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Abstract

A language learner trying to acquire a new word must often sift through many potential
relations between particular words and their possible meanings. In principle, statistical infor-
mation about the distribution of those mappings could serve as one important source of data,
but little is known about whether learners can in fact track multiple word–referent mappings,
and, if they do, the precision with which they can represent those statistics. To test this, two
experiments contrasted a pair of possibilities: that learners encode the fine-grained statistics of
mappings in the input – both high- and low-frequency mappings – or, alternatively, that only
high frequency mappings are represented. Participants were briefly trained on novel word–
novel object pairs combined with varying frequencies: some objects were paired with one
word, other objects with multiple words with differing frequencies (ranging from 10% to
80%). Results showed that participants were exquisitely sensitive to very small statistical dif-
ferences in mappings. The second experiment showed that word learners’ representation of
low frequency mappings is modulated as a function of the variability in the environment.
Implications for Mutual Exclusivity and Bayesian accounts of word learning are discussed.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

As Quine (1960) noted, learning words is hard. A learner may see an orange-pet-
alled object and hear the words ‘‘tulip’’, ‘‘wilting’’, and ‘‘spring’’. Multiple words are
likely to co-occur with any given object: words with clearly relevant mappings
(tulip), words with infrequent mappings that might be equally relevant (wilting),
and other words whose occurrence in the context of that object may be purely acci-
dental (spring). A word learner who observes the multiplicity of possible mappings
between objects and words has a number of options. Such a learner may focus only
on the most plausible or most frequent mapping, or, alternatively, track a broad
range of mappings, in anticipation of further information. Moreover, to the extent
that a learner tracks multiple mappings, that learner might or might not keep track
of the frequency of occurrence of each type of mapping.

While is it well known that human learners can extract a variety of statistics from a
wide range of stimuli (e.g., Creel, Newport, & Aslin, 2004; Fiser & Aslin, 2001; Gard-
ner, 1957; Gómez, 2002; Gómez & Gerken, 1999; Hudson Kam & Newport, 2005;
Kirkham, Slemmer, & Johnson, 2002; McDonald & Shillcock, 2003; Newport & Aslin,
2004; Reber, 1989; Saffran, Johnson, Aslin, & Newport, 1999; Saffran, Newport, &
Aslin, 1996b; Turk-Browne, Junge, & Scholl, 2005; Maye, Werker, & Gerken, 2002),
little is known about whether human learners track multiple referent–word relations
and, if they can, whether learners are sensitive to the frequency of those mappings.

The present study asks whether adults track statistical information in the acqui-
sition of word–object mappings, and examines the precision with which such statis-
tical information is represented. To the extent that adults track mapping statistics,
do they retain only information about high-frequency mappings, or do they keep
track even of lower-frequency associations?

Given that words only sometimes co-occur with referents (Gleitman, 1990; Harris,
Jones, & Grant, 1983), information about lower-frequency mappings could potentially
be valuable, serving as a prerequisite to cross-situational learning (e.g., Roy & Pent-
land, 2002; Siskind, 1996; Yu & Smith, 2007), or allowing learners to entertain overlap-
ping hypotheses about possible meanings of a word. Moreover, detailed statistical
information about a range of mappings could allow learners to apply the constraint
of mutual exclusivity (which assumes only one label per object) in a graded fashion
(Regier, 1996) rather than as an all or none constraint (Markman, 1994).

Empirically, we might expect one of two patterns. Presented with a probabilistic
environment, learners might use statistical structure to threshold between high and
low probabilities, only encoding the highest available statistic (a possibility consis-
tent with previous statistical language learning studies, e.g., Hudson Kam & New-
port, 2005; Saffran, Aslin, & Newport, 1996a; Saffran et al., 1996b). Alternatively,
acquisition processes might encode multiple statistics. Extant studies of word learn-
ing cannot distinguish between these two accounts.

The current studies contrast these possibilities by systematically varying word–ref-
erent co-occurrence statistics. Participants saw 12 novel objects paired with 12 novel
words. The overall frequencies of each object and label were equal (10 times each),
but the frequency of any given mapping varied between 1 and 10 co-occurrences (out
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of 10 total presentations; see Table 1). (We leave open the question of how learners
might internally represent these statistics, e.g., in terms of probabilities or absolute
frequencies, see Aslin, Saffran, & Newport, 1998 for discussion.) After exposure,
learners’ sensitivity to co-occurrence statistics was examined in two ways. (I) Unam-

biguous test trials – in which the test word had occurred with one test object either 10,
8, 6, 2 or 1 time(s) during training, but never occurred with the second test object –
examined how learning of statistically variable correspondences is reflected in accu-
racy and reaction time. (II) Ambiguous test trials – in which both test objects had pre-
viously occurred with the test word, but with different probabilities – examined
whether learners represent multiple word–object mappings in a fashion that retains
information about their relative probabilities.

2. Experiment 1

2.1. Methods

2.1.1. Participants

Forty undergraduate students at the University of British Columbia gave
informed consent and received course credit for their participation.

2.1.2. Stimuli

2.1.2.1. Auditory stimuli. Twelve novel words were recorded by a native English-
speaking female (SoundEdit Pro v.2, Macromedia, San Francisco, CA) and con-

Table 1
Novel word–novel object pairings used in Experiment 1

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12
O1 10
O2 10
O3 10
O4 10
O5 8 1 1
O6 8 1 1
O7 1 8 1
O8 1 8 1
O9 1 6 1 2
O10 1 1 6 2
O11 1 2 6 1
O12 1 2 1 6

Det

vhP

O
bj

ec
ts

hiP

Words
Det vhP hiP

Pairings were of three types: deterministic (Det), very high probability (vhP), and high probability (hiP).
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sisted of consonant–vowel–consonant (C1VC2) syllables with consonants /p, t, s, n,
k, d, g, b, m, l/ and vowels /æ, i, a, e, ^, u/. Each consonant was used once in C1

position and once in C2 position, and never repeated within a word. Place of artic-
ulation, a particularly salient feature for language-learners (Rice & Avery, 1995), was
controlled both within and between words (e.g., the pattern C(labial)VC(coronal)

occurred only once). Phonotactic probabilities of positional segment frequency
(e.g., of a particular consonant in word-initial position; average = .1431) and
biphone frequency (i.e., of a particular C1V or VC2 combination; average = 0.00482)
were within the range used in previous non-word studies (e.g., Vitevitch & Luce,
1999) (frequency counts by M. Vitevitch, personal communication February 8,
2001).

2.1.2.2. Visual stimuli. Twelve novel three-dimensional objects differing in colour
and shape (e.g., Smith, Jones, & Landau, 1992) moved horizontally as a cohesive
bounded unit (see Fig. 1; Strata 3D, St. George, UT; QuickTime, Apple, Cupertino,
CA).

2.1.3. Design and procedure

The experiment consisted of a training phase in which novel word–novel object
associations were presented, and a testing phase in which subjects were asked to pair
the words with one of two objects. All participants were tested individually using a
custom-scripted Hypercard stack (Apple, Cupertino, CA) on an Apple PowerMac
G4 computer. Participants were tested on one of four different versions with different
sound–object combinations. Training order and testing order were randomised for
every participant.

2.1.3.1. Training. Participants were given no explicit instructions about the nature of
the study, but were asked simply to pay attention to the words and objects. Partic-
ipants were familiarised with a series of 120 word–object pairings during a 7 min
training session (each object was presented for 3000 ms separated by a 500 ms ITI,
with words playing 500 ms after trial onset). The 12 words and 12 objects in the
training set were presented exactly 10 times each. Though objects (and words) in
the deterministic group always co-occurred with exactly one word (object), objects
(and words) in the probabilistic groups co-occurred with multiple words (objects)
(see Table 1). For example, object O5 would co-occur 8 times with word W5, but
1 time with W7, and 1 time with W10. Thus, there were five levels of co-occurrence
in the training phase: 10, 8, 6, 2, and 1.

2.1.3.2. Test. Testing was conducted using a two-alternative forced-choice design.
Participants saw two objects moving simultaneously across the screen while one
word was played, and selected the object that went ‘‘best’’ with the word by a button
press. Two types of trials were tested: (I) In unambiguous trials, only one of the
objects had co-occurred with the word during training, so there was only one correct
answer (e.g., presenting O5 and O1 with W5 would be comparing 8 vs. 0 co-occur-
rences; an 8:0 trial). There were five such trial types: 1:0, 2:0, 6:0, 8:0, and 10:0. (II) In

732 A. Vouloumanos / Cognition 107 (2008) 729–742



Author's personal copy

ambiguous trials, the word had co-occurred with both objects during the training
phase, so that there were in fact two potentially correct answers, with one more

Fig. 1. An example of a novel 3D object used in this task. Five panels excerpted from the QuickTime
movie show stills of the object as it moves in a horizontal arc across the screen, beginning and ending in a
central position in the frame.
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frequent than the other (e.g., presenting O5 and O7 with W5 would be comparing 8
vs. 1 co-occurrences; an 8:1 trial). Four ambiguous trial types were presented: 2:1,
6:2, 6:1, and 8:1. Fifty-two test trials were played: six (1:0, 2:0) or eight trials (6:0,
8:0, and 10:0) for each unambiguous trial type, and four trials for each of the ambig-
uous trial types (2:1, 6:2, 6:1, and 8:1). Participants’ accuracy and reaction times were
recorded. A given pair of test objects was only presented once. The same objects or
words were never presented on consecutive trials.

2.2. Results and discussion

2.2.1. Sensitivity to probabilistically occurring information

As there was no effect of version (F < 1), this factor was not included in subse-
quent analyses. Separate analyses of variance (ANOVAs) on unambiguous and
ambiguous trials with test probability as a within-subjects factor (five levels for
unambiguous: 1:0, 2:0, 6:0, 8:0, 10:0; four levels for ambiguous: 2:1, 6:2, 6:1, 8:1)
revealed a significant effect of probability on accuracy in both unambiguous trials
[F(4,156) = 31.82, p < .001; as illustrated later, in Fig. 4 (diamonds), these data
are captured by an exponential function], and ambiguous trials [F(3, 117) = 7.37,
p < .001; Fig. 2]. To test whether ambiguous and unambiguous trials differed, we
conducted an additional ANOVA on the 2:x, 6:x, and 8:x trials with trial type
(unambiguous, ambiguous) and probability (2:x, 6:x, 8:x) as within-subject vari-
ables. Participants had significantly lower error rates on unambiguous trials
(M = .133, SE = .014) than ambiguous trials [M = .204, SE = .023;
F(1, 72) = 7.52, p < .009]. Performance at every probability ratio was better than
chance. This exquisite performance is especially notable for the 2:1 condition in
which participants chose between an object that had occurred twice with a word,
and another object which had occurred only once, despite the fact that the word
had occurred 6 times with still another (unavailable) object, and that each of the
two objects had occurred 6 times with different (unavailable) words.

We next examined whether probabilities were reflected in reaction time (RT). We
excluded individual trials for which RTs were beyond 2 standard deviations from
that participant’s mean. Analogous ANOVAs on RT data revealed a significant
effect of probability on RT for both unambiguous [F(4, 148) = 23.07, p < .0001]
and ambiguous trials [F(3,105) = 4.97, p = .003], and these were marginally different
from each other [F(1,32) = 2.85, p = .11). Overall, both accuracy and RT measures
present a probabilistic learning pattern.

2.2.2. Individual learning patterns

To ensure that the statistical learning pattern we observed was not an artefact of
averaging across individuals (see Gallistel, Fairhurst, & Balsam, 2004 for group aver-
aging effects on pigeon learning), we conducted an additional analysis on the 6:2:1:1
mappings, the only object–word pairing for which learners could have formed more
than two statistical mappings. We calculated how many words were successfully
mapped in both the 6:2 condition and the 2:1 condition, as compared with those only
mapped in the 6:2 condition, the logic being that if the observed statistical learning
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pattern was generated across individuals (such that 6 out of 10 participants learned
the ‘‘6’’, 2 of 10 learned the ‘‘2’’, etc.), the same individual would not succeed on both
6:2 and 2:1 trials. Each of the low probability words (W9–W12) was tested for each
participant, yielding (4 words · 40 participants) 160 word trials. In 120 of 160
instances, succeeded in pairing the word with the ‘‘6’’ object in 6:2 pairings. Criti-
cally, among this subset of 120 word trials, words were also paired with the ‘‘2’’
object relative to the ‘‘1’’ object more often than chance (76/120 = .63, binomial test,
p = .005). Furthermore, RT for these 2:1 trials (M = 2567 ms, SE = 103) was signif-
icantly slower than for the 6:2 trials (M = 2052 ms, SE = 89; paired samples 2-tailed
t-test, t(69) = 3.93, p < .001), confirming that probabilities were reflected in the time
to access the word–object representation. Together, these results reflect the workings
of a statistically tuned learning mechanism within individuals.

3. Experiment 2

The results of Experiment 1 demonstrate that low probability or dispreferred
mappings were tracked and encoded by learners, which speaks against a word learn-
ing model in which only high probability information is tracked. As a further test of
word learners’ sensitivity to precise details of the input, we investigated whether
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Fig. 2. Accuracy (bars, left y-axis) and reaction time (lines, right y-axis) in a probabilistic word learning
task. *p < .05.
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performance would be influenced by the variability of the environment. Suggestive
evidence from Hudson’s (2002) study on the acquisition of determiners (e.g., the,
a) shows that learners’ use of the dominant determiner form was sensitive to the dis-
tribution of the noise forms, such that learners were more likely to regularize the
main form when the noise forms were more numerous. For example, if learners
heard Determiner Y used 60% of the time, they would use it 60% of the time if there
were fewer (e.g., 2) noise forms, but use it 85% of the time if there were more (e.g.,
16) noise forms. Similarly, Gómez (2002) demonstrated that increased variability in
the middle element in aXb language (e.g., an X set of 24 vs. only 3 elements) resulted
in better learning of the perfectly deterministic a–b non-adjacent dependency. These
studies suggest that the output of statistical learning can be affected by the statistical
structure of the environment, with low variability leading to probability matching
and high variability leading to rule-learning – in Hudson’s study, the distribution
of the low frequency form affected learning of the high frequency form, and in
Gómez’s study, the number of intervening forms influenced learning of a non-adja-
cent dependency – however, neither of these studies directly examined the effect of
variability on the acquisition of low frequency forms1. Experiment 2 examines
whether exposing learners to a more or less variable environment affects the repre-
sentation of high and low frequency mappings differently.

3.1. Methods

3.1.1. Participants

Forty undergraduate students at the University of British Columbia gave
informed consent and received course credit for participating in the study.

3.1.2. Stimuli

Identical to Experiment 1.

3.1.3. Design and procedure

Training and test were conducted as in Experiment 1, however the structure of the
environment differed. Instead of word–object pairings ranging from 1–10, the max-
imum likelihood of word–object co-occurrence was 6 (see Table 2). Only three train-
ing probabilities were presented (6, 2, and 1), creating a noisier environment because
very high probability and deterministic pairs were absent. Testing was conducted
using a two-alternative forced-choice design. As in Experiment 1, there were two trial
types of interest: (i) unambiguous trials (1:0, 2:0, 6:0), and (ii) ambiguous trials (2:1,
6:2, 6:1). Eight test trials of each probability condition were presented. In addition,
we added a small number of trials (four) for which there was no correct answer (0:0
trials) as a check against bias in the pairings, for which performance was at chance,
as expected. Object pairings and presentation were randomized as in Experiment 1.

1 One of Hudson’s analyses (Fig. 3) calculated difference scores between participants’ ratings of the main
determiner form and the noise forms, but did not examine learning of the noise forms independently of the
main forms and thus does not speak directly to the issue at hand.
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3.2. Results and discussion

3.2.1. Sensitivity to statistically variable information

We examined whether learners encoded the training probabilities by conducting
separate ANOVAs on unambiguous and ambiguous test trials with probability level
as a within-subjects factor (unambiguous: 1:0. 2:0, 6:0; ambiguous: 2:1, 6:2, 6:1). As
in Experiment 1, there was a significant effect of probability on error rate in both
unambiguous trials, F(2,78) = 19.27, p < .001, and ambiguous trials,
F(2, 78) = 14.84, p < .001. Performance in all probability conditions was better than
chance (see Fig. 3). As in Experiment 1, a 2 (probability level: 2:x, 6:x) by 2 (unam-
biguous vs. ambiguous) ANOVA yielded significantly lower error rates in unambig-
uous (M = .295, SE = .021) as compared to ambiguous trials [M = .341, SE = .016),
F(1, 39) = 4.46, p < .05]. Notably, error rates for all probability levels of Experiment
2 differed from chance indicating that participants had still encoded some low
probability information. Interestingly, as illustrated in Fig. 4 for both Experiments,
an exponential function captures the relationship between accuracy and frequency,
in keeping with much of the literature on human memory (Anderson, 1995).

Analogous ANOVAs on RT also yielded a significant effect of probability for unam-
biguous trials, F(2,78) = 9.15, p < .001, and a significant effect for ambiguous trials,
F(2, 78) = 4.16, p < .05. There was no effect of ambiguity on RT, F(1,39) < 1, ns.

3.2.2. Effect of the statistical structure of the environment on statistical representations

To determine the effect of environmental variability on the representation of high
and low probabilities, we compared participants’ performance in the less variable
environment of Experiment 1 with the more variable environment of Experiment

Table 2
Novel word–novel object pairings that constitute the more variable environment of Experiment 2

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12
O1 6 1 1 2
O2 2 6 1 1
O3 2 6 1 1
O4 2 6 1 1
O5 1 2 6 1
O6 1 2 6 1
O7 1 2 6 1
O8 1 2 6 1
O9 1 1 2 6
O10 1 2 6 1
O11 1 1 2 6
O12 1 1 2 6

hiP
Words

O
bj

ec
ts

hiP
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2. In light of previous findings (e.g., Gardner, 1957; Gómez, 2002; Hudson, 2002), we
predicted that the more variable environment of Experiment 2 would affect learning
of high (6) and low (2,1) probabilities differently. To test this hypothesis we con-
ducted planned comparisons at every probability level that was comparable between
the two experiments: the 2:1, 6:2, and 6:1 test trials2. Performance on 2:1 trials was
significantly worse in the more variable group [F(1,78) = 9.55, p = .003], while per-
formance for both 6:2 [F(1, 78) < 1, ns] and 6:1 [F(1,78) < 1, ns] trials was equivalent
between the groups (see Fig. 5). Increasing the variability of the learning context thus
modulates learning of low probability mappings.

4. General discussion

Successful statistical learning is often implicitly equated with noticing the alter-
native that is most frequent or of greatest cue validity. In such a framework, the
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Fig. 3. Accuracy (bars, left y-axis) and reaction time (lines, right y-axis) for probabilistic word learning in
a more variable environment. *p < .05.

2 The unambiguous test trials were not compared because the ‘‘0’’ foils were different in the two
experiments. This was necessary to balance the number of times each object appeared as correct and
incorrect in the test trials. Specifically, in Experiment 1, the foils were chosen from the deterministic and
very high probability pairs, while in Experiment 2, foils were all high probability pairs. The ambiguous
trials were thus the only trials comparable across both experiments.
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low frequency cases would fade from view, untracked. Instead, this study found
that adult learners were exquisitely sensitive to co-occurrence statistics between
words and objects, and even differentiated between the probabilities of infrequent
(dispreferred) mappings, treating a pairing that occurred 20% of the time as more
likely than a 10% pairing. These results extend the conclusions of recent studies
demonstrating the robustness of statistical learning in humans (e.g., Fiser & Aslin,
2001; Maye et al., 2002; Newport & Aslin, 2004; Saffran et al., 1996a) to the
domain of word learning, but also go beyond them, by establishing that learners
can represent precise information about a range of possible word–referent map-
pings, even dispreferred ones. A sensitivity to a range of mapping probabilities
might be crucial in word learning, allowing the learner to keep track of a number
of candidates, and not just mappings with the highest co-occurrence statistics. Sig-
nificantly, this suggests that learning a word–referent mapping is not necessarily an
all-or-none process. In particular, putative word learning constraints like mutual
exclusivity (Markman, 1994) might be more plausibly applied in a graded fashion
(Regier, 1996). For example, learners could entertain overlapping hypotheses about
the referents of a word, and assign different likelihoods to each of these candidate
mappings.

In real-world acquisition situations, it might not be feasible to keep track of all
available statistical information. Memory and attention considerations constrain
the products of statistical learning (e.g., Kareev, 1995; Turk-Browne et al., 2005).
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Fig. 4. Data from unambiguous trials of Experiments 1 (diamonds) and 2 (squares) represented on a
linear scale (with exponential curves superimposed).

A. Vouloumanos / Cognition 107 (2008) 729–742 739



Author's personal copy

Here, we found that the variability of the environment is another factor that
modulates the outcome of statistical analysis. Exposing adult learners to the more
variable environment of Experiment 2 constrained statistical learning such that
learning of lower frequency mappings was reduced relative to high frequency
mappings.

Detailed statistical representations have been demonstrated to play a role in other
human learning systems, for example, in sensorimotor learning, in which representa-
tions of prior probabilities and sensory feedback interact (Hunt & Aslin, 2001; Kor-
ding & Wolpert, 2004), and might be a hallmark of learning systems that operate
according to Bayesian principles (e.g., Gopnik et al., 2004). As Bloom (2000) has
argued, word learning requires more than simple association, one attractive possibil-
ity is that word learning may depend on a Bayesian merger between sophisticated
hypothesis testing and rational statistical inference (Xu & Tenenbaum, 2005,
2007). The current paper speaks to the viability of one important aspect of such a
proposal, inasmuch as any Bayesian system would require that learners posses a
‘‘graded sensitivity to uncertainty in prior knowledge and the input’’ (Xu & Tenen-
baum, 2005). The present data show that this particular requirement is clearly met:
learners can, with great precision, track statistically variable mappings between
words and their referents. Such precisely tracked mappings may then serve as a foun-
dation for the more complex computations required in a complete system for word
learning.
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Fig. 5. The effect of environmental context: Participants’ accuracy in a less variable (open squares) versus
a more variable environment (filled squares).
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