
INSS : an hybrid system for
constructive machine learning

Fernando S. OSORIO 
1,2

, Bernard AMY 
1

1
 Laboratoire LEIBNIZ - IMAG -INPG

46, avenue Félix Viallet 38031 Grenoble Cedex 1 - FRANCE
Web :  http://www-leibniz.imag.fr/RESEAUX/

E-mail :  osorio@imag.fr  -  amy@imag.fr

2
 UNISINOS - Computer Science Dept.

Av. Unisinos, 950 - CP 275 - CEP 93022-000 RS-  BRAZIL
Web :  http://www.unisinos.tche.br/

Abstract

           In this paper we present the INSS system, a new hybrid approach based upon the principles of KBANN
networks.  It represents an important improvement in comparison with its predecessor because the learning and the
knowledge extraction process are faster and are accomplished in an incremental way . INSS offers a new approach
applicable to constructive machine learning with high-performance tools, even in the presence of incomplete or erroneous
data.
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1. Introduction

The main argument, and the most used one, to
justify the study and the application of hybrid symboli-
connectionist systems is the complementarity of
symbolic AI methods and sub-symbolic connectionist
methods (Artificial Neural Networks - ANN).

Such a justification is a very general one. And it
remains to be more precise about the real contribution
of the hybrid approach. What exactly provides the
combination of neural networks and knowledge based
systems ? Researchers claim that hybrid systems take
advantage of their respective component strengths. Is it
a real property of the existing hybrid system ? And what
are these advantages ?

To validate an hybrid system, one have to answer
these questions, and to describe what really can be done
with this system which was hardly done with just one
of its components. Particularly the system has to be
given proof of the following properties :

- possibility to use and to take into account several
kinds of knowledge representation.

- best efficiency of the global system when
compared to each of its components.

- strong coupling between the components, leading
to an exchange of knowledge between all of these
components. This knowledge has to be proved
consistent and useful. The best way for implementing
such a coupling is to choose the integration mode called
co-processing [10,11], in which the different component
of the hybrid system work on the same level and
exchange information between both themselves and
their  environment.

- possibility of global learning. The whole system
is able to adapt its various sets of knowledge to the
variations of the data domain. This tuning can be done
following two ways : either learning (or forgetting) new
examples, or modifying the architecture of the neural
component.

In this paper we describe a system, called INSS
(Incremental Neuro-Symbolic System [12,13]), endowed
with these properties. In section 2 we explain the origin
of our system and the reasons of our choices. Section 3
describes INNS system. Then, in section 4, to validate
the system, we present some practical results allowing
to show that INSS has the sought properties. Section  5
presents the application of INSS in a medical domain.



2. The co-processing integration mode.

In the classification task domain, the hybrid neuro-
symbolic systems, such as SYNHESYS [8] and
KBANN [22], exploit their capacity to use at the same
time theoretical knowledge (set of symbolic rules) and
empirical knowledge (set of observed examples). These
two systems are significant examples of the
coprocessing integration mode in hybrid systems,
allowing a bi-directional knowledge transfer between the
symbolic and connectionist modules. Figure 1 shows
the general architecture of this kind of systems.

Knowledge Acquisition

(Expert / Knowledge Engineer)

Theoretical Knowledge Practical Experiences

SM

Symbolic

Module

CM

Connectionist

 Module [ANN]

Rules ExamplesValidation
Module

Rule

Insertion

Rule

Extraction

Knowledge Transfer

Figure 1 - Hybrid neuro-symbolic systems and
knowledge transfer

We chose to base our study on the KBANN model, a
well-known hybrid neuro-symbolic system that
represents, among others, the state-of-the-art in this
domain. This system is able to compile a knowledge
base into the form of an ANN. Then, it learns from an
example data set, and after that it extracts new rules.
This approach allows a refinement of initial knowledge,
as we can see in Figure 2. Such a system constructs
robust networks: the insertion of a priori theoretical
knowledge leads to quicker learning; we can use small
data sets during the learning phase; all available
knowledge about the problem (whether theoretical or
empirical) is used; and thus the system is more adapted
to process incomplete and/or erroneous data.
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Figure 2 - Knowledge refinement using KBANN

However, the KBANN system has some important
drawbacks due to the choice of its ANN model and
learning method, the Back-Propagation algorithm [16].
It’s the reason why we developed the new system called
INSS  to improve KBANN networks and to overcome
its main limitations. This new system also authorises
insertion, refinement and rule extraction, but, unlike the
KBANN system, each process performs incrementally.
Moreover, instead of using the Back-Propagation
algorithm, based on static networks, INSS uses the
Cascade-Correlation learning method [7] which proceeds
by adding new units (neurons) during learning. Our
approach allows to obtain a constructive network that is
able to develop its structure and its knowledge, while
keeping unchanged the principal properties of a hybrid
neuro-symbolic system. The main feature, that
constitutes the originality of our system, is that we are
able to perform an incremental rule extraction [5]. We
do not know any other neuro-symbolic system able to
extract rules in a such incremental way.
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Figure 3 - INSS System: Constructive knowledge
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3. The INSS system

The INSS  system is composed of five modules:
Symbolic-Module (Symbolic Inference Engine),
NeuComp (Construction of a network from rules),
NeuSim (ANN learning and recall), Extract (Rule
extraction), and Valid (Validation of acquired
knowledge, by means of study of relations between
rules and examples). The INSS system components are
represented in Figure 3.

Our system uses the CLIPS language (C Language
Integrated Production System) [9], developed by the
STB-NASA, as its symbolic module. Our system also
provides facilities to transfer rules and examples to/from
the specific syntax used in this language and the syntax
used in our tools (NeuComp/NeuSim/Extract). The



NeuSim module can be also used as a forward-chaining
inference engine once the symbolic rules have been
transferred to the connectionist module.

The NeuComp module can process elementary
production rules of order 0 which are equivalent to
IF/THEN forms such as:

IF <Condition>(TRUE/FALSE) AND/OR
    <Condition> (TRUE/FALSE)...
THEN <Conclusion>

The rule compilation follows the method described
by Towell [22,24]. The result of the translation is a
network composed of a set of units linked by weighted
connections (see Figure 4). The activation of this
network, before learning, leads exactly to the same
results (outputs) as those obtained with the set of rules.
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Figure 4 - Rules to network translation ("rule
insertion")

We also extended the rules used by KBANN to allow
the application of INSS to robotics problems and to
study what we called "high level rules" [14,15].
Therefore, NeuComp accepts production rules of order

0
+ 

(rules including value intervals). We implemented
the usage of comparison functions of the following
type:

<Feature> <Operator> <Value>    or    
<Feature> <Operator> <Feature>,
where Operator is GreaterThan, LessThan or Equal.

Resulting in rules of this kind:
    IF GreaterThan(Sensor_S1, 1.0) AND
        LessThan(Sensor_S1, Sensor_S2)
    THEN Conclusion_C1

These rules can be compiled into an ANN composed
by simple Perceptron like units (we create feed-forward

multi-layer networks with sigmoïd based units). A
detailed description of all compilation processes, used
within INSS, can be found in [13].

As the symbolic rules allow to establish some
initial knowledge and then give an initial structure to
the network, this approach solves two important
problems related to Artificial Neural Networks : on one
hand this simplifies the choice of the number and
distribution of units, on the other hand we obtain a
good assignment of initial values to the connection
weights.

The use of the Cascade-Correlation learning
algorithm instead of Back-Propagation, in the NeuSim
module, allows a quicker learning [7,17], with higher
performance results [17,21]. Figure 5 shows an example
of the network structure evolution when we apply the
Cascade-Correlation learning algorithm. It allows
especially constructive learning where the initial
knowledge is not mixed with the new acquired
knowledge. The importance of such a choice of the
learning method is reinforced by studies [18,19]
showing that Cascade-Correlation networks can be used
to model some aspects of human cognitive
development.

Cascade-Correlation [Fahlman 90]
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Figure 5 - ANN structure evolution using Cascade-
Correlation

The Cascade-Correlation algorithm developed by
Fahlman and Lebiere [7], in contrast to static neural
learning algorithms such as Back-Propagation [16], is a
generative technique to network construction and
learning. Instead of merely adjusting weights in a
network of fixed topology, Cascade-Correlation starts
with a minimal network of input and output units.
During learning, it may add hidden units one at a time,
installing each on a separate layer. This is done in the
following way: if the net is not reducing error fast
enough with its current topology, it will select and
install a new hidden unit whose output activations
correlate best over all training cases with the existing



network error. Once one new unit is installed in the
network its weights are frozen, and this unit keeps
unchanged its learned weights. So, Cascade-Correlation
will reduce step-by-step the network output error by a
cyclic process of output units learning and hidden unit
addition/learning. In essence, Cascade-Correlation
searches not only in weight space but also in the space
of network topologies.

Learning in a network by adding new units allows to
complete, to change, or to refine the initial knowledge.
In INSS, using the Extract module, one can be able to
analyse only the new added units and the modified
output units. The old units always keep their function
and their meaning in comparison with the initial rules
introduced into the network. As we can preserve
unchanged the initial knowledge acquired, this technique
makes the main difference of our system in comparison
with the KBANN system [5,6,22].

The Extract module [5,6] implements an improved
version of the SUBSET algorithm [2,22,23] of rule
extraction from neural networks. This algorithm was
improved in two ways. First, the extraction process is a
lot simpler and quicker since we look only at a small
part of the network. We do not need to extract all
network knowledge, but just the new acquired
knowledge. Second, we developed heuristic methods for
network simplification (remove less significant units
and links), used before extraction. The use of a
simplified network helps us to reduce the complexity of
the extraction procedure.

The Valid module [3] finds out the probably
incorrect rules and examples. Thus, we will need to
submit these inconsistencies to an expert analysis. This
module is under development.

In summary, the INSS system presents some
important advantages over its predecessor, KBANN. Our
system improvements allow us to eliminates some
drawbacks of KBANN nets:

•  The INSS constructive neural architecture allows
to work with incomplete symbolic rule sets and also
with incorrect symbolic rule sets. Our system can easily
add new rules (neurons) or even make broader changes in
the existing ones. The KBANN networks, as they use
static networks, restrict learning to less important
changes to the rule set. If we need to 'learn' a new rule
from examples in KBANN we should add manually
specific units for this purpose.

•  The KBANN network algorithm tries not to
change unit meaning, and tries to keep the symbolic
label significance associated to them. We can not be
sure that, during the KBANN learning process, its units
will not suffer a meaning shift. The Cascade-
Correlation, used within INSS, keeps unchanged the
initial acquired knowledge (compiled rules) by freezing
the network connection weights, and does not have any
problem of meaning shift.

•  The learning algorithm used in INSS is faster
than KBANN's Back-Propagation based algorithm.
Besides, this algorithm allows an incremental network
construction, by improving the connection weights as
well as the network topology.

•  Our rule extraction algorithm does not need to
analyse all the ANN structure, but instead we just
consider the new acquired network knowledge by
analysing the new added units. This leads to an
important reduction of the rule extraction process
complexity.

•  We are not restricted to using binary inputs
(rules of order 0), nor obligated to pre-process
continuous inputs in order to discretizate them. Our
system allows symbolic rule compilation of

proposition rules of order 0
+
.

4. Validation of INSS : practical results

The possibility to use and to take into account
several kinds of knowledge representation appears
clearly in the description of the functioning of INSS.
It’s the same for the possibility of global learning.
INSS can  not only adapt its various sets of knowledge
to the variation of the data domain, but also to learn by
modifications of its architecture.

It remains to show that the hybridisation increases
the efficiency of the system, and that the knowledge
extracted by INSS is a “good” knowledge. With this
aim in view we have applied INSS on a relatively
simple application, the Monk's Problem [21]. This
problem is a set of tests developed for performance
comparison of different learning algorithms. There are
three Monk's problem data sets. Here we will discuss
only the results we obtained within the first one, the
Monk1 problem, although our tests cover all three
problem data sets.

Table 1 - Monk1: Description of the symbolic rule set

   Input        Features   :

  HEAD_SHAPE = { ROUND, SQUARE, OCTAGON }

  BODY_SHAPE = { ROUND, SQUARE, OCTAGON }

  IS_SMILING    = { YES, NO }

  HOLDING        = { SWORD, BALLOON, FLAG }

  JACKET_COLOUR = { RED, YELLOW, GREEN, BLUE }

  HAS_TIE         = { YES, NO }

    Symbolic        Rules   :

  Monk1 <- HEAD_SHAPE = ROUND,

      BODY_SHAPE = ROUND (I)

  Monk1 <- HEAD_SHAPE = SQUARE,

      BODY_SHAPE = SQUARE (II)

  Monk1 <- HEAD_SHAPE = OCTAGON,

      BODY_SHAPE = OCTAGON (III)

  Monk1 <- JACKET_COLOUR = RED (IV)



The Monk1 problem data set is composed by one set
of four symbolic rules (see table 1 for the complete
domain theory), by one generalisation test set of 432
examples (covering all the input space), and by one
learning set of 124 examples. The examples are exactly
those available in the original data [25]. In our
experiments we used portions of the rule set and the
examples set in order to study the generalisation
capacity of our system. Just the learning set and the rule
set were partitioned, for its part, the generalisation test
set was preserved unchanged in all experiments.

4.1. First experiment : validity of the
extracted knowledge.

This experiment aims at verifying if the system is
able to find again the complete rule set from a partial
set of knowledge. This is accomplished by means of
learning an example base built up with the complete
set.

In a first test, we created a network by compiling 75
% of the rules (3 among the 4 available rules). Then we
applied the rule extraction method. The extraction
process has been applied only on two units, the output
and one hidden unit, because one unit only has been
added to the network during the learning period. We
repeated such a test for all the configurations of the
incomplete rule set : one rule eliminated among four
available rules. In any case, the extraction method
allowed to retrieve the rule removed from the initial set.

In a second test, we used another incomplete rule set
constructed by suppressing 50% of the rules contained
into the complete set. As in the first test, we refined
this initial knowledge by using the original learning
data set. The result we obtained is the same one: we
rediscovered all the rules eliminated from the original
rule set.

This set of experiments leads to two remarks :
- In any case, the retrieved rules were found by

rule extraction from the ANN added units. That shows
the process of modification of the network architecture
is consistent.

- The fact we rediscover the eliminated rule
means the removed rule was implicitly present in the
examples learned by the neural network. The extracted
knowledge is sound and not in contradiction to the
example set.

4.2. Second experiment : efficiency of the
hybridisation.

The results obtained (see table 2) show that INSS is
able to treat this problem using all available learning
examples, or using a combination of the theoretical
knowledge (rules) and empirical knowledge (examples).
We showed that we always obtain a superior
generalisation rate when we use at the same time rules
and examples. Lower generalisation rates are obtained
when we used just one information source at the same
time.

Table 2 - Monk1 problem:
Using rules and examples to improve generalisation
Portion of Portion of Generalis. Generalis. Generalis. ANN
Rule Set Examples Set using INSS Just rules Just examples

- 100% 100% - 100%
- 75% 89.21% - 89.21%
- 50% 70.92% - 70.92%

100% - 100% 100% -
75% - 83.33% 83.33% -
50% - 72.22% 72.22% -

75% 100% 100% 83.33 100%
50% 100% 100% 72.22 100%
75% 75% 100% 83.33 89.21
75% 50% 100% 83.33 70.92
50% 75% 100% 72.22 89.21
50% 50% 8 9 . 8 6 72.22 70.92
*
 Generalisation scores represents the average obtained from 5

different runs
+

 Our system and the data used in these tests are available (send us e-mail)

5. Medical Diagnosis and other applications.

In order to study the behaviour of INSS on a real
application, the system has been also tested on a
medical diagnosis application : diagnosis of toxic coma.
When a comatose patient is admitted in an emergency
care unit, the clinician makes an early tentative
diagnosis by collecting clinical and biological
parameters. The diagnosis may be later confirmed or
rejected by toxicological analysis. So, for the initial
therapeutic action to be as adequate as possible, there is
a need for an accurate prediction of the toxic cause,
without waiting for the toxicological analysis. The use
of an intelligent automated system to help in this
diagnosis task seems to be very useful. Until now, there
is no complete model for describing this knowledge by
means of rules.

Our goal was to use INSS to aid to identify the
causes of a psychotrope induced coma. We have
available a case base of 505 pre-analysed examples of
patients. Each example is described with 13 parameters
or symptoms obtained directly when the patient is
admitted, without waiting for the toxicological analysis.
The diagnosis should aid to identify the presence or
absence of each one of the 7 individual toxic causes
(Alcohol, ADT, Benzodiazepines, Barbiturates,
Carbamates, Morphine or Phenothiazines). A more
detailed description of this problem can be found in the
technical report of the Esprit MIX Project [1].

Table 3 reproduces the results we obtained
comparing INSS to other machine learning systems
applied to this medical diagnosis problem. All the
systems were tested with exactly the same learning and
testing data sets, and the results expressed in this table
are the average of 10 different runs. The systems we
compared with INSS are described in the MIX
reportּ[1].



The scores showed in Table 3, related to the other
methods (K-PPV, C4.5 and ProBis), were reproduced
from the results obtained by other researchers. As we
were constrained to use the same experiment protocol
in order to be able to compare these different methods,
we show here just a brief performance comparison.
Although we published in [1] a more detailed list of the
results obtained with INSS related to this problem.

Table 3 - Comparison of the generalisation test rate
after learning
Class \ Method K-PPV C4.5 ProBIS INSS

Alcohol -E 66.56% 65.40% 68.94% 7 4 . 5 0 %
ADT - a 55.39% 55.26% 57.63% 6 0 . 7 9 %
Barbituriques - B 65.65% 63.32% 64.60% 8 2 . 4 5 %
Benzodiazepines-b 62.37% 64.34% 63.95% 8 3 . 3 7 %
Carbamates - c 81.58% 8 7 . 6 4 % 84.87% 87.28%
Morphine - m 97.23% 97.50% 9 7 . 9 7 % 97.88%
Phenothiazines - p 66.45% 71.26% 68.95% 7 5 . 3 6 %

As we can observe from Table 3, the INSS system
shows a remarkable performance in this task compared
with the other techniques. In some classes the
percentage differences between INSS and the other
methods are quite small, but always near to the best
performance obtained. However we have to remark that
in some classes we get relatively poor classification
results for all methods. That’s due to the intrinsic
complexity of this problem and the strong overlapping
of the different classes : this kind of complexity is a
typical feature of the medical diagnosis.

We also tried to extract rules from the trained ANN.
The extracted rules were presented to one expert of this
domain, and he immediately recognised them as "valid
rules". He also noted that a great part of the rules had
captured important relations between certain input
features and the presence of one specific toxic substance
(e.g., intermediate pupil size, normal eye movement,
low core temperature, and prolonged cardiological QT
interval, are factors that indicate the possible presence
ofּADT).

This research resulted in the development of an
experimental user interface to give access to our system
through the WWW (World-Wide-Web). This program
allows the consultation of the INSS system for toxic
coma diagnosis. The user can fill-in a form with the
patient's clinical and biological parameters and get back
the ANN answer indicating the possible toxic
substances absorbed. Presently, the system answer is
based upon an ANN trained with the 505 cases database.
However, this small number of available cases has
proved to be insufficient for a good diagnosis of all
toxic substances.

We are currently using the INSS system in two
other domains: autonomous robot control and models of
human cognitive development (e.g., balance scale
problem[18,19]). A description of our preliminary

results obtained with these applications can be found
inּ[13].

6. Conclusion

The INSS system presented here offers many
advantages compared to the KBANN system by which it
was inspired. This system has a better performance and
allows incremental acquisition/extraction of network
knowledge. Furthermore, it is based upon an
incremental learning method already used to model
human cognitive development. This learning method
allowed us to develop a system perfectly adapted to the
concepts proposed in the framework of constructive
machine learning systems. The system was tested on
different applications (classification tasks, medical
diagnosis, autonomous robot control) obtaining
satisfactory  results. Actually our main goals are to
develop a deeper study of the real-world applications of
INSS, as well as to study the aspects related to the
constructive acquisition of knowledge.
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