
Submitted on May 8, 2000 to the IEEE Real-Time SystemsSymposium, Orlando, Florida, November 27{30, 2000.
Solving Embedded System Scheduling Problems usingConstraint Programming

Cecilia Ekelin and Jan JonssonDepartment of Computer EngineeringChalmers University of TechnologySE{412 96 G�oteborg, Swedenfcekelin,janjog@ce.chalmers.seMay 9, 2000
AbstractStatic scheduling of tasks in embedded distributed real-time systems often implies a tediuos iterativedesign process. The reason for this is the lack of 
exibility and expressive power in existing schedulingframeworks, which makes it di�cult to both model the system accurately and provide correct optimiza-tion guidelines in a �rst attempt. The most detrimental e�ect this has on the scheduling process is thatthe real-time tasks are over-constrained due to a careless use of rules-of-thumb.We have developed a scheduling framework based on constraint programming which attempts totackle these de�ciencies. First, the framework allows for expressing the scheduling problem in termsmuch closer to the actual system requirements. This is because of the support provided by the frameworkfor modeling constraints that are usually not handled by existing scheduling tools, for example, di�erenttypes of task allocation constraints such as clustering and proximity to resources. A second strong featureof the framework is that it supports di�erent strategies for single- and multi-objective optimization,something that is very important in the design of embedded real-time systems. An evaluation studyencompassing a set of applications with typical embedded system constraints suggests that our approachdoes in fact provide the salient features necessary.

Keywords: application constraints, real-time scheduling, system design, distributed real-timesystems, constraint programming, problem complexity, optimization techniques



ii



1 Introduction
Real-time system design is becoming increasingly dependent on 
exible scheduling frameworks to copewith the size and complexity of contemporary applications. This is most apparent in the design of em-bedded distributed real-time systems where the scheduling framework must possess two salient features,namely (a) support for a large variety of application constraints to handle scheduling of distributed tasksand dedicated resources, and (b) support for advanced optimization capabilities to concurrently accountfor system requirements on predictability, reliability, and hardware performance, as well as variousaspects of total system cost. As a basis for constructing a scheduling framework, real-time literatureproposes several scheduling algorithms that present solutions to di�erent aspects of the scheduling prob-lem. Unfortunately, most existing scheduling algorithms only solve stand-alone problems (for example,focusing only on uniprocessor systems, one type of task model, and a single optimization criterion).This makes construction of a scheduling framework particularly di�cult because there may exist a dis-crepancy between the theoretical scheduling problem and the practical aspects of the real-time systembeing designed, which gives rise to two major problems.First, there is the problem of using constraints that are as close as possible to the original systemrequirements. Since many scheduling algorithms are de�ned with \hard-coded" assumptions regardingtask and system models, it is easy to believe that it su�ces to devise constraints that �t the schedulingalgorithm. However, such an approach would modify the semantics of the original system requirements,and typically lead to the introduction of arti�cial constraints without any direct connection to theoriginal scheduling problem [1, 2]. Such design approaches are very error-prone since the ad hoc con-straint construction often leads to an over-constrained and infeasible system. This turns scheduling intoa tedious design process since the designer must suggest suitable changes in the speci�cation, imple-mentation and/or system models. Hence, instead of adapting the problem to the scheduling algorithm,the scheduling algorithm should be adapted to the problem in the sense that it should be capable ofaccounting for as many natural and implementation-based constraints as possible.Second, even if a feasible schedule is found by the scheduling framework, the suggested solution maystill be considered invalid by the system designer since requirements like cost and hardware resourcesusually cannot be accounted for in most scheduling algorithms. This makes it necessary for the designerto manually verify a schedule with respect to these requirements, and suggest suitable design changes.Hence, a scheduling framework with a notion of multi-objective optimization would shorten the process

1



cycle. Moreover, it would increase the ability for real-time system developers to provide cost-e�ectivesolutions. This is particularly useful as the trend in embedded real-time system design is moving towardsopen systems [3]. Apart from making the scheduling process more e�ective, we also believe that byusing constraints that are semantically closer to the requirements, the scheduling search space can bereduced. The rationale for this is that, when constraints are more close to the original requirements, thescheduling algorithm can operate in a more intelligent way since it has more knowledge of the problem(see, for example, recent results for branch-and-bound algorithms [4, 5]).In this paper, we propose a scheduling framework that possesses all the salient features discussedabove. While many other proposed scheduling approaches for distributed real-time systems (for example,simulated annealing or branch-and-bound) have similar features, it is well-known that they require alarge amount of �ne-tuning to perform well. In contrast, our framework is based on the concept ofconstraint programming , which means that constraints can be introduced in the framework in a 
exibleand natural way, and that the optimization features do not require tedious manual interaction.
Organization of this paper: This paper addresses how to build a scheduling framework basedon constraint programming. The rest of our presentation is organized as follows. In Section 2, wedescribe typical requirements for embedded distributed real-time systems, and recollect methods forautomated constraint derivation and scheduling of distributed systems. In Section 3, we summarizea set of constraints typically found in embedded distributed real-time system design. We present theunderlying practical motivation for these constraints, and identify problems in using the constraints withexisting scheduling algorithms. In Section 4, we present di�erent generic strategies for single- and multi-objective optimization. We demonstrate how these techniques can be applied to scheduling of embeddeddistributed real-time systems, and how di�erent strategies for constraining the scheduling problem canlead to improved scheduling performance. In Section 5, we introduce the constraint-programmingparadigm and show how it can be used for building a scheduling framework that supports all identi�edconstraints (from Section 3) as well as single- and multi-objective optimization. In Section 6, wedemonstrate the practical usefulness of the framework by performing several case studies and evaluatingdi�erent aspects of the framework's scheduling performance. Finally, in Section 7, we discuss our resultsand suggest future directions, while our �ndings are summarized in Section 8.

2



2 Background
The design of real-time systems encompasses three important phases. From the speci�cation of thesystem, it must be possible to identify the requirements on the system in terms of functionality, per-formance, and cost. Based on the system speci�cation, an implementation phase then follows whereinthe designer makes a choice of programming environment, run-time system and hardware architecture.From the choice of implementation, it is possible to identify the concrete tasks that the application isrequired to perform, and the resource that are available for its execution. Finally, the designer sched-ules the application tasks on the available resources. This is done by using a scheduling frameworkthat automates the scheduling and allocation of the task, and also veri�es that all requirements of theapplication are met. In order to do this, however, it is necessary to use models of the application tasksand the system architecture.In the scheduling phase, it is possible to identify two potential caveats in the modeling of the tasksand the architecture. First, it is necessary (for practical reasons) to abstract away some implementationdetails and replace them with quantitative measures; for example, program code stretches and processorhardware mechanisms are typically analyzed separately in order to derive a worst-case execution timeof each task. These abstractions su�er from a potential risk of being overly pessimistic since embeddedreal-time systems often contain strict timing constraints. Second, in order to convey the system require-ments to the scheduling framework, it is necessary to introduce a set of constraints that models systemrequirements into a manageable form for the scheduling algorithm. Since the scheduling framework isused to validate that the system requirements are actually met by the implementation, the methodol-ogy used for constructing constraints must be cognizant of the practical application domain as well asthe theoretical scheduling domain. In our methodology, the constraints must (a) re
ect the intendedbehaviour of the system, (b) be derived in natural way without overconstraining the system, and (c) befully supported by the scheduling framework . In the following subsections, we describe the state-of-theart in practical real-time system design with respect to these three features.
2.1 RequirementsThe system requirements for an embedded distributed real-time system can be divided into di�erentgroups which each impose a number of constraints on the scheduling problem.The functional behavior of a real-time system is determined by the tasks and resources that consti-

3



tute the system. Typical functional behavior requirements are those that control task execution orderor task allocation, that is, how a task should execute. A real-time system also have temporal behaviorrequirements in addition to the functional ones. The temporal behavior of a task depends mainly on theenvironment (sensors, actuators or other tasks) that the task interacts with, that is, when a task shouldexecute. These requirements directly a�ect the modeling of the application tasks and consequently theconstruction of the scheduling constraints.Most real-time systems are also safety-critical in the sense that a failure in a processor could becatastrophic. To avoid such failures the embedded system must often also be fault tolerant. Faulttolerance is achieved by introducing redundancy in the system, for example, using additional processorsand/or copies of tasks. Hence, it is clear that the requirement of making a system fault tolerant a�ectsthe implementation of the system, and consequently also the construction of scheduling constraints.Apart from mere software requirements, it is also a practical consideration that the developmentof embedded real-time systems is made cost-e�ective so as to allow for mass-production of the system.That is why development using o�-the-shelf hardware components has become a viable alternative inmodern designs. Other practical aspects of embedded system design encompass the introduction ofweight and power-consumption requirements. This means that cost, performance and various physicalcharacteristics of the hardware components (processors, memory and busses) need to be conveyed tothe constraint construction process.
2.2 Constraint derivation
Recent analyses [1, 2] have indicated that most constraints are artifacts of the design. This does notcome as a surprise since they are a necessary consequence of the models used for tasks, run-time systemand architecture. However, since the modeling process often has to be done manually, constraintsshould be constructed according to suitable guidelines or otherwise serious drawbacks will result. Forexample, an ad hoc constraint derivation is likely to lead to an over-constrained system which mayprevent the scheduling algorithm from �nding the best (or any) solution. On the other hand, if thesystem is too loosely constrained, �nding the optimal solution might by too computationally intractablein practice. Furthermore, the semantics of the original requirements may be lost in the process, whichfrom a practical point of view means that it will be hard to detect performance bottlenecks in the caseof a failed scheduling attempt [6].

4



System-Level Constraints

Performance Requirements

Task-Level Constraints

Modify Constraints

Scheduling

Figure 1: Constraint-derivation 
ow.
To overcome these problems, many researchers have recently proposed automated methods for con-straint derivation. An example (taken from [1]) of a design 
ow for constraint derivation is illustratedin Figure 1. As indicated in the �gure, there are basically two types of constraint derivation that can beperformed: (a) derivation of system-level end-to-end constraints from performance requirements, and(b) derivation of task-level constraints from the end-to-end constraints.The �rst type of constraint derivation means translating performance requirements, such as maxi-mum steady-state error or maximum transient overshoot, into system-level end-to-end constraints thatdescribe, for example, maximum sensor-to-actuator latency, minimum sampling periods, or maximumoutput jitter. To that end, several techniques for system-level constraint derivation have been proposedin the context of control systems (see, for example, [7, 8, 9]).The second type of constraint derivation means translating the end-to-end constraints into task-level timing and execution constraints. One of the most re�ned techniques for this type of constraintderivation is the period calibration method (PCM) proposed by Gerber, Hong and Saksena [10, 11].The PCM works in a two-stage fashion. First, task periods are derived from given end-to-end systemconstraints. Deadlines and release times are then assigned to individual tasks using the derived peri-ods1. While several other techniques exist for deriving task-level deadlines and release times (see, for1In a recent paper, Nilsson et al. [12] presented an application of PCM on an avionics control software using constraintprogramming.

5



example, [13, 14, 15, 16, 17, 18]), few techniques actually exist for deriving other types of task-levelconstraints. However, Ramamritham [19] and Abdelzaher & Shin [20] propose techniques that generatetask clustering recommendations based on heuristic analyses of inter-task communication needs andtask periods, respectively.All of these constraint derivation techniques assume a subsequent scheduling stage which means thatconstraint derivation is primarily performed with the objective of increasing the likelihood of succeedingwith the scheduling attempt. In fact, most techniques are tailored for a speci�c scheduling policy inorder to generate good results2. It should also be noted that, with few exceptions, all techniques forderivation of task-level timing constraints work under the assumption that tasks have been assigned toprocessors in advance, which clearly limits their applicability to larger distributed systems. As we willsee later in this paper, the constraint-programming paradigm does not su�er from this limitation.
2.3 Scheduling approaches
Recall that a scheduling framework for embedded system design should include a scheduling algorithmthat is capable of accounting for various types of constraints. It is also desired that the algorithm should�nd a \good" or even optimal schedule using advanced single- or multi-objective optimization strategies.Unfortunately, most scheduling algorithms proposed in the real-time research literature fail to satisfyboth of these requirements. In fact, there are very few scheduling approaches that even claim to solvethis complex problem. However, there are three scheduling approaches that do have the potential toprovide the capabilities necessary.Simulated annealing is a local search technique that has been applied to real-time allocation andscheduling by Tindell, Burns and Wellings [22]. The method attempts to minimize a so-called energyfunction which describes the quality of a schedule. The algorithm o�ers great 
exibility but since theenergy function contains both the constraints and the scheduling objective it can be troublesome tobalance these factors correctly. The stochastic nature of simulated annealing reduces the computationalcomplexity since only portions of the search space are examined but this also means that there is noguarantee that the resulting schedule is optimal.Branch-and-bound (B&B) systematically explores the search space in a tree-like fashion (branching).The search space is reduced by pruning branches in the tree that can not improve the solution found2An integrated constraint-derivation and scheduling approach is proposed in the holistic approach by Tindell et al. [21].

6



N N N

Local resources

Bus

Global resources

Figure 2: System model.
so far (bounding). For this method to be e�ective the search-tree should be subject to a lot of pruning.However, the computation of an accurate pruning rule is about as complex as solving the problem inthe �rst place. The use of B&B in the context of scheduling for distributed real-time systems have beeninvestigated by several researchers (see, for example, [23, 24, 25, 26, 4]).Constraint programming is a technique which has been used with great success to solve schedulingproblems within operations research and arti�cal intelligence. The scheduling problem is expressed asvariables and constraints which are handled by a constraint solver. The method has been shown to bepromising also for real-time scheduling by Schild and W�urtz [27]. We extend this work by consideringadditional real-time constraints and also adding support for di�erent scheduling objectives. This isdiscussed in more detail in Section 5.
3 Identi�cation of Constraints
An important issue in the design of embedded real-time systems is what task-level constraints exist forthat particular domain. In this section, we look closer at these constraints and attempt to justify thepresence of each constraint construct by examining its origin. We also discuss how constraints relate toeach other, and, based on this information, attempt to identify a minimal set of necessary constraintsto be implemented in a scheduling framework.The system model assumed in this paper (see Figure 2) has been chosen to re
ect a typical embeddedsystem. The hardware architecture consists of a number of nodes which are connected via a bus, andeach node contains one or more processors. The application includes a set of tasks that execute onthe processors and possibly communicate by message passing on the bus. Each node has a number ofresources that can be used locally by tasks at that node, or globally by all tasks in the system.

7



3.1 System constraintsSystem constraints are imposed by the selected hardware architecture of the system. How the hardwareis composed depends on functional or economical reasons, which means that the system con�guration istypically �xed. The con�guration includes information on the number of processors and other resourcesin the system (that is, a model) as well as their performance and capacities (that is, properties). Hence,the system con�guration can be expressed using model and property constraints.Processors have di�erent speed which means that the worst-case execution time of a task dependson which processor it is scheduled to execute on. Hence, in a distributed system the actual executiontime for a task has to be dynamically calculated during the scheduling. Each processor is also subjectto a context-switch cost which usually is assumed to be small enough to be neglected or, in the case ofnon-preemptive scheduling, assumed to be included in the task's worst-case execution time. However,for preemptive scheduling, where it is not known beforehand how many times a task will be preempted,this approximation is not desirable. In this case, worst-case execution time and context-switch costhave to be handled separately during scheduling.Resources other than processors have di�erent limited capacities which restrict the number of tasksthat can simultaneously access a resource. For example, a processor might have a RAM of 16 kbytes.Assume there are three tasks T1; T2 and T3 which each use 4, 8 and 12 kbytes, respectively, duringexecution. Then T1 and T2 are allowed to execute concurrently as well as T1 and T3, whereas T2 and T3are not. A special case is a critical section which can be modelled as a resource with capacity 1. Taskswhich share a particular critical section are then de�ned to require usage of 1 entity from this resourceduring their execution.The communication on the bus can be modeled using a transmission delay which re
ects the timeto transmit messages. The transmission delay ctransmit is expressed as:
ctransmit = cspeed � csize + coverhead + cdelay

where cspeed is the data rate of the bus, csize the size of a message to transmit, and coverhead and cdelayare overheads pertaining to the message queuing/retrieval and bus scheduling strategy, respectively.There are a number of bus scheduling strategies which each gives di�erent cdelay in the formula above.A linear model causes no delay since it is assumed that the message always can be delivered wheneverrequested because there is no contention from other messages. In a contention-based model (such as the
8



T

max input jitter max output jitter

release time deadline period

Figure 3: Intra-task timing constraints.
one used by Mecel's BASEMENT architecture [28]) the bus is regarded as an additional processor andthe messages as tasks be to scheduled on the bus. The delay then depends on what other messages thatsimultaneously contend for the bus. If the bus uses a time-triggered protocol, for example, DACAPO[29] or TTP [30], messages can only be sent in dedicated time slots. The delay then depends on howlong time it is to the next available time slot. In a priority-based communication protocol, such as CAN,the delay is caused by higher-priority messages being sent [31]. It is clear from this discussion that thetransmission delay for each message has to be dynamically calculated during the scheduling.3.2 Task constraintsTask constraints are the restrictions that control the timing and execution behavior of the tasks andconcern both the behavior of a single task (intra-task) as well as interaction between tasks (inter-task).3.2.1 Intra-task timing constraintsIn this group, we �nd constraints that restrict the time limits within which a single task should execute.These constraints are illustrated in Figure 3.The period determines how frequently a task should execute and is linked to how accurate the systemneeds to be in the interaction with its environment. From a pure functionality point of view it is likelythat the required period not is completely �xed, but rather is expressed as an interval (sometimes calleda separation constraint). To guarantee the responsiveness required by the system, a task is also subjectto a deadline that de�nes an upper limit on the �nish time of the task. On the other hand, a task mustnot start too soon. For example, a task might require a sensor value which is not immediately availableat the beginning of the task's period. Hence, the release time of the task also has to be constrained.Note that periods are related to both deadlines and release times in that the kth invocation of a taskmust typically be completed before invocation k+1, thus imposing deadlines and release times for each

9



T1 T2

min distance(a) Distance.
T1 T2

max distance(b) Freshness.
T1

T2

max correlation

(c) Correlation.
T1

T2

P1=5, P2=3

(d) Harmonicity.
Figure 4: Inter-task timing constraintsinvocation.Besides release time and deadline, the start and �nish times of a task can also be constrained byinput or output jitter constraints. Input jitter is the di�erence between the release time and the actualstart time of the task. Similarly, output jitter is the di�erence between the deadline and the actual�nish time of the task. The main reason to limit the amount of jitter is when a task is required toexecute at regular intervals, which is the case in control applications.As mentioned earlier, many scheduling algorithms require that deadlines and release times are de�nedfor each task in order to solve a certain scheduling problem. If only end-to-end deadlines are given forthe application, these deadlines must be split into shorter deadlines which are assigned to each task.In a similar fashion, release time constraints are typically imposed as a way to obtain mutual exclusionbetween tasks that access the same resource. However, the introduction of such forced arti�cial task-level constraints may put an unnecessary strain on the task set, and hence a�ect schedulability. Toavoid this, the semantics of mutual exclusion and end-to-end deadlines should be modeled using more
exible constraints, such as resource-usage and precedence constraints.

3.2.2 Inter-task timing constraints
This group includes constraints that express time limits within which two tasks should execute inrelation to each other (see Figure 4).Interacting tasks are subject to three types of constraints that originate from the application re-

10



quirements, namely distance constraints (due to transmission delay or input/output delays in a controlsystem), freshness constraints (due to aging of data in, for example, database applications) and cor-relation constraints (due to limits on the allowed time-skew in concurrent operations, for examplefault-tolerance voting). There is also another type of inter-task timing constraint, but which originatesfrom the implementation of the system, namely harmonicity constraints. These constraints are mainlyimposed to simplify the implementation of communicating tasks. It is desired that the period of thereceiver task is exactly divisible by the period of the sender task since this simpli�es the procedure ofidentifying received messages. Depending on the run-time scheduler used, this constraint may or maynot be needed. For example, in a priority-driven scheduler the harmonicity constraints are necessarysince the order of execution for two tasks of di�erent periodicity is not predictable. On the other hand,if a time-driven scheduler is used, it is possible to guarantee (using precedence constraints) that theorder of execution between two such tasks is always the same.3.2.3 Intra-task execution constraintsThis group includes constraints that are local to a single task and determine on what processor andwith what resources the task should execute.If a task uses a resource, the set of nodes that the task can be allocated to is automatically restrictedsince the resource must be present at the node and have enough capacity. We distinguish between thecases where the resource is always required (static) and where the resource is required only during exe-cution (dynamic). Examples of these cases are ROM and RAM, respectively. Tasks can also be directlyallocated to a certain node using locality constraints which often are implementation recommendationsmade by the designer, and less frequently given in the speci�cation. Another implementation issue iswhether all invocations of a task have to execute on the same processor (a�nity), which is most likelydesired in a distributed system because the cost of migrating the task is too high. It also has to bedecided whether tasks are allowed to interrupt each other (preemption). By allowing preemption itmight be possible to �nd schedules for designs that are otherwise infeasible.3.2.4 Inter-task execution constraintsThis group includes constraints that determine in what order, on what processor, and with what re-sources two or more tasks should execute in relation to each other.A speci�c function in the system is often modeled as a sequence of operating tasks. Hence, tasks
11



should execute in a certain order which is typically expressed by precedence constraints. In case datashould be exchanged between tasks, communication constraints are used to model a precedence con-straint as well as an amount of data to communicate3. It is worth noting that distance constraintscan actually be used to model precedence (assume a \distance" equal to 0) as well as communicationconstraints (assume a \distance" equal to a �xed transmission delay).In some distributed systems, clustering is used to assign communicating tasks onto the same nodein order to limit the cost for the communication network or to increase the schedulability. Anotherrationale for clustering is when the system has di�erent modes for which di�erent task sets are active.Now, if only a few tasks are active in one mode, it could be a good idea to save power by turning o� allnodes that do not contain any active tasks. Hence, tasks that are active in the same mode should beallocated to the same node. Such an example is the computer system of a car which operates di�erentlydepending on whether the car is turned on (driving) or o� (parked) and where the system should notconsume too much power while parked. The opposite of clustering, anti-clustering, refers to the casewhen a set of tasks cannot execute on the same node. The typical application for this constraint iswhen tasks have been replicated to achieve fault-tolerance and the replicas must be allocated to di�erentnodes.In systems where it is necessary to prevent simultaneous access to indivisible resources, such ascritical sections and I/O-devices, exclusion constraints determine whether two tasks are allowed toexecute concurrently. It should be noted that this is an arti�cial constraint, the existence of which ismerely due to the lack of support for more natural constraints (such as resource-usage constraints) inexisting scheduling algorithms.
3.3 Constraint taxonomyThe constraints and the groups they are divided into constitute a constraint taxonomy which is sum-marized in Table 1. The table shows whether a constraint is natural, implementation-based or arti�cial.Natural constraints are directly derived from the system requirements while implementation-based con-straints are imposed as a consequence of the choice of hardware architecture and run-time schedulingstrategy. Arti�cial constraints are typically a result of adapting to limitations in existing schedulingalgorithms or to control the scheduling of the tasks.3Note that the communication constraint becomes a pure precedence constraint if the tasks are located on the samenode since the transmission delay will be zero.

12



Constraint System Task OriginModel Property Timing Execution Natural Implementation Arti�cialInter Intra Inter IntraProcessors X XResources X XContext switch X XTransmission delay X XResource capacity X XExecution times X XDeadlines X X xRelease times X XPeriods X X xJitter X XDistance X XFreshness X XCorrelation X XHarmonicity X XPreemption X X xA�nity X x XLocality X X xResource usage X XPrecedence X XCommunication X XClustering X x XAnti-clustering X XExclusion X XTable 1: Constraint taxonomy showing which groups a constraint mostly (X) and sometimes (x) belongsto. We believe that the constraint taxonomy can aid the system designer in the process of modeling thescheduling problem. With knowledge of common constraint de�nitions, it becomes easier to identifyconstraints from the system requirements. Furthermore, the identi�cation becomes more exact whichmakes the model more accurate, thus increasing schedulability.
4 De�nition of Optimality
Optimization of a schedule is possible and desirable since the speci�cation does not completely determinethe system. To be able to determine whether a schedule is optimal or not, we need to identify ameasure for the quality of a schedule. This measure can involve one or more metrics which eachprovide information about the schedule's quality. We refer to these two cases as single-objective andmulti-objective optimization problems.

13



4.1 Single-objective optimizationSingle-objective optimization requires that we de�ne an object function which computes the value of aschedule. That is, if x is a feasible schedule and f is the object function, then f(x) is the value of theschedule. In this section, we describe some object functions for single-objective optimization that arerelevant in the design of embedded distributed real-time systems.A traditionally-used optimization criterion for hard real-time systems is the maximum lateness,which is the same as the shortest slack in the �nal schedule. The rationale for using lateness as theoptimization criterion is made clear by noting that the lateness will never exceed 0 for a feasible schedule.In a system with a �xed number of processors, a commonly-used optimization criterion is the loadbalance. This optimization strategy means distributing the tasks between the processors such that theyhave approximately the same amount of load4, which makes the most use of the available resources.If the hardware architecture has not been �xed, on the other hand, it could instead be importantto minimize the number of processors used in order to keep hardware costs down. To this end, thenumber of processors could be regarded as unknown and be subject to minimization. However, inreality parameters such as number of processors and other resources are not 
exible enough to allowfor optimization. Instead, an incremental approach, where various system con�gurations are manuallyevaluated, is likely to be more suitable.For distributed systems, it is sometimes also necessary to optimize with respect to communication,that is, the amount of messages sent on the network. In embedded systems, the main arguments forminimizing the time required for message passing are that a low bus utilization may (a) enable thesystem designer to use a cheaper bus with less communication bandwidth, and (b) reduce the totalamount of cabling in the system, thus reducing weight. If contention-based message scheduling is usedit is typically desired to group the messages into frames, of a certain size, which are then used totransmit the messages. The objective of such a strategy is that it will minimize the overhead associatedwith sending/receiving messages.In control systems, minimizing jitter is typically used as the optimization criterion. Note that jittercan be considered as a scheduling objective as well as a constraint. Minimizing jitter means minimizingthe drift in the task invocations.Since many embedded real-time systems are also dependable, it may be necessary to maximize the4By 'load' of a processor, we mean the sum of the task execution times on that processor.
14



reliability of the system. That is, given the failure rate of each hardware component, the probability ofa system failure is minimized.
4.2 Multi-objective optimization
Multi-objective optimization is necessary when we have several object functions which we want tooptimize at the same time. In contrast to the single-objective case, we are now confronted with theproblem of combining these functions such that a returned solution will be in line with what is consideredoptimal. We will now discuss some possible combinations.The simplest approach is to make a single-objective function which is the sum of the participatingfunctions, that is, f(x) =P fi(x). The major disadvantage with this approach is that, if the variation inthe values of the di�erent functions is large, some functions may dominate others. For example, assumef1(x) 2 [0; 2] and f2(x) 2 [0; 42]. Then, if f1(x) = 2; f2(x) = 21 we obtain f(x) = 23 which shouldbe considered to be better than the case where f1(x) = 1; f2(x) = 28 (which gives f(x) = 29) becausef1(x) is maximized for the former case. However, the latter case has a greater single-objective value(assuming maximization) and will be considered the best solution for this optimization approach. Away to overcome this disadvantage is to assign weights to the functions [37]. It can be di�cult, though,to come up with well-working weights.Another way to solve the unbalance in the summarization approach is to make sure that the valueranges of the object functions are the same [32]. This can be achieved by mapping the original valuesinto ranges of equal size, for example, [0; 100]. Our previous example would then give f1(x) = 2 !100; f2(x) = 21 ! 50; f(x) = 150 which is better than f1(x) = 1 ! 50; f2(x) = 28 ! 67; f(x) = 117.The size of the mapped range should correspond to the largest value range among the object functions.Otherwise, a (small) increase in its value might fail to increase its mapped value.If the value ranges are equal yet another approach can be taken. Instead of a sum, the combinedvalue is chosen to be the minimum of all object function values. This value is then to be maximized. Thisapproach tries to balance the function values even further since a function far away from its optimumis more likely to be increased than one that is close.It could also be argued that the optimization should be performed in priority order. That is, �rstoptimize on the most important function, and then optimize on the next second most important functionunder the assumption that value of the �rst function is maintained. This procedure is then repeated for

15



all object functions. An example where this approach may be applicable is in communication scheduling.In this case the bus utilization is �rst minimized to determine which messages should be sent. Then,these messages should be formed in as few groups as possible in order to make the transmission lessexpensive.
5 Constraint Programming Framework
Most proposed real-time scheduling algorithms are \hard-coded" with respect to the constraints, taskproperties, resources and optimization criteria they can handle. Although a speci�c method in mostcases outperforms a generic one, the former soon becomes quite complex and it becomes di�cult toinclude new features. The constraint programming approach allows constraints to be speci�ed in termscloser to the requirements. The included constraint solver then provides techniques to automaticallyperform the constraint derivation as well as the scheduling.
5.1 Introduction to constraint programmingThe problems addressed using the constraint programming paradigm are called constraint satisfactionproblems (CSP). A CSP consists of variables with associated domains and constraints between thevariables. A solution to a CSP is an assignment of values to the variables such that all constraints aresatis�ed. The programming of a CSP can be described in three steps:
(1) Declare the variables (and their domains)(2) Post the problem constraints(3) Search for a feasible or optimal solution

The constraint solver uses propagation in order to reduce the search space. That is, by consideringthe constraints the domains of the variables are narrowed by removing values that cannot be part of asolution. However, propagation alone is usually not enough to �nd a solution, but backtrack searchingis also required.The tool that we have based our framework on is SICStus Prolog [38] and its associated constraintsolver for �nite domains [39]. An interesting feature of this tool is the possibility to guide the searchalgorithm by varying the search parameters. By using suitable parameters the search time can besigni�cantly reduced. The translation of the constraints into the code format internal to the solver
16



is fairly straightforward and several examples of how constraints and applications are modeled can befound in [40].
5.2 Problem feasibility
In our case, a schedule is feasible if there exists a solution to the corresponding CSP. It is desired thata feasible schedule is found quickly. Not only from the users point of view, but also in the contextof optimization. This schedule is then used as a starting point for further re�ned attempts to �nd anoptimal solution. In order to speed up the search we aid the constraint solver by supplying heuristics.Intuitively, tasks should be balanced between the nodes in order to increase the chances of meetingtheir deadlines. However, this is not visible to the solver. Therefore, we pre-assign the tasks to di�erentnodes before the actual search begins. This assignment is undone if it turns out to make the probleminfeasible.
5.3 Problem optimality
The optimization algorithm (for minimization) used in the framework can be described as follows:
(1) Find a feasible schedule, xi(2) If a schedule is found then add the constraint f(x) < f(xi) else xi�1 is optimal(3) Increase i and go to (1)
This algorithm applies directly to single-objective optimization. For the multi-objective case theobject functions are mapped into new ones with range [0; 100] which represents percentage of theoptimal solution. We then use a combination of summarization and maximizing minimum. That is,for each function fj the inequality fj(x) � minffj(xi)g should hold as well as the inequality P fj(x) >P fj(xi). The framework also supports priority-ordered optimization which is treated as consecutivesingle-objective optimizations.Hence, once a feasible schedule is found the search is restarted but with additional constraints.These optimality constraints does not only state that a better solution is required but also prunes thesearch space due to constraint propagation.

17



Solution Loosely constrained Tightly constrainedFeasible Easy since many solutions exist Harder since propagation usually can not reducethe search space enoughOptimal Can be harder since many candidate solutions ex-ist Can be easier since the search space is smaller
Table 2: Complexity relationship (of original problem).5.4 Problem complexityThe complexity involved in �nding a feasible solution versus �nding an optimal solution to a CSPdepends on the tightness of the problem, that is, the relation between the number of solutions and thesize of the search space. The relationship is illustrated in Table 2 which was presented by Tsang in [41].We can see that, since our constraint derivation approach does not make the problem tighter thannecessary, we should be able to quickly locate of a feasible schedule. Furthermore, once a solution isfound, our optimization algorithm increasingly tightens the problem and thus continuously decreasesthe search space.

6 Performance Evaluation
To validate the quality of our approach we will now evaluate the scheduling framework using a set ofrealistic examples. This will stress both the modeling and scheduling capabilities of the framework. Tothis end we have studied the following applications:� A mobile base-station [42] which includes 3 processors and 17 tasks with precedence, communica-tion, clustering, locality and release time constraints. There is one end-to-end deadline.� A control application [16] which includes 4 processors and 22 tasks with precedence, communica-tion, clustering and locality constraints. There are 5 end-to-end deadlines.� A safety-critical application [19] which includes 3 processors and 12 tasks with communicationand anti-clustering constraints. There are 2 end-to-end deadlines.6.1 Framework setupWe con�gured the scheduling framework to model time-driven, non-preemptive task scheduling witha�nity (no migration) and contention-based message scheduling.Each application was tested for feasibility as well as for applicable aspects of optimality. For thesingle-objective optimization, we have used the objectives that were originally proposed in conjunction

18



Problem Feasible Single-objective Multi-objective Priority orderobjective result performanceBase-station 0.11/6 lateness -199 0.14/11 0.18/11 0.29/25Control 0.10/0 lateness -21 0.19/5 0.20/5 0.32/7Safety-critical 0.11/7 communication 20 2.5/1463 1.8/345 4.0/2298Table 3: Scheduling performance (secs/backtracks).with the applications, namely lateness (for the base-station and control applications) and communica-tion (for the safety-critical application). The multi-objective optimization was performed on lateness,load balance and communication. The estimated proximity to the optimum for lateness and communi-cation were given by the constraint solver, while, for load balance, we optimistically divided the tasksbetween the processors such that the maximum load was minimized. The priority-order optimizationwas performed in the following order: communication, load balance and lateness. This choice of opti-mization order is used to re
ect that, in a distributed embedded system, the communication may beconsidered to be the major bottle-neck. Once the communication has been determined, it could then beinteresting to make the best use of the available resources. Finally, lateness can be used to distinguishbetween otherwise equal solutions.The examples were scheduled using an Ultra Sparc 10 with 128 M bytes of primary memory.
6.2 Results
The scheduling results are listed in Table 3. Performance is given as x=y where x is the time in secondsand y is the number of backtracks in the constraint solver.Mainly, the number of backtracks gives information about the di�culty of the problem. The time,however, also depends on the number of constraints and variables which were created, that is, the sizeof the problem. The di�erences in the number of backtracks for an example re
ect the tightness of theproblem. For instance, the number of backtracks required to �nd an optimal solution for the controlapplication using single-objective optimization (5) is only slightly higher than for a feasible solution(0). Hence, the application constraints almost completely determine the problem which results in asmall search space. In contrast, the safety-critical application is subject to a large di�erence betweenthe number of backtracks used to �nd the feasible (7) and single-objective (1463) solutions. Hence,this problem is less constrained which results in a large search space. These observations consequentlycorroborate the relationships listed in Table 2.

19



Solution Function values Estimated proximity to optimumcommunication load balance lateness communication load balance lateness sum1 32 32 -1 46 92 10 1482 26 44 -4 56 69 40 1653 22 44 -4 63 69 40 1724 20 39 -9 66 78 90 234Table 4: Multi-objective search trace for the safety-critical example.
Strategy Slot size Backtracks Optimal resultContention - 5 -21DACAPO 1 13 -20DACAPO 2 1 -16DACAPO 5 1 no solutionTable 5: E�ects of over-constraining in the control application.Table 4 shows how the search progresses in the multi-objective optimization of the safety-criticalapplication. In the table it can be seen that in the �rst found solution, the load-balancing objective isestimated to have reached 92 percent of its optimal value while the lateness only has reached 10 percent.The constraint solver then tries to �nd a solution where all objectives have reached at least 10 percentand where the sum of the estimated proximity values is larger than the current sum (148 percent). Inthe next found solution, the lateness and the communication have increased their percentage at the costof the load balance. However, since the total sum is greater (165 percent) than before this new solutionis regarded as a better one. After four iterations optimum (of the estimated proximity) is obtaineddespite a rather low proximity of optimum for the individual functions. The main reason for this is thatthe estimation mechanisms used are too weak, something we will elaborate further on in Section 7.

6.3 Complexity comparison
To demonstrate how a problem is a�ected when additional constraints are introduced, we solve thescheduling problem for the control application using the DACAPO communication model [29]. TheDACAPO model is more restrictive than the contention-based model used so far since communicationmust now be synchronized with time slots. The DACAPO model assumes that each processor is givendedicated time slots where tasks on that processor are allowed to send messages. The time slots are of�xed size and are divided equally between the processors. It is assumed that the least common period(length of the schedule) is a multiple of the number of processors. Furthermore, the total amount of

20



transmission time for a processor should be a multiple of the size of the time slots. A message must �tinto one time slot. The slots are assigned to the four processors in a round-robin order5.As can be seen in Table 5, the use of the DACAPO model transforms the original problem intoa non-optimal (or even infeasible) one. The table also demonstrates that, for a slot size of 2, thecomplexity was reduced, while, for a slot size of 1, the complexity was increased. Whether a constraintdecreases or increases the complexity depends on its strength, that is, how much the constraint solvercan reduce the search space due to constraint propagation in relation to the number of solutions. Forexample, a DACAPO slot size of 1 probably only restricts the number of solutions, while a slot size of2 also restricts the search space as indicated in the table. A slot size of 5 seems to restrict the searchspace as well, but unfortunately also over-constrains the problem so that no solution is found at all.
7 Discussion
Constraint programming is a declarative approach where it su�ces to express what constitutes a solu-tion. The constraint solver then handles the actual search. However, this search can be signi�cantlyimproved by using knowledge about the problem as guidance. The SICStus Prolog constraint solvero�ers the possibility to supply search heuristics. So far, we have not looked much into this, but webelieve that by tailoring the search algorithm to the speci�c problem, complexity can be signi�cantlyreduced. Previous work for the B&B algorithm has shown that this is a viable approach [4, 5].A CSP can usually be modeled in many di�erent ways. How a problem is modeled a�ects thecomplexity of solving it. By remodeling or supplying redundant constraints the constraint propagationcan be more e�ective which reduces the search space. It would be interesting to see if such reformulationis possible.As can be seen in Table 4, the multi-objective optimization strategy obtains an optimal value (20)of the communication. However, the estimated proximity of the communication in the optimal solutionis only 66 percent. Since this is the lowest value among all estimated values in the fourth iteration,no solution with a lower estimated proximity value for the communication will be accepted. On theother hand, if that value had been more accurate (for example, close to 100 percent), a decrease in theestimated proximity for the communication would be tolerable if the other proximity values increased,resulting in a better solution. Hence, it would be of great value to have a tight estimation of optimum5In our test run we used the slot-order f3; 4; 1; 2g. However, other slot orders were found to produce similar results.

21



since this is essential to make our multi-objective optimization approach work well and also reduce theproblem search space. Thus, further investigation on how to obtain fast, but accurate, estimations ofthe optimal value is desired.
8 Conclusions
Scheduling of real-time tasks in an embedded distributed system is a di�cult problem since such systemsnot only have standard task-level timing constraints (such as periods and deadlines) but also have moreadvanced constraints such as locality (what processor to execute on) and clustering (what other tasksto execute with). Unfortunately, few existing scheduling algorithms are capable of accounting for suchdiverse set of constraints. Moreover, scheduling of embedded systems often requires multi-objectiveoptimization in order to simultaneously account for requirements such as schedulability, reliability,power consumption and economic cost.In this paper, we have proposed a scheduling framework based on constraint programming that iscapable of providing these features. One main advantage of the constraint programming paradigm isthat it su�ces to specify what de�nes an acceptable solution, instead of having to provide guidelines onhow to �nd it. We have argued that, by using this framework, it is easy to model relevant constraintsas well as perform single- and multi-objective optimization for embedded distributed real-time systems.To this end, the applicability of the framework was evaluated using a set of realistic applications withnon-trivial constraints.
Acknowledgments
We are grateful to Mikael Str�omberg and Jan S�oderberg at Mecel AB, G�oteborg, Sweden for supplyingvaluable information regarding embedded distributed real-time systems in the automotive industry.
References[1] M. Saksena, \Real-Time System Design: A Temporal Perspective," Proc. of IEEE CanadianConference on Electrical and Computer Engineering, Waterloo, Canada, May 1998, pp. 405{408.[2] K. Ramamritham, \Where do Time Constraints Come From and Where do They Go?," Interna-tional Journal of Database Management, vol. 7, no. 2, pp. 4{10, 1996.[3] J. A. Stankovic, \Strategic Direction in Real-Time and Embedded Systems," ACM ComputingSurveys, 50th Anniversary Issue, vol. 28, no. 4, pp. 751{763, Dec. 1996.

22



[4] J. Jonsson, \E�ective Complexity Reduction for Optimal Scheduling of Distributed Real-TimeApplications," Proc. of the IEEE Int'l Conf. on Distributed Computing Systems, Austin, Texas,May 31 {June 5, 1999, pp. 360{369.[5] I. Ahmad and Y.-K. Kwok, \Optimal and Near-Optimal Allocation of Precedence-ConstrainedTasks to Parallel Processors: Defying the High Complexity Using E�ective Search Techniques,"Proc. of the Int'l Conf. on Parallel Processing, Minneapolis, Minnesota, Aug. 10{14, 1998, pp.424{431.[6] G. Fohler, \Dynamic Timing Constraints | Relaxing Overconstraining Speci�cations of Real-Time Systems," Proc. of the IEEE Real-Time Systems Symposium { Work-in-Progress Session,San Francisco, California, Dec. 3{4, 1997, pp. 27{30.[7] M. Ryu, S. Hong, and M. Saksena, \Streamlining Real-Time Controller Design: From Perfor-mance Speci�cations to End-to-End Timing Constraints," Proc. of the IEEE Real-Time SystemsSymposium, San Francisco, California, Dec. 3{5, 1997, pp. 91{99.[8] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, \On Task Schedulability in Real-Time ControlSystems," Proc. of the IEEE Real-Time Systems Symposium, Washington, D.C., Dec. 4{6, 1996,pp. 13{21.[9] D. Seto, J. P. Lehoczky, and L. Sha, \Task Period Selection and Schedulability in Real-TimeSystems," Proc. of the IEEE Real-Time Systems Symposium, Madrid, Spain, Dec. 2{4, 1998, pp.188{198.[10] R. Gerber, S. Hong, and M. Saksena, \Guaranteeing Real-Time Requirements with Resource-Based Calibration of Periodic Processes," IEEE Trans. on Software Engineering, vol. 21, no. 7,pp. 579{592, July 1995.[11] M. Saksena and S. Hong, \Resource Conscious Design of Distributed Real-Time Systems: An End-to-End Approach," Proc. of the IEEE Int'l Conf. on Engineering of Complex Computer Systems,Montreal, Canada, Oct. 21{25, 1996, pp. 306{313.[12] U. Nilsson, S. Strei�ert, and A. T�orne, \Detailed Design of Avionics Control Software," Proc. ofthe IEEE Real-Time Systems Symposium, Madrid, Spain, Dec. 2{4, 1998, pp. 82{91.[13] H. Chetto, M. Silly, and T. Bouchentouf, \Dynamic Scheduling of Real-Time Tasks under Prece-dence Constraints," Real-Time Systems, vol. 2, no. 3, pp. 181{194, Sept. 1990.[14] B. Kao and H. Garcia-Molina, \Deadline Assignment in a Distributed Soft Real-Time Sys-tem," Proc. of the IEEE Int'l Conf. on Distributed Computing Systems, Pittsburgh, Pennsylvania,May 25{28, 1993, pp. 428{437.
23



[15] R. Bettati and J. W.-S. Liu, \End-to-End Scheduling to Meet Deadlines in Distributed Systems,"Proc. of the IEEE Int'l Conf. on Distributed Computing Systems, Yokohama, Japan, June 9{12,1992, pp. 452{459.[16] M. Di Natale and J. A. Stankovic, \Dynamic End-to-End Guarantees in Distributed Real-TimeSystems," Proc. of the IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, Dec. 7{9,1994, pp. 216{227.[17] J. J. Guti�errez Garc��a and M. Gonz�alez Harbour, \Optimized Priority Assignment for Tasks andMessages in Distributed Hard Real-Time Systems," Proc. of the IEEE Workshop on Parallel andDistributed Real-Time Systems, Santa Barbara, California, Apr. 25, 1995, pp. 124{132.[18] J. Jonsson and K. G. Shin, \Robust Adaptive Metrics for Deadline Assignment in Distributed HardReal-Time Systems," Real-Time Systems: The International Journal of Time-Critical ComputingSystems, 2000, (to appear).[19] K. Ramamritham, \Allocation and Scheduling of Precedence-Related Periodic Tasks," IEEETrans. on Parallel and Distributed Systems, vol. 6, no. 4, pp. 412{420, Apr. 1995.[20] T. F. Abdelzaher and K. G. Shin, \Period-Based Load Partitioning and Assignment for LargeReal-Time Applications," IEEE Trans. on Computers, vol. 49, no. 1, pp. 81{87, Jan. 2000.[21] K. Tindell and J. Clark, \Holistic Schedulability Analysis for Distributed Hard Real-Time Sys-tems," Microprocessing and Microprogramming, vol. 40, no. 2/3, pp. 117{134, Apr. 1994.[22] K. W. Tindell, A. Burns, and A. J. Wellings, \Allocating Hard Real-Time Tasks: An NP-HardProblem Made Easy," Real-Time Systems, vol. 4, no. 2, pp. 145{165, June 1992.[23] T. Shepard and J. A. M. Gagn�e, \A Pre-Run-Time Scheduling Algorithm for Hard Real-TimeSystems," IEEE Trans. on Software Engineering, vol. 17, no. 7, pp. 669{677, July 1991.[24] J. Xu, \Multiprocessor Scheduling of Processes with Release Times, Deadlines, Precedence, andExclusion Relations," IEEE Trans. on Software Engineering, vol. 19, no. 2, pp. 139{154, Feb. 1993.[25] D. Peng, K. G. Shin, and T. Abdelzaher, \Assignment and Scheduling of Communicating PeriodicTasks in Distributed Real-Time Systems," IEEE Trans. on Software Engineering, vol. 23, no. 12,pp. 745{758, Dec. 1997.[26] C.-J. Hou and K. G. Shin, \Allocation of Periodic Task Modules with Precedence and DeadlineConstraints in Distributed Real-Time Systems," IEEE Trans. on Computers, vol. 46, no. 12, pp.1338{1356, Dec. 1997.[27] M. Schild and J. W�urtz, \O�-Line Scheduling of a Real-Time System," Proc. of CP97 Workshopon Industrial Constraint-Directed Scheduling, Schloss Hagenberg, Austria, Oct. 1997.
24



[28] H. A. Hansson, H. W. Lawson, M. Str�omberg, and S. Larsson, \BASEMENT: A Distributed Real-Time Architecture for Vehicle Applications," Real-Time Systems, vol. 11, no. 3, pp. 223{244, Nov.1996.[29] B. Rostamzadeh, H. L�onn, R. Snedsb�ol, and J. Torin, \DACAPO: A Distributed Computer Archi-tecture for Safety-Critical Control Applications," Proc. of the IEEE Int'l Symposium on IntelligentVehicles, Detroit, Michigan, Sept. 25{26 1995, pp. 376{381.[30] H. Kopetz and G. Gr�unsteidl, \TTP { A Protocol for Fault-Tolerant Real-Time Systems," IEEEComputer, vol. 27, no. 1, pp. 14{23, Jan. 1994.[31] K. W. Tindell, H. Hansson, and A. J. Wellings, \Analysing Real-Time Communications: ControllerArea Network (CAN)," Proc. of the IEEE Real-Time Systems Symposium, San Juan, Puerto Rico,Dec. 7{9, 1994, pp. 259{263.[32] P. J. Bentley and J. P. Wake�eld, \An Analysis of Multiobjective Optimization within GeneticAlgorithms," Tech. Rep. ENGPJB96, Division of Computing and Control Systems Engineering,The University of Hudders�eld, Hudders�eld HD1 3DH, U. K., 1996.[33] M. Di Natale and J. A. Stankovic, \Applicability of Simulated Annealing Methods to Real-TimeScheduling and Jitter Control," Proc. of the IEEE Real-Time Systems Symposium, Pisa, Italy,Dec. 5{7, 1995, pp. 190{199.[34] S. M. Shatz, J.-P. Wang, and M. Goto, \Task Allocation for Maximizing Reliability of DistributedComputer Systems," IEEE Trans. on Computers, vol. 41, no. 9, pp. 1156{1168, Sept. 1992.[35] S. K. Dhall and C. L. Liu, \On a Real-Time Scheduling Problem," Operations Research, vol. 26,no. 1, pp. 127{140, Jan./Feb. 1978.[36] Y. Oh and S. H. Son, \Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems,"Real-Time Systems, vol. 9, no. 3, pp. 207{239, Nov. 1995.[37] C. C. Amaro, R. Nossal, and A. D. Stoyen, \On Cost Function Synthesis For Multi-ObjectiveDesign Decisions in Complex Real-Time Systems," Proc. of Int'l Conference on Engineering ofComplex Computer Systems, Las Vegas, Nevada, Oct. 18{21, 1999, pp. 86{97.[38] Intelligent Systems Laboratory, SICStus Prolog User's Manual, Swedish Institute of ComputerScience, 1995.[39] M. Carlsson, G. Ottosson, and B. Carlson, \An Open-Ended Finite Domain Constraint Solver,"Proc. of the Int'l Symposium on Programming Languages: Implementations, Logics, and Programs,H. Glaser et al., Eds., Southampton, UK, Sept. 3{5, 1997, vol. 1292 of Lecture Notes in ComputerScience, pp. 191{206, Springer Verlag.
25



[40] C. Ekelin and J. Jonsson, \A Modeling Framework for Constraints in Real-Time Systems," Tech.Rep. 00-9, Dept. of Computer Engineering, Chalmers University of Technology, S-412 96 G�oteborg,Sweden, May 2000, Available at http://www.ce.chalmers.se/~cekelin/constraints.us.ps.gz.[41] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.[42] Y. Zhao, \Derivation of Local Timing Constraints in Early Design Stages," Master's thesis, Dept.of Computer Engineering, Chalmers University of Technology, G�oteborg, Sweden, 1999.

26


