector, 12
strongly — subspace, 109
subspace, 17, 48, 52
upper
box dimension, 130
information dimension, 130
local pointwise dimension, 131
pointwise dimension, 131
us-path, 110

Vit (x), 4
V7 (2),4

Vi, 4
value of a Lyapunov exponent, 3, 19
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