
Aspects of Geometric Model Theory

Anand Pillay∗

Dept. Math.
University of Illinois at Urbana-Champaign

Urbana
Il, USA

February 2, 2001

1 Introduction

In this paper (based on my tutorial in Utrecht) I want to discuss some themes
from contemporary model theory, mainly originating in stability theory and
classification theory, and point out some mathematical implications. Model
theory has become largely the study of definable sets (or the category of
definable sets and functions) in given structures, as well as the study of in-
terpretability and bi-interpretability. These can either be specific, such as
the field of p-adic numbers (as in applications), or can be arbitrary structures
which satisy some model-theoretic hypotheses (stability, ω1-categoricity, o-
minimality). Among the themes or topics I will touch on are: dimension
theory, how a structure is built up from “irreducible bits” (geometries), the
fine structure of these “irreducible bits”, modularity, orthogonality, equivari-
ant model theory (definable groups and group actions), quotients and Galois
theory. This paper is aimed at the non model-theorist logician. I want to
explain a little of what is going on in model theory, but at the same time I do
not want to simply repeat what has already been said in numerous surveys
of this kind.

∗Supported by an NSF grant
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I assume acquaintance with the basic concepts and results of first order logic
and model theory: complete theories, compactness theorem, elementary sub-
structure, saturation, Lowenheim-Skolem theorems. T will usually denote a
complete theory in a language L. M will be an L-structure, usually a model
of T . x, y, .. denote finite sequences of variables, and a, b, .. finite sequences
of elements of a stucture M . If φ(x) is a formula, possibly with additional
parameters from M , then X = {a ∈Mn : M |= φ(a)} is called a definable set
in M . We also write φM for X. If the parameters from φ belong to A ⊆ M
we say that X is A-definable. tpM(a/A) is the set of all formulas with pa-
rameters from A which are satisfied by a in M . A function f : X → Y is said
to be definable (in M) if its graph is. So the category associated to M is the
category of sets and functions definable in M . One may also want to (and
should) include quotient objects X/E where E is a definable equivalence re-
lation, as definable sets. This is unproblematic and will be discussed later.
A rather basic notion is that of algebraic closure: suppose M is a structure
A ⊆ M and a a tuple from M . We will say that a is algebraic over A (in
M) (a ∈ aclM(A)) if there is a formula φ(x) over A (that is, with parameters
from A) which is satisfied by a and which has only finitely many realizations
in M . By compactness this is equivalent to there being some cardinal bound
to the set of realisations of tpM(a/A) in any elementary extension of M . If
we require in addition that a is the unique realization of φ(x) we say a is in
the definable closure of A, a ∈ dclM(A).

2 Morley’s Theorem

Many of the elements of geometric model theory are either present in or
naturally suggested by the Baldwin-Lachlan proof of Morley’s Theorem [?],
and I will introduce them in this way. Morley’s theorem was the beginning of
stability theory and classification theory. The context is a countable complete
theory T . For κ an infinite cardinal, T is said to be κ-categorical if T has
exactly one model of cardinality κ up to isomorphism. Morley’s theorem
states that if T is κ-categorical for some uncountable κ then it is κ-categorical
for all uncountable a. This is a fundamental result on the expressive power
of first order logic.

Proof of Morley’s Theorem.
Assume T to be κ-categorical, where κ is an uncountable cardinal.
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Step 1. Show that T is ω-stable (or totally transcendental). This means
that for any countable model M of T the Stone space S(M) of complete
types over M in finitely many (or one) variable is countable. If not then
there will be a model M ′ of T of cardinality κ realising uncountably many
types over some countable elementary submodel M0. On the other hand an
Ehrenfeucht-Mostowski argument using Skolem functions and indiscernibles
yields a model M ′ of T of cardinality κ such that over any countable subset
A of M ′ only countably many types are realised in M ′. Contradiction to
κ-categoricity.

Consequences of ω-stability.
The first consequence is the existence of prime models over all sets: For any
model M of T and subset A of M there is an elementary substructure M(A)
of M which contains A such that whenever M ′ is a model of T containing A
such that (M,a)a∈A ≡ (M ′, a)a∈A then there is an A-elementary embedding
of M(A) in M ′. (Shelah subsequently proved that M(A) is unique up to
A-isomorphism.)
Another consequence (coming from the existence of Cantor-Bendixon rank
on types) is that any formula φ(x) (with parameters from a model of T ) has
ordinal valued Morley rank.

Definition 2.1 Let M |= T . Let φ(x) be a formula over M . We define
RM(φ(x)) ≥ 0 if φ(x) is consistent (has a solution in M), and RM(φ(x)) ≥
α + 1 if there is an elementary extension M ′ of M and formulas ψi(x) over
M ′ for i < ω, pairwise inconsistent (in M ′), each implying φ(x), and with
RM(ψi(x)) ≥ α for all i < ω.
(Also for δ limit, RM(φ(x)) ≥ δ if RM(φ(x)) ≥ α for all α < δ.)

The definition above makes sense for any theory T . In any case for the
theory T currently under consideration, every formula has ordinal-valued
Morley rank. In fact it was proved later (by Baldwin) that every formula has
finite Morley rank.
If RM(φ(x)) = α then φ(x) has an associated Morley degree (or multiplicity),
the largest k such that there exist ψi(x) for i < k over some elementary
extension M ′ of M , which imply φ(x), are pairwise inconsistent, and have
Morley rank α.
In particular there is some formula φ(x) over a model M of T (where x
can even be chosen to be a single variable) which has Morley rank 1 and
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Morley degree 1. Such a formula is also called strongly minimal, and has the
alternative characterization (which again makes sense in any theory):

Definition 2.2 Let φ(x) be a formula over a model M of T . φ(x) is called
strongly minimal if it has infinitely many realizations in M , and for any
elementary extension M ′ of M and formula ψ(x) over M ′, it is not the case
that both φ(x) ∧ ψ(x) and φ(x) ∧ ψ(x) have infinitely many realizations.

In the present context we will assume that some strongly minimal φ(x) can
be found without parameters. (This is a delicate point. In general it is proved
that φ(x) can be found with parameters in the prime model of T ).
The set of realisations of φ(x) in a model M is what is called a strongly
minimal set. Here are some basic properties and definitions.
(a) Algebraic closure on strongly minimal sets satisfies Steinitz exchange:
if M is a model of T , A ⊂ M and a, b satisfy φ(x) in M then, if b ∈
acl(A, a) \ acl(A), then a ∈ acl(A, b).
(b) A set {ai : i ∈ I} of realizations of φ(x) in a model M of T will be called
(algebraically) independent, if ai /∈ acl{aj : j ∈ I, j 6= i} for each i ∈ I.
(c) If (ai : i < α} is an independent set of realisations of φ(x) in M |= T and
(bi : i < α) is an independent set of realizations of φ(x) in M ′ |= T , then the
map taking ai to bi (i < α) is elementary.
(d) A basis for φ(x) in M is by definition a maximal independent subset of
φM . If {ai : i < α} is such a basis then φM is contained in aclM({ai : i < α}.
(e) Any two bases for φ(x) in M have the same cardinality, which we call
dim(φ,M).

Step 2. For any model M of T , M is prime and minimal over φM . Minimality
means that there is no proper elementary substructure M ′ of M containing
φM .
It is enough to show minimality. Suppose not. So there is a proper elementary
substructure M ′ of M with φM

′
= φM , a so-called Vaughtian pair. We may

assume that both M and M ′ are countable. An argument (using ω-stability)
enables us to find an elementary extension M ′′ of M of cardinality κ with
φM

′′
= φM . This contradicts κ-categoricity of T , as there will exist another

model N of T of cardinality κ in which φN has cardinality κ.

End of proof. Let M and N be two models of T of cardinality λ > ω. As
M is prime over φM the latter has cardinality ¿λ, and thus dim(φ,M) = λ.
Similarly dim(φ,N) = λ. Let I be a basis for φM and J a basis for φN . So I
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and J both have cardinality λ and there is an elementary map taking I to J
(by (c)). This extends (by passing to the algebraic closures) to an elementary
map taking φM to φN , and then also to an elementary embedding f of M in
N (as M is prime over φM). As N is minimal over φN , f must be onto N ,
so M and N are isomorphic.

The proof shows that the isomorphism type of any model M of T is deter-
mined by dim(φ,M), and it follows fairly easily that the number of countable
models of T must be either 1 or ω (the Baldwin-Lachlan Theorem).

3 Fine structure of uncountably categorical

theories.

Step 1 above gave us in particular a “geometry” (the strongly minimal for-
mula φ(x)), and Step 2 told us that this formula controls every model (which
we now call unidimensionality). It is technically convenient to identify the
models of T (T any complete theory) with elementary submodels of a big
saturated model M̄ (or class if you wish), and work inside M̄ . We will follow
this convention from now on. The geometric model-theoretic point of view
(represented historically by Zilber) at this point asks: (I) exactly how does
the geometry φ control the whole structure, or why and how is every model
M prime over φM , and (II) what exactly are the possibilities for φ(x)? Zilber
especially needed answers to these questions in the case where T is also ω-
categorical, in order to prove that totally categorical theories are not finitely
axiomatizable.
Let us begin by looking at question (I). One possibility is of course is when
φ(x) is “x=x”, namely defines the whole structure. In this situation we say
that T itself is strongly minimal, and we even call M |= T a strongly minimal
structure. Another possibility is the existence of a formula ψ(x, y) defining
a finite-to-one function from M̄ onto X, where X is some ∅-definable subset
of (φM̄)n. In this case, each model M is equal to acl(φM). Are there any
other possibilities? Group actions and a kind of analogue of ‘fibre bundles”
(from differential geometry) turn out to give examples (and essentially the
only other examples). I will describe this construction in full generality. The
data will be a structure P (in some language), a definable subset X of P n

and a definable (in P ) family (Ga : a ∈ X) of definable groups (let’s suppose
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X and the family of groups to be ∅-definable). For each a ∈ X, let Ya be a
principal homogeneous space for Ga (namely a set on which Ga acts regularly,
or equivalently strictly 1-transitively). From this data we manufacture a new
structure M . The universe of M will be the disjoint union of P and the Ya,
where P is equipped with its original structure. The language for M will
also contained a function symbol π, interpreted as the canonical surjection
π : ∪aYa → X, as well as another function symbol f(−,−,−) such that for
each a ∈ X, f(a,−,−) defines the action of Ga on Ya. We will also allow
arbitrary additional relations on M as long as no new structure is induced
on P (namely every ∅-definable subset of Pm definable in the new structure
M should be already ∅-definable in the original structure P ). We call M a
definable fibre bundle over P , with data (Ga : a ∈ X). It is not hard to see
that M is prime and minimal over P (and likewise for any N elementarily
equivalent to M .) If Th(P ) is uncountably categorical, so is Th(M). Note
that if each group Ga is finite, then M = aclM(P ). Also if X is a singleton
{a}, and b any element of Ya then M = aclM(P, b).
Zilber (see [?]) essentially proved that definable fibre bundles explain mini-
mality over the strongly minimal set φ(x). (Shelah’s semiregular types tech-
nology [?] together with an input from Hrushovski give a general account for
superstable theories.)

Proposition 3.1 If Th(M) is uncountably categorical and P ⊆ M is a
strongly minimal set, then there are structures P = P0, P1, .., Pk = M such
that Pi+1 is a definable fibre bundle over Pi. Moreover the relevant groups
Ga can be taken to be living in P and to be elementary abelian, finite simple
nonabelian, or infinite without definable proper infinite normal subgroups.

One consequence of the proposition is that T has finite Morley rank.
In any case we see in this result the strong relationship between the internal
structure of a given model M and the problem of the classification all models
of Th(M).

A kind of restatement of the above proposition, which has a Galois-
theoretic flavour is:

Remark 3.2 Suppose T is uncountably categorical, φ(x) is strongly minimal
(or actually any formula with infinitely many realizations), and M |= T .
Then M = φM∪{ai : i < α} where for each β < α either (i) β ∈ acl(φM∪{ai :
i < β}) or (ii) tp(aβ/φ

M ∪ {ai : i < β}) is isolated by a formula χ(y) which
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defines a principal homogeneous space for a definable group G contained in
φ. Moreover G can be chosen to be infinite, connected, and simple.

The Galois-theoretic content of say case (ii) is that the group of elemen-
tary permutations of dcl(φM ∪ {ai : i ≤ β}) which fix φM ∪ {ai : i < β}
pointwise is isomorphic to G.
The notion “almost strongly minimality” and variants, will be important
later.

Definition 3.3 T is said to be almost strongly minimal if there is some
strongly minimal set P in M̄ such that, after naming finitely many elements
of M̄ (namely adding finitely many constants to the language), M̄ = aclM̄(P ).

Given a strongly minimal structure P containing an infinite definable
group G, the basic fibre bundle constructed from P from the data P and
Ga = G for all a ∈ P , will be uncountably categorical and not strongly
minimal. The reader may find it worthwhile looking in detail at the theory
of ((Z/4Z)ω,+). This is a definable fibre bundle (with additional structure
given by the group operation) over (Z/2Z)ω, and is not almost strongly
minimal. Given a structure P and data (Ga : a ∈ X), the issue of what the
possible bundles over P with this data can be is essentially a cohomological
question.

Now we pass to (II). The issue is to classify strongly minimal sets. What
does this mean? The strongly minimal subset P = φM̄ of the model M̄ can
be viewed as a structure in its own right: for each formula ψ(x1, .., .xn) of L
let Rψ be the set of realizations of ψ each of whose coordinates is in P . The
resulting structure (P,Rψ)ψ has quantifier-elimination. Zilber’s hope was to
classify such structures. Classification up to bi-interpretability is probably
the most reasonable notion here, although the finer notion of identifying two
structures if there is a bijection between their universes taking definable sets
to definable sets is also useful.
There are three important examples of strongly minimal structures:
(i) An infinite set in the empty language (that is, equality the only relation).
(ii) An (infinite-dimensional) vector space V over a field F , in the language
containing just +, 0 and fa for each a ∈ F , representing scalar multiplication.
(iii) An algebraically closed field in the field language (+, ·, 0, 1,−).
Let us fix a strongly minimal structure P , possibly living as above in M̄ . One
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can study P by studying the behaviour of algebraic closure. Coming out of
Steinitz exchange mentioned in the previous section, we assign a dimension
or rank to any finite tuple from P : for any set A of parameters (maybe from
M̄) and finite tuple b from P , dim(b/A) is defined to be the cardinality of any
maximal A-algebraically independent subtuple of b (which is well-defined).
(In fact dim(a/A) coincides with the Morley rank of tp(a/A) which is the
smallest Morley rank of a formula in this type.)

Definition 3.4 Let b, c be tuples from P and A and set of parameters. We
say that b is independent from c over A, if dim(b, c/A) = dim(b/A) +
dim(c/A).

Definition 3.5 (i) We call P degenerate if for any subset B of P , acl(B)∩
P =

⋃
b∈B acl(b).

(ii) We call P modular if after naming a small set of parameters, we have,
for all tuples b, c from P , b is independent from c over acl(b) ∩ acl(c).

Degenerate implies modular. Example (i) above is degenerate, example (ii)
modular and nondegenerate and example (iii) nonmodular.
Zilber conjectured, very early on:
Zilber conjecture. If P is nonmodular, then an infinite (necessarily alge-
braically closed) field is definable in the structure P .
In fact he tentatively conjectured that in the nonmodular case the structure
P itself is essentially an algebraically closed field and all sets definable in P
are defined in the field language.
The full conjecture was disproved by Hrushovski. However the conjecture
was proved by Hrushovski and Zilber [?] under certain additional assump-
tions on P of a topological-geometric nature, namely assuming P to be a
“Zariski geometry”. I will not go into the definition. Zariski geometries are
treated in detail in Marker’s tutorial in Haifa [?]. Also in the concrete ex-
amples we’ll be considering there are alternative proofs.
There are some rather more intuitive or geometric ways of seeing the above
notions (modularity,..). P has Morley rank 1. P 2 (which one should think
of as 2-space over P ) has Morley rank 2, and contains various Morley rank
1 definable subsets, such as the diagonal {(x, x) : x ∈ P}, or for any a ∈ P ,
{(x, a) : x ∈ P}. Think of strongly minimal subsets of P 2 as curves over P .
Modularity essentially says that if X ⊆ Pm is definable and (Ca : a ∈ X) is
a definable family of curves (strongly minimal subsets of P 2) with pairwise
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intersection finite, then RM(X) ≤ 1: there are no 2 or higher dimensional
families of curves. Degeneracy says that X is finite: there is no infinite family
of curves.
Modularity (in this and more general contexts) is a central concept of ge-
ometric model theory. There is a well-developed general theory, and some-
what surprisingly, the degenerate/modular/nonmodular trichotomy has fun-
damential meaning in many mathematical contexts. In the next result, I
summarise the structural consequences (due to Zilber [?]) of these notions in
the uncountably categorical context. T will be uncountably categorical, M̄
a (big) model of T and P = φM̄ a strongly minimal subset of M̄ .

Proposition 3.6 (i) If P is degenerate, then there are no infinite definable
groups in M̄ . In particular M̄ = acl(P ).
(ii) If P is modular and nondegenerate then there is an infinite strongly min-
imal group definable in M̄ (in fact essentially on P itself).
(iii) If P is modular, then for any definable group G in M̄ , G is abelian-by-
finite, G has no infinite definable family of connected subgroups, and every
definable (in M̄) subset of G is a finite Boolean combination of cosets (trans-
lates of subgroups).

4 Quotients

I fudged over certain issues of definability in the last section, because cer-
tain of the objects mentioned (definable homogeneous spaces and definable
groups for example) may only exists as quotients of definable sets by defin-
able equivalence relations. So in this section I will discuss the status and
model-theoretic treatment of such quotient objects as well as more general
quotients (by type-definable equivalence relations). I will also discuss various
Galois groups attached to theories. T is an arbitrary complete theory and we
work in M̄ a big saturated model of T . (I ignore set-theoretic complications.)
A quotient-definable set is something of the form X/E where X is a definable
set and E a definable equivalence relation on X. It makes perfect sense to
speak of a definable map from X/E to Y/F : it will be a map f induced
by a definable relation R between X and Y . In various kinds of geometry
the issue of quotient objects (for example the space of orbits of a manifold
under the action of a Lie group), is a very delicate matter, because one wants
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the quotient object to exist as a geometric object of the same kind. How-
ever, there is absolutely nothing at the general model-theoretic level which is
problematic about such quotient objects (quotients of definable sets by de-
finable equivalence relations), in the sense that they remain entirely within
the framework of first order model theory. One formalism for seeing this is
Shelah’s formation of the many-sorted structure M̄ eq. This is obtained by
adding a new sort SE for each ∅-definable equivalence relation E on M̄n,
together with a function fE from M̄n → SE. Then any Y/F (where Y, F
may be defined with parameters) can be naturally identified with a definable
subset of some sort SE in M̄ eq. Precisely for this reason, we should really
understand the category of definable sets and functions in M̄ eq. The struc-
tures Pi given in Lemma 3.1 are really definable in M eq. This all suggests
that we should from the start consider many-sorted structures, working in
many-sorted logic. In fact there is no harm in even allowing a sort Sφ for
each formula φ(x) of L (without parameters). To “understand” such a struc-
ture then amounts to identifying a certain family (Si)i of sorts, classifing the
definable subsets of these sorts (quantifier-elimination), and showing that for
any sort S and ∅-definable equivalence relation E on S, there is a ∅-definable
bijection between S/E and a definable subset of one of the Si (elimination
of imaginaries). Nevertheless, back in the one-sorted situation we make:

Definition 4.1 T has elimination of imaginaries if for any ∅-definable set
X ⊆ M̄n and ∅-definable equivalence relation E on X there is a ∅-definable
bijection f between X/E and some definable Y ⊆ M̄m.

Remark 4.2 (i) The definition above has a very minor discepancy with the
usual notion of elimination of imaginaries, but agrees if there are two distinct
constants in T .
(ii) If T has elimination of imaginaries, then the right hand side of Definition
3.1 also holds where we no longer demand ∅-definability of X, E and f .

Maybe the only general model-theoretic result regarding elimination of imag-
inaries is:

Fact 4.3 Suppose T is strongly minimal. Then, up to naming finitely many
parameters T has weak elimination of imaginaries: for any X/E as in Def-
inition 4.1, there there is a ∅-definable set Y and a ∅-definable surjective
function f : Y → X/E with finite fibres.
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Fact 4.4 The theory of algebraically closed fields of a given characteristic,
the theory of real closed fields and the theory of differentially closed fields of
characteristic 0 all eliminate imaginaries.

In each of the theories above definable groups can be definably equipped
with unique “geometric” structure: algebraic groups, Nash groups and dif-
ferential algebraic groups respectively. Similarly for definable homogeneous
spaces. So Fact 4.3 proves that quotients of such groups by definable sub-
groups exist as geometric objects.

Elements of the form a/E (a a finite tuple from M̄ and E a ∅-definable equiv-
alence relation) are usually called imaginaries. As we have explained there is
no intrinsic model-theoretic problem with these objects. Suppose now that
E is an equivalence relation on tuples of fixed, but possibly infinite (although
small, relative to the saturation of M̄) length, which is defined by a possibly
infinite set of formulas (without parameters say). An equivalence class a/E
is what we have recently called a hyperimaginary. A type-definable set of
such objects: X/E where X is a set of tuples of the right length defined
by a possibly infinite set of formulas, is a hyperdefinable set. The status of
such objects (hyperimaginaries, and hyperdefinable sets) is a model-theoretic
problem. If E happens to be an intersection of definable equivalence relations
Ei (at least when restricted to tp(a)), then a/E can be identified naturally
with the sequence (a/Ei)i of imaginaries, namely with a “pro-imaginary”.
We will say that T eliminates hyperimaginaries if this always happens: any
type-definable equivalence relation is equivalent, on the set of realizations
of any complete type, to the intersection of definable equivalence relations
(any hyperimaginary is a pro-imaginary). Any stable theory (for example, an
uncountably categorical theory) has elimination of hyperimaginaries. How-
ever, even if T does not eliminate hyperimaginaries, these objects still remain
within first order model theory (namely subject to the compactness theorem).
Although we cannot in a sensible way add new sorts SE for each such E or
even talk about definable sets of hyperimaginaries, we can make sense out of
the complete type of a hyperimaginary (as a certain partial type), and this
is enough to do model theory. Hyperdefinable, non pro-definable sets arise
naturally in nonstandard analysis (where E might be the relation of being
infinitely close). For example the so-called nonstandard hull B̂ of a Banach
space B is a hyperdefinable set in a saturated model ∗B of B. Henson and
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Iovino have developed some stability theory for Banach spaces using Hen-
son’s Banach space logic. An alternative treatment would be to use standard
stability theory directly on the hyperdefinable set B̂.

By acleq(A) we mean the set of elements of M̄ eq in the algebraic closure of
A. For T the theory of algebraically closed fields of characteristic 0, acleq(∅)
is precisely Q̄. The automorphism group of M̄ , Aut(M̄) acts naturally on
acleq(∅), and the corresponding group Aut(M̄) quotiented by the normal
subgroup consisting of those σ which fix acleq(∅) pointwise, has the natural
structure of a profinite group (which is precisely the absolute Galois group
of Q in the characteristic 0 algebraically closed fields case). We denote
this group by Galpf (T ). It is an invariant of the bi-interpretability type
of T . The structure of Galpf (T ) has various implications. For example, if
T is ω-categorical and Galpf (T ) is finite (even after naming any finite set of
parameters), then Lascar [?] proved that the bi-interpretability type of T can
be recovered from the abstract group Aut(M̄). Also Hrushovski [?] remarks
that if T is uncountably categorical and finitely axiomatizable, then only
finitely many finite simple groups occur as quotients of Galpf (T ) (even after
naming finitely many parameters). Also there is a Galois theory. For any T
there is a Galois correspondence between closed subgroups of Galpf (T ) and
definably closed subsets of acleq(∅).
The analogous construction can be made for hyperimaginaries. Let bddheq(A)
be the set of hyperimaginaries which have small orbit under AutA(M̄). Then
Aut(M̄) acts on bddheq(∅). As above we obtain a group which we denote
Galc(T ), the closed Galois group. This has naturally the structure of a
compact (Hausdorff) topological group, and is again an invariant of the bi-
interpretability type of T . Galpf (T ) is naturally a quotient of Galc(T ). The
two groups are equal just if there is no hyperdefinable (over an element
c ∈ acleq(∅)) connected compact Lie group acting as automorphisms of some
hyperdefinable (over c) set X. Again there is a Galois correspondence be-
tween closed subgroups of Galc(T ) and definably closed subsets of bddheq(∅).
(See [?].)

There is a third, natural but rather mysterious group Gal(T ), which lives
rather in the “descriptive set theory” of M̄ . Consider equivalence relations E
on possibly infinite tuples, which are invariant under Aut(M̄ . Let bddinveq(A)
be the set of classes of such E which have small orbit under Aut(M̄). Again
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Aut(M̄) acts on bddinveq(∅) and Gal(T ) is the resulting group. Galc(T ) is a
quotient of Gal(T ), and gives Gal(T ) the structure of a quasicompact (not
necessarily Hausdorff) topological group. Ziegler recently gave an example
where Gal(T ) 6= Galc(T ). We know very little about Gal(T ). For example
what can be the cardinality of the quotient Gal(T )/Galc(T )?

5 Finite rank structures

The basic ingredients in the proof of Morley’s theorem were generalized by
Shelah [?] to build the enormous machinery of stability theory which he
used to solve the spectrum problem for countable theories. Analogously,
the geometric ideas from section 3 have much wider applicability. The key
points are the identification of certain “geometries”, the fine structure of these
geometries, and structural consequences for parts of the ambient structure
controlled by these geometries. A new feature, absent in the ω1-categorical
context, will be orthogonality. For example, there may be several strongly
minimal formulas φi which together control the whole structure (every model
M of T is prime over

⋃
i φ

M
i ) but the φi may have no mutual interaction. Also

in the general superstable case, the geometries that have to be considered
may have infinite Morley rank. Here we will restrict our attention to finite
rank structures where it is the strongly minimal geometries that are relevant.
This is a small generalization of the situation considered in section 3. The
possible presence of orthogonal strongly minimal sets is the new feature. In
subsequent applications, these finite rank structures may arise as definable
sets in some ambient (infinite rank or even unranked) structures. Also at
this point, the reader may wish to think of our theories and structures being
many sorted.

Definition 5.1 We will say that a structure M (equivalently Th(M)) has
finite Morley rank, if in Th(M) every formula has finite Morley rank. We will
call M finite-dimensional, if in addition, there are a finite set {φi : i = 1, .., k}
of strongly minimal formulas in T eq such that every model N of Th(M) is
prime and minimal over

⋃
i φ

N
i .

We assume for the remainder of this section that T is a theory of finite
Morley rank, M |= T and M̄ a saturated model of T . We will work in M̄
unless we say otherwise. Recall that the Morley rank of a complete type p(x)
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over a set A is the minimum of the Morley ranks of the formulas in p. We
write RM(a/A) for RM(tp(a/A)). If a happens to be a tuple from a strongly
minimal set, this coincides with dim(a/A) as defined in section 3.

Definition 5.2 Let a be a finite tuple, A ⊂ B. We say a is independent
from B over A if RM(a/B) = RM(a/A).

Remark 5.3 This coincides with independence in the sense of nonforking.
We have the basic properties: a is independent from B over A if a is inde-
pendent from A ∪ {b} for all finite tuples b from B iff b is independent from
A ∪ {a} over A for all finite tuples b from B. Given a and A ⊆ B, there is
a′ realising tp(a/A) such that a′ is independent from B over A. tp(a/A) is
stationary if for all B ⊃ A, and a′, a′′ realising tp(a/A) independent from B
over A, tp(a′/B) = tp(a′′/B). tp(a/A) is stationary iff it has Morley degree
1.

Definition 5.4 T is modular, if for all finite tuples a, b, a is independent
from b over acleq(a) ∩ acleq(b).

This agrees with Definition 3.5 (ii) if T happens to be strongly minimal.
Here are some generalizations of Proposition 3.6.

Fact 5.5 (i) T is modular iff each strongly minimal formula in M̄ eq is mod-
ular.
(ii) If T is modular and G is a definable group in M̄ eq then G is abelian-by-
finite, G has no infinite definable family of infinite connected subgroups, and
all definable subsets of G are Boolean combinations of cosets.

Definition 5.6 Let X, Y be definable sets in M̄ eq, both defined over A say.
We say that X and Y are fully orthogonal if whenever b is a finite tuple from
X and c a finite tuple from Y then b is independent from c over A.

Remark 5.7 (i) The content of full orthogonality is that any definable sub-
set of Xn × Y m is a finite union of products of definable subsets of Xn and
definable subsets of Y n.
(ii) Restricted to strongly minimal sets, full orthogonality is usually just called
orthogonality. Nonorthogonality is an equivalence relation on strongly mini-
mal sets.
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If T is also finite-dimensional, then Proposition 3.1 holds, in the sense
that there are (given M) P0,..,Pn = M such that P0 = φM1 ∪ ..∪φMk and Pi+1

is a definable fibre bundle over Pi.

Groups of finite Morley rank. We mean a group G with possibly additional
structure such that Th(G) has finite Morley rank. In many applications such
groups will arise as definable groups in some ambient structure. A result of
Lascar (see [?]) says that any finite Morley rank group is finite-dimensional
(in the sense of 5.1). From Proposition 3.1, we see that the structure of simple
groups of finite Morley rank is relevant to the fine structure of uncountably
categorical theories. An underlying and fundamental result due to Macintyre
is that any infinite field of finite Morley rank is algebraically closed. G is said
to be connected if G has no proper definable subgroup of finite index. All
the above notions have various equivariant implications and interpretations.
For example

Fact 5.8 Suppose H1, H2 are definable connected fully orthogonal subgroups
of G then H1 and H2 commute. Moreover any definable subset X of H1.H2 is
essentially the product of a definable subset X1 of H1 with a definable subset
X2 of H2.

Let X be a definable subset of G of Morley multiplicity 1. The stabilizer
of X in G, StabG(X) is by definition the set of g ∈ G such that RM(X) =
RM(X∩g·X). This is a definable subgroup ofG. A kind of stability-theoretic
analogue of the socle of a group (subgroup generated by minimal normal
subgroups) is the largest connected definable subgroup of G contained in
the algebraic closure of some finite set (φi(x))i of strongly minimal formulas.
(This should be read in a saturated model.) We will call this object s(G),
hopefully without ambiguity. If G happened to be uncountably categorical,
this is precisely the maximal connected almost strongly minimal subgroup
of G. As remarked in section 3, if G is (Z/4Z)ω, this is 2G. A useful
and relatively elementary result relating the structure of definable sets in a
commutative group G to s(G) is the following [?]:

Lemma 5.9 Let G be a commutative connected group of finite Morley rank,
defined in an ambient structure M̄ over a set A. Assume that every connected
definable subgroup of G is acleq(A) definable. Let H = s(G). Let X be any
definable set of Morley degree 1 which has finite stabilizer. Then, up to a set
of smaller Morley rank, X is contained in a single translate of H.
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6 Examples.

Algebraically closed fields. The theory of algebraically closed fields of a fixed
characteristic say 0 (ACF0) is strongly minimal, with quantifier-elimination
in the language (+, ·, 0, 1,−). The dichotomies and results from sections 3
and 5 are largely vacuous here. All definable sets are mutually nonorthog-
onal, all definable groups are almost strongly minimal, nothing is modular.
The basic objects of algebraic geometry are certain definable sets, varieties,
defined by finite systems of polynomial equations. Morley rank and algebraic-
geometric dimension coincide for such objects. Any definable set is a finite
Boolean combination of such things, even a finite Boolean combination of
smooth projective varieties. Definable functions are piecewise rational. One
of the aims of algebraic geometry is the classification of varieties up to bi-
rational isomorphism. This is pretty close to classifying definable sets up to
definable isomorphism. The general model-theory of ACF0 says very little
about this problem. We will see later however that the model theory of cer-
tain enriched structures (such as differentially closed fields) is meaningful for
issues such as the deformation theory of algebraic varieties.
A definable group can be uniquely equipped with the geometric structure of
a variety (pieced together from finitely many affine varieties with rational
transition maps) such that multiplication becomes a morphism. A class of
such groups which is very important for geometry and arithmetic is the class
of abelian varieties, connected algebraic groups whose underlying variety is
a closed subvariety of some projective space Pn. These are commutative
groups, and any smooth projective curve which is not isomorphic to P1 will
embed in a unique smallest such abelian variety (its Jacobian variety). Hence
their importance for the study of curves, at least. Any strongly minimal de-
finable set X in (K,+, ·) is, up to finite, a smooth projective curve C. Assume
K = C. A smooth projective curve C is a compact Riemann surface (so a
compact 2-dimensional manifold), and has a finite number of “handles” g,
the genus of the curve. (g is the dimension of its Jacobian variety.) This is a
fundamental invariant of the curve, and also of the strongly minimal set X.
We will use below the following fact: the strongly minimal set (or curve if
you wish) has genus ≥ 2 if and only if there is no definable group structure
on X, even after adding or subtracting finitely many points. See [?] for more
background.
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Compact complex manifolds. A complex manifold M is a topological space
with a covering by open sets homeomorphic to open subsets of some Cn

such that the transition maps are holomorphic (complex analytic). If M is
such, so are M × M , M × M × M etc. By an analytic subset or subva-
riety) of M we mean a subset X of M such that for every a ∈ M , there
is an open neighbourhood U of a in M and holomorpic functions f1, .., fn
on U such that U ∩ X = {x ∈ U : f1(x) = ... = fn(x) = 0}. Let M be
a compact complex manifold and consider M as a relational structure by
adding a predicate RX for each analytic subvariety of Mn. Zilber pointed
out (using a theorem of Remmert)) that M is a structure of finite Morley
rank with quantifier-elimination (but clearly not saturated as every element
of M is essentially named by a constant), in fact even a “Zariski structure” in
a generalized sense. We can actually consider the whole category of compact
complex manifolds as a many sorted structure; the relations on M1× ...×Mn

being again the analytic subvarieties. This category is again a structure of
finite Morley rank (every sort has finite Morley rank). It turns out that the
machinery developed earlier is meaningful for complex compact manifolds
(either one at a time, or the whole category). We let A denote the many-
sorted structure. Among the sorts is P1(C) (we will just say P1), which is,
by Chow’s theorem, essentially just the structure (C,+, ·) considered above.
Basically all the general theory we have discussed has meaning in the struc-
ture A. A complex torus T is a complex Lie group of the form Cn/Λ where
Λ is a lattice of real rank 2n. It is precisely a compact complex Lie group so
is already a sort in A (and the group operation is definable). For suitably
general Λ and for n > 1, T will be fully orthogonal to P1. The complex
analytic literature ([?]) already contains the result that any complex torus
which is fully orthogonal to P1 must be modular. This implies:

Proposition 6.1 Suppose T is a complex torus with no proper subtori. Then
ether T is modular or T is (definably) isomorphic to an abelian variety.

The Zilber conjecture is true in A (via Zariski geometries). This may have
interesting implications for the classification of compact complex manifolds
up to bimeromorphic equivalence. Some recent results ([?]) are:

Proposition 6.2 Let G be a strongly minimal modular group definable in
A. Then G is definably isomorphic to a complex torus.
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Proposition 6.3 Suppose X is a strongly minimal set definable in A. Sup-
pose X̄ is a connected compact complex manifold such that X is a definable
open subset of X̄. Then X is degenerate if and only if (i) there are no noncon-
stant meromorphic functions (to P1) on X̄, and (ii) there is no generically
surjective meromorphic map from X̄ to any space of the form T/G where T
is a complex torus and G a finite group of (holomorphic) automorphisms of
T .

Definable groups and homogeneous spaces come into the picture much as in
Proposition 3.1. For example, it follows from the general theory that if M is
a compact Kahler manifold, and f : M → X is the algebraic reduction of M
(f definable map onto an algebraic variety X of maximal possible dimension)
and the general fibre of f is isomorphic to an algebraic variety Y , then Y is
a homogeneous space for a complex algebraic group.

Differential equations. One algebraic route to the study of (algebraic) dif-
ferential equations, is via differential rings and fields. A differential field is
a field F equipped with a derivation D. The theory of differential fields of
characteristic 0 has a model companion, the theory of differentially closed
fields DCF0. This theory is ω-stable, but of infinite Morley rank. The
definable sets of finite rank turn out to witness very nicely the geometric-
model-theoretic themes discussed above. In fact, via model theory we see
quite amazing analogies between the category of definable sets of finite Mor-
ley rank in a model of DCF0 and the category A discussed in the previous
section. (See [?] for more on this).
We fix a large model (K,+, ., D) of DCF0. k denotes the field of constants
(which is a strongly minimal set). Again the Zilber conjecture is true for
strongly minimal sets definable in this structure, via the Zariski geometries
theorem. There exists a direct differential algebraic-geometric proof in the
case where the strongly minimal set is already a subset of a finite Morley
rank group [?], yielding the following (first proved in [?]).
Suppose A to be an abelian variety (defined in the algebraically closed field
(K,+, ·)). By A] we mean the smallest definable (in (K,+, ·, D)) subgroup
of A containing the group of torsion points of A.

Proposition 6.4 (i) A] has finite Morley rank, and for any finite Morley
rank G with A] < G < A, A] = s(G).
(ii) If A is defined over the field k of constants, then A] is precisely A(k),
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the group of points of A with coefficients in k.
(iii) A] is modular if and only if A has no abelian subvariety isomorphic (as
an algebraic group) to an abelian variety defined over k (A has k-trace 0).
(iv) Let A1, A2 be simple abelian varieties, each nonisomorphic to any abelian
variety defined over k. Then there is a rational isogeny from A1 to A2 iff A]1
and A]2 are nonorthogonal.

The analogue of 6.3 is:

Proposition 6.5 Let X be a strongly minimal set in (K,+, ., D). Then
exactly one of the following holds:
(i) X is degenerate,
(ii) X is definably isomorphic to a definable subset of kn (for some n),
(iii) there is a simple abelian variety A with k-trace 0 and a generically
surjective definable map from X to A]/G for some finite group G of definable
automorphisms of A].

Fundamental questions remain concerning degenerate strongly minimal sets.
An important invariant of a definable set of finite Morley rank is its “order”
(more or less the order of the differential polyynomial defining it). In the or-
der 1 case, the situation is rather clear (by a finiteness theorem of Jouanolou).
But for higher orders nothing is known.
Again the definable homogeneous space technology from section 3 is relevant.
It both explains and generalizes the classical Picard-Vessiot Galois theory of
linear differential equations.

Finiteness theorems. Faltings proved [?] that a curve X of genus ≥ 2 defined
over Q has only finitely many points with coordinates in Q. A version over
function fields (conjectured by Lang) was proved earlier by Manin:

Proposition 6.6 Let X be a curve defined over F where F is a function
field over an algebraically closed k (characteristic 0). Then either (i) X is
not isomorphic to a curve defined over k and X(F ) is finite, or (ii) X is
isomorphic to a curve X0 defined over k and all but finitely many points of
X(F ) come from points of X0(k) via this isomorphism.

As is well-known, model theoretic methods give a proof of the first part (using
especially 6.4(iii)). Rather easier aspects of the theory (a small part of (i)
and (ii) of 6.4) yield the second part, which I will outline. This second part
is called the Theorem of di Franchis and can be restated:
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Proposition 6.7 (characteristic 0.) Let X be a curve of genus ≥ 2 and
W be any variety. Then there are only finitely many generically surjective
rational maps from W to X.

We sketch a proof, coming essentially from [?]. Let k be an algebraically
closed field over which X and W are defined. Let F be the function field of
W . A generically surjective rational map from W to X corresponds to a point
of X(F ) \X(k), so we must show there are finitely many such things. Let D
be a derivation on F whose field of constants is k. Extend to a derivation D
on a differentially closed field K containing F (still with constants k). Let A
be an abelian variety containing X and defined over k (the Jacobian variety
of X). The only use of genus(X) ≥ 2 will be that the algebraic-geometric
stabilizer Stab(X) = {a ∈ A : a + X = X} is finite (otherwise X would
be a translate of its stabilizer). Now there is a certain definable (in the
differentially closed field) homomorphism, the logarithmic derivative, from
A(K) to some Kn whose kernel is A(k). As A(F )/A(k) is finitely generated
(by the Lang-Neron theorem) there is a finite Morley rank definable subgroup
G of A containing A(F ). Let Y = X ∩ G. We must show Y to be finite.
Suppose otherwise. As X has genus ≥ 2, StabG(Y ) is finite, so by 6.4 (i), (ii),
and 5.9, Y is contained in a single coset of A(k). Let a ∈ Y (so a /∈ A(k).
As Y is infinite, there are infinitely many b ∈ A(k) such that b+ a ∈ Y . Let
k0 < k be such that the curve X is defined over k0. So we can find b /∈ acl(k0)
such that b + a ∈ Y . In particular, working in the algebraically closed field
K, a is a generic point of X over k0, a is independent from b over k0 and
b+ a is also a generic point of X over k0. So b ∈ Stab(X) and as b /∈ acl(k0)
this shows Stab(X) to be infinite, a contradiction.

It should be remarked that proofs like the above (using auxiliary model-
theoretic structures) automatically yield good bounds, in the above case dou-
bly exponential bounds, as a function of the shape of the equations defining
X and the rank of the finitely generated group A(F )/A(k). (See [?].)

Faltings [?] subsequently proved a generalization of Mordell’s conjecure, again
conjectured by Lang: If A is a complex abelian variety, X a subvariety and Γ
a finitely generated subgroup of A then X ∩Γ is a finite union of cosets. The
same holds for semiabelian varieties, algebraic groups which are extensions
of an abelian variety by (C∗)n. (As is well-known, methods using above
machinery yield a proof of this in the function field case, also in positive
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characteristic [?]. )
One can ask whether an analogous (absolute) statement holds in the category
A. Here the analogue of a semiabelian variety is a extension A of a complex
torus by some (C∗)n. Such a group A is commutative and has a compacti-
fication Ā living in A such that A and its group structure are definable (in
A). The analogue of a subvariety is an analytic subvariety of A definable in
A. With then have:

Proposition 6.8 Suppose A is an extension of a complex torus by (C∗)n.
Suppose X is a “subvariety” of A and Γ a finitely generated subgroup of A.
Them X ∩ Γ is a finite union of cosets.

Sketch of proof. This is a straightforward reduction to the semiabelian variety
case using methods from [?]. We write the group operation additively. We
may assume that X is irreducible, and X∩Γ is “Zariski dense” in X, namely
X is the smallest “analytic” subvariety of A containing X ∩ Γ. We want
to show that X is a translate of a definable subgroup of A. Let S = {a ∈
A : a + X = X}. Let π : A → A/S be the natural homomorphism. Then
π(Γ) is finitely generated and π(Γ) ∩ π(X) is Zariski-dense in X. Also X
is a union of translates of S. So (replacing A,X,Γ, by π(A), π(X), π(Γ) we
may assume that S is finite (or even trivial). Let s(A) be the definable socle
of A. By 5.9 we may assume that X is contained in s(A). By the results
in section 6, s(A) is the almost direct sum of A1 a semiabelian variety, and
A2 a modular complex torus. A1 and A2 are fully orthogonal, so by 5.7,
X = X ∩ A1 + X ∩ A2. As A2 is modular X ∩ A2 is a translate of a
subgroup A3 of A2. But then A3 is contained in S, so A3 is a point. So
up to translation X is contained in A1, a semiabelian variety. By [?] (the
generalization of Faltings theorem to semiabelian varieties), X is a translate
of a semiabelian subvariety. We either both a proof of the theorem and a
contradiction.

7 Variants

The main problem is the development of geometric model theory outside the
finite Morley rank context as well as finding applications. The theory is fully
in place ([?],[?]) for superstable theories (T is superstable if for all sufficiently
large models M of T there are at most |M |-many complete types over M).
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There is a rank on types, the U -rank which is ordinal valued but maybe
infinite. Strongly minimal formulas are replaced by regular types, types of
U -rank ωα. There is as yet no formulation of a “Zariski geometry” on regular
types, and also no general theorems regarding the Zilber conjecture in this
context.
In fact the general theory is in place for stable theories, except that regular
types no longer coordinatize the structure. (T is stable if for any model M of
T there are at most |M ||T | complete types over M .) See [?] for a reasonably
comprehensive acount.
There are not many stable theories. In the past five years there has been an
enormous amount of work done generalizing the machinery of stability theory
to a larger class of theories, the simple theories. The model companion of
fields equipped with an automorphism, ACFA, is simple but unstable. The
validity of the Zilber conjecture here ([?]) has led to more model-theoretic
applications to diophantine geometry [?].
The study of o-minimal structures (neither stable, nor simple) is another
thriving area [?]. However a lot of the general geometric theory is vacuous
here, as 1-dimensionality is built in to the situation. One would like to see a
theory of finite-dimensional structures which are coordinatized by o-minimal
structures, in which the principal homogeneous spaces from section 3 play a
role.
In some sense the various kinds of theories for which there is a developed
model theory correspond to structures surrounding number theory: the com-
plex field (strongly minimal), the real field (o-minimal), ultraproducts of
finite fields (simple of SU -rank 1). There is however no really “general” the-
ory in place corresponding to the field of p-adics, and one would hope to see
some progress here.
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