
Names and Higher-Order Functions

Ian David Bede Stark
Queens’ College

A dissertation submitted to the University of Cambridge
towards the degree of Doctor of Philosophy

December 1994

University of Cambridge Computer Laboratory
Technical Report No. 363

April 1995

Abstract

Many functional programming languages rely on the elimination of ‘impure’ features:
assignment to variables, exceptions and even input/output. But some of these are genuinely
useful, and it is of real interest to establish how they can be reintroducted in a controlled
way. This dissertation looks in detail at one example of this: the addition to a functional
language of dynamically generated names. Names are created fresh, they can be compared
with each other and passed around, but that is all. As a very basic example of state, they
capture the graduation between private and public, local and global, by their interaction
with higher-order functions.

The vehicle for this study is the nu-calculus, an extension of the simply-typed lambda-
calculus. The nu-calculus is equivalent to a certain fragment of Standard ML, omitting
side-effects, exceptions, datatypes and recursion. Even without all these features, the
interaction of name creation with higher-order functions can be complex and subtle.

Various operational and denotational methods for reasoning about the nu-calculus are
developed. These include a computational metalanguage in the style of Moggi, which
distinguishes in the type system between values and computations. This leads to categorical
models that use a strong monad, and examples are devised based on functor categories.

The idea of logical relations is used to derive powerful reasoning methods that capture
some of the distinction between private and public names. These techniques are shown to
be complete for establishing contextual equivalence between first-order expressions; they
are also used to construct a correspondingly abstract categorical model.

All the work with the nu-calculus extends cleanly to Reduced ML, a larger language
that introduces integer references: mutable storage cells that are dynamically allocated. It
turns out that the step up is quite simple, and both the computational metalanguage and
the sample categorical models can be reused.

-7

Preface

I would like to thank my supervisor, Andrew Pitts, for his continuing encouragement,
support, guidance and instruction. I am very grateful to the numerous friends, both within
and without the Computer Laboratory, who have brightened these last three years in
Cambridge. Extraordinary thanks are due to my wife, Judith, for everything.

I would also like to acknowledge the financial support of the Science and Engineering
Research Council, the EC Basic Research Action ‘Categorical Logic in Computer Science’,
the EC SCIENCE project ‘Programming Language Semantics and Program Logics’, the
Computer Laboratory, and Queens’ College.

Except where otherwise stated, all the work described in this dissertation is the product
of my own original research. Some of the results presented have also appeared in the
conference papers [91] and [92] (joint with Andrew Pitts), and in the journal article [120].

This document was prepared using LATEX 2", with Michael Barr’s diagram macros.
Thanks to some code originating with Andy Gordon, each reference in the bibliography
is followed by a list of the pages on which it is cited.

Preface to the Technical Report

I wish to thank my examiners, Samson Abramsky and Robin Milner, for their comments,
suggestions, and discussion of the work in this dissertation. This technical report edition
contains alterations suggested by them, together with a number of minor textual correc-
tions. It is otherwise identical to the version originally submitted.

-5

Contents

Abstract -7

Preface -5

1 Introduction 1
1 Background : 2
2 Basic Concepts : 3
3 Methods : 6
4 Outline of Dissertation : 9

2 The Nu-Calculus 11
1 Syntax : 12
2 Evaluation Semantics : 14
3 Reduction Semantics : 19
4 Contextual Equivalence : 22
5 Examples : 23
6 A Context Lemma : 26
7 Applicative Equivalence : 32

3 Categorical Models 37
1 A Computational Metalanguage : 38
2 Interpreting the Nu-Calculus : 43
3 Reasoning in the Metalanguage : 48
4 Constructing Categorical Models : 51
5 The Functor Category SetI : 57
6 Properties of the Model in SetI : 59
7 Continuous G-sets : 63

4 Logical Relations 67
1 Operational Logical Relations : 68
2 Completeness at First-Order Types : 73
3 Categories with Relations : 78
4 The Parametric Functor Category P : 80
5 Properties of the Model in P : 83
6 Predicated Logical Relations : 88

-3

-2 CONTENTS

5 A Language with Store 92
1 Syntax of Reduced ML : 93
2 Operational Semantics : 97
3 Contextual Equivalence : 100
4 Examples : 101
5 Proof Methods : 106
6 A Computational Metalanguage for Store : : : : : : : : : : : : : : : : : 108
7 Interpretation of Reduced ML : 112
8 Categorical Models : 116
9 Example Categories : 119

6 Conclusion 122
1 Directions for Future Research : 122
2 Related Work : 124
3 Summary of Results : 126

A The Meyer-Sieber Examples 128

Bibliography 131

List of Figures

2.1 Rules for assigning types to expressions of the nu-calculus : : : : : : : 13
2.2 Rules for evaluating expressions of the nu-calculus : : : : : : : : : : : 15
2.3 Step reduction for the nu-calculus : 18
2.4 The extended nu-calculus : 30

3.1 Rules for assigning types to terms of the metalanguage : : : : : : : : : 39
3.2 Rules for equational reasoning in the metalanguage (I) : : : : : : : : : 40
3.3 Rules for equational reasoning in the metalanguage (II) : : : : : : : : : 41
3.4 Interpretation of the nu-calculus in the computational metalanguage : : : 44
3.5 Rules for constructing morphisms to interpret terms of the metalanguage 55

5.1 Expressions of Reduced ML : 94
5.2 Rules for assigning types to expressions of Reduced ML : : : : : : : : 96
5.3 Rules for evaluating expressions of Reduced ML : : : : : : : : : : : : 98
5.4 Some additional typing rules for the metalanguage : : : : : : : : : : : : 109
5.5 Some extra rules for equational reasoning in the metalanguage (I) : : : : 110
5.6 Some extra rules for equational reasoning in the metalanguage (II) : : : 111
5.7 Interpretation of Reduced ML in the computational metalanguage : : : : 113
5.8 Additional morphisms to interpret terms of the metalanguage : : : : : : 118

-1

Chapter 1

Introduction

Functional languages are good for writing programs that work. Clear and well-defined
semantics mean that there is agreement between a programmer’s expectation and what
actually happens, while simplicity in design allows practical methods for reasoning and
program verification. What you intend to write is what I read and what the computer
executes.

The route to achieving this often includes the elimination of language features judged
to be ‘impure’: direct access to memory and other physical devices, expressions with
concealed side-effects, or unstructured control methods (don’t even think of goto).� Out
with these go assignment to variables or arrays, exceptions, and even input/output. By
way of compensation, functional languages provide a high level of abstraction and the
powerful techniques of recursion and higher-order functions.

But many of these ‘impure’ features are genuinely useful, and their absence is given
by some as a reason to avoid functional programming. So it is of real interest to establish
how they can be reintroduced in a controlled way, without losing the advantages of a
purely functional language. A. Gordon, for example, has addressed this problem for
input/output [25]. For each other language feature, we can ask: why not give it another
chance?

This dissertation looks in detail at one particular example: the addition of state to a
functional programming language, in the form of dynamically generated names. Names
are created fresh, they can be compared with each other and passed around, but that is
all. As a very basic example of state, they capture the graduation between private and
public, local and global, by their interaction with higher-order functions. We examine
their behaviour, develop methods for reasoning about it, and construct categorical models
to capture the meaning of names. As a more substantial example of state, we then extend
all this to a functional language with integer references: mutable storage cells that are
dynamically allocated. It turns out that the step up is quite simple and much of the work
on names can be reused.

While the theory of state in functional languages is far from complete, this work shows
that the apparently ‘impure’ feature of dynamically generated names can be introduced in
a safe and well-behaved way. In particular there are good, strong reasoning methods that�“The purpose of Newspeak was not only to provide a medium of expression for the world-view and
mental habits proper to the devotees of Ingsoc, but to make all other modes of thought impossible”. George
Orwell, 1984

1

2 CHAPTER 1. INTRODUCTION

can handle names without removing their usefulness.

1 Background

Purely functional languages are based on Church’s lambda-calculus [10], where everything
is a function, and the only operation is application of a function to an argument. In
principle, a program is executed by rewriting the corresponding lambda-calculus expression
according to certain rules: this is called reduction. There are two natural strategies for
reduction, which give rise to two families of functional languages:� In a strict functional language, the arguments to a function are evaluated before

they are passed to the function body. This is call-by-value parameter passing; it is
efficient and easy to compile. Strict languages include LISP and Standard ML.� In a lazy functional language, arguments are given to a function unevaluated, and are
only examined when their value is required. This is call-by-name parameter passing,
generally implemented as call-by-need, where an argument is evaluated when first
used and the value saved to avoid recomputation. Lazy languages are tricky to
compile well on standard machine architectures, but they do introduce some novel
programming techniques, most notably infinite data structures. Ponder, Miranda,
Haskell and Gofer are all lazy languages [128, 130, 33, 35].

In practice the division is not always quite so clear, with certain disputes about the exact
requirements for laziness; see Riecke [112] or Abramsky [4] for a discussion of this.

These languages remain close to their mathematical roots, and compilers often base
optimizations on the behaviour of programs as mathematical objects. For example, this
may allow repeated large-scale code transformations, leading to efficient implementation.
All this eschews many of the features developed for conventional imperative languages;
stepping outside the mathematical purity of the lambda-calculus is carefully avoided. But
there are several practical reasons why such ‘impure’ features are important:� The real world. Most programs have to interact with the external world, yet the

original lambda-calculus quite reasonably made no provision for input/output.� They might be simply a good idea. The raising and handling of exceptions is a
prime example of a sensible and powerful control mechanism that lies outside the
purely functional.� Algorithms require them. Some algorithms rely on particular structures, such as
an array that can be updated in place, to execute efficiently [98]. Often there
are alternative algorithms, perhaps less well known, that use the data structures
of functional languages; queues are a good example of this [86]. But sometimes
no such method is known, as is presently the case with various graph traversal
algorithms [38].� They match the machine. Many traditional language features exist because they
accurately represent some aspect of computer hardware; by ignoring this, functional
languages are inevitably inefficient. Today this argument has lost much of its force,
as programs in any high-level language are often drastically transformed under
compilation for modern architectures and operating systems.

2. BASIC CONCEPTS 3

References in Standard ML are a good example of this. Mutable storage cells
would seem to map well onto real memory; but they cause surprising difficulties
for generational garbage collection, as they break the rule that all pointers should
be directed at objects older than themselves.

For various reasons then, real functional languages usually incorporate some ‘impure’
features: for example, LISP has the destructive rplca and rplcd , while Haskell has I/O
primitives. Sometimes these features are not added to the language itself, but effected by
writing programs in a standard way. This preserves the purity of the language, though it
may distort programming style; monads and their associated ‘plumbing’ are a well-known
example [133, 134].

The language most relevant to this dissertation is Standard ML. This is a language
with a formal definition [62] and a number of implementations. It is strongly typed,
with polymorphic types and a sophisticated module system of ‘structures’ and ‘functors’.
Evaluation is strict, though there is a variant ‘Lazy ML’ [8]. Standard ML provides
exceptions, references and I/O primitives. Of all these we shall look only at references:
these are mutable storage cells, dynamically allocated on a heap and cleared away by a
garbage collector.

No-one could reasonably describe ML as a purely functional language. But much
of it is functional in style and spirit, and the work presented here is evidence that such a
language can still provide the benefits of functional programming, including a well-defined
denotational semantics and powerful reasoning methods.

2 Basic Concepts

This dissertation looks at a single ‘impure’ addition to a functional language: dynamically
generated names. These are brought together with higher-order functions in the nu-
calculus, a small experimental language. In this section we introduce each of these
concepts in turn; the next section describes methods for studying them.

2.1 Names

The idea of a name is one of the most widely used abstractions in programming languages,
from the specification of surface syntax, through the formal meaning of programs, to the
details of implementation. An alphanumeric identifier in C may name a variable, a value
of reference type in ML names a storage cell, and a machine address names a memory
location. The basic, and rather simple, property required of a name is that it should be
distinct from all others. It is usual to assume also that names are drawn from some infinite
supply, so that a fresh one can always be obtained; thus names lie behind many generative
programming constructions.

Although the abstract concept of ‘name’ is relevant to many aspects of programming,
its presence is not always obvious. Here are a few examples:� Clearest is the inclusion of names within a language itself: the gensym operation

of LISP produces a new symbol every time it is called.� Some notion of name may be needed in a formal description: in the definition of
Standard ML, every structure created is tagged with a distinct name [62, rule 53].

4 CHAPTER 1. INTRODUCTION� The implementation of a language may have generative features: a local variable in
a procedural language is one created distinct from all others, usually allocated on a
stack or heap.� Weakest of all, a user may simply be expected to manage something as if it were
a name: for example, in an exhortation that global identifiers should be chosen
distinct.

A more subtle aspect of naming is its connection with privacy. A name cannot be guessed,
or adjusted, or manipulated, except to pass it on: names are a first example of an abstract
type. Though any actual representation of names must have some internal structure,
this should be invisible. The most striking example of this in practice is the use of
‘capabilities’ in the Cambridge CAP computer [138], where such restrictions are enforced
by the processor instruction set; more recent memory protection schemes use similar ideas.

Failure to suitably conceal the implementation details of names can cause problems.
For example in C the unrestricted use of pointer arithmetic means that privacy is not
respected, and it is quite possible to write to memory locations at random; though this is
generally considered poor programming practice.

But privacy is not always so clear-cut: a module may export the names of some
of its components but not others; one pointer may lead to another in a linked list; a
file may be referred to by two different handles, one for reading and one for writing.
Names can be used to capture all these different degrees of access and shades of visibility.
Names also lie behind ‘object identity’, an important concept in the design of object-
oriented databases [85]. They are well known to be of significance in distributed and
other concurrent systems: they are a key idea in Milner’s pi-calculus [60, 61], and
receive attention in the specification of real distributed systems [131]. This field highlights
some of the more complex aspects of privacy, and leads to the area of security, secure
communication, authentication and so forth.

In summary then, the idea of a name is a simple one, relevant to a wide variety of
concepts used in the design, implementation and use of programming languages. This
flexibility has a price: the exact properties of names, and how they are used, can be subtle
and difficult to pin down.

2.2 Higher-Order Functions

In a typed programming language, a function maps values of one type to values of another
type. It is higher-order if either the argument or result is also a function. For example
most functional languages provide a map function that takes a function f and a list l
as arguments and applies f to every element of l, returning a list l0 as result. Higher-
order functions implement the idea that functions should be ‘first-class citizens’ in a
programming language: all that can be done with values of ground type (integers, booleans
etc.) should also be possible with functions.

Higher-order functions are not restricted to functional languages. Reynolds’ ‘Idealized
Algol’ [107] and the original Algol 60 [71] are imperative languages in which functions
and procedures can be passed as arguments or returned as results. However the treatment
of functions as first-class citizens does require the manipulation of closures: a function
paired with an environment giving values for its free variables. This can cause difficulties

2. BASIC CONCEPTS 5

for stack-based languages, so for example C, Modula 3 [72] and Algol 68 [48, 132] cannot
make full use of higher-order functions.

Operations like map increase generality, but the direct manipulation of functions can
also be used to build procedures ‘on the fly’ and then execute them. A simple example
is a function that takes two functions f; g and returns their composition (f � g). Much
more sophisticated are the combinators to construct parsers described by Hutton [34], or
the use of continuations to manage the flow of control during execution [7].

This facility is like the LISP eval operator, but more closely integrated into the
language: instead of manipulating list representations of procedures and then evaluating
them, we work with the procedures themselves. In a sense, higher-order functions provide
the versatility of run-time code generation without the danger. There remains the issue of
how efficiently any particular compiler manages this technique; even so it seems likely
that its full power has yet to be exploited.

The treatment of functions on a level with other values is also good for the abstraction
of data handling away from the details of representation. For example, a ‘dictionary’
datatype is best seen as a function from keys to value, even though it may be implemented
by a binary tree, hash table or whatever. If treated purely as a function, any particular
dictionary can choose whichever representation is most efficient without affecting the code
that uses it. As another example, Matthews’ language Poly represents assignable variables
as a pair of procedures, one that extracts the current value and one that changes it [56].
The same is possible in Reynolds’ Gedanken, and is also seen in his semantics for Algol,
where a variable is an acceptor paired with an expression [103, 107]. Again, this leaves
the way open for whatever implementation is most appropriate.

An extreme example of the power of higher-order functions is that they can be used to
encode all the other usual datatypes: products, sums, integers, lists and so forth. This
can be done immediately in the untyped lambda-calculus; in a typed setting we need
the second-order lambda-calculus of Girard’s System F [23], discovered independently by
Reynolds [104]. The technique is presented by Girard in [24, Chapter 11] and extended by
Wraith in [139], while Abadi and Plotkin’s paper [97] gives methods for reasoning about
such constructions. Ingenious though it is, the use of higher-order functions to encode
other datatypes usually attracts only theoretical interest; though Fairbairn does argue for
it as a practical implementation method in the design of the language Ponder [17, 18].

2.3 The Nu-Calculus

The nu-calculus is a simple language providing higher-order functions and the dynamic
creation of names. It was identified by Pitts as a sensible subset of ML, and is close to
Stoughton’s ‘identity calculus’. In all respects the nu-calculus is chosen to be as simple
as possible: the only ground types are booleans and names, there is no recursion, and
all evaluation is deterministic and terminating. Even so, one of the abiding lessons of
computer science is that small, simple systems may yet have complex and subtle behaviour,
and we shall see that the nu-calculus is no exception.

The chief use of names in the nu-calculus is to look at questions of visibility. If a certain
name is known to a function, then it can be handled specially; if the name is unknown,
then it must be treated the same as any freshly created name. Or perhaps a function may
not have access to a name itself, but only a test for it: such a function cannot generate the
name, but can recognise it as an argument. Even more complex, a function might only

6 CHAPTER 1. INTRODUCTION

give out a private name as result if it is given some other particular name as an argument;
this is the case with the function Fp on page 25. The possibilities are endless, and all
capture some subtlety of names, privacy and scope.

The purpose of the nu-calculus then is not to provide a practical programming language,
but rather to bring out a particular aspect of larger languages, so that it can be examined for
itself. As it turns out, the interaction between dynamically generated names and higher-
order functions is worthy of the attention.

3 Methods

Given a language, the nu-calculus, that combines names with higher-order functions, we
want to study its behaviour and find methods for reasoning about it. To this end we use
contextual equivalence to describe the properties of the language, categorical models to
capture its meaning, and logical relations to refine our reasoning. This section describes
these techniques and outlines the motivation behind them.

3.1 Contextual Equivalence

The benchmark relation for describing the operational behaviour of expressions in a
functional language is contextual equivalence, originating with Morris [70] and used by
Milner [59] and Plotkin [94, 95]. Two expressions are judged equivalent if they can be
freely exchanged in any program; there is no way in the language itself to distinguish
between them.

A simple use of contextual equivalence is to explain the properties of particular
language features: for example in ML the equivalencelet val r = ref i in !r end � i i 2 Z
illustrates the initialisation of reference cells. This approach is conveniently self-regulating
in that details which properly belong to the implementation simply cannot be expressed; in
this case for example, it does not matter what strategy the compiler uses for heap allocation.

More formally, such equivalences can be used to verify code transformations made
during compilation. This applies to small, even trivial, manipulations as much as it does
to complex and ingenious optimizations: in all cases contextual equivalence is the correct
notion to check against. At a higher level, contextual equivalence is the right way to show
that a programmer can use one algorithm instead of another.

This approach differs considerably from a traditional logic of programs such as Hoare
logic, where assertions are made about machine state before, during and after the execution
of a program [28, 15]. Nor do we have any distinct notion of a specification that some
program must meet, beyond simple type-checking. Nevertheless contextual equivalence
can serve in both these rôles. Assertions of a program logic can be replaced by tests within
the language: for example, the equivalence above captures the following proposition in
Hoare logic: fTg val r = ref i fcontents(r) = ig:
Similarly a specification can be replaced either by a test expressed in the programming
language, or a requirement that a program should be equivalent to some clear example.

3. METHODS 7

For a sorting routine these methods might givexs : int list ` sorted(clever sort xs) � true
and xs : int list ` clever sort xs � insertion sort xs
respectively. In all these cases it is a clear advantage that we work entirely within the
programming language itself; in essence, this gives assertion and specification languages
with just the right level of abstraction.

Useful though contextual equivalence is, it can be rather a difficult relation to prove in
specific instances. It is convenient therefore to identify other relations that imply contextual
equivalence but are simpler to demonstrate. For example, an equivalence relation between
expressions is a congruence if it is preserved by all constructions of the language; and it
is usually not hard to show that any congruence which respects the operational semantics
of the language, and distinguishes true from false , implies contextual equivalence. The
complementary relation is rather simpler: to show that two expressions are not contextually
equivalent it is enough to demonstrate some program context that distinguishes them.

3.2 Categorical Models

Methods for reasoning about programming languages can be divided broadly into the op-
erational and the denotational. Operational methods work explicitly with expressions of
the language and their reduction or evaluation to canonical form. This has an appealing
directness, and many of the relations described in this dissertation are described oper-
ationally. Denotational methods on the other hand first interpret the language in some
mathematical setting, and then work within this model. The intention is to abstract away
from particular details of a programming language and capture its essential ‘meaning’: for
example, a function might be translated from program text into a map between sets. Such
a translation is adequate if equality in the model implies contextual equivalence; it is fully
abstract if this can be used to prove all contextual equivalences. The method is flexible
in that different models can be developed to demonstrate particular equivalences.

Denotational semantics is not just for proving equivalences: a good model will illus-
trate how the features of a programming language fit together, and can be an aid to further
language design. Two examples of this approach applied to functional languages are Milner
on the typed lambda-calculus [59] and Plotkin on PCF [95]. A more general background
on denotational semantics for programming languages is given by Stoy in [122].

Category theory is a general theory of mathematical structures, and provides a suitable
setting for models of functional languages. Mac Lane’s book [51] is the standard introduc-
tory text on categories; Mac Lane and Moerdijk [52] on topos theory is considerably more
comprehensive. Two important examples of how categories assist with denotational se-
mantics are the interpretation of the simply-typed lambda-calculus in any cartesian closed
category [42], and the solution of recursive domain equations in O-categories [119]. The
first of these forms the basis of all the categorical models used in this dissertation. We
shall also use the fact that any category has its own internal language: this provides a
logic to carry out equational reasoning about the structure of the category, with an excel-
lent correspondence between categorical properties and constructions in the language [52,xVI.5].

8 CHAPTER 1. INTRODUCTION

Moggi observed that various aspects of computation in a programming language could
be captured by the categorical concept of a strong monad; this has turned out to be
a powerful abstraction, unifying several disparate language features [66, 67, 68]. The
corresponding internal language is known as the computational lambda-calculus and is
notable for its type system which separates values from computations. Various rules of
the language describe how to reason correctly about computations, and these are enhanced
in Pitts’ evaluation logic by the addition of certain computation modalities [90].

These ideas lead to a particular denotational approach that falls naturally into two
stages: we first interpret the nu-calculus in a metalanguage based on the computational
lambda-calculus, and then interpret this within a category;

nu-calculus �! computational metalanguage �! category with strong monad.

The metalanguage can be used to reason about contextual equivalence in the nu-calculus,
and is also the internal language of the categorical model. This division into two translation
steps allows us to build more than one model on the same foundations, and this framework
is reused when we extend the nu-calculus to a language with store.

3.3 Logical Relations

While the methods described above provide a solid basis for reasoning about the behaviour
of the nu-calculus, some extra ingredient is necessary if we are to prove results about
privacy and the visibility of names; if we want to move from the merely correct to the
genuinely informative. The techniques we introduce are based on logical relations.

The discussion of any typed language inevitably involves a number of type-indexed
collections: whether of expressions, elements in semantic domains or morphisms in a
category. A type-indexed relation between such collections is said to be logical when
elements of function type are related if and only if they take related arguments to related
results. Typically this means that a logical relation is fixed by its value at ground types,
with the remaining type hierarchy built on top. Clearly this description is rather loose,
and the idea of a logical relation can be reinterpreted in many settings.

The concept was introduced by Plotkin, at the suggestion of M. Gordon, to reason
about definable elements in models of the simply-typed lambda-calculus [96]. There
are similarities with Reynolds’ idea of relational parametricity [109, 50], and with some
constructions of Statman [121]. Its importance is that in general all expressions definable
using the original language are related to themselves; this is the ‘fundamental theorem of
logical relations’ and can usually be proved by induction on the structure of expressions.
For example, Sieber has used this to describe a notion of ‘sequentiality’ in models of the
language PCF; by factoring out non-sequential (and hence unused) elements of models,
he obtains a model that is fully abstract up to third-order types [115].

Logical relations can be of any arity: we use only unary and binary relations. Tra-
ditionally they have been defined over set-based models of languages, in a denotational
approach. However for the nu-calculus we begin by developing logical relations at the
operational level, in a manner similar to Abramsky’s applicative bisimulation [4]. We
then go on to cover the denotational side, constructing models that use categories with
relations, as introduced by O’Hearn and Tennent [82, 83].

This turns out to be a powerful reasoning method for the nu-calculus, as relations
between sets of names capture something of how different expressions use their own private

4. OUTLINE OF DISSERTATION 9

names. Probably the strongest result of the dissertation is that logical relations, whether
operational or denotational, are complete for reasoning about contextual equivalence in
the nu-calculus up to first-order function types.

4 Outline of Dissertation

The four central chapters of this dissertation are of roughly equal size: Chapter 2 intro-
duces the nu-calculus, Chapter 3 constructs categorical models, Chapter 4 applies logical
relations, and Chapter 5 extends all this to a language with store. Chapter 6 concludes.
The descriptions below cover the contents of each chapter in more detail.

Chapter 2: The nu-calculus Here we present the nu-calculus, illustrate its behaviour and
develop a basic operational reasoning method. We begin with syntax and type structure,
and go on to give an operational semantics based on that for Standard ML. We present
this in a ‘big step’ evaluation style and also a ‘small step’ reduction style, with a proof
that the two are equivalent.

We define contextual equivalence for the nu-calculus, and give a collection of examples
that illustrate the interaction between higher-order functions and name creation. Contextual
equivalence is hard to show directly, and we give a context lemma that simplifies the
process; proof of this involves a close analysis of the behaviour of nu-calculus expressions
under reduction.

Finally, we describe applicative equivalence, a simpler relation defined by induction
over types, and show that it implies contextual equivalence. This provides an operational
method for reasoning about expressions of the nu-calculus that is straightforward but not
especially powerful.

Chapter 3: Categorical models This chapter falls into two parts: in the first half we
describe a metalanguage that captures the properties needed to model the nu-calculus, and
in the second we turn these into requirements for a category and give two specific example.

The metalanguage extends Moggi’s computational lambda-calculus by adding names
and suitable rules for reasoning about them; this allows us to interpret the nu-calculus in a
way that respects its operational semantics. We show that the metalanguage can be used to
reason about contextual equivalence, with power similar to that of applicative equivalence.

We then detail the construction of a categorical model for the nu-calculus, and explain
how this works in two particular cases. The first is a functor category SetI , the second a
category BG of continuous G-sets for a certain group G. We investigate which contextual
equivalences these models can and cannot verify: up to second-order types these are the
same as for applicative equivalence.

Chapter 4: Logical relations This chapter refines the operational methods of Chapter 2,
and the denotational methods of Chapter 3, by the introduction of logical relations that
capture how expressions use local names. We define operational logical relations first,
and show that they can be used to reason about contextual equivalence through the more
general notion of contextual relations. Most importantly, we show that this method is
complete up to types of first order; this is a significant improvement over the methods
described earlier.

10 CHAPTER 1. INTRODUCTION

We also present a denotational analogue, using categories with relations to construct a
model P of the nu-calculus that is fully abstract up to first-order types. Just one equivalence
from the examples of Chapter 2 remains unverified, and to prove this we develop predicated
logical relations, which provide an even finer description of how expressions use their local
names.

Chapter 5: A language with store In this chapter we show how the techniques devel-
oped for the nu-calculus can be applied to generative features within a larger programming
language. The example that we choose is integer references, and we devise a language
‘Reduced ML’ that combines these with higher-order functions. As the name suggests,
Reduced ML is a proper subset of Standard ML, and it has the same operational seman-
tics.

We recapitulate all that was done with the nu-calculus, beginning with a definition of
contextual equivalence and an assortment of examples. We look at operational reasoning
methods: applicative equivalence and various logical relations. We describe a metalang-
uage for store that is simply an extension of that for names, and set out the properties
required for a categorical model. Remarkably, all the categories built to model the nu-
calculus can also be used to interpret Reduced ML.

Although many of the details are omitted, this chapter does illustrate how a thorough
understanding of dynamically generated names can make a significant contribution to
reasoning about references in Standard ML.

Chapter 6: Conclusion We summarise the results of the dissertation, discuss its relation
to other work in this area, and suggest directions for further research.

Chapter 2

The Nu-Calculus

In this chapter we introduce the nu-calculus, a small language designed to show the
interaction between dynamically generated names and higher-order functions. We give
its syntax and describe an operational semantics based on that for Standard ML [62]. We
go on to define a notion of equivalence for expressions of the language, based on their
observable behaviour, and present some ways to prove examples of this.

The nu-calculus is a typed call-by-value lambda-calculus extended with the notion
of a name; names have their own type �, they can be created fresh, passed around and
tested for equality. Higher-order functions and booleans are also available, but to ensure
termination functions cannot be defined recursively. New names are created in expressions
of the form �n:M , which binds a fresh name to the identifier n and then evaluates M .
The use of a call-by-value semantics means that although only the expression M can
refer to n explicitly, the new name itself may escape from this scope. For example,(�x:�:x = x)(�n:n) evaluates to true , with x bound to a name rather than to �n:n itself.

The nu-calculus is equivalent to a fragment of Standard ML. In particular, names
correspond to values of type unit ref, cells that can only contain the value (). The form�n:M corresponds to let val n = ref () inM end:
The operational semantics of the nu-calculus is based on that of ML, with call-by-value
(strict) function application and left-to-right evaluation order. In fact the evaluation order
turns out to be irrelevant for the nu-calculus, as there are no side-effects. It is still worth
taking care over this though, because the storage of values, to be considered in Chapter 5,
is sensitive to the order of evaluation.

We present the operational semantics of the nu-calculus in two forms; primarily in a
‘big step’ evaluation style, but also in a ‘small step’ reduction style. We prove that the two
forms are entirely equivalent, and that the evaluation of expressions always terminates.
This is the reason for omitting recursion from the nu-calculus: non-termination would
complicate the language without helping us to understand the behaviour of names.

Expressions of the nu-calculus are judged to be equivalent if they can be freely
exchanged in any program; we use this as the basis of a notion of contextual equivalence
for the language. We give a number of examples of expressions that are equivalent or
inequivalent. These demonstrate the subtle and complex behaviour that can arise from the
combination of names with higher-order functions.

Contextual equivalence is hard to prove directly, and we give a context lemma that

11

12 CHAPTER 2. THE NU-CALCULUS

simplifies the process. The proof of this result requires a close analysis of the behaviour
of nu-calculus expressions under reduction.

An alternative approach is to define other relations between expressions and show
that they entail contextual equivalence. We describe applicative equivalence and logical
equivalence, both defined by induction over types, and show that they have certain useful
properties. In fact they turn out to be equivalent for the nu-calculus, both implying
contextual equivalence; in general the reverse implication does not hold, so this is not
a complete proof method.

1 Syntax

The syntax of the nu-calculus is based on the simply-typed lambda-calculus. Types are
built up from ground types o of booleans and � of names by formation of function types� ! �0. We frequently omit parentheses in types, with ! associating to the right. Each
type has an order, given by

Order(o) = Order(�) = 0
Order(� ! �0) = max(Order(�) + 1;Order(�0)):

So for example first-order types are all of the form �1 ! �2 ! � � � ! �n where n > 1
and �i 2 fo; �g for i = 1; : : : ; n. We shall use �; � and decorated variants to range over
types.

Expressions of the nu-calculus have the form:M ::= x variablej n namej true j false truth valuesj if M thenM elseM conditionalj M =M compare namesj �n:M create new namej �x:�:M function abstractionj MM function application.

There are separate infinite supplies of typed variables and names. Function abstraction�x:�:M binds the variable x of type �, and name creation �n:M binds the name n.
We implicitly identify expressions which only differ in their choice of bound variables
and names (�-conversion). An expression is closed if it has no free variables; a closed
expression may still have free names.

We shall use M to represent general expressions, and B, N , F to suggest expressions
of boolean, name and function type respectively. Variables are usually taken from x; y; z,
with n for names and variants of s for finite sets of names. A useful abbreviation is new
for �n:n; this is the expression that generates a new name and then immediately returns
it.

We denote by M [M 0=x] (respectively M [M 0=n]) the result of substituting the expres-
sion M 0 for free occurrences of the variable x (respectively, the name n) in the expres-
sion M . The substitution is capture avoiding: the free names and variables of M 0 should
be disjoint from the bound names and variables of M . This can always be arranged by

1. SYNTAX 13s;� ` x : � (x : � 2 �) s;� ` n : � (n 2 s) s;� ` b : o (b = true; false)s;� ` B : o s;� `M : � s;� `M 0 : �s;� ` if B thenM elseM 0 : �s;� ` N : � s;� ` N 0 : �s;� ` (N = N 0) : o s� fng;� `M : �s;� ` �n:M : �s;�� fx : �g `M : �0s;� ` �x:�:M : � ! �0 s;� ` F : � ! �0 s;� `M : �s;� ` FM : �0
Figure 2.1: Rules for assigning types to expressions of the nu-calculus�-converting M . Simultaneous substitution is also to be capture avoiding; we write this

as M [M1=x1; : : : ;Mn=xn], often abbreviated to M [~M=~x].
Expressions are given types according to the rules in Figure 2.1. The type assertions;� `M : �

says that in the presence of s and � the expression M has type �. Here s is a finite set
of names, � is a finite set of typed variables, and M is an expression with free names
in s and free variables in �. The symbol � represents disjoint union, here in s � fng
and �� fx : �g. We may omit � when it is empty.

From now on we shall consider only well-typed expressions. The assignment of types
behaves much as we might expect:

Lemma 2.1 If s;� `M : � holds then the type � is unique. Further, if the expression M
has free names in s and free variables in �, thens;� `M : � () s� s0;�� �0 `M : �
for any s0 and �0.
Proof Both follow by induction on the structure of M .

An expression is in canonical form if it is either a name, a variable, one of the boolean
constants true or false , or a function abstraction. These are to be the values of the nu-
calculus, and correspond to weak head normal form in the lambda-calculus. We define
the sets

Exp�(s;�) = fM j s;� `M : � g
Can�(s;�) = fC j C 2 Exp�(s;�), C canonical g

Exp�(s) = Exp�(s; ;)
Can�(s) = Can�(s; ;)

of expressions and canonical expressions at any type � and for any finite sets s;� of names
and typed variables.

14 CHAPTER 2. THE NU-CALCULUS

2 Evaluation Semantics

The operational semantics of the nu-calculus is specified by the inductively defined
evaluation relation given in Figure 2.2. Elements of the relation take the forms `M +� (s0)C
where s and s0 are disjoint finite sets of names, M 2 Exp�(s) and C 2 Can�(s� s0). This
is intended to mean that in the presence of the names s, expression M of type � evaluates
to canonical form C and creates fresh names s0. We may omit s or s0 when they are empty.

The sets s and s� s0 can be seen as initial and final states of the computation. The
arrangement of these states shows the left to right order of evaluation. For example, with
the expression N = N 0, the rules (EQ1) and (EQ2) both evaluate N before N 0. The call-
by-value nature of the nu-calculus is captured by the choice of a strict (APP) rule. Here
the argument M is evaluated to canonical form C before being substituted in the body of
the abstraction �x:�:M 0.

Occasionally, in applying these rules it is necessary to relabel bound names. For
example, to evaluate �n:n = �n:n we do not use ` �n:n = �n:n +o (n; n)true because
it is not well formed; new names have to be distinct, and this is enforced by the use
of disjoint union � in the (LOCAL) rule. Instead we relabel one of the n’s to obtain` �n:n = �n0:n0 +o (n; n0)false . As we have previously identified expressions up to �-
conversion, this is quite legitimate, but perhaps surprising. The phenomenon is identical
to the reduction of a term such as (�y:�x:yx)x in the traditional lambda-calculus, where
the bound occurrence of x has to be relabelled to allow(�y:�z:yz)x �! �z:xz:
In principle, these difficulties can be resolved by using de Bruijn indices, but at the cost
of a considerable loss of clarity. In practice we simply avoid the problem wherever we
can by choosing sensible bindings to begin with.

The abbreviation new for �n:n was introduced earlier. This has the derived evaluation
rule

(NEW) s ` new +� (fng)n n 62 s:
The side condition confirms that the name generated by new is fresh, and corresponds
precisely to the disjoint union s� fng in the premise of the (LOCAL) rule for eval-
uating �n:M . Indeed the rules (LOCAL) and (NEW) are entirely equivalent, and we
could formulate the nu-calculus with new as primitive and �n:M an abbreviation for(�n:�:M)new . This then makes precise the connection between the relabelling of names
bound by � and of variables bound by �, mentioned above as necessary to avoid capture.
In a setting with new primitive, they are the same thing.

Unfortunately both of the forms �n:M and (�n:�:M)new tend to blur the distinctions
between a name, a location bound to a name, and a variable of type �. Rather than resort
to heavy meta-syntactic machinery for a solution, we shall simply choose whichever ofnew and �n:M seems appropriate.

The evaluation of a nu-calculus expression is independent of any unused names:

2. EVALUATION SEMANTICS 15

(CAN) s ` C +� C C canonical

(COND1)
s ` B +o (s1)true s� s1 `M +� (s2)Cs ` if B thenM elseM 0 +� (s1 � s2)C

(COND2)
s ` B +o (s1)false s� s1 `M 0 +� (s2)C 0s ` if B thenM elseM 0 +� (s1 � s2)C 0

(EQ1)
s ` N +� (s1)n s� s1 ` N 0 +� (s2)ns ` (N = N 0) +o (s1 � s2)true n 2 s

(EQ2)
s ` N +� (s1)n s� s1 ` N 0 +� (s2)n0s ` (N = N 0) +o (s1 � s2)false n; n0 distinct

(LOCAL)
s� fng `M +� (s1)Cs ` �n:M +� (fng � s1)C n =2 (s� s1)

(APP)

s ` F +�!�0 (s1)�x:�:M 0 s� s1 `M +� (s2)Cs� s1 � s2 `M 0[C=x] +�0 (s3)C 0s ` FM +�0 (s1 � s2 � s3)C 0
Figure 2.2: Rules for evaluating expressions of the nu-calculus

16 CHAPTER 2. THE NU-CALCULUS

Lemma 2.2 For any M 2 Exp�(s),s `M +� (s0)C () s� s00 `M +� (s0)C
whenever s00 is disjoint from s0.
Proof By induction on the structure of the derivation of the evaluation judgement.

Evaluation always terminates, and is deterministic up to choice of new names. This
might seem obvious, as the nu-calculus has no explicit construction for recursively defined
functions. Nevertheless there are many surprising ways to encode recursion in other
language features; for example, we shall see later that a mutable store of functions can do
this. So it is as well to have a formal proof of termination in the nu-calculus. The proof
is our first use of a (unary) logical relation, as described in the introductory chapter. We
define the two predicatesP�(s) � Can�(s) and P �(s) � Exp�(s)
according toPo(s) = ftrue ; falsegP�(s) = sP�!� (s) = f�x:�:M 2 Can�!� (s) j 8s0; C 2 P�(s� s0) : M [C=x] 2 P � (s� s0)g
andM 2 P �(s) () There are s0 and C 2 P�(s� s0) such that s ` M +� (s0)C ,

and these are unique up to renaming the elements of s0 and�-conversion of C .

The idea now is to show that P and P are both total, and then use the fact that P
implies termination. To make the induction work, we use an intermediate result on open
expressions.

Lemma 2.3 If M 2 Exp�(s;�), where � = fx1 : �1; : : : ; xn : �ng, and Ci 2 P�i(s� s0)
for i = 1; : : : ; n and some s0, then M [~C=~x] 2 P �(s� s0).
Proof By induction over the structure of the derivation of s; � ` M : �. We consider
three example cases:� Function abstraction. Suppose that the type derivation ends withs;�� fx : �g `M : �0s;� ` �x:�:M : � ! �0

and that the Ci are as above. By the induction hypothesis, if C 2 P�(s� s0 � s00)
for some s00 then M [~C=~x; C=x] 2 P �(s� s0 � s00). But this is precisely the
condition for (�x:�:M)[~C=~x] 2 P�!�0(s� s0), from which it follows trivially that(�x:�:M)[~C=~x] 2 P �!�0(s� s0).

3. REDUCTION SEMANTICS 17� Function application. Suppose that the type derivation ends withs;� ` F : � ! �0 s;� `M : �s;� ` FM : �0
and that the Ci are as before. Then by the induction hypothesis:s� s0 ` F [~C=~x] +�!�0 (s1)�x:�:M 0
with �x:�:M 0 2 P�!�0(s� s0 � s1), ands� s0 � s1 `M [~C=~x] +� (s2)C
with C 2 P�(s� s0 � s1 � s2). This then means thats� s0 � s1 � s2 `M 0[C=x] +�0 (s3)C 0
with C 0 2 P�0(s� s0 � s1 � s2 � s3). Combining these with the (APP) rule givess� s0 ` FM [~C=~x] +�0 (s1 � s2 � s3)C 0:
Moreover all these evaluations are unique up to renaming and �-conversion, soFM [~C=~x] 2 P �0(s� s0) as required.� Name abstraction. Suppose that the type derivation ends withs� fng;� `M : �s;� ` �n:M : �
and that Ci 2 P�(s� s0). Applying the induction hypothesis givess� fng � s0 `M [~C=~x] +� (s00)C
with C 2 P�(s� fng � s0 � s00). We can then apply the (LOCAL) rule to obtains� s0 ` (�n:M)[~C=~x] +� (fng � s00)C:
Again these evaluations are unique up to renaming and �-conversion, so as required(�n:M)[~C=~x] 2 P �(s� s0).

The remaining cases are similar.

Theorem 2.4 (Termination) If M 2 Exp�(s) then there are s0; C with s `M +� (s0)C .
Moreover, these are unique up to relabelling the elements of s0 and �-conversion of C .

Proof This is Lemma 2.3 applied to the type assertion s `M : �.

18 CHAPTER 2. THE NU-CALCULUS

Reduction expressions:Eh�i :: = h�iM j (�x:�:M)h�ij if h�i thenM elseM 0 j h�i = N j n = h�i
Redexes: if true then M else M 0 !� M n = n !� trueif false then M else M 0 !� M 0 n = n0 !� false n 6= n 0(�x:�:M)C !�0 M [C=x]
Rules:

(REDEXP)
M !� M 0EhMi !�0 EhM 0i

(ABSTRACT)
M !� M 0�n:M !� �n:M 0

(EXTRUDE) Eh�n:Mi !�0 �n:EhMi n =2 fn(Eh�i)
Derived forms: M !0� M M !n� M 0 M 0 !� M 00M !n+1� M 00M !�� M 0 if there is some n with M !n� M 0

Figure 2.3: Step reduction for the nu-calculus

3. REDUCTION SEMANTICS 19

3 Reduction Semantics

The evaluation relation gives a ‘big step’ operational semantics for the nu-calculus, taking
expressions directly to canonical form. We can also give a ‘small step’ semantics which
illustrates how it happens. This uses a reduction relation whose elements are of the formM !� M 0
and indicate that the expression M of type � reduces in a single step to the expression M 0.
Here M;M 0 2 Exp�(s) for some set of names s. The relation corresponds to Plotkin’s
left reduction M !V N for the �V -calculus [94].

The rules specifying the reduction relation are in Figure 2.3. This also defines the
derived relations M !n� M 0 and M !�� M 0
of n-step and finite step reduction respectively. For brevity we use reduction expressions
to describe some of the rules: these are expressions with a single typed hole h�i, taking
one of the formsEh�i ::= h�iM j (�x:�:M)h�ij if h�i thenM elseM 0 j h�i = N j n = h�i:
We write h�:�i if we wish to make explicit the type of the hole. If M is an expression
of the appropriate type then EhMi denotes the expression Eh�i with M replacing the
single occurrence of the hole. There is no possibility of name or variable capture. The
free names fn(Eh�i) of a reduction expression are the free names of its subexpressions.
It is significant that we use reduction expressions simply as an abbreviation; they could
be avoided by replacing (REDEXP) and (EXTRUDE) with ten more specific rules.

A more complex notion is that of a reduction context. This is also an expression with
a single typed hole, fitting the descriptionRh�i :: = h�i j Rh�iM j (�x:�:M)Rh�ij if Rh�i thenM elseM 0 j Rh�i = N j n = Rh�i:
It is clear that a reduction context is just a nested sequence of reduction expressions. Again
there can be no name or variable capture by the reduction context: the hole may be filled by
an open expression, but the free variables of such M remain free in RhMi. For example,
we write �x:�:Rhxi for the abstraction with variable x replacing the hole.

Reduction contexts were introduced by Felleisen and Friedman in [19]; their purpose
is to identify where in an expression the first reduction lies. Section 6 examines this in
detail, so for the moment we observe only that the rules

(RCONTEXT)
M !� M 0RhMi !�0 RhM 0i

and

(EXTRUDE�) Rh�n:Mi !��0 �n:RhMi n =2 fn(Rh�i)

20 CHAPTER 2. THE NU-CALCULUS

can be derived for any reduction context Rh�:�i.
Unlike the evaluation relation, the reduction semantics is not entirely deterministic,

as some expressions have more than one reduction available. However reduction is still
confluent, and this choice makes no difference to the eventual outcome. In fact the
relation ! obeys the diamond property:

Lemma 2.5 (Diamond) If M !� M1 and M !� M2 are valid reductions, then there is
some expression M 0 such that M1 !� M 0 and M2 !� M 0.
Proof The base case where an expression has two distinct reductions isM !� M 0�n:M !� �n:M 0Eh�n:Mi !�0 Eh�n:M 0i and Eh�n:Mi !�0 �n:EhMi;
where M;M 0 2 Exp�(s) and s `Eh�:�i : �0 is a reduction expression. These two choices
can immediately be reconciled byEh�n:M 0i !�0 �n:EhM 0i and

M !� M 0EhMi !�0 EhM 0i�n:EhMi !�0 �n:EhM 0i:
All other cases are instances of this within a series of reduction expressions and name
abstractions.

We can avoid this indeterminacy by only allowing reduction under name abstraction at
the top level. By always choosing the (EXTRUDE) rule over (ABSTRACT), we obtain
a deterministic reduction for any expression; we call it the standard reduction. It is
possible to enforce this, if we introduce another reduction relation ‘�.’ and replace the
(ABSTRACT) rule withM !� M 0M �.� M 0 and

M �.� M 0�n:M �.� �n:M 0 :
The relation ‘�.’ now follows only the standard reduction sequence.

There is an exact correspondence between the reduction and evaluation semantics, if
we consider taking an expression to canonical form. This is the analogue of Plotkin’s
result relating the evaluation and reduction semantics for �V [94, Section 4, Theorem 4].
Define M !�� �s0:C to mean that there is an ordering on the names in s0 = fn01; : : : ; n0kg
such that M !�� �n01 : : : �n0k:C .

Theorem 2.6 For any closed expressions M 2 Exp�(s) and C 2 Can�(s),s `M +� (s0)C () M !�� �s0:C :
Proof The forward direction follows by induction on the structure of the proof of the
evaluation judgement s `M +� (s0)C . This requires a proof step for each of the rules of
Figure 2.2. We give a couple of examples; the others follow a similar format.� (CAN) The evaluation of a canonical s`C +� C is axiomatic; but so is the reductionC !0� C .

3. REDUCTION SEMANTICS 21� (COND1) Suppose that s ` if B thenM elseM 0 +� (s0)C , with the last rule of the
proof being (COND1). Then we must have s0 = s1 � s2 withs ` B +o (s1)true and s� s1 `M +� (s2)C :
By the induction hypothesis the first of these gives B !�o �s1:true and soif B thenM elseM 0 !�� �s1:(if true thenM elseM 0):
We have if true thenM elseM 0 !� M
and from the second evaluation above, by the induction hypothesisM !�� �s2:C :
Putting these together givesif B thenM elseM 0 !�� �s1:�s2:C
as required.

For the reverse direction we start by showing thatM !� M 0 & s `M 0 +� (s0)C =) s `M +� (s0)C:
We do this by induction on the structure of the proof of M !� M 0; again, a couple of
cases are enough to show the method.� Consider the judgements if true thenM elseM 0 !� M and s `M +� (s0)C . We

can use the evaluation rules (CAN) and (COND1) to obtains ` true +o true s `M +� (s0)Cs ` if true thenM elseM 0 +� (s0)C
as required.� Suppose that FM !�0 F 0M and s ` F 0M +� (s0)C 0. The last rules in the proofs
of these must have been F !�!�0 F 0FM !�0 F 0M
and s ` F 0 +�!�0 (s1)�x:�:M 0 s� s1 `M +� (s2)Cs� s1 � s2 `M 0[C=x] +�0 (s3)C 0s ` F 0M +�0 (s0)C 0
where s0 = s1 � s2 � s3. By the induction hypothesis we obtain s ` F +�!�0(s1)�x:�:M 0 and then builds ` F +�!�0 (s1)�x:�:M 0 s� s1 `M +� (s2)Cs� s1 � s2 `M 0[C=x] +�0 (s3)C 0s ` F 0M +�0 (s0)C 0
as desired.

22 CHAPTER 2. THE NU-CALCULUS

It now follows thatM !n� M 0 & s `M 0 +� (s0)C =) s `M +� (s0)C:
by induction on the number of steps n. The particular case when the expression M 0 is of
the form �s0:C , for some ordering of s0, givesM !�� �s0:C =) s `M +� (s0)C
which is the required result.

4 Contextual Equivalence

We construct a notion of equivalence for expressions of the nu-calculus, based on their
behaviour when used in larger expressions. Informally, two expressions are equivalent if
they can be freely exchanged; there is no way in the language itself to distinguish between
them. To capture this formally requires a little preliminary work.

Define a program to be a closed expression of boolean type. All that we can observe
of a program is whether it evaluates to true or false; the creation of new names is not
directly observable. In calculi with the possibility of non-termination, it is common to
use termination as the basic observable. We cannot do this for the nu-calculus, as all
expressions evaluate to some canonical form; in particular, no observation at all can be
made of expressions of function type without using them in some larger expression.

A program context P hh�ii is a program with zero or more occurrences of a hole hh�ii.
If M is some expression then P hhMii is the program obtained by substituting M for
every occurrence of this hole. Often the notion of a program context is left at that, with
the possibility of type clashes and variable capture. We shall be rather more precise and
annotate holes to track types and the use of free variables.

A hole of arity �1; : : : ; �n ! � is an n-place operator added to the nu-calculus, whose
arguments must be in canonical form. We have the rules;� ` C1 : �1 � � � s;� ` Cn : �ns;� ` hh� : �1; : : : ; �n!�ii(C1; : : : ; Cn) : � C1; : : : ; Cn canonical

where the annotation hh� : �1; : : : ;�n!�ii indicates the arity of the hole. We write Mhh�ii
to denote an expression formed with zero or more occurrences of some hole. Such a hole
can be filled by any open expression of type � whose free variables have types �1; : : : ; �n.
That is:s; fx1 : �1; : : : ; xn : �ng `M : � s;� `M 0hh� : �1; : : : ; �n!�ii : �0s;� `M 0hh(x1:�1; : : : ; xn:�n)Mii : �0
where (x1:�1; : : : ; xn:�n)M is a ‘meta-abstraction’ that makes explicit the free variables
of M . The filled holes are then removed by replacinghh(x1:�1; : : : ; xn:�n)Mii(C1; : : : ; Cn) with M [C1=x1; : : : ; Cn=xn];
where the substitution on the right hand side is capture avoiding as usual. It is possible
that some of the Ci will themselves contain uses of hh�ii, and these must be substituted
first. Despite this complication, it is still a finite and well behaved procedure.

5. EXAMPLES 23

For brevity we shall generally omit the arity �1; : : : ; �n ! � of a hole, and abbreviate
the substitution M 0hh(x1:�1; : : : ; xn:�n)Mii to M 0hh(~x)Mii or even M 0hhMii when M
is closed. The arguments (C1; : : : ; Cn) we shall write as (~C) and the instantiationM [C1=x1; : : : ; Cn=xn] as M [~C=~x].

With this machinery the substitution M 0hh(~x)Mii is certain to be a well-typed ex-
pression, without capture of free variables. We can safely relabel bound and even free
variables of M and M 0 without worry. In particular we implicitly identify program con-
texts P hh�ii up to �-conversion. The usual arrangement, allowing the capture of free
variables from M , can be simulated by forbidding �-conversion and always using the
hole in the form hh�ii(x1; : : : ; xn), where the xi are the free variables of M .

Now that we have fixed how we substitute an open expression M in a program
context P hh�ii, we can use this to describe the behaviour of M . In calculi where non-
termination is possible, it is convenient to do this through a preorder. Here we go directly
to an equivalence relation:

Definition 2.7 (Contextual Equivalence) If M1;M2 2 Exp�(s;�) then the assertions;� `M1 �� M2
means that for all suitably typed program contexts P hh�ii defined over s, and each boolean
value b 2 ftrue ; falseg,(9s1 : s ` P hh(~x)M1ii +o (s1)b) () (9s2 : s ` P hh(~x)M2ii +o (s2)b):
That is, P hh�ii always evaluates to the same boolean value, whether the hole is filled byM1 or M2. When this holds, we say that M1 and M2 are contextually equivalent. If boths and � are empty then we write simply M1 �� M2.

This is the most general notion of equivalence for nu-calculus expressions that we shall
consider, and the one that most interests us; as discussed in the introductory chapter, it
combines powerful applications with a sensible and intuitive meaning. Other equivalences
are useful if they imply contextual equivalence, and are easier to compute.

5 Examples

Much of the work of this dissertation is concerned with methods for proving contextual
equivalence or inequivalence for particular expressions of the nu-calculus. This section
gives a summary of results, in increasing order of difficulty of proof.

It is straightforward to show from the definition that contextual equivalence is a
congruence:

1. s;� `M1 �� M2 =) s� s0;�� �0 `M 0[M1=x] ��0 M 0[M2=x]
where M 0 2 Exp�0(s� s0;�� �0 � fx : �g).

Unused names are irrelevant, as is the order in which names are generated:

2. s;� ` �n:M �� M n =2 fn(M)
3. s;� ` �n:�n0:M �� �n0:�n:M :

24 CHAPTER 2. THE NU-CALCULUS

For any finite set of names s we define �s:M to be �n1 : : : �nk:M when s= fn1; : : : ;nkg
and M when s is empty. By the above, this is unambiguous up to contextual equivalence
even though s is unordered.

Evaluation and reduction both respect contextual equivalence:

4. s `M +� (s0)C =) s `M �� �s0:C
5. M !� M 0 =) s `M �� M 0
where M;M 0 2 Exp�(s) and C 2 Can�(s� s0).

In Section 3 we defined the notion of a reduction context Rh�i, an expression with a
single typed hole in a position where reduction can occur. We can use this to state some
equivalences that rearrange expressions without materially affecting the evaluation order.
Suppose that s;� ` Rh�:�i : �0 is a reduction context, then:

6. s;� ` (�x:�:Rhxi)M ��0 RhMi
7. s;� ` Rh�n:Mi ��0 �n:RhMi
8. s;� ` Rh(�x:�00:M)M 0i ��0 (�x:�00:RhMi)M 0
where M and M 0 have the appropriate types. The first of these is a weak form of �-
equivalence; the last is the �lift rule from Sabry and Felleisen’s axiomatization of the
call-by-value lambda-calculus [114]. Some simple instances of these are:s;� ` M �� (�x:�:x)Ms;� ` if (�n:B) thenM elseM 0 �� �n:(if B thenM elseM 0)s;� ` (�y:�:Q)((�x:�:P)M) ��00 (�x:�:(�y:�:Q)P)M:
Function application also satisfies Plotkin’s �v-equivalence [94]: if C 2 Can�(s;�) andM 2 Exp�0(s;�� fx : �g) then

9. s;� ` (�x:�:M)C ��0 M [C=x]:
However, general �-equivalence fails because the nu-calculus is call-by-value:

10. (�x:�:x = x)new 6�o (new = new):
The left-hand side here reduces to true and the right-hand side to false . Local name
declaration and function abstraction do not in general commute:

11. �n:�x:o:n 6�o!� �x:o:�n:n :
These can be distinguished by the context (�f : o ! � : (f true = f true)) hh�ii, givingtrue and false respectively.

Expressions may be contextually equivalent if they differ only in their use of ‘private’
names:

12. �n:�x:�:(x = n) ��!o �x:�:false
13. �n:�n0:�f :�!o:(fn = fn0) �(�!o)!o �f :�!o:true :
In this last example the boolean test fn = fn0 is an abbreviation forif fn then fn0 else (if fn0 then false else true):

5. EXAMPLES 25

The idea in (12) is that no external context can supply the private name n. Similarly in (13)
no externally produced function can distinguish the private names n and n0.

It is however extraordinarily hard to make precise this notion of privacy, particularly
where higher-order functions are involved. The next case shows two expressions which
look at first sight to be contextually equivalent for the same reason as those in (13):

14. �n:�f :�!o:�n0:(fn = fn0) 6�(�!o)!o �f :�!o:true :
These are distinguished by the context(�F : (� ! o)! o : F (�x:�:F (�y:�:x = y))) hh�ii:
The problem here is that although the name bound to n remains private, the function�x:�:F (�y:�:x = y) is able to distinguish n from the fresh names successively bound
to n0.

Another tricky example shows that it may be necessary to apply functions repeatedly
in order to distinguish them, without any private names being revealed:

15. �n:�n0:�f : � ! o : if fn = fn0then (�x:�: if x = n then trueelse if x = n0 then falseelse fx)else (�x:�:true)6�(�!o)!(�!o) �f : � ! o : f :
These are distinguished by(�F : (� ! o)! (� ! o) : F (F (�x:�:false))new) hh�ii:
What is happening here is that the two functions differ noticeably only on arguments of type(� ! o) that can distinguish n from n0. As both names are private, we cannot construct
such a function directly. However when we pass the first expression an argument that we
can construct, such as (�x:�:false), we get back one that does distinguish n from n0, in
this case (�x:�:(x = n)). Although this is externally no different from what we started
with (see equivalence (12) above), it is a suitable argument to separate the two original
expressions.

Up to contextual equivalence, the only closed expressions of type o are true and false ,
and the only closed expressions of type � are the names in the name context and new .
Higher types are more complicated, and there are infinitely many operationally distinct
closed expressions of type (�! �). Consider for each p� 1 the expression which creates(p + 1) local names n0; : : : ; np and then acts as the function which cyclically permutes
them, and maps any other name to n0:Fp = �n0 : : : �np:�x:�: if x = n0 then n1else if x = n1 then n2

...else if x = np then n0 else n0 :
Take the test functionBq = �f : � ! � : �n : (f (q+2)(n) = f(n))

26 CHAPTER 2. THE NU-CALCULUS

where f (q+2) is an abbreviation for f iterated (q + 2) times. This satisfies` BqFp +o (n0; : : : ; np)false q 2 f1; : : : ; p� 1g` BpFp +o (n0; : : : ; np)true
and so can be used to distinguish the various Fp, giving

16. Fp 6��!� Fp0 whenever p 6= p0:
The Fp can be regarded as numerals; we can even define addition by takingA = �f : � ! � : �g : � ! � : �n : �x : � : if f(fx) = fn then gxelse if gx = gn then fx else gx
of type (� ! �)! (� ! �)! (� ! �), which satisfies

17. AFpFq ��!� Fp+q:
For example, suppose that Fp cycles the private names n0; : : : ; np and Fq the namesn00; : : : ; n0q, then AFpFq does the same thing over the names n0; : : : ; np�1; n00; : : : ; n0q.
The trick here is that the test (f(fx) = fn) is only true when x is np�1, while (gx = gn)
is true when x is any of n0; : : : ; np�1; n0q or some unknown name. These are then used
to select which name to return.

These examples show that the nu-calculus has all the properties we might expect for a
language of names, and for a call-by-value lambda-calculus. They also illustrate the subtle
and perhaps surprising behaviour that can arise from the interaction between names and
higher-order functions.

6 A Context Lemma

While contextual equivalence is the relation on expressions of the nu-calculus that we
would like to work with, there are certain problems in doing so. The most obvious is
that program contexts P hh�ii are far too numerous and varied; a direct proof that two
expressions behave similarly in all program contexts is generally too unwieldy to be
attempted. In this section we show that a smaller collection of contexts is sufficient.
Later we consider other equivalences that are simpler to demonstrate yet imply contextual
equivalence

A result showing that it is not necessary to consider all program contexts, but only
those having a certain form, is called a context lemma, after Milner’s result for the simply-
typed lambda-calculus [59]. The equivalent result for our system would be that it is only
necessary to consider applicative contexts, which take the formhh�ii(~C)M1 : : :Mn
where an expression is instantiated and then applied to some arguments. Milner’s context
lemma is particularly useful because the types of the Mi are all structurally simpler than
that of the hole. This means that various results on contextual equivalence can be proved
by induction on the structure of types.

6. A CONTEXT LEMMA 27

Unfortunately the context lemma in this form is not valid for the nu-calculus. The
simplest counter-example is the inequivalence (11) of Section 5 above:�n:�x:o:n 6�o!� �x:o:�n:n :
Both of these expressions, when applied to either true or false , return a fresh name.
Only by using a context such as (�f :o ! �:(f true = f true))hh�ii can we detect that
the first always returns the same name, while the second repeatedly generates new ones.
The inequivalences (15) and (16) also provide counterexamples. However we can give a
weaker result that is suitable for the nu-calculus:

Theorem 2.8 (Context Lemma) Two expressions are contextually equivalents;� `M1 �� M2
if and only if for all name sets s0, functions �x:�:B 2Can�!o(s� s0), instantiations [~C=~x]
defined over (s� s0), and boolean values b 2 ftrue; falseg,(9s1 : s� s0 ` (�x:�:B)M1[~C=~x] +o (s1)b)()(9s2 : s� s0 ` (�x:�:B)M2[~C=~x] +o (s2)b):
We call a context of the form �s0:(�x:�:B)(hh�ii(~C)) an argument context, and (�x:�:B)
a test function. Although less dramatic than the usual result, this still narrows down the
contexts that we have to consider. In the first place, because the nu-calculus is call-by-
value, an argument context only evaluates the contents of its hole to canonical form once.
Additionally, in a general context the arguments to the hole can have free variables, or
even contain holes themselves. In an argument context the (~C) are closed and have no
holes. Unfortunately the technique mentioned above, using a context lemma to prove other
results by induction on the structure of types, fails to go through as the type of (�x:�:B)
is larger than the type of the hole.

Results similar to Theorem 2.8 have been found for other calculi. A. Gordon in
his thesis shows that ‘experimental order’ coincides with ‘contextual order’ for the lan-
guage ��ML [25, Lemma 4.4.7]. Honsell, Mason, Smith and Talcott consider an untyped
lambda-calculus extended with storage cells and show that to establish ‘operational equiv-
alence’ it is enough to consider all ‘closed instantiations of use’ (ciu) of an expression [30,x2.3.2].

For expressions with no free variables, we can further simplify the range of contexts
required:

Corollary 2.9 Two closed expressions are contextually equivalent s `M1 �� M2 if and
only if for all test functions �x:�:B 2 Can�!o(s) and all b 2 ftrue; falseg,(9s1 : s ` (�x:�:B)M1 +o (s1)b) () (9s2 : s ` (�x:�:B)M2 +o (s2)b):
Proof Observe that for any test function (�x:�:B) 2 Can�!o(s� s0) applied to a closed
expression M 2 Exp�(s),s� s0 ` (�x:�:B)M +o (s00)b () s ` (�x:�:�s0:B)M +o (s0 � s00)b:
So with no free variables to instantiate, the argument context �s0:(�x:�:B)hh�ii from
Theorem 2.8 can be replace by the test function (�x:�:�s0:B)hh�ii.

28 CHAPTER 2. THE NU-CALCULUS

Before we can prove the context lemma, we have to examine more closely the
process of reduction. In Section 3 we defined reduction expressions Eh�i and reduction
contexts Rh�i to be expressions with a single typed hole, taking the following forms:Eh�i :: = h�iM j (�x:�:M)h�ij if h�i thenM elseM 0 j h�i = N j n = h�iRh�i :: = h�i j Rh�iM j (�x:�:M)Rh�ij if Rh�i thenM elseM 0 j Rh�i = N j n = Rh�i:
Any reduction context can be represented uniquely as a nested sequence of reduction
expressions. A redex is an expression taking one of the forms(�x:�:M)C j if true thenM elseM 0 j if false thenM elseM 0j n = n0 j n = n:
As shown in Figure 2.3, all of these have immediate reductions, regardless of the nature
of the subexpressions M;M 0 or C . We can use this classification to break down closed
expressions of the nu-calculus and identify their first reduction step.

Lemma 2.10

1. Each closed expression of the nu-calculus is just one of the following:� in canonical form� a redex� a name abstraction� a reduction expression with the hole h�i filled by some non-canonical expres-
sion.

2. Any M 2 Exp�(s) decomposes uniquely as one of the following:�s0:C C canonical�s0:RhEh�n:M 0ii Eh�i a reduction expression�s0:RhM 0i M 0 a redex, M 0 !� M 00
where s0 is some ordered set of names, possibly empty, and Rh�i is a reduction
context.

Proof Item (1) is straightforward, giving consideration to each of the forms of nu-calculus
expressions. For example:� A lambda abstraction (�x:�:M) is always in canonical form.� An expression of the form FM is a redex if F and M are both in canonical form.

Otherwise, FM is a reduction expression with a non-canonical in h�i, as eitherF hMi or hF iM according as F is in canonical form or not, respectively.

To obtain (2) we apply (1) repeatedly, using the fact that a succession of nested reduction
expressions is precisely a reduction context.

6. A CONTEXT LEMMA 29

For any M 2 Exp�(s) this result determines its unique standard reduction as:�s0:C none�s0:RhEh�n:M 0ii !� �s0:Rh�n:EhM 0ii�s0:RhM 0i !� �s0:RhM 00i:
The next lemma is a weak �-rule that we need later. It is related to equivalence (6) from
Section 5 above.

Lemma 2.11 Suppose that s ` Rh�:�i : �0 is a reduction context and M 2 Exp�(s).
1. If M !�� �s0:C where C is in canonical form, thenRhMi !��0 �s0:RhCi and (�x:�:Rhxi)M !��0 �s0:RhCi :
2. For canonical form C ,s ` RhMi +�0 (s0)C () s ` (�x:�:Rhxi)M +�0 (s0)C:

Proof The first part of (1) is derived by applying the (REDEXP) and (EXTRUDE) rules
repeatedly, while for the second part we combine(�x:�:Rhxi)M !��0 �s0:((�x:�:Rhxi)C)
with (�x:�:Rhxi)C !�0 RhCi:
For (2), suppose that s ` M +� (s0)C 0. Then by (1), both RhMi and (�x:�:Rhxi)M
reduce to �s0:RhC 0i, from which the result follows.

To understand the behaviour of expressions in context, we must go a stage further.
Define an extended expression �M to be what we have previously termed a context: an
expression of the nu-calculus with a hole hh� : �1; : : : ; �n!�ii appearing zero or more
times. We also need extended versions of canonical form, reduction expression, reduction
context and redex; the details are given in Figure 2.4.

To determine the complexity of an extended expression, we use a measure for holes
that takes account of their nesting in arguments for other holes. Define the hole count
for an extended expression to be a list of the number of holes at each depth of nesting,
deepest first. For example the extended expressionif hh� : o; �!oii(C1; C2) then true else hh�ii(hh�ii(C3; C4); C5)
has a hole count [1; 2]. Hole counts are ordered by list length and then lexicographically,
for example: [4] v [1; 3] v [3; 1] v [1; 1; 1]:
The set of hole counts is well ordered: there are no strictly decreasing infinite sequences.
Another way to look at this ordering is to attach weights to holes, with nested holes being
infinitely heavier.

We can break down extended expressions as we did ordinary expressions, using an
extended form of Lemma 2.10.

30 CHAPTER 2. THE NU-CALCULUS

Extended expressions:�M ::= hh�ii hole j x variable j n namej true j false j if �M then �M else �Mj �n: �M j �M = �Mj �x:�: �M j �M �M
Extended canonical form:�C ::= x j n j true j false j �x:�: �M
Extended reduction expressions:�Eh�i ::= h�i �M j (�x:�: �M)h�ij if h�i then �M else �M 0 j h�i = �N j n = h�i
Extended reduction contexts:�Rh�i ::= h�i j �Rh�i �M j (�x:�: �M) �Rh�ij if �Rh�i then �M else �M 0 j �Rh�i = �N j n = �Rh�i
Extended redexes:if true then �M else �M 0 !� �M n = n !� trueif false then �M else �M 0 !� �M 0 n = n0 !� false n 6= n 0(�x:�: �M) �C !�0 �M [�C=x]

Figure 2.4: The extended nu-calculus

6. A CONTEXT LEMMA 31

Lemma 2.12

1. Each closed extended expression is just one of the following:� an application of the hole hh�ii(�C1; : : : ; �Cn)� in extended canonical form� an extended redex� a name abstraction of some extended expression� an extended reduction expression with the hole h�i filled by some non-
canonical extended expression.

2. If s ` �M : � is some closed extended expression, then it takes exactly one of the
following forms:�s0: �C �C an extended canonical�s0: �Rhhh�ii(~�C)i�s0: �Rh �Eh�n: �M 0ii �Eh�i an extended reduction expression�s0: �Rh �M 0i �M 0 an extended redex, �M 0 !� �M 00
where s0 is some ordered set of names and �Rh�i is an extended reduction context.

Proof As for Lemma 2.10, part (1) follows by consideration of the structure of the
extended expression, while (2) comes by repeated application of (1).

In part (2) above, suppose that M0 2 Exp�(s;�) is some open expression suitable to
fill the hole in �M . Then in the last two cases the standard reduction for �Mhh(~x)M0ii is
independent of M0:�s0: �Rh �Eh�n: �M 0iihh(~x)M0ii !� �s0: �Rh�n: �Eh �M 0iihh(~x)M0ii�s0: �Rh �M 0ihh(~x)M0ii !� �s0: �Rh �M 00ihh(~x)M0ii:
This pinpoints the nature of reduction sufficiently for us to prove the context lemma:

Proof of Theorem 2.8 The ‘only if’ direction is immediate as an argument context�s0:(�x:�:B)(hh�ii(~C))
is clearly a restricted form of context. For the ‘if’ direction, suppose that we have two
expressions M1;M2 2 Exp�(s;�) satisfying(9s1 : s� s0 ` (�x:�:B)M1[~C=~x] +o (s1)b)()(9s2 : s� s0 ` (�x:�:B)M2[~C=~x] +o (s2)b)
for all suitable s0, (�x:�:B), (~C) and b. By symmetry it is enough to show that for any
extended program s ` �P : o and boolean b that(9s1 : s ` �P hh(~x)M1ii +o (s1)b) =) (9s2 : s ` �P hh(~x)M2ii +o (s2)b):

32 CHAPTER 2. THE NU-CALCULUS

We prove this by a double induction over the length of the left-hand reduction, under the
semantics of Section 3, and the hole count of �P .

By Lemma 2.12(2) there are four possible forms for �P . In the simplest case, it is a
name abstraction of some extended canonical, necessarily true or false , and the result is
immediate. If �P = �s0: �Rh �Eh�n: �Mii then as we saw above the first reduction step is the
same however the hole hh�ii is filled. So if we set �P 0 = �s0: �Rh�n: �Eh �M 0ii then�P hh(~x)M1ii !o �P 0hh(~x)M1ii and �P hh(~x)M2ii !o �P 0hh(~x)M2ii:
Now �P 0hh(~x)M1ii will have a shorter reduction to b, and the result follows by the induction
hypothesis. A similar approach applies if �P = �s0: �Rh �M 0i where �M 0 is an extended redex.

The final possibility is that �P = �s0: �Rhhh�ii(~�C)i. In this case we fill this particular

occurrence of the hole hh�ii and consider the extended expression �s0: �RhM1[~�C=~x]i, which
has a lower hole count than �P . We have�P hh(~x)M1ii = �s0: �RhM1[~�C=~x]ihh(~x)M1ii
and use this to reason as follows:9s1 : s ` �P hh(~x)M1ii +o (s1)b() 9s1 : s ` �s0: �RhM1[~�C=~x]ihh(~x)M1ii +o (s1)b=) 9s3 : s ` �s0: �RhM1[~�C=~x]ihh(~x)M2ii +o (s3)b() 9s3 : s� s0 ` ((�x:�: �Rhxi)(M1[~�C=~x]))hh(~x)M2ii +o (s3)b=) 9s2 : s� s0 ` ((�x:�: �Rhxi)(M2[~�C=~x]))hh(~x)M2ii +o (s2)b() 9s2 : s ` �s0: �RhM2[~�C=~x]ihh(~x)M2ii +o (s2)b() 9s2 : s ` �P hh(~x)M2ii +o (s2)b:
Here we use in turn induction on the hole count, Lemma 2.11(2), the original hypothesis
of equality under test functions, and Lemma 2.11(2) again.

7 Applicative Equivalence

In this section we define two notions of equivalence for expressions of the nu-calculus,
each with particular good properties. We then show that these are in fact the same relation,
and that they imply contextual equivalence. This gives a technique sufficient to prove all
but two of the examples in Section 5.

Abramsky introduced the notion of applicative bisimulation for the untyped lambda-
calculus, based on bisimulation of labelled transition systems [4]. Loosely, one lambda-
expression simulates another if it is no less defined and behaves similarly at all arguments.
Howe’s relation � is a similar construction for lazy computation systems [31]. A. Gordon’s
applicative similarity is a version of this for a typed lambda-calculus [25, x4.5]. As usual,
because there is no non-termination in the nu-calculus, we work with an equivalence, rather
than a preorder.

Definition 2.13 (Applicative Equivalence) We define the relations s ` C1 �can� C2 forC1; C2 2 Can�(s) and s ` M1 �exp� M2 for M1; M2 2 Exp�(s) inductively over the

7. APPLICATIVE EQUIVALENCE 33

structure of the type �, according to:s ` b1 �cano b2 () b1 = b2s ` n1 �can� n2 () n1 = n2s ` �x:�:M1 �can�!�0 �x:�:M2 () 8s0; C 2 Can�(s� s0) :s� s0 `M1[C=x] �exp�0 M2[C=x]s `M1 �exp� M2 () 9s1; s2; C1 2 Can�(s� s1); C2 2 Can�(s� s2) :s `M1 +� (s1)C1 & s `M2 +� (s2)C2& s� (s1 [s2) ` C1 �can� C2:
It is immediate that �exp� coincides with �can� on canonical forms; we write them in-
discriminately as �� and call the relation applicative equivalence.� We can extend the
relation to open expressions: if M1;M2 2 Exp�(s;�) where � = fx1 : �1; : : : ; xn : �ng
then we defines;� `M1 �� M2 () 8s0; Ci 2 Can�i(s� s0) i = 1; : : : ; n :s� s0 `M1[~C=~x] �� M2[~C=~x]:
Lemma 2.14 If M1;M2 2 Exp�(s;�) thens;� `M1 �� M2 () s� s0;�� �0 `M1 �� M2
for any s0;�0.
Proof Induction on the structure of the type � gives the result for closed expressions, and
the general result follows.

Lemma 2.15 Applicative equivalence is an equivalence relation.

Proof Also by induction on the structure of types.

Applicative equivalence is only a useful relation if we can show that it implies
contextual equivalence; however, it is well known that a direct proof is problematic.
Abramsky uses the technique of domain logic to solve this [3]. Howe defines an auxiliary
relation, roughly the congruence closure of applicative simulation, and shows that this
satisfies the same defining properties; this is also the approach taken by Gordon [31, 25].

Because the nu-calculus is simply typed, we can use an original and much simpler
method based on logical relations. As described in Chapter 1, these were introduced by
Plotkin as a tool to show the undefinability of certain elements in models of the simply-
typed lambda-calculus [96]. Our logical relation remains entirely in the syntax of the
nu-calculus; nevertheless it keeps the basic idea that functions are related if they take
related arguments to related results.�This is a different relation to the applicative equivalence of [91, Definition 13] and [92, Definition 3.4]
which (rather unfortunately) turns out not to be an equivalence at all.

34 CHAPTER 2. THE NU-CALCULUS

Definition 2.16 (Logical Equivalence) We define the two relations s ` C1 'can� C2 forC1; C2 2 Can�(s) and s ` M1 'exp� M2 for M1; M2 2 Exp�(s) inductively over the
structure of the type �, according to:s ` b1 'cano b2 () b1 = b2s ` n1 'can� n2 () n1 = n2s ` �x:�:M1 'can�!�0 �x:�:M2 () 8s0; C1; C2 2 Can�(s� s0) :s� s0 ` C1 'can� C2=) s� s0 `M1[C1=x] 'exp�0 M2[C2=x]s `M1 'exp� M2 () 9s1; s2; C1 2 Can�(s� s1); C2 2 Can�(s� s2) :s `M1 +� (s1)C1 & s `M2 +� (s2)C2& s� (s1 [s2) ` C1 'can� C2:
Again 'exp� and 'can� coincide on canonicals and we write '� indiscriminately, calling the
relation logical equivalence. We extend the relation to open expressions; for M1; M2 2
Exp�(s;�) with � = fx1 : �1; : : : ; xn : �ng we takes;� `M1 '� M2 () 8s0; Cij 2 Can�j (s� s0) i = 1; 2 j = 1; : : : ; n :(&nj=1 : s� s0 ` C1j '�j C2j)=) s� s0 `M1[~C1=~x] '� M2[~C2=~x]:
Lemma 2.17 If M1;M2 2 Exp�(s;�) thens;� `M1 '� M2 () s� s0;�� �0 `M1 '� M2
for any s0;�0.
Proof Induction on the structure of the type � gives the result for closed expressions, and
the general result follows. An irritating detail is the necessity to show that there are at
least some related canonical expressions of each type, which is also shown by induction
over types.

Unlike applicative equivalence, it is not immediately obvious that logical equivalence
is reflexive, transitive or symmetric. However it is a congruence; it is preserved by all
the rules for forming expressions of the nu-calculus. From this it follows that logical
equivalence is reflexive and that it implies contextual equivalence.

Proposition 2.18 Logical equivalence is a congruence.

Proof Definition 2.16 and the evaluation rules of Figure 2.2 are enough to show that each
of the expression-forming rules of Figure 2.1 preserves logical equivalence.

Proposition 2.19 Logical equivalence is reflexive:s;� `M '� M M 2 Exp�(s;�):
Proof By induction on the structure of the expression M , using Proposition 2.18.

7. APPLICATIVE EQUIVALENCE 35

Proposition 2.20 Logical equivalence implies contextual equivalence:s;� `M1 '� M2 =) s;� `M1 �� M2:
Proof By Proposition 2.19, any test function is related to itself s� s0 ` �x:�:B '�!o�x:�:B. The result then follows from the Context Lemma (Theorem 2.8) and the definition
of logical equivalence at function types and booleans.

Applicative and logical equivalence are clearly very close, with the only difference
being in the treatment of values of function type. Logical equivalence places the stronger
constraint here, so it is not too surprising that it implies applicative equivalence; less
expected is the result that the reverse implication also holds.

Lemma 2.21 If s;� `M1 '� M2 then s;� `M1 �� M2.

Proof We show each of the following:

1. s ` C1 'can� C2 =) s ` C1 �can� C2.

2. s `M1 'exp� M2 =) s `M1 �exp� M2.

3. s;� `M1 '� M2 =) s;� `M2 �� M2.

The first two are proved by mutual induction over the structure of �. Case (1) at ground
types is immediate. For function types, suppose that s ` �x:�:M1 'can�!�0 �x:�:M2
and C 2 Can�(s� s0). By Proposition 2.19 above we have s� s0 ` C '� C , and sos� s0 ` M1[C=x] 'exp�0 M2[C=x]. Applying the induction hypothesis gives s� s0 `M1[C=x] �exp�0 M2[C=x] which confirms that s ` �x:�:M1 �can�!�0 �x:�:M2.

For (2) suppose that s `M1 'exp� M2. We must have s `M1 +� (s1)C1 and s `M2 +�(s2)C2 with s� (s1 [s2) ` C1 'can� C2. By (1) this gives s � (s1 [s2) ` C1 �can� C2
and so s `M1 �exp� M2 as required.

Finally, for (3) suppose that s;� ` M1 '� M2 and Ci 2 Can�i(s� s0) for some s0
and i = 1; : : : ; n. By Proposition 2.19 each s ` Ci '�i Ci and so s� s0 `M1[~C=~x] '�M2[~C=~x]. By (2) then s� s0 ` M1[~C=~x] �� M2[~C=~x] and hence s;� ` M1 �� M2 as
desired.

Lemma 2.22 If s;� `M1 �� M2 then s;� `M1 '� M2.

Proof We show each of the following:

1. s ` C1 �can� C2 =) s ` C1 'can� C2.

2. s `M1 �exp� M2 =) s `M1 'exp� M2.

3. s;� `M1 �� M2 =) s;� `M2 '� M2.

Again the first two are proved by mutual induction over the structure of �. Implication (1)
at ground types is immediate. Suppose now that s ` �x:�:M1 �can�!�0 �x:�:M2 and that we
have some C1;C2 2 Can�(s� s0) with s� s0 `C1 'can� C2. The definition of applicative
equivalence at function types givess� s0 `M1[C1=x] �exp�0 M2[C1=x]

36 CHAPTER 2. THE NU-CALCULUS

while Proposition 2.19 for s� s0; fx : �g `M2 : �0 givess� s0 `M2[C1=x] 'exp�0 M2[C2=x]
which by Lemma 2.21 impliess� s0 `M2[C1=x] �exp�0 M2[C2=x]:
Now �exp�0 is transitive, so s� s0 `M1[C1=x] �exp�0 M2[C2=x]
and the induction hypothesis gives s� s0 ` M1[C1=x] 'exp�0 M2[C2=x], from which we
obtain s ` �x:�:M1 'can�!�0 �x:�:M2 as required.

For (2) suppose that s ` M1 �exp� M2. We must have s ` M1 +� (s1)C1 ands`M2 +� (s2)C2 with s� (s1 [s2)`C1�can� C2. By (1) then s� (s1 [s2)`C1'can� C2
and so s `M1 'exp� M2.

Finally, for (3) suppose s;� `M1 �� M2 and that we have Cij 2 Can�j (s� s0) withs� s0 ` C1j '�j C2j for j = 1; : : : ; n and some s0. Thens� s0 `M1[~C1=~x] �exp� M2[~C1=~x]
and by Proposition 2.19, s;� `M2 '� M2 from whichs� s0 `M2[~C1=~x] 'exp� M2[~C2=~x];
giving s� s0 `M2[~C1=~x] �exp� M2[~C2=~x];
by Lemma 2.21. Transitivity of �exp� givess� s0 `M1[~C1=~x] �exp� M2[~C2=~x]
which by (2) implies s� s0 ` M1[~C1=~x] 'exp� M2[~C2=~x]. Thus s; � ` M1 '� M2 as
required.

Theorem 2.23 Applicative and logical equivalence are the same relation; it is an equiv-
alence, a congruence and implies contextual equivalence.

Proof We simply combine Lemma 2.21, Lemma 2.22, Lemma 2.15, Proposition 2.18 and
Proposition 2.20.

Applicative equivalence verifies examples (2)–(9) of Section 5: these concern unused
names, order of name generation, evaluation, reduction, rearrangement around reduction
contexts and �v-equivalence. It also confirms the equivalence AFpFq ��!� Fp+q that
represents addition in example (17). However it is unable to capture the notion of ‘private’
names, and does not prove examples (12) or (13).

The difficulty is that the definition of applicative equivalence at function types quanti-
fies over every possible argument, and an external context may be unable to construct all
of these. The refinements of logical equivalence described in Chapter 4 begin to tackle
this problem.

Chapter 3

Categorical Models

Consideration of the nu-calculus has so far been entirely operational; we now develop
a denotational semantics for the language, using category theory. This provides abstract
models for the behaviour of nu-calculus expressions, and further methods for reasoning
about contextual equivalence. A particular feature is that we follow Moggi in using a
categorical strong monad to encapsulate the notion of ‘computation’ [67].

This chapter falls into two parts. In the first three sections we describe a metalanguage,
based on Moggi’s computational lambda-calculus [66, 68, 90]. This captures the general
properties required for a model of the nu-calculus. In the last four sections we turn these
into conditions for a categorical model, and give two specific examples. This two stage
technique of

nu-calculus �! computational metalanguage �! category with strong monad

makes the construction simpler, and allows us to build more than one categorical model on
the same foundations. Both parts are significant; the metalanguage serves as the internal
language of the category, while the existence of categorical models proves the consistency
of the metalanguage.

The most important feature of the metalanguage is that it distinguishes between values
and computations; for the nu-calculus, a computation will create some names and then
return a value. This separation makes explicit the order of computation, which in the
operational semantics was only implicit. It also allows equational reasoning, with the
reintroduction of � and � axioms at function types.

We give an interpretation of the nu-calculus in the metalanguage, and show that it
respects the operational semantics. The translation is adequate, so we can use the meta-
language to reason about contextual equivalence; it is also fully abstract for expressions
of ground type. Further, if two expressions of first-order type are applicatively equivalent,
then their translations can be proved equal in the metalanguage.

Section 4 explains the conditions for a category to model the metalanguage, and hence
the nu-calculus. The interpretation is in many ways quite standard, with all the usual
machinery of products, exponentials and so forth; only the monad is affected by names and
their equality test. All the results on reasoning in the metalanguage immediately carry over
to the categorical setting. The final sections describe two particular models: the functor
category SetI , where I is the category of finite sets and injections, and the category BG
of continuous G-sets, where G is a certain topological group.

37

38 CHAPTER 3. CATEGORICAL MODELS

Although these categories provide an adequate denotational semantics for the nu-
calculus, they are not fully abstract. We still cannot prove equivalences (12) or (13) of the
last chapter, concerning private names. However the methods used here are quite general,
and in the next chapter we shall see how more abstract models can be built on the same
framework.

1 A Computational Metalanguage

The types of the metalanguage are given by:A ::= Bool booleansj Name namesj A! A functionsj TA computations.

There is a unary type constructor T : if A is a type, then elements of TA are computations
of type A. In this particular metalanguage the difference between a value and a compu-
tation is that a computation may generate new names before returning a value. We shall
use A;B and their variants to range over the types of the metalanguage.

The term forming operations of the metalanguage are as follows:a :: = x variablej tt j � truth valuesj cond(a; a; a) conditionalj eq(a; a) compare namesj new generate new namej �x:A:a function abstractionj aa function applicationj [a] value as trivial computationj let x(a in a sequential computation.

There is an infinite supply of typed variables, where x : A indicates that variable x is of
type A. Function abstraction �x:A:a binds the variable x in the term a, and sequential
computation let x(e in e0 binds the variable x within the term e0. We implicitly identify
terms up to �-conversion, which allows us to require substitution, written a[a0=x] anda[a1=x1; : : : ; an=xn], to be capture avoiding. A term is closed if it has no free variables;
there is no possibility of free names. We shall generally denote terms by variants on a; b; c,
and take variables from x; y; z. Terms of computation type are usually represented by
variants of e, terms of function type by f; g and terms of type Name by n.

There are three forms of term involving computation. If a is a value, then [a] is the
trivial computation which simply returns a. The sequential form let x(e in e0 carries out
the computation e, binds the result to x and then computes e0. Both of these are standard
constructions of the computational lambda-calculus. To them we add the constant new of
type TName which denotes the computation that generates a fresh name.

Type judgements of the metalanguage are of the form� ` a : A

1. A COMPUTATIONAL METALANGUAGE 39� ` x : A (x : A 2 �) � ` new : TName � ` tt : Bool � ` � : Bool� ` n; n0 : Name� ` eq(n; n0) : Bool � ` b : Bool � ` a; a0 : A� ` cond(b; a; a0) : A� ` a : A� ` [a] : TA �; x : A ` b : B� ` �x:A:b : A! B� ` e : TA �; x : A ` e0 : TA0� ` let x(e in e0 : TA0 � ` f : A! B � ` a : A� ` fa : B
Figure 3.1: Rules for assigning types to terms of the metalanguage

which asserts that in the presence of �, term a has type A. Here � is a finite set of typed
variables; unlike the nu-calculus, there is no set of free names. The rules for forming type
judgements are given in Figure 3.1, where we abbreviate � � fx : Ag by �; x : A and
write � ` a1; : : : ; an : A to indicate that all of the judgements � ` a1 : A; : : : ;� ` an : A
hold. From now on we shall consider only well-typed terms.

Lemma 3.1 If � ` a : A holds then the type A is unique. Moreover, if the term a has free
variables in �, then � ` a : A () �� �0 ` a : A
for any �0.
Proof Both results follow by induction on the structure of a.

We reason about terms of the metalanguage with an equational logic of Horn clauses.
This could be extended to a full evaluation logic with modalities [90], but we shall manage
without this sophistication. If the type judgements � ` a : A and � ` a0 : A are valid then� ` a = a0 : A
is an equation in context �; we usually omit the type and write � ` a = a0. A sequent is
a judgement �;� ` �
where � is a finite set of typed variables, � is a finite set of equations in context � and �
is a single equation in context �. We may omit � or � when empty, and write �; a = a0
for ��fa= a0 :Ag. The free variables fv(�) of � are the free variables of its component
terms.

Figures 3.2 and 3.3 detail the rules for deriving sequents. Figure 3.2 gives the usual
rules for Horn clauses and equational logic, congruence rules for all the term forming
operations and �; � axioms at function types. Figure 3.3 contains rules particular to
this metalanguage. The rules for computations are those described by Moggi for any
computational lambda-calculus, and include the (MONO) rule, that the operation [�] taking
values to computations is an inclusion. The rules for boolean values and the comparison of
names are straightforward; a derived property is that eq(�;�) is an equivalence relation.

40 CHAPTER 3. CATEGORICAL MODELS

Horn clauses: �;� ` � (� 2 �) �;� ` � �;	; � ` �;� [`
Equality:� ` a : A� ` a = a � ` a; a0 : A�; a = a0 ` a0 = a � ` a1; a2; a3 : A�; a1 = a2; a2 = a3 ` a1 = a3
Congruence:� ` x = x (x : A 2 �) � ` new = new � ` tt = tt � ` � = �� ` b; b0 : Bool � ` a1; a01; a2; a02 : A�; b = b0; a1 = a01; a2 = a02 ` cond (b; a1; a2) = cond(b0; a01; a02)� ` n1; n01; n2; n02 : Name�;n1 = n01; n2 = n02 ` eq(n1; n2) = eq(n01; n02)� ` f; f 0 : A! B � ` a; a0 : A�; f = f 0; a = a0 ` fa = f 0a0� ` a; a0 : A�; a = a0 ` [a] = [a0] �; x : A; � ` b = b0 : B�;� ` �x:A:b = �x:A:b0 (x =2 fv(�))� ` e1; e01 : TA �; x : A; � ` e2 = e02 : TB�;�; e1 = e01 ` let x(e1 in e2 = let x(e01 in e02 (x =2 fv(�))
Functions: � �; x : A ` b : B � ` a : A� ` (�x:A:b)a = b[a=x] � � ` f : A! B� ` f = �x:A:fx

Figure 3.2: Rules for equational reasoning in the metalanguage (I)

1. A COMPUTATIONAL METALANGUAGE 41

Computations: � ` e : TA� ` let x(e in [x] = e (MONO)
� ` a; a0 : A�; [a] = [a0] ` a = a0� ` a : A �; x : A ` e : TB� ` let x([a] in e = e[a=x]� ` e : TA �; x : A ` e0 : TA0 �; x0 : A0 ` e00 : TA00� ` let x0((let x(e in e0) in e00 = let x(e in (let x0(e0 in e00)

Booleans: �;�; b = tt ` � �;�; b = � ` ��;� ` � �;� ` tt = ��;� ` �� ` a; a0 : A� ` cond (tt ; a; a0) = a � ` a; a0 : A� ` cond(� ; a; a0) = a0
Testing names: � ` n : Name� ` eq(n; n) = tt � ` n; n0 : Name�; eq(n; n0) = tt ` n = n0
Generating names:

(DROP)
� ` e : TA� ` e = let n(new in e (n : Name =2 �)

(SWAP)
�; n; n0 : Name ` e : TA� ` let n(new in let n0(new in e = let n0(new in let n(new in e

(FRESH)
� ` n : Name �; n0 : Name; �; eq(n; n0) = � ` e = e0�;� ` let n0(new in e = let n0(new in e0

Figure 3.3: Rules for equational reasoning in the metalanguage (II)

42 CHAPTER 3. CATEGORICAL MODELS

The final three rules describe the behaviour of the computation new , asserting that
unused names are ignored, the order of generating names is irrelevant, and new names are
distinct from all others. The choice of these particular rules is rather ad hoc; in their favour
we argue that they are sufficient to carry through the interpretation of the nu-calculus, and
that there are models to validate them. Stronger versions of the first two are

(DROP+)
� ` e : TA � ` e0 : TA0� ` e = let x(e0 in e (x : A0 =2 �)

(SWAP+)
� ` e : TA � ` e0 : TA0 �; x : TA; x0 : TA0 ` e00 : TA00� ` let x(e in let x0(e0 in e00 = let x0(e0 in let x(e in e00 :

These say that any computation whose value is unused may be discarded and that all
computations can be reordered. They are not essential to model the nu-calculus, and
would be false in a metalanguage extended to handle store or exceptions, for example.
Nevertheless, all the categorical models to follow satisfy them.

An equivalent formulation of the last rule (FRESH) is

(FRESH0) �; b : Bool ; n0 : Name ` e : TA � ` n : Name� ` let n0(new in e[eq(n; n0)=b] = let n0(new in e[� =b] :
The alternative candidate � ` n : Name� ` let n0(new in [eq(n; n0)] = let n0(new in [�]
can be derived, but appears to be strictly weaker. In particular it is not strong enough
to complete the proof of Lemma 3.2 and hence Proposition 3.6, that the metalanguage
correctly interprets the nu-calculus.

As it stands the rule (FRESH) only allows for comparison of a new name with one
other. This is no restriction, as the following derived rule shows:

Lemma 3.2 For any finite set of terms fn1; : : : ; nkg of type Name the rule� ` n1; : : : ; nk : Name �; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk; n) = � ` e = e0�;� ` let n(new in e = let n(new in e0
is derivable.

Proof We proceed by induction on k. The case k = 0 follows from the congruence rules
for new and let . The rule (FRESH) is the case k = 1. Suppose then that we have derived
the rule for k and wish to prove the it for (k + 1). Simple equational reasoning gives�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk+1; n) = � ` e = e0�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk+1; n) = � ` cond(eq(nk+1; n); e; e0) = e
and also�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk; n) = � ;eq(nk+1; n) = tt ` cond(eq(nk+1; n); e; e0) = e

2. INTERPRETING THE NU-CALCULUS 43

from which we can eliminate eq(nk+1; n) and obtain�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk+1; n) = � ` e = e0�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk; n) = � ` cond(eq(nk+1; n); e; e0) = e :
The induction hypothesis then provides the rule�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk; n) = � ` cond(eq(nk+1; n); e; e0) = e�;� ` let n(new in cond (eq(nk+1; n); e; e0) = let n(new in e :
It is straightforward that�; n : Name; �; eq(nk+1; n) = � ` cond (eq(nk+1; n); e; e0) = e0
which by the (FRESH) rule gives�;� ` let n(new in cond(eq(nk+1; n); e; e0) = let n(new in e0:
Combining all these we have�; n : Name; �; eq(n1; n) = � ; : : : ; eq(nk+1; n) = � ` e = e0�;� ` let n(new in e = let n(new in e0
as required, and the proof is complete.

The rule � ` n1; : : : ; nk : Name �; b1; : : : ; bk : Bool ; n : Name ` e : TA� ` let n(new in e[eq(n1; n)=b1; : : : ; eq(nk; n)=bk]= let n(new in e[� =b1; : : : ;� =bk]
extending (FRESH0) is also valid.

2 Interpreting the Nu-Calculus

Now that we have a metalanguage for reasoning about names and higher-order functions,
we describe a suitable interpretation of the nu-calculus. This must be chosen to respect
the operational semantics, in particular call-by-value function application and left-to-right
evaluation order. We use an extension of Moggi’s call-by-value interpretation of the
simply-typed lambda-calculus in the computational lambda-calculus [68]. The translation
is correct with respect to the operational semantics of the nu-calculus, in both evaluation
and reduction forms.

Types are translated from the nu-calculus to the metalanguage according to:[[o]] = Bool[[�]] = Name[[� ! �0]] = [[�]]! T [[�0]]:
Function types use the constructor T : the application of a function to a value may result
in a computation, that is, the generation of new names.

There are two mutually defined schemes that translate nu-calculus expressions into
terms of the metalanguage. Figure 3.4 describes j�j for expressions in canonical form
and [[�]] for general expressions, name and variable contexts. The interpretation respects
types and substitution of values; it also treats reduction expressions and contexts in a
uniform way. The following results make this precise.

44 CHAPTER 3. CATEGORICAL MODELS

Canonical forms: jxj = xjnj = njtruej = ttjfalse j = �j�x:�:M j = �x:[[�]]:[[M]]
Expressions: [[C]] = [jCj][[if B thenM elseM 0]] = let b([[B]] in cond(b; [[M]]; [[M 0]])[[N = N 0]] = let n([[N]] in let n0([[N 0]] in [eq(n; n0)][[�n:M]] = let n(new in [[M]][[FM]] = let f([[F]] in letm([[M]] in fm
Contexts: [[s;�]] = n1; : : : ; nk : Name; x1 : [[�1]]; : : : ; xn : [[�n]]

where s = fn1; : : : ; nkg� = fx1 : �1; : : : ; xn : �ng
Figure 3.4: Interpretation of the nu-calculus in the computational metalanguage

2. INTERPRETING THE NU-CALCULUS 45

Lemma 3.3 For any well-typed nu-calculus expression M , or expression C in canonical
form: s;� `M : � () [[s;�]] ` [[M]] : T [[�]]s;� ` C : � () [[s;�]] ` jCj : [[�]]:
Proof By induction over the structure of the type judgement in the nu-calculus, using
uniqueness of types in the metalanguage.

Lemma 3.4 If M 2 Exp�(s;�� fx : �g) and C 2 Can�(s;�) then[[s;�]] ` [[M [C=x]]] = [[M]][jCj=x]
in the metalanguage.

Proof By induction on the structure of M , using only the fact that equality in the
metalanguage is a congruence.

Lemma 3.5 If M 2 Exp�(s;�) and s;� ` Eh�:�i : �0 is a reduction expression then[[s;�]] ` [[EhMi]] = letm([[M]] in [[Ehmi]]
and for any reduction context s;� ` Rh�:�i : �0,[[s;�]] ` [[RhMi]] = letm([[M]] in [[Rhmi]]:
Proof Consider for example the reduction expression s;� ` h�iM : �0, and suppose thatF 2 Exp�!�0(s;�). Then, using the equalities of the computational lambda-calculus,[[s;�]] ` let f([[F]] in [[fM]] = let f([[F]] in let f 0([f] in letm([[M]] in f 0m= let f([[F]] in letm([[M]] in fm= [[FM]]:
The other reduction expressions are similar. For the second result, we recall that a
reduction context is a nested series of reduction expressions, and proceed by induction
on the length of this series. Suppose that we already have the result for the reduction
context s;� ` Rh�:�i : �0, and that s;� ` Eh�:�0i : �00 is a reduction expression. Then
we can reason:[[s;�]] ` [[EhRhMii]] = let r([[RhMi]] in [[Ehri]]= let r((let m([[M]] in [[RhMi]]) in [[Ehri]]= letm([[M]] in let r([[Rhmi]] in [[Ehri]]= letm([[M]] in [[EhRhmii]]
which is the result for the reduction context s;� ` EhRh�:�ii : �00.

46 CHAPTER 3. CATEGORICAL MODELS

The interpretation of the nu-calculus in the metalanguage is correct with respect to its
operational semantics: if s `M +� (s0)C then the terms [[M]] and [[�s0:C]] can be proved
equal in the metalanguage, under the assumption that all the names in s are distinct. A
similar result holds for the reduction relation M !� M 0. To make this formal we need
two abbreviations: (6=s) = feq(ni; nj) = � j 1 � i < j � kg
for the assertion that all the names in s = fn1; : : : ; nkg are distinct, andlet s0(�!new in e = let n01(new in : : : let n0k0(new in e
which is the expression that assigns new names to all of s0 = fn01; : : : ; n0k0g and then
computes e. The ordering of names from s and s0 does not matter, up to provable equality
in the metalanguage. A particular consequence of Lemma 3.2 is then the derived rule:[[s� s0;�]]; (6= s� s0) ` e = e0 : TA[[s;�]]; (6=s) ` let s0(�!new in e = let s0(�!new in e0 :
We can now demonstrate:

Proposition 3.6 (Correctness of Translation) If s ` M +� (s0)C is a valid evaluation
judgement then [[s]]; (6=s) ` [[M]] = let s0(�!new in [[C]]
is provable in the metalanguage. Further, if M;M 0 2 Exp�(s) and M !�� M 0 is a valid
reduction then [[s]]; (6=s) ` [[M]] = [[M 0]]
can be proved in the metalanguage.

Proof By induction over the derivation of s ` M +� (s0)C or M !�� M 0 respectively.
We need to confirm that every rule of Figures 2.2 and 2.3 translates to a derivation that
is provable in the metalanguage. We give some example cases:� (LOCAL) The translation of the rules� fng `M +� (s1)Cs ` �n:M +� (fng � s1)C

is [[s]]; n : Name; (6= s� fng) ` [[M]] = let s1(�!new in [[C]][[s]]; (6=s) ` let n(new in [[M]] = let n(new in let s1(�!new in [[C]]
which is an instance of the Lemma 3.2.� (EQ2) This is the rules ` N +� (s1)n s� s1 ` N 0 +� (s2)n0s ` (N = N 0) +o (s1 � s2)false n; n0 distinct.

2. INTERPRETING THE NU-CALCULUS 47

We combine [[s� s1 � s2]]; (6= s� s1 � s2) ` [eq(n; n0)] = [�][[s� s1]]; (6= s� s1) ` let s2(�!new in [eq(n; n0)] = let s2(�!new in [�]
with [[s� s1]]; (6= s� s1) ` [[N 0]] = let s2(�!new in [n0][[s� s1]]; (6= s� s1) ` let a0([[N 0]] in [eq(n; a0)] = let s2(�!new in [eq(n; n0)]
and obtain[[s]]; (6=s) ` let s1(�!new in let a0([[N 0]] in [eq(n; a0)] = let (s1 � s2)(�!new in [�]:
The addition of [[s]]; (6=s) ` [[N]] = let s1(�!new in [n][[s]]; (6=s) `let a([[N]] in let a0([[N 0]] in [eq(a; a0)]= let s1(�!new in let a0([[N 0]] in [eq(n; a0)]
gives the rule [[s]]; (6=s) ` [[N]] = let s1(�!new in [n][[s� s1]]; (6= s� s1) ` [[N 0]] = let s2(�!new in [n0][[s]]; (6=s) ` [[N = N 0]] = let (s1 � s2)(�!new in [[false]]
which as required is the translation of (EQ2).� Application redex. Take the reduction(�x:�:M)C !�0 M [C=x]
where C 2 Can�(s) and M 2 Exp�0(s;fx : �g). We can reason in the metalanguage
thus:[[s]]; (6=s) ` [[(�x:�:M)C]] = let f([�x:[[�]]:[[M]]] in let a([jCj] in fa= (�x:[[�]]:[[M]])jCj= [[M]][jCj=x]= [[M [C=x]]]
using the � rule and Lemma 3.4 on substitution.� Reduction expressions. Consider the rule schemeM !� M 0EhMi !�0 EhM 0i
where Eh�i is one of the five forms of reduction expression. The premise translates
to [[s]]; (6=s) ` [[M]] = [[M 0]]
and we can use Lemma 3.5 to deduce[[s]]; (6=s) ` [[EhMi]] = letm([[M]] in [[Ehmi]]= letm([[M 0]] in [[Ehmi]]= [[EhM 0i]]
which is the interpretation in the metalanguage of the rule consequence.

The other cases are all similar to these.

48 CHAPTER 3. CATEGORICAL MODELS

3 Reasoning in the Metalanguage

Proposition 3.6 above shows that the interpretation of the nu-calculus in the metalanguage
is correct with respect to its operational semantics. A consequence of this is that we
can use the metalanguage to reason about contextual equivalence; if two expressions of
the nu-calculus are interpreted by terms that are provably equal in the metalanguage,
then those expressions are contextually equivalent. Moreover, equational reasoning in the
metalanguage is complete for contextual equivalence at ground types. It is also complete
with respect to applicative equivalence at first-order types; if two expressions of first-
order type are applicatively equivalent, then their translations can be proved equal in the
metalanguage.

These properties all rely the metalanguage being consistent: the equation ` tt = �
is not provable. This is justified by the categorical models of Sections 5 and 7 where tt
and � are distinct.

The first result is that the metalanguage is suitable for reasoning about contextual
equivalence:

Proposition 3.7 (Adequacy of Translation) Suppose that M1;M2 2 Exp�(s;�) and that
we can derive [[s;�]]; (6=s) ` [[M1]] = [[M2]]
in the metalanguage. Then the expressions are contextually equivalent s;� `M1 �� M2.

Proof Suppose that P hh�ii is some program context defined over s. By the composition-
ality of the translation [[�]], and Lemma 3.4 on the substitution of values,[[s]]; (6=s) ` [[P hh(~x)M1ii]] = [[P hh(~x)M2ii]]:
From Theorem 2.4, evaluation in the nu-calculus is deterministic and terminating, so there
are evaluation judgementss ` P hh(~x)Miii +o (si)bi i = 1; 2
for some name sets s1; s2 and unique choice of booleans b1; b2. The correctness result
above gives [[s]]; (6=s) ` [[P hh(~x)Miii]] = let si(�!new in [jbij] i = 1; 2
and hence [[s]]; (6=s) ` let s1(�!new in [jb1j] = let s2(�!new in [jb2j]:
Using the rules (DROP) and (MONO) we obtain[[s]]; (6=s) ` jb1j = jb2j : Bool
from which b1 = b2 and hence s;� `M1 �� M2 as required.

For closed boolean and name expressions the converse to this holds and any contextual
equivalence can be proved in the metalanguage:

3. REASONING IN THE METALANGUAGE 49

Theorem 3.8 (Completeness at Ground Types) If � 2 fo; �g and M1; M2 2 Exp�(s)
then s `M1 �� M2 =) [[s]]; (6=s) ` [[M1]] = [[M2]]:
Proof We take each type in turn. If � = o then there must be some b 2 ftrue; falseg such
that s `Mi +o (si)b i = 1; 2
for suitable sets s1; s2 of names. By Proposition 3.6 and repeated use of the (DROP) rule
we can reason thus: [[s]]; (6=s) ` [[M1]] = let s1(�!new in [jbj]= [jbj]= let s2(�!new in [jbj]= [[M2]]
which is the desired equality. If � = � then there are two possibilities:� There is some name n 2 s such thats `Mi +� (si)n i = 1; 2

for suitable sets s1; s2 of names. The reasoning is then exactly as in the boolean
case.� There is some name n 62 s and name sets s1; s2 such thats `Mi +� (fng � si)n i = 1; 2:
Correctness and (DROP) then give:[[s]]; (6=s) ` [[M1]] = let n(new in let s1(�!new in [n]= new= let n(new in let s2(�!new in [n]= [[M2]]:

In all cases, contextual equivalence implies provable equality in the metalogic.

Using the metalanguage to reason about contextual equivalence gives results broadly
similar to the applicative equivalence of the last chapter. In particular we can confirm
examples (2)–(9) and (17) from Section 5 of Chapter 2, but not examples (12) or (13)
concerning private names. The correspondence with applicative equivalence can be made
precise up to first-order types:

Theorem 3.9 If � is a ground or first-order type of the nu-calculus, � is a set of variables
of ground type, and M1;M2 2 Exp�(s;�) for some set of names s, thens;� `M1 �� M2 =) [[s;�]]; (6=s) ` [[M1]] = [[M2]]:

50 CHAPTER 3. CATEGORICAL MODELS

Proof We show first that the result holds for closed expressions, by induction on the struc-
ture of the type �. The proof follows the form of Definition 2.13 describing applicative
equivalence; in particular, we distinguish the case when both expressions are in canonical
form.

The base case is immediate:s ` C1 �can� C2 =) [[s]]; (6=s) ` [[C1]] = [[C2]] � 2 fo; �g:
Suppose that for some � we have the result at �can� , and wish to show it at �exp� . Nows `M1 �exp� M2 () 9s1; s2; C1 2 Can�(s� s1); C2 2 Can�(s� s2) :s `M1 +� (s1)C1 & s `M2 +� (s2)C2& s� (s1 [s2) ` C1 �can� C2:
By hypothesis then [[s� (s1 [s2)]]; (6= s� (s1 [s2)) ` [[C1]] = [[C2]]
and so [[s]]; (6=s) ` let (s1 [s2)(�!new in [[C1]] = let (s1 [s2)(�!new in [[C2]]:
We can now reason as follows:[[s]]; (6=s) ` [[M1]] = let s1(�!new in [[C1]]= let (s1 [s2)(�!new in [[C1]]= let (s1 [s2)(�!new in [[C2]]= let s2(�!new in [[C2]]= [[M2]]
which is the required result.

For function types, we assume the result at �exp� and consider �cano!� and �can�!�. Firstlys ` �x:o:M1 �cano!� �x:o:M2 () s `M1[true=x] �exp� M2[true=x] &s `M1[false=x] �exp� M2[false=x]
which by the induction hypothesis gives[[s]]; x:Bool ; (6=s); x = tt ` [[M1]] = [[M2]][[s]]; x:Bool ; (6=s); x = � ` [[M1]] = [[M2]]
from which we can deduce in turn[[s]]; x:Bool ; (6=s) ` [[M1]] = [[M2]][[s]]; (6=s) ` �x:Bool :[[M1]] = �x:Bool :[[M2]][[s]]; (6=s) ` [�x:[[o]]:[[M1]]] = [�x:[[o]]:[[M2]]][[s]]; (6=s) ` [[�x:o:M1]] = [[�x:o:M2]]
the last of which is the desired result.

4. CONSTRUCTING CATEGORICAL MODELS 51

The proof for functions of type (� ! �) is slightly tricky. We haves ` �x:�:M1 �can�!� �x:�:M2 () 8n 2 s: s `M1[n=x] �exp� M2[n=x]& s� fng `M1[n=x] �exp� M2[n=x]:
Suppose that s = fn1; : : : ; nkg, then by the induction hypothesis we obtain all of[[s]]; x:Name; (6=s); eq(x; n1) = � ; : : : ; eq(x; nk�1) = � ; eq(x; nk) = � ` [[M1]] = [[M2]][[s]]; x:Name; (6=s); eq(x; n1) = � ; : : : ; eq(x; nk�1) = � ; eq(x; nk) = tt ` [[M1]] = [[M2]][[s]]; x:Name; (6=s); eq(x; n1) = � ; : : : ; eq(x; nk�1) = tt ` [[M1]] = [[M2]]

...[[s]]; x:Name; (6=s); eq(x; n1) = tt ` [[M1]] = [[M2]]:
Eliminating the eq(x; ni) in turn gives[[s]]; x:Name ; (6=s) ` [[M1]] = [[M2]]
from which follows as before:[[s]]; (6=s) ` [[�x:�:M1]] = [[�x:�:M2]]:

This completes the proof for closed expressions. For open expressions we proceed by
induction on the number of free variables. From the definitions;�� fx : �g `M1 ��0 M2 () s;� ` �x:�:M1 ��!�0 �x:�:M2:
As � is a ground type, the induction hypothesis applies and we can reason:[[s;�]]; (6=s) ` [�x:[[�]]:[[M1]]] = [�x:[[�]]:[[M2]]]
(MONO) [[s;�]]; (6=s) ` �x:[[�]]:[[M1]] = �x:[[�]]:[[M2]]
(�) [[s;�� fx : �g]]; (6=s) ` [[M1]] = [[M2]]
which is the desired result.

At second or higher orders this fails: applicative equivalence does not necessarily imply
provable equality in the metalanguage. This is because terms in the metalanguage of
function type do not necessarily denote expressions of the nu-calculus.

4 Constructing Categorical Models

It is standard that the simply-typed lambda-calculus can be modelled in any cartesian closed
category, with objects for types and morphisms for terms [42]. Moggi extends this to a
model of the computational lambda-calculus in any cartesian closed category equipped
with a strong monad T [68]. We now specialise to the particular case of the computational
metalanguage for names, as described above.

The method is that if a category C satisfies certain requirements then its internal
language will include the metalanguage of Section 1. The translation of Section 2 then
extends to a model of the nu-calculus in C that is sound with respect to the operational
semantics.

52 CHAPTER 3. CATEGORICAL MODELS

If C is not degenerate then the translation is also adequate, and the category can be
used to reason about contextual equivalence. This will be at least as powerful as the basic
metalanguage. In particular reasoning in such C is complete for contextual equivalence
at ground types, and for applicative equivalence up to first-order types. Of course the
intention is that a suitable choice of category might prove more than the metalanguage
alone.

A category C is suitable to model the metalanguage if the following conditions hold:� It is cartesian closed: that is, it has finite limits and exponentials. In particular, we
use products to interpret contexts, and exponentials for function types.� It has a strong monad T , used to interpret the computation types. This can be
described as a endofunctor T : C ! C together with a unit natural transformation� : 1! T and a lift operation taking a morphism f :A�B! TC to f� :A�TB!TC . The lift operation must be natural and satisfy(�B � sndA;B)� = sndA;TBf� � (idA � �B) = fg� � hfstA;TB; f�i = (g� � hfstA;B; fi)�
whenever f : A�B ! TC and g : A� C ! TD. These correspond precisely to
the computation rules for let in Figure 3.3. The lift operation for a strong monad is
a generalisation of that for a Kleisli triple, a particular presentation of an ordinary
categorical monad. The generalisation is necessary to carry around contexts of let-
expressions, as Moggi explains in [68, Remark 3.1].

A strong monad can also be presented as a monad (T; �; �) together with natural
maps tA;B :A�TB! T (A�B). Here � : 1! T and � : T 2! T are the usual unit
and multiplication natural transformations for a monad, and the strength tA;B must
satisfy certain equations. Moggi gives a detailed explanation of this, and further
comments on the characterisation of strong monads in [68, Definition 3.2 et seq.].� The monad T satisfies the mono requirement, that all �A :A! TA are monic. This
corresponds to the (MONO) rule of Figure 3.3.� The coproduct 1 + 1 of the terminal object 1 with itself exists and is disjoint,
meaning that the square

1 1 + 1-tt0 1-? ?�
is a pullback. Here tt and � are the left and right inclusion maps. This is used to
model the type of booleans; given that C is cartesian closed, we can define for each
object A a morphismcondA = eval � ([pfstA;Aq; psndA;Aq]� idA�A): (1 + 1)� (A�A) �! A
to interpret the conditional.

4. CONSTRUCTING CATEGORICAL MODELS 53� There is a distinguished object N , used to interpret the type of names. This must
be decidable, which requires a morphism eq : N �N ! 1 + 1 such that

1 1 + 1-tt
N N �N-�? ?eq

is a pullback square, where � is the diagonal map. The morphism eq interprets
the equality test on names. In the internal language of C, the pullback condition
corresponds to the rules for testing names in Figure 3.3.� There is a distinguished morphism new : 1 ! TN such that for any morphismsf : A ! TB, g : A � N � N ! TB and h : A � (1 + 1) � N � N ! TB the
following equations in the internal language of C are satisfied:a : A ` let n(new in f(a) = f(a)a : A ` let n(new in (let n0(new in g(a; n; n0))= let n0(new in (let n(new in g(a; n; n0))a : A;n : N ` let n0(new in h(a; eq(n; n0); n; n0)= let n0(new in h(a;� ; n; n0)
It is clear that these are simply the rules for generating names of Figure 3.3, with the
alternate form of (FRESH) as given on page 42. We could express these equations
by commutative diagrams asserting the equality of certain morphisms in C, but their
essence becomes lost in a mass of variable manipulation.

The first two of these equations hold automatically if the monad T is respectively
affine and commutative. These are notions due to Kock [39, 40]. A strong monad
is affine if fstTA;TB = fst�TA;B : TA� TB ! TA
for all objects A;B; equivalently, if �1 : 1! T1 is an isomorphism. It is commu-
tative if the two evident maps from TA� TB to T (A�B) are equal:(��A�B � twTB;A)� � T twA;B = ((�A�B � twB;A)� � twTA;B)�:
Here twX;Y : X � Y ! Y � X is the twist map. These stronger conditions
correspond to the rules (DROP+) and (SWAP+) for the metalanguage.

In summary, a category C is suitable to model the metalanguage, and hence the nu-calculus,
if the following hold:� It is cartesian closed.� It has a strong monad T satisfying the mono requirement.� It has a disjoint coproduct 1 + 1.� There is a distinguished decidable object N .

54 CHAPTER 3. CATEGORICAL MODELS� There is a distinguished morphism new : 1! TN satisfying certain equations.

Given such a category, the embedding of the metalanguage of Section 1 in its internal
language is quite standard. Types are interpreted by objects of the category: Bool by1 + 1, Name by N , function types by exponentials and computation types using the
strong monad T . A context � = fx1 : A1; : : : ; xn : Ang is interpreted by the product� = A1 � � � � �An. A term in context is interpreted by a morphism:� ` a : A 7�! a : �! A:
The derivation of such a morphism uses the rules on the right of Figure 3.5, which match
those on the left for terms of the metalanguage. An equation in context is then interpreted
by equality of morphisms:� ` a = a0 : A 7�! a = a0 : �! A:
The sequent �; a1 = a01 : A1; : : : ; an = a0n : An ` a = a0 : A
is interpreted by equality of the morphismsE -e � A-a -a0 a � e = a0 � e
where e : E ! � is the simultaneous equaliser of all the equations on the left hand side:

E �-e a1����> A1a01����>a0nZZZZ~Ana0nZZZZ~ ...

Under this embedding the conditions on C correspond exactly to the rules of Figures
3.2 and 3.3 for reasoning in the metalanguage, so any equation provable in the metalang-
uage will also hold in C. As a result, any non-degenerate model demonstrates that the
metalanguage is consistent.

The translation of Section 2 now becomes an interpretation of the nu-calculus in the
category C. For each valid type assertion s;� `M : � there is a morphism[[M]] : N jsj � [[�]]! T [[�]] where [[�]] = Yxi:�i2�[[�i]]:
For an expression C in canonical form this morphism factors through � : [[�]]! T [[�]] and
there is jCj : N jsj � [[�]]! [[�]] with [[C]] = �[[�]] � jCj:
Here N jsj is the object of jsj-tuples of names. We define the subobject (6=s)� N jsj of
distinct jsj-tuples as the simultaneous equaliser of all the pairsN jsj 1 + 1 1 � i < j � jsj:-eq � h�i; �ji-� � !

4. CONSTRUCTING CATEGORICAL MODELS 55

� ` x : A 7�! �x : �! A (x : A 2 �)� ` new : TName 7�! � !�! 1 new�! TN� ` tt : Bool 7�! � !�! 1 tt�! 1 + 1� ` � : Bool 7�! � !�! 1 ��! 1 + 1� ` n; n0 : Name� ` eq(n; n0) : Bool 7�! n : �! N n0 : �! N� hn;n0i�! N �N eq�! 1 + 1� ` b : Bool � ` a; a0 : A� ` cond (b; a; a0) : A 7�! b : �! 1 + 1 a : �! A a0 : �! A� hb;a;a0i�! (1 + 1)�A�A condA�! A� ` a : A� ` [a] : TA 7�! a : �! A� a�! A �A�! TA�; x : A ` b : B� ` �x:A:b : A! B 7�! b : ��A! Bcurry(b) : �! BA� ` e : TA �; x : A ` e0 : TA0� ` let x(e in e0 : TA0 7�! e : �! TA e0 : ��A! TA0� h1;ei�! �� TA (e0)��! TA0� ` f : A! B � ` a : A� ` fa : B 7�! f : �! BA a : �! A� hf;ai�! BA �A eval�! B
Figure 3.5: Rules for constructing morphisms to interpret terms of the metalanguage

56 CHAPTER 3. CATEGORICAL MODELS

In the internal language, this corresponds to the conjunctionx1 : N; : : : ; xjsj : N ` ^1�i<j�jsj(eq(xi; xj) = �):
We then define the composite morphisms:[[M]]�;6=s = �(6=s)� [[�]]� N jsj � [[�]] [[M]]�! T [[�]]� M 2 Exp�(s;�)jCj�;6=s = �(6=s)� [[�]]� N jsj � [[�]] jCj�! [[�]]� C 2 Can�(s;�)[[M]] 6=s = �(6=s)� N jsj [[M]]�! T [[�]]� M 2 Exp�(s)jCj 6=s = �(6=s)� N jsj jCj�! [[�]]� C 2 Can�(s)
The results of Section 2 and 3 now carry over to the categorical model:

Proposition 3.10 (Correctness) If s `M +� (s0)C is a valid evaluation judgement then[[M]] 6=s = [[�s0:C]] 6=s:
Further, if M;M 0 2 Exp�(s) and M !�� M 0 is a valid reduction then[[M]] 6=s = [[M 0]] 6=s
Proof Follows from Proposition 3.6.

Proposition 3.11 (Adequacy) Suppose that the category C is non-degenerate in that the
objects 0 and 1 are not isomorphic. Then for all M1;M2 2 Exp�(s;�):[[M1]]�;6=s = [[M2]]�;6=s =) s;� `M1 �� M2:
Proof Exactly as for Proposition 3.7.

Theorem 3.12 (Completeness at Ground Types) If � 2 fo; �g and M1;M2 2 Exp�(s)
then s `M1 �� M2 =) [[M1]] 6=s = [[M2]]6=s:
Proof Follows from Theorem 3.8.

Theorem 3.13 If � is a ground or first order type of the nu-calculus, � is a set of variables
of ground type, and M1;M2 2 Exp�(s;�) for some set of names s, thens;� `M1 �� M2 =) [[M1]]�;6=s = [[M2]]�;6=s:
Proof Follows from Theorem 3.9.

5. THE FUNCTOR CATEGORY SET I 57

So a non-degenerate categorical model can be used to prove contextual equivalences
of the nu-calculus. The more that can be shown, the more abstract a model is. It is fully
abstract if the result of Theorem 3.12 holds at all types �. More modestly, a model may
be fully abstract for some restricted set of types or expressions. As with reasoning in
the metalanguage, any adequate categorical model will validate at least the equivalences
(2)–(9) and (17) from Section 5 of Chapter 2.

In the case of languages like PCF, the difficulties in finding fully abstract models are to
do with characterising sequentiality, and arise through ingenious use of non-termination.
Because evaluation in the nu-calculus always terminates, the same problems do not occur.
Full abstraction is still a hard problem, but for different reasons, to do with the privacy
of names.

5 The Functor Category SetI
In this section we describe our first example of a category suitable to model the nu-
calculus. Although it is not particularly abstract, the existence of the category does
prove that the metalanguage is consistent, and justifies using it to reason about contextual
equivalence (Proposition 3.7 above). The construction is based on Moggi’s model of
dynamic allocation [67, x4.1.4]; it is related to the ‘possible worlds’ models of Oles,
Reynolds, Tennent and O’Hearn [107, 88, 81], and also to Mitchell and Moggi’s Kripke-
style models [63, 64]. After describing the model, we show that reasoning in it has the
same power as applicative equivalence, up to second-order types.

We take the category SetI of functors and natural transformations between I , the
category of finite sets and injections, and Set , the category of sets and functions. Objects
of I represent stages of computation, that is, what names have been declared. We shall
use s and variants to stand for objects of I , and the symbol ‘+’ for their disjoint union.
For a functor A : I ! Set , the set As is composed of values defined over the names in s.
Morphisms in I and their images in Set correspond to name substitutions.

It is standard that this category is cartesian closed. Finite limits and colimits are taken
pointwise; for example, the object of booleans 1 + 1 is the constant functor to a two-
element set. If A;B : I ! Set are functors then their exponent is defined:BAs = SetI(I(s;�)�A;B) s; s0; s00 2 IBAfps00hi; a00i = ps00hi � f; a00i f : s! s0 p 2 BAsi : s0 ! s00 a00 2 As00:
As well as this standard construction of exponentials, the particular choice of the index
category I means that there is an equivalent and simpler way to compute the object part
of the functor: BAs = SetI(A(s+); B(s+)):
So a function from A to B defined at stage s includes data on how it behaves at all later
stages. Naturality places some bounds on what this behaviour can be.

The monad is a colimit of shape I . We use the functor + : I � I ! I and take T to
be the compositionSetI SetI�I-Set+ �SetI�I-�= SetI :-lim�!

58 CHAPTER 3. CATEGORICAL MODELS

Explicitly, on objects it is the quotientTAs = fhs0; a0i j s0 2 I; a0 2 A(s+ s0)g= �
where hs1; a1i � hs2; a2i if and only if for some s0 there are injective functions f1 : s1! s0
and f2 : s2 ! s0 with A(id s + f1)a1 = A(ids + f2)a2 in A(s+ s0). We write [s0; a0] to
represent the equivalence class of hs0; a0i; this element is the computation ‘create the new
names s0 and return value a0’, and quotienting by the relation ‘�’ ensures that the (DROP)
and (SWAP) rules for names hold true. For any constant functor C : I ! Set the monad
is the identity: TC = TC . This is the case for the interpretation of any nu-calculus type
that does not involve �, for example.

The remaining parts of the monad are as follows. If f : s ! s00 in I then the mapTAf : TAs! TAs00 is TAf [s0; a0] = [s0; A(f + id s0)a0] a0 2 A(s+ s0):
If p : A! B is a morphism in SetI , then Tp : TA! TB is the natural transformation
with maps Tps : TAs! TBs given byTps[s0; a0] = [s; p(s+ s0)a0]:
The unit of the monad �A : A! TA has components �As : As! TAs for each s 2 I
given by �Asa = [0; a] a 2 As:
A morphism q : A � B ! TC lifts to become q� : A � TB ! TC whose component
maps q�s : As� TBs! TCs areq�sha; [s0; b0]i = [s0 + s00; c00] b0 2 B(s+ s0)
where [s00; c00] = q(s+ s0)hA(inl s;s0)a; b0i c00 2 C(s+ s0 + s00):
Finally, the multiplication � : T 2 ! T and strength maps tA;B : A � TB ! T (A � B)
are described by�As[s0; [s00; a00]] = [s0 + s00; a00] a00 2 A(s+ s0 + s00)tA;Bsha; [s0; b0]i = [s0; hA(inl s;s0)a; b0i]:
These are all well defined regardless of choice of representative, and satisfy the appropriate
equalities. In addition the monad T is both affine and commutative.

We take the object of names N to be the inclusion functor I ,! Set . The morphismeq : N �N ! 1 + 1 is simple equality at all stages, and new names are generated bynew s = [1; inr s;1] 2 TNs
which satisfies the necessary equations. The obect TN is isomorphic to N +1, thanks to
the quotient in the definition of T .

6. PROPERTIES OF THE MODEL IN SET I 59

Thus the category SetI fulfils all the conditions of the previous section, and the
interpretation described there gives morphisms:[[M 0]]�;6=s : (6=s)� [[�]]! T [[�]] M 0 2 Exp�(s;�)jC 0j�;6=s : (6=s)� [[�]]! [[�]] C 0 2 Can�(s;�)[[M]] 6=s : (6=s)! T [[�]] M 2 Exp�(s)jCj 6=s : (6=s)! [[�]] C 2 Can�(s)
It happens that the object (6=s) in SetI is isomorphic to I(s;�), and we may apply the
Yoneda Lemma to obtain elements:[[M 0]]�;6=s 2 (T [[�]])[[�]]s jC 0j�;6=s 2 [[�]][[�]]s[[M]] 6=s 2 T [[�]]s jCj 6=s 2 [[�]]s:
These are generally easier to work with, and the results of Section 4 still hold when stated
in terms of elements rather than morphisms.

The interpretation of the nu-calculus in SetI only makes use of pullback-preserving
functors; in particular, if A preserves pullbacks, then so does TA. So we could instead
consider just the full subcategory of pullback-preserving functors from I to Set . This cat-
egory A is a topos; the topos of sheaves for the atomic topology on Iop, sometimes called
the Schanuel topos. More details can be found in Mac Lane and Moerdijk [52, Chap. III;
pp. 115, 155, 158]. The model in A is no more abstract than that in SetI , but it does
allow a better interpretation of Moggi’s higher-order metalanguage [69, Example 4.12].
Also, it is known that A is the classifying topos for the geometric theory of an infinite
decidable object [52, Chap. VIII Ex. 9, Chap. X Ex. 6; pp. 468, 570]. This seems to fit
with the abstract properties that we seek for an object of names, but the exact connection
is unclear.

6 Properties of the Model in SetI
Regarding the sample contextual equivalences of Chapter 2, Section 5, the category SetI
validates only those shown by any adequate model of the nu-calculus, and not examples
(12) or (13) involving private names. This is because the model makes no provision to
identify functions that differ only on arguments which no external context could supply.
Applicative equivalence is of similar power, and the two theorems in this section make
the connection quite precise.

Theorem 3.14 For all M1;M2 2 Exp�(s;�), equality in SetI implies applicative equiv-
alence: [[M1]]�;6=s = [[M2]]�;6=s =) s;� `M1 �� M2:
Proof We show first that the result holds for closed expressions:jC1j6=s = jC2j6=s =) s ` C1 �can� C2 C1; C2 2 Can�(s)[[M1]]6=s = [[M2]]6=s =) s `M1 �exp� M2 M1;M2 2 Exp�(s):

60 CHAPTER 3. CATEGORICAL MODELS

The proof is by induction on the structure of the type �, and follows the form of
Definition 2.13 describing applicative equivalence. For boolean and name expressions in
canonical form, the result is immediate. For lambda abstractions we recall the definition:s ` �x:�:M1 �can�!�0 �x:�:M2 () 8s0; C 2 Can�(s� s0) :s� s0 `M1[C=x] �exp�0 M2[C=x]:
Suppose then that j�x:�:M1j6=s = j�x:�:M2j6=s and C 2 Can�(s� s0) for some set of
names s0. We setfi = j�x:�:Mij6=s 2 [[� ! �0]]s = SetI(I(s;�)� [[�]]; T [[�0]]) i = 1; 2
and use Lemma 3.4 on substitution to reason[[M1[C=x]]] 6=s�s0 = f1s0hinl s;s0 ; jCj 6=s�s0i= f2s0hinl s;s0 ; jCj 6=s�s0i= [[M2[C=x]]] 6=s�s0:
By the induction hypothesis we deduce that s� s0 ` M1[C=x] �exp�0 M2[C=x] and sos ` �x:�:M1 �can�!�0 �x:�:M2 as required.

For general expressions, applicative equivalence is defined bys `M1 �exp� M2 () 9s1; s2; C1 2 Can�(s� s1); C2 2 Can�(s� s2) :s `M1 +� (s1)C1 & s `M2 +� (s2)C2& s� (s1 [s2) ` C1 �can� C2:
Suppose then that M1;M2 2 Exp�(s) with [[M1]]6=s = [[M2]]6=s. Theorem 2.4 tells us that
there are evaluation judgementss `M1 +� (s1)C1 and s `M2 +� (s2)C2;
from which [[Mi]] 6=s = [[�si:Ci]]6=s = [si; jCij6=s�si] 2 T [[�]]s i = 1; 2:
But then [s1; jC1j6=s�s1] = [s2; jC2j6=s�s2], and the definition of the monad gives injectionsfi : si� s0 for i = 1; 2 such that[[�]](id s + f1)jC1j6=s�s1 = [[�]](id s + f2)jC2j6=s�s2 :
With suitable relabelling we can assume that the fi are inclusions and so[[�]](id s + fi)jCij6=s�si = jCij6=s�s0 i = 1; 2:
We then have jC1j6=s�s0 = jC2j6=s�s0 , and by the induction hypothesis s� s0 `C1�can� C2.
This is not quite as required, but Lemma 2.14 gives s� (s1 [s2) `C1 �can� C2 and hences `M1 �exp� M2.

This completes the proof for closed expressions; for open expressions we proceed by
induction on the number of free variables. Suppose that M1;M2 2 Exp�(s;�� fx : �g)
and [[M1]]��fx:�g;6=s = [[M2]]��fx:�g;6=s = f 2 �(T [[�0]])[[�]]�[[�]]� s:

6. PROPERTIES OF THE MODEL IN SET I 61

There is an isomorphism(T [[�0]])[[�]]�[[�]] �= �(T [[�0]])[[�]]�[[�]] = [[� ! �0]][[�]];
across which the element f can be reinterpreted:f = j�x:�:Mij�;6=s 2 [[� ! �0]][[�]]s i = 1; 2:
This leads to [[�x:�:M1]]�;6=s = [f] = [[�x:�:M2]]�;6=s
and from the induction hypothesis s;� ` �x:�:M1 ��!�0 �x:�:M2. By Definition 2.13
this is equivalent to s;�� fx : �g `M1 ��0 M2, which is the desired result.

Before we can show a result in the other direction, we need to know which elements
in the model denote expressions of the nu-calculus.

Lemma 3.15 (Definability) Suppose that � is a ground or first-order type of the nu-
calculus and s is some set of names. If a 2 [[�]]s and e 2 T [[�]]s, then there are expressionsC 2 Can�(s) and M 2 Exp�(s) such that a = jCj 6=s and e = [[M]] 6=s.
Proof We begin by showing that the result for values implies that for computations.
Suppose that e 2 T [[�]]s has a representative e = [s0; a0] where a0 2 [[�]](s + s0). By
assumption there is C 2 Can�(s� s0) such that a0 = jCj 6=s�s0 , and thene = [s0; a0] = [[�s0:C]]6=s
as required.

We now apply induction over the structure of the type �. For elements of [[o]]s= 1+1
or [[�]]s = s the result is immediate. Suppose that f 2 [[o! �]]s, that isf 2 SetI(I(s;�)� (1 + 1); T [[�]]):
Then f is entirely determined by the elements fshids; tti and fshids;� i in T [[�]]s. From
the induction hypothesis these are definable, say by M1;M2 2 Exp�(s), and then f is too:f = j�b:o:if b thenM1 elseM2 j6=s:
A value g 2 [[� ! �]]s = SetI(I(s;�)�N;T [[�]]) is similarly determined bygshid s; n1i; : : : ; gshid s; nki 2 T [[�]]s
and g(s+ 1)hinl s;1; inr s;1i 2 T [[�]](s+ 1);
where s = fn1; : : : ; nkg. Suppose that these are definable using M1; : : : ;Mk 2 Exp�(s)
and M 0 2 Exp�(s� fng). Then g is definable too:g = j�x:�: if x = n1 thenM1else if x = n2 thenM2

...else if x = nk thenMk elseM 0[x=n] j 6=s;
and the result holds for all first-order �, by induction.

62 CHAPTER 3. CATEGORICAL MODELS

Theorem 3.16 Take � to be a nu-calculus type of ground, first or second order, and �
a set of variables of ground or first-order type. If M1;M2 2 Exp�(s;�) for some set of
names s, then s;� `M1 �� M2 =) [[M1]]�;6=s = [[M2]]�;6=s:
If � is third-order then the implication fails.

Proof Exactly as for Theorem 3.9, with the addition of an induction step for expressions
of second-order type in canonical form. Given that � is a ground or first order type, and
that the result holds for �exp�0 , we show that it is true for �can�!�0 . Recall thats ` �x:�:M1 �can�!�0 �x:�:M2 () 8s0; C 2 Can�(s� s0) :s� s0 `M1[C=x] �exp�0 M2[C=x]
and letfi = j�x:�:Mij6=s 2 [[� ! �0]]s = SetI(I(s;�)� [[�]]; T [[�0]]) i = 1; 2:
We seek to prove that f1 = f2. To do this we must have, for all name sets s0, and all
elements a 2 [[�]](s+ s0), thatf1s0hinl s;s0 ; ai = f2s0hinl s;s0; ai 2 T [[�0]](s+ s0):
From Lemma 3.15 there is some C 2 Can�(s� s0) such that a = jCj 6=s�s0 , and sofis0hinl s;s0 ; ai = [[Mi[C=x]]] 6=s�s0 i = 1; 2:
By assumption, s� s0 `M1[C=x] �exp�0 M2[C=x] and the induction hypothesis gives[[M1[C=x]]] 6=s�s0 = [[M2[C=x]]] 6=s�s0;
from which f1 = f2 as required.

To show failure at third-order types we start with the first-order example (12) from
Chapter 2, Section 5: �n:�x:�:(x = n) ��!o �x:�:false :
The model in SetI cannot confirm this equivalence; if we set g1 = �n:�x:�:(x = n) andg2 = �x:�:false , then their denotations are not equal:[[g1]] 6= [[g2]] 2 T [[� ! o]]0:
For example, they are distinguished by the elementh 2 ((T (1 + 1))N ! T (1 + 1)) 0hsh0; gi = � [tt] if 8i : s! s0; n 2 s0 : gs0hi; ni = [tt][�] otherwise

where 0 : 0! s and g 2 (T (1 + 1))N s. This h tests whether a function g returns [tt] at
every name, private or public. The fact that g1 ��!o g2 and yeth�0hid0; [[g1]]i = [�] 6= [tt] = h�0hid 0; [[g2]]i;

7. CONTINUOUS G-SETS 63

tells us that h cannot denote any expression of the nu-calculus. Proceeding to higher types,
we consider F1 = �f : (� ! o)! o : f(�n:�x:�:(x = n))F2 = �f : (� ! o)! o : f(�x:�:false):
Now [[F1]] and [[F2]] are distinct in the model, differing at arguments such as h that
can separate [[g1]] from [[g2]]. But, as argued above, none of these can be defined in
the nu-calculus, so F1 and F2 are applicatively equivalent. We then have the desired
counterexample: ` F1 �((�!o)!o)!o F2 but [[F1]] 6= [[F2]]:
It also follows that F1 and F2 are contextually equivalent.

So applicative equivalence and equality in SetI prove exactly the same contextual
equivalences up to second-order types, and at higher types applicative equivalence is more
powerful. However, this extra strength is quite illusory; to demonstrate it, we had to use
the equivalence �n:�x:�:(x = n) ��!o �x:�:false
which neither method is able to prove.

7 Continuous G-sets

Our next example of a category suitable to model the nu-calculus is in fact equivalent to the
Schanuel topos A mentioned in Section 5. Mac Lane and Moerdijk explain the connection
in [52, xIII.9; pp. 150–155]. A consequence is that this model is no more abstract than
the last; however it does provide a quite different presentation of the category.

We consider the topological group G of automorphisms of N , the natural numbers,
with topology inherited from the product topology on NN . If k is a finite subset of N then
the stabiliser subgroups Gk = StabG(k) � G
form a basis of neighbourhoods of the identity. A continuous G-set A is a set equipped
with an action G�A ! Ahg; ai 7! g � a
which is continuous when A is given the discrete topology [52, xI.1(xi)]. Equivalently,
the stabilisers of elements of A must all be open. We write jAj for the set underlying A.
A morphism of continuous G-sets is a function on the underlying sets which respects the
action.

The category BG of continuous G-sets is cartesian closed [52, Chap. I Ex. 6]. Finite
limits and colimits correspond to those in Set , while the exponential BA is the set of all
the functions from jAj to jBj whose stabilisers are open in G, according to the action(g � p)a = g � (p(g�1 � a)) g 2 G; p : A! B; a 2 A:

64 CHAPTER 3. CATEGORICAL MODELS

The interpretation of a nu-calculus type is a set of values at all possible stages, with
the group action describing how values change under name substitution. If k is a finite
subset of N and A an object of BG, then we defineAk = FixA(Gk) � A;
those elements of A which use only the names in k. For any a 2 A the smallest k � N
such that a 2 Ak is the support of a, the names which it actually needs. The condition
that a G-set be continuous is equivalent to requiring every element to have finite support.

To interpret the ground types, the object of booleans 1+ 1 is the two-element set with
trivial G-action, and the object of names N is N with the evident G-action. The morphismeq : N �N ! 1 + 1 is just the equality test on N.

For a continuous G-set A, to construct the object TA we must make some preliminary
definitions. If f : N � N is an injection, then it induces a map fA : jAj ! jAj as follows:
for a 2 A, take any finite k � N such that a 2 Ak, choose g 2 G with gjk = f jk and
define fAa = g � a. This is well defined: suppose that a 2 Ak0 too, and g0 2 G withg0jk0 = f jk0 . Then a 2 Al where l = k \ k0, also gjl = g0jl = f jl and so (g�1g0)jl = id jl,
that is g�1g0 2 Gl. Thus g � a = g � ((g�1g0) � a) = g0 � a
and the choice of k and g does not matter.

There is an alternative action of G on the destination jAj which makes this induced
map a morphism in BG. For g 2 G, we define f�g 2 G by(f�g)n = � n if n 62 Im(f)f(g(f�1n)) if n 2 Im(f).
In particular (f�g) � f = f � g. We take fA to be the G-set with underlying set jAj and
action g �fA a = (f�g) �A a:
Then fA : A! fA is a morphism in BG, and every commuting trangle of injectionsN N-- ff 0@@@@RR N??h
induces a commuting triangle in BGA fA-fAf 0A@@@@Rf 0A?hfA
by the action of f , f 0 and h on the underlying set jAj.

7. CONTINUOUS G-SETS 65

The object TA is the colimit of the diagram comprising all such triangles from A. That
is, we consider in turn the one object category N of N and all injections into itself, the
coslice category N nN , the diagram this induces in BGnA and its colimit �A :A!TA. In
fact the injection f : N � N induces an endofunctor fBG :BG!BG, and the commuting
triangle induces one of natural transformations between endofunctors:idBG fBG-ff 0@@@@Rf 0BG?h:
The colimit of all such triangles is the endofunctor T : BG! BG.

We could use a much smaller diagram for the colimit. For example, we might take
for f only injections of the form i 7! i + t, and for h all morphisms mediating between
these. Or for f just the injection i 7! 2i and for h all maps that permute the odd numbers
and fix the even numbers. Both of these give countable diagrams with the same colimit
as before.

We represent elements of TA as [f; a] where f : N � N is an injection and a 2 fA.
The natural transformations that make T a strong monad are:�A : A ! TAa 7! [idN ; a] �A : T 2A ! TA[f; [f 0; a]] 7! [f 0 � f; a]tA;B : A� TB ! T (A�B)ha; [f; b]i 7! [f; hfAa; bi]
If p : A�B ! TC is a morphism in BG then its lift p� : A� TB ! TC is given byp�ha; [f; b]i = [f 0 � f; c] where phfAa; bi = [f 0; c]:

For any G-set A with trivial G-action, the monad is the identity: TA = A. This
happens with the interpretation of any nu-calculus type that does not use �. The following
are more interesting examples:TN = N + 1 new = inr : 1! N + 1T (N �N) = ((N + 1)� (N + 1)) + 1T (N ! T (1 + 1)) = ((N +N)! (1 + 1))= �T (N ! TN) = ((N +N)! (N +N + 1))= �
For T (N �N) the action of G is on both copies of N at once. In the last two cases, the
relation ‘�’ quotients by the action of G on the second N in each (N + N), while the
actual action of G is on the first.

Now that the foundations are laid, the method of Section 4 constructs a model for the
nu-calculus, with a continuous G-set [[�]] for each type �, and morphisms for expressions.
Conveniently, morphisms (6=s)!A in BG are in bijection with the elements of jAj, given

66 CHAPTER 3. CATEGORICAL MODELS

some ordering on s, so expressions are also interpreted by elements:[[M 0]]�;6=s 2 (T [[�]])[[�]] M 0 2 Exp�(s;�)jC 0j�;6=s 2 [[�]][[�]] C 0 2 Can�(s;�)[[M]] 6=s 2 T [[�]] M 2 Exp�(s)jCj 6=s 2 [[�]] C 2 Can�(s):
All the results of Sections 4 and 6 carry across to this model in BG: it correctly interprets
the operational semantics; it is adequate for reasoning about contextual equivalence,
with completeness at ground types; it validates examples (2)–(9) and (17) of Chapter 2,
Section 5; and it agrees with applicative equivalence up to second order, but is weaker at
higher types.

Chapter 4

Logical Relations

The previous two chapters have provided various methods, both operational and deno-
tational, for proving that two expressions of the nu-calculus are contextually equivalent.
These are enough to confirm most of the example equivalences given in Section 5 of
Chapter 2. Two however remain:

12. �n:�x:�:(x = n) ��!o �x:�:false
13. �n:�n0:�f :�!o:(fn = fn0) �(�!o)!o �f :�!o:true :
Both of these equivalences rely on local names remaining private; for example in (12)
the function (�x:�:(x = n)) would return the answer true , if applied to the name n, but
no external context can detect this. Similarly in (13) no externally produced function can
distinguish the private names n and n0.

In this chapter we develop methods that can prove both of these equivalences, by
identifying the different uses an expression may make of its local names. We show that
these methods are strong enough to prove all contextual equivalences between expressions
of first-order type, and construct a categorical model that is fully abstract at ground and
first-order types.

The techniques that can do this all use some kind of logical relation. We encountered
these earlier, in the context of Definition 2.16 of logical equivalence. The basic idea is to
construct (binary) relations between nu-calculus expressions by induction on the structure
of their type, with functions related if they take related arguments to related results. How
successful this is depends on careful choice of the relations used at ground types, and the
treatment of expressions not in canonical form.

Section 1 describes an operational form of logical relations for the nu-calculus, and
shows that these can be used to prove contextual equivalences, in particular example (12)
above. A significant intermediate step is the extension of contextual equivalence to
contextual relations between nu-calculus expressions. Section 2 gives a proof that the
method of logical relations is complete for first-order types; this is probably the most
powerful result of the thesis.

Sections 3, 4 and 5 develop a denotational analogue of this work. This uses the
notion of a category with relations, and extends the usual categorical idea of naturality
with parametricity, where relations too must be preserved and respected. The result is a
category P , based on the functor category SetI of Chapter 3, but incorporating a relational
structure. We prove various results connecting this with operational logical relations, and

67

68 CHAPTER 4. LOGICAL RELATIONS

show that P provides a model of the nu-calculus that is fully abstract up to first-order
function types.

The final section tackles the remaining equivalence (13), between two functions of
second-order type. This is not validated by ordinary logical relations, and we construct
more sophisticated predicated logical relations which provide an even finer description of
how expressions use their local names. While this successfully proves equivalence (13),
it is a technique very much targeted at this one example, and no completeness result is
proved. There are however some possibilities for further generalisation, which may yet
lead to a fully abstract categorical model for the nu-calculus.

1 Operational Logical Relations

This section describes a system of binary logical relations between nu-calculus expressions,
based on their operational behaviour. These take a similar form to the logical equivalence
of Chapter 2, Section 7, but are extended to allow relations other than the identity at
ground types. We show that they have certain good properties, and in particular can be
used to demonstrate contextual equivalence. This then gives a proof of the problematic
example (12) involving two first-order functions with private names.

We begin by identifying a certain kind of relation between sets of names:

Definition 4.1 (Spans) If s1 and s2 are sets of names, then a span, or partial bijectionR : s1
 s2 is an injective partial map from s1 to s2. That is, the graph R � s1 � s2
satisfies n1 R n2 & n01 R n02 =) (n1 = n01 () n2 = n02):
A span can also be represented as a pair of injections s1 � R� s2.

If R0 : s01
 s02 is another span, with s01 and s02 disjoint from s1 and s2 respectively,
then the disjoint union of R and R0 is also a span:R�R0 : s1 � s01
 s2 � s02:
The identity span id s : s
 s hasn id s n0 () n = n0:
The domain and codomain of definition for R : s1
 s2 are defined by:

dom(R) = fn1 2 s1 j 9n2 2 s2 : n1 R n2 g
cod(R) = fn2 2 s2 j 9n1 2 s1 : n1 R n2 g:

We generally represent spans by variants of R and S.

The intuition behind spans is that they should capture the use that nu-calculus expres-
sions make of public and private names. So if R : s1
 s2, then the bijection between
dom(R) � s1 and cod(R) � s2 represents matching use of ‘visible’ names, while the re-
maining elements not in the graph of R are ‘unseen’ names. In this spirit, Definition 2.16
of logical equivalence now extends to a method that takes a span on names to a set of
relations between expressions of all types:

1. OPERATIONAL LOGICAL RELATIONS 69

Definition 4.2 (Logical Relations) If R : s1
 s2 is a span then the relationsRcan� � Can�(s1)� Can�(s2)Rexp� � Exp�(s1)� Exp�(s2)
are defined by induction over the structure of the type �, according to:b1 Rcano b2 () b1 = b2n1 Rcan� n2 () n1 R n2(�x:�:M1) Rcan�!�0 (�x:�:M2) ()8R0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :C1 (R�R0)can� C2 =) M1[C1=x] (R�R0)exp�0 M2[C2=x]M1 Rexp� M2 ()9R0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :s1 `M1 +� (s01)C1 & s2 `M2 +� (s02)C2 & C1 (R �R0)can� C2:
The relations Rcan� and Rexp� coincide on canonical forms, and we may write them as R�
indiscriminately. We can extend the relations to open expressions: if M1 2 Exp�(s1;�)
and M2 2 Exp�(s2;�) where � = fx1 : �1; : : : ; xn : �ng then define� `M1 R� M2 () 8R0 : s01
 s02;Cij 2 Can�j (si � s0i) i = 1; 2 j = 1; : : : ; n :(&nj=1 : C1j (R�R0)can�j C2j)=) M1[~C1=~x] (R�R0)exp� M2[~C2=~x]:
We use the symbol ‘:’ to negate relations; so � ` M1 : R� M2 holds if and only if� `M1 R� M2 does not.

Lemma 4.3 If R : s1
 s2 and M1 2 Exp�(s1;�), M2 2 Exp�(s2;�) then� `M1 R� M2 () �� �0 `M1 (R �R0)� M2
for any �0 and R0 : s01
 s02.

Proof The result for closed expressions is shown by induction on the structure of the
type �, and the general result follows. A mild complication is the need to prove that there
are some related expressions at every type:8�:8R : s1
 s2 :9R0 : s01
 s02 ;C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) : C1 (R�R0)� C2;
which can also be done by induction over types.

Lemma 4.4 Logical relations are respected by all the rules for forming expressions of
the nu-calculus.

Proof It is straightforward to show from the definition of logical relations that they are
preserved by each of the expression-forming rules in Figure 2.1.

70 CHAPTER 4. LOGICAL RELATIONS

This last result explains why the choice of relations at ground types is restricted to the
identity for booleans and partial bijections for names; more general relations would not
be preserved by conditionals and the equality test on names.

The definition of the relation at function types involves quantification over all further
spans. This is because functions may be applied to arguments that use additional names;
two functions are related only if they take related arguments to related results at all possible
later stages of computation.

The use of existential quantification in the definition of Rexp� is crucial: two expressions
are related if there is some way to span their locally-defined names, such that the computed
values are related. This gives an essential flexibility to how expressions may use their local
names. There is here a similarity to Plotkin and Abadi’s work on relational parametricity
for polymorphism in System F, and their definition of relations between terms of existential
type [97]. There, two terms are related if there is some suitable way to relate their hidden
types such that their values are related.

Note that the logical relations for closed expressions of ground type are comparatively
straightforward:� B1 Ro B2 if both evaluate to true , or both to false .� N1 R� B2 if they evaluate as s1 ` N1 +� (s01)n1 and s2 ` N2 +� (s02)n2

with either n1 R n2, or n1 2 s01 and n2 2 s02.

Extension to logical relations of other arities seems possible, though it is not clear
that it would be helpful (but see Abadi and Plotkin [2] on nullary and unary relations for
System F).

Before we can state useful results for logical relations, we must define some other
families of relations. These are also based on spans, extending syntactic identity and
contextual equivalence respectively.

Definition 4.5 (Syntactic Relations) For any span R : s1
 s2 the relationRsyn� � Exp�(s1;�)� Exp�(s2;�)
is defined by� `M1 Rsyn� M2 () M1 2 Exp�(dom(R);�) & M2 2 Exp�(cod(R);�)& M2 =M1[n2=n1 j n1 R n2]:
When this holds we say that M1 and M2 are syntactically R-related. In particular, (id s)syn�
is syntactic identity.

Definition 4.6 (Contextual Relations) For any span R : s1
 s2 the relationRcxt� � Exp�(s1;�)� Exp�(s2;�)
is to hold between expressions that behave similarly in all syntactically R-related contexts.
So the expressions M1 and M2 are contextually R-related ifP1hh�ii Rsyn� P2hh�ii =) P1hh(�)M1ii R� P2hh(�)M2ii

1. OPERATIONAL LOGICAL RELATIONS 71

where P1hh�ii and P2hh�ii are suitable closed contexts of some type � 2 fo; �g. In the
light of the Context Lemma (Theorem 2.8), we actually define the relation using only
argument contexts:� `M1 Rcxt� M2 ()8R0 : s01
 s02; � 2 fo; �g;�x:�:Ti 2 Can�!� (si � s0i); Cij 2 Can�j (si � s0i) i = 1; 2 j = 1; : : : ; n :(&nj=1 : C1j (R �R0)syn�j C2j) & (�x:�:T1) (R�R0)syn�!� (�x:�:T2)=) (�x:�:T1)M1[~C1=~x] (R�R0)� (�x:�:T2)M2[~C2=~x]:
So two expressions are contextually related if they agree under all syntactically related
instantiations and test functions.

This definition is rather more sophisticated than that for contextual equivalence, with
contexts of name as well as boolean type, and a logical relation (R�R0)� on the right
hand side. Nevertheless it does specialise to give:� `M1 (id s)cxt� M2 () s;� `M1 �� M2:

With these definitions we can extend some of the results of Chapter 2 on logical
equivalence to ones about logical relations. We have that syntactically related expressions
are logically related, and logically related ones are contextually related:

Proposition 4.7 If � ` M1 Rsyn� M2 then � ` M1 R� M2. In particular the relation(id s)� is reflexive: � `M (id s)� M for any M 2 Exp�(s;�).
Proof From the definition of syntactic equivalence, M1 and M2 have the same structure,
and induction over this using Lemma 4.4 shows that they are logically related.

Proposition 4.8 If � ` M1 R� M2 then � ` M1 Rcxt� M2. In particular (id s)-related
expressions are contextually equivalent:� `M1 (id s)� M2 =) s;� `M1 �� M2:
Proof By Proposition 4.7, any syntactically related test functions and instantiations of �
are logically related. The result then follows from the definitions of contextual and logical
relations.

The following results show that the power of logical relations includes that of applica-
tive equivalence:

Theorem 4.9 If R : s1
 s2 with M1 2 Exp�(s1;�) and M2;M3 2 Exp�(s2;�) then� `M1 R� M2 & s2;� `M2 �� M3 =) � `M1 R� M3:
Proof We show each of the following:

1. C1 Rcan� C2 & s2 ` C2 �can� C3 =) C1 Rcan� C3.

2. M1 Rexp� M2 & s2 `M2 �exp� M3 =) M1 Rexp� M3.

72 CHAPTER 4. LOGICAL RELATIONS

3. � `M1 R� M2 & s2;� `M2 �� M3 =) M1 R� M3.

The first two are proved by mutual induction over the structure of �. Case (1) is immediate
at ground types. For function types, suppose that (�x:�:M1) Rcan�!�0 (�x:�:M2) ands1 ` �x:�:M2 �can�!�0 �x:�:M3, with C1 2 Can�(s1 � s01), C2 2 Can�(s2 � s02) such thatC1 (R �R0)can� C2 for some R0 : s01
 s02. Then by definition M1[C1=x] (R�R0)exp�0M2[C2=x] and s2 � s02 `M2[C2=x] �exp�0 M3[C2=x]. Applying the induction hypothesis
gives M1[C1=x] (R �R0)exp�0 M3[C2=x] and so confirms (�x:�:M1) Rcan�!�0 (�x:�:M3).

For (2) suppose that we have M1 Rexp� M2 and s2 `M2 �exp� M3. That is:s1 `M1 +� (s01)C1; s2 `M2 +� (s02)C2 and s2 `M3 +� (s03)C3;
with C1 (R�R0)can� C2 for some R0 : s01
 s02, and s2 � (s02 [s03) ` C2 �can� C3.
Using Lemma 4.3 and (1) we obtain C1 (R� S)can� C3, where S : s01
 s03 is defined
as S = R0 \ (s01 � s03). Thus M1 Rexp� M3 as required.

Finally, for (3) suppose that � `M1 R� M2, that s2;� `M2 �� M3, and with someR0 : s01
 s02 we have Cij 2 Can�j (si � s0i) for i = 1; 2 and j = 1; : : : ; n such that

each C1j (R�R0)can�j C2j . Then by definition M1[~C1=~x] (R�R0)exp� M2[~C2=~x] ands2 `M2[~C2=~x] �� M3[~C2=~x]. Applying (2) gives us M1[~C1=~x] (R�R0)exp� M3[~C2=~x]
and hence � `M1 R� M3 as desired.

Corollary 4.10 If s;� `M1 �� M2 then � `M1 (id s)� M2.

Proof By Proposition 4.7, � ` M1 (id s)� M1 and the result follows as an instance of
Theorem 4.9 above.

So logical relations can be used to prove contextual equivalence, and are at least as
strong as applicative equivalence. This at once tells us that they are enough to prove
the basic examples (2)–(9) and (17) of Chapter 2. More importantly though, the relations
describe private names to a degree, and can prove results like example (12). This concerns
the equivalence

12. �n:�x:�:(x = n) ��!o �x:�:false :
Now the only possible span R : fng
 fg is the empty relation, and with this we have
that (�x:�:(x = n)) Rcan�!o (�x:�:false)
because both functions take R-related names to false . But then(�n:�x:�:(x = n)) (id;)exp�!o (�x:�:false)
with the above relation R satisfying the existential quantifier, and applying Proposition 4.8
shows that the expressions are contextually equivalent as claimed.

In the next section we shall see that logical relations can prove all contextual equiv-
alences, up to first-order function types. So the notion of a span R : s1
 s2 completely
captures the privacy and visibility of names as passed between functions of the nu-calculus.
At higher types difficulties can arise, with names being only partially revealed, as in ex-
ample (15) from page 25. As a consequence, logical relations are not enough to prove the
equivalence (13):

13. �n:�n0:�f :�!o:(fn = fn0) �(�!o)!o �f :�!o:true :

2. COMPLETENESS AT FIRST-ORDER TYPES 73

Again the only span R : fn; n0g
 fg is the empty one, and the first-order functions(�x:�:(x = n)) Rcan�!o (�x:�:false)
are related because they take R-related names to false . But the two second-order functions
above differ at these arguments, so they are not related:(�f :�!o:(fn = fn0)) : Rcan(�!o)!o (�f :�!o:true);
and logical relations cannot prove the stated contextual equivalence. Later we shall see
how the method of relations can be enhanced to prove even this example.

A final curiosity is that the relation (id s)� is not necessarily transitive at higher-order
types. Indeed there are expressions of second-order type which are not (id s)-related,
but can still be shown contextually equivalent through a chain of other expressions, each
logically related to the next. This makes it hard to gauge the full power of the technique;
however even such a roundabout method does not seem to work for equivalence (13)
above.

2 Completeness at First-Order Types

In the previous section we saw that logical relations can be used to show contextual
equivalence in the nu-calculus; we now demonstrate that this technique is complete up
to types of first order. This requires various results on contextual relations, beginning
with the observation that for closed expressions we need not explicitly consider tests at
later stages:

Proposition 4.11 For any span R : s1
 s2 and closed expressions M1 2 Exp�(s1),M2 2 Exp�(s2):M1 Rcxt� M2 ()8� 2 fo; �g; �x:�:T1 2 Can�!� (s1); �x:�:T2 2 Can�!� (s2) :(�x:�:T1) Rsyn�!� (�x:�:T2) =) (�x:�:T1)M1 R� (�x:�:T2)M2:
Proof The forward direction is immediate. For the reverse, suppose that M1 : Rcxt� M2
and that they are distinguished by the test functions(�x:�:T1) (R�R0)syn�!� (�x:�:T2)
where R0 : s01
 s02. If we take t1 = dom(R0) � s01 and t2 = cod(R0) � s02, then the
functions (�x:�:�t1:T1) Rsyn�!� (�x:�:�t2:T2)
will generally serve instead, given thats1 � s01 ` (�x:�:T1)M1 +� (s001)C1 () s1 ` (�x:�:�t1:T1)M1 +� (t1 � s001)C1s2 � s02 ` (�x:�:T2)M2 +� (s002)C2 () s2 ` (�x:�:�t2:T2)M2 +� (t2 � s002)C2
and the fairly simple nature of the logical relation (R�R0)� at ground � . The only
exception is when � = � andsi � s0i ` (�x:�:Ti)Mi +� (s00i)ni i = 1; 2

74 CHAPTER 4. LOGICAL RELATIONS

with n1 2 t1 or n2 2 t2 but (n1; n2) =2 R0. Without loss of generality we take n1 2 t1 and
pick n02 2 t2 with n1 R0 n02, so n2 6= n02. Then the tests(�x:�:�t1:(T1 = n1)) Rsyn�!� (�x:�:�t2:(T2 = n02))
give true and false when applied to M1 and M2 respectively.

We can now prove a series of lemmas about contextual relations, matching the defining
clauses for logical relations:

Lemma 4.12 For canonical expressions of ground type � 2 fo; �g the relations Rsyn� ,Rcxt� and Rcan� all coincide.

Proof It is immediate from their definitions that Rsyn� and Rcan� are the same; for Rcxt� ,
consider the test function (�x:�:x).
Lemma 4.13 Contextually related lambda abstractions, applied to syntactically related
values, give contextually related results. Suppose that R : s1
 s2 and R0 : s01
 s02 with(�x:�:M1) 2 Can�!�0(s1) C1 2 Can�(s1 � s01)(�x:�:M2) 2 Can�!�0(s2) C2 2 Can�(s2 � s02):
Then(�x:�:M1) Rcxt�!�0 (�x:�:M2) & C1 (R�R0)syn� C2=) M1[C1=x] (R �R0)cxt�0 M2[C2=x]:
Proof Suppose that we have test functions(�x:�0:T1) (R�R0)syn�0!� (�x:�0:T2)
to apply to M1[C1=x] and M2[C2=x]. Then these give the same results as the functions(�f :� ! �0:(�x:�0:T1)(fC1)) (R�R0)syn(�!�0)!� (�f :� ! �0:(�x:�0:T2)(fC2))
applied to (�x:�:M1) and (�x:�:M2).
This next result is central to the proof of completeness, as it shows how the use of spans
between name sets really can capture the way different expressions make public their local
names.

Lemma 4.14 Closed expressions are contextually R-related if and only if they evaluate
to contextually (R � R0)-related canonical forms, for some R0. That is, for R : s1
 s2
and M1 2 Exp�(s1), M2 2 Exp�(s2):M1 Rcxt� M2 () 9R0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :s1 `M1 +� (s01)C1 & s2 `M2 +� (s02)C2& C1 (R�R0)cxt� C2:

2. COMPLETENESS AT FIRST-ORDER TYPES 75

Proof We begin with the implication from right to left. Suppose that for i= 1;2 we have
the test functions �x:�:Ti 2 Can�!� (si) with � 2 fo; �g and(�x:�:T1) Rsyn�!� (�x:�:T2);
then we have by hypothesis that(�x:�:T1)C1 (R�R0)� (�x:�:T2)C2:
So there must be R00 : s001
 s002 and C 0i 2 Can� (si � s0i � s00i) for i = 1; 2 withsi � s0i ` (�x:�:Ti)Ci +� (s00i)C 0i i = 1; 2
and C 01 (R�R0 �R00)� C 02. Combining evaluation judgements we have thatsi ` (�x:�:Ti)Mi +� (s0i � s00i)C 0i i = 1; 2
and then (�x:�:T1)M1 R� (�x:�:T2)M2
as required.

The forward implication is rather more difficult and requires some ingenuity. Suppose
that M1Rcxt� M2 and si `Mi +� (s0i)Ci for i=1;2; we need to pick some span R0 : s01
 s02
such that C1 (R�R0)cxt� C2.

Take R0 to relate those names that can be simultaneously produced from C1 and C2
by syntactically R-related expressions of type (� ! �). That is, for (n1; n2) 2 s01 � s02
we have:n1 R0 n2 () 9�x:�:N1 2 Can�!�(s1); �x:�:N2 2 Can�!�(s2) :(�x:�:N1) Rsyn�!� (�x:�:N2)& s1 � s01 ` (�x:�:N1)C1 +� (s001)n1& s2 � s02 ` (�x:�:N2)C2 +� (s002)n2
The intuition here is that R0 should identify local names of M1 and M2 that are public,
with private names being unrelated. We enumerate the elements of R0 as f(n1j ; n2j) j j =1; : : : ; kg and record witnessing expressions (�x:�:Nij) for i = 1; 2 and j = 1; : : : ; k.

To show that R0 is a partial bijection, suppose that n1 R0 n2 and n01 R0 n02 with
witnesses (�x:�:Ni) and (�x:�:N 0i) respectively. Then we have the syntactically related
test functions (�x:�:N1 = N 01) Rsyn�!o (�x:�:N2 = N 02)
which, applied to M1 Rcxt� M2, give((�x:�:N1 = N 01)M1) Ro ((�x:�:N2 = N 02)M2):
From this it follows that n1 = n01 if and only if n2 = n02, according to whether the boolean
expressions above evaluate to true or false .

We now demonstrate that C1 (R�R0)cxt� C2. Suppose we have test functions(�x:�:T1) (R�R0)syn�!� (�x:�:T2) � 2 fo; �g;

76 CHAPTER 4. LOGICAL RELATIONS

with si � s0i ` (�x:�:Ti)Ci +� (s00i)C 0i i = 1; 2:
We need to show that C 01 (R�R0 �R00)� C 02 for some R00 : s001
 s002 . If we construct the
test functions�x:�:Ui = �x:�:((�y1:� : : : �yk:� : Ti[yj=nij j j = 1; : : : ; k])Ni1 : : : Nik)2 Can�!� (si) i = 1; 2
then we have (�x:�:U1) Rsyn�!� (�x:�:U2)
and si ` (�x:�:Ui)Mi +� (s0i � ti � s00i)C 0i i = 1; 2;
where the ti are the additional names created by the evaluation of the Nij . As M1 Rcxt� M2,
we have thatC 01 (R � S)� C 02 for some S : s01 � t1 � s001
 s02 � t2 � s002:
If � = o then this at once gives C 01 = C 02, so C 01 (R�R0 �R00)o C 02 for any choice ofR00 : s001
 s002 , and C1 (R �R0)cxt� C2 as required.

When � = � we need to consider where the names C 01 and C 02 might lie:� If C 01 2 s1 then C 02 2 s2 and C 01 R C 02.� If C 01 2 s01 then C 02 2 s02 � s002 . Taking the syntactically R-related test functions(�x:�:(Ui = Ui)) 2 Can�!o(si) i = 1; 2;
we have thats1 ` (�x:�:(U1 = U1))M1 +o (s01 � t1 � s001 � t3 � s003)true
where t3, s003 are copies of t1, s001 . Contextual equivalence then givess2 ` (�x:�:(U2 = U2))M2 +o (s02 � t2 � s002 � t4 � s004)true
with t4, s004 copies of t2, s002 , and this tells us that C 02 2 s02. So (C 01; C 02) 2 s01 � s02
are a pair of names simultaneously produced from C1 and C2, and thus C 01 R0 C 02
by the definition of R0.� By symmetry the only remaining case is when C 01 2 s001 and C 02 2 s002 . Here we may
choose any R00 : s001
 s002 that contains (C 01; C 02).

In all of these cases we obtain C 01 (R �R0 �R00)� C 02 for some R00 : s001
 s002 , and soC1 (R�R0)cxt� C2 as required.

With these results on contextual relations, so close to the defining properties of logical
relations, it is not hard to show completeness:

2. COMPLETENESS AT FIRST-ORDER TYPES 77

Theorem 4.15 Suppose that � is a ground or first-order type of the nu-calculus and �
is a set of variables of ground type. Then for any span R : s1
 s2 and expressionsM1 2 Exp�(s1;�) and M2 2 Exp�(s2;�),� `M1 Rcxt� M2 =) � `M1 R� M2:
In particular s;� `M1 �� M2 =) � `M1 (id s)� M2:
Proof We show first that the result holds for closed expressions, by induction on the
structure of the type �. By Lemma 4.14 we need only consider expressions in canonical
form, and Lemma 4.12 gives the result for ground types.

Consider then two lambda abstractions�x:�:M1 2 Can�!�(s1) and �x:�:M2 2 Can�!�(s2)
where � 2 fo; �g and (�x:�:M1) Rcxt�!� (�x:�:M2). Suppose that R0 : s01
 s02 is some
other span, and C1 2 Can� (s1 � s01), C2 2 Can� (s2 � s02) with C1 (R�R0)can� C2. As �
is a ground type, (R�R0)can� =(R�R0)syn� , and we can apply Lemma 4.13 to obtainM1[C1=x] (R �R0)cxt� M2[C2=x]:
The induction hypothesis givesM1[C1=x] (R�R0)exp� M2[C2=x]
and so (�x:�:M1) (R�R0)can�!� (�x:�:M2)
as desired.

For open expressions, suppose that � `M1 Rcxt� M2, that some Cij 2 Can�j (si � s0i)
for i=1;2, j =1; : : : ; k are suitable instantiations of �, and that there is a span R0 : s01
 s02
such that C1j (R�R0)can�j C2j j = 1; : : : ; k:
All the �j are ground types, so (R�R0)can�j =(R�R0)syn�j , and the definition of contextual
relations gives M1[~C1=~x] (R �R0)cxt� M2[~C2=~x]:
By the result for closed terms:M1[~C1=~x] (R�R0)exp� M2[~C2=~x]
and so � `M1 R� M2 as required.

78 CHAPTER 4. LOGICAL RELATIONS

3 Categories with Relations

The logical relations of the previous sections are wholly operational, and work directly
with expressions of the nu-calculus. However, there is also a corresponding denotational
approach, which incorporates a relational structure into the categorical models of Chapter 3.
The idea is that with a correctly chosen category and monad, the standard interpretation
of the nu-calculus will automatically make identifications similar to those derived from
operational logical relations.

This section describes the extra categorical tools that we need to build such a model,
principally the notion of ‘categories with relations’. These were introduced by Tennent
and O’Hearn to give a semantics for local variables in Algol-like languages; a good outline
of this use is found in [82]. The definition below is all that we need to build models for
the nu-calculus; following this are two alternative presentations which put the ideas in a
wider categorical setting.

Definition 4.16 A category with relations is a category with certain additional structure.
As well as objects and morphisms, it has a collection of binary relations between pairs of
objects, represented R : A$ B, and parametric squares of the form

B B0-gA A0-f?R ?R06 6
where R;R0 are relations and f; g are morphisms. Relations, like morphisms, are simply
abstract data; they need not stand for set-based relations, though that is obviously the
motivating example. Similarly parametric squares need not ‘mean’ anything particular:
like composition of morphisms, they are just part of the specification of the category.

Parametric squares should compose horizontally with identity

B B-idA
A A-idA?R ?R6 6

and there should be a distinguished identity relation idA : A$ A for each object.
Categories with relations are a weak form of double category, and as such are akin

to 2-categories [37]; parametric squares are more general than 2-cells, but they do not
compose vertically.

Suppose that C and D are categories with relations. A parametric functor F : C !D is
a functor between the underlying categories together with a map on relations. If R :A$B
is a relation in C then FR : FA $ FB should be a relation in D, with F idA = idFA,
and F must take parametric squares to parametric squares.

3. CATEGORIES WITH RELATIONS 79

Suppose that F; G : C ! D are two parametric functors. A parametric natural
transformation t : F ! G is a natural transformation on the underlying categories such
that for any relation R : A$ B of C the square

FB GB-tB
FA GA-tA?FR ?GR6 6

is parametric. In both these cases the parametricity constraints are additional to the usual
uniformity conditions of functorality and naturality.

We define CatR to be the 2-category whose objects are small categories with relations,
morphisms are parametric functors, and 2-cells are parametric natural transformations.

The use of categories with relations is an instance of a general principle for studying
programming languages categorically, as described by Moggi in [68]:

when studying a complex language the 2-category Cat of small categories,
functors and natural transformations may not be adequate; however, one may
replace Cat with a different 2-category, whose objects capture better some
fundamental structure of the language, while less fundamental structure can
be modelled by 2-categorical concepts.

In our case CatR is the more sophisticated setting, able to capture a strong notion of
uniformity through the additional requirement of parametricity.

We can give another, more abstract description of CatR. A reflexive graph is a set
of vertices and edges between them, where each vertex has a distinguished identity edge
to itself. Essentially, this is a category without composition. There is an evident categoryReGrph of small reflexive graphs, with morphisms required to preserve the appropriate
structure.

A category with relations is then a category object in ReGrph , and CatR is the inter-
nal 2-category of categories, functors and natural transformations. That is, when working
over reflexive graphs rather than sets, the ordinary notion of category automatically comes
equipped with relations, while functors and natural transformations are suitably parametric.

For example, given a category with relations C as described above, the object of objectsC0 is the reflexive graph of objects A and relations R : A $ B, while the object of
morphisms C1 is the reflexive graph of morphisms f : A! A0 and parametric squares:

B B0-gA A0-f?R ?R0:6 6

80 CHAPTER 4. LOGICAL RELATIONS

Consider the categories Set of sets and functions, and Cat of small categories and
functors. Then a reflexive graph has more structure than a set, but less than a category.
In the same way categories with relations (internal to ReGrph) lie between ordinary
categories (internal to Set) and double categories (internal to Cat).

Alternatively, categories with relations can be seen as reflexive graphs in Cat . Take
the two-object categoryG : v e-�	 �0I �1 �0 �� = �1 �� = idv:
A reflexive graph is exactly a functor from G to Set , with image

vertices edges.-identity� domainY
codomain

Indeed if we extend ReGrph to be a 2-category, with the appropriate structure-preserving
2-cells, then there is an equality of 2-categories:ReGrph = Hom2CAT (G;Set):
Morphisms of graphs are natural transformations between functors into Set , and 2-
cells are modifications in the 3-category 2CAT of large 2-categories. This is a precise
correspondence: the data needed for an item on one side of the equation exactly describes
the matching item on the other side.

If we now replace Set by Cat then we obtain a description of categories with relations:CatR = Hom2CAT (G;Cat):
A functor C : G ! Cat is a category with relations, where Cv is the underlying category,
and Ce is the category of relations and parametric squares. If C and D are two categories
with relations, then a parametric functor F : C !D is a natural transformation between the
corresponding functors C;D : G ! Cat . A parametric natural transformation t : F ! G
is a modification between natural transformations F and G into Cat . In all cases the
parametricity constraints of CatR match exactly the existing structure of Cat , mediated
by the two-object category G.

In practice we shall only use the direct description of Definition 4.16 to handle
categories with relations. Nevertheless, the characterisations above do give them decent
categorical credentials.

4 The Parametric Functor Category P
In this section we use the machinery of categories with relations to rebuild the model SetI
from Section 5 of Chapter 3 in a parametric setting. This gives a denotational semantics
for the nu-calculus that directly validates all the contextual equivalences of Chapter 2,

4. THE PARAMETRIC FUNCTOR CATEGORY P 81

except for (13). In the next section we prove various properties of the model, in particular
that it is fully abstract at ground and first-order types.

We take the index category I of finite sets and injections as before, and extend it to a
category with relations. A relation R : s1 $ s2 on I consists of a finite set R and a pair
of injections s1 � R� s2. This is exactly the notion of a span from Definition 4.1.
The operation ‘+’ on I extends to relations: if R : s1 $ s2 and R0 : s01 $ s02 thenR+R0 : s1 + s01 $ s2 + s02. A square in I is parametric

s2 s02-f2
s1 s01-f1?R ?R06 6

if and only if both squares in R R0-s1 s01-6 6s2 s02-? ? are pullbacks.

This is a stronger condition than just requiring it to commute as a square of relations. In
fact, up to isomorphism, all parametric squares in I are of the form

s2 s2 + s02-inl s1;s02
s1 s1 + s01-inl s1;s01?R ?R+R0:6 6

Some delicacy is required to manage the connection between the structure of I and
constructions made previously in an operational setting: we shall write R : s1
 s2 for a
span between name sets, and R : s1 $ s2 for the corresponding relation in I; similarly
with s� s0 and s+ s0.

For the base category we take Set with ordinary binary relations and squares parametric

B B0-gA A0-f?R ?R06 6 if and only if8a 2 A; b 2 B : (a; b) 2 R =) (fa; gb) 2 R0.
We then take the ordinary category P of parametric functors and parametric natural
transformations from I to Set . As before, objects of I represent stages of computation,
and if A : I ! Set is a parametric functor then elements of As are values defined over
the names in s.

The category P is cartesian closed. Finite limits and colimits are taken pointwise: the
object of booleans is the constant parametric functor to the two-element set 1 + 1, taking
all relations to id1+1. Thanks to a relational version of the Yoneda Lemma, exponentials

82 CHAPTER 4. LOGICAL RELATIONS

are defined in a manner reminiscent of the ordinary functor category:BAs = P(I(s;�)�A;B) s; s0; s00 2 IBAfps00hi; a00i = ps00hi � f; a00i f : s! s0 p 2 BAsi : s0 ! s00 a00 2 As00(p1; p2) 2 BAR () s1; s2 2 I p1 2 BAs1
for all parametric squaress2 s02-f2s1 s01-f1?R ?R06 6
and elements a01 2 As01; a02 2 As02 it holds that(a01; a02) 2 AR0 =) (p1s01hf1; a01i; p2s02hf2; a02i) 2 BR0:

R : s1 $ s2 p2 2 BAs2
As with the model in SetI , there is a simpler form for the object part of the exponential:BAs = P(A(s +); B(s+)):
So a function from A to B defined at stage s includes data on how it behaves at all later
stages. Both naturality and parametricity place bounds on what this behaviour can be.

We define the monad explicitly. On objects it is the quotientTAs = fhs0; a0i j s0 2 I; a0 2 A(s+ s0)g= �
where hs01; a01i � hs02; a02i if and only if there is some R0 : s01 $ s02 such that (a01; a02) 2A(id s +R0). The relation ‘�’ is not necessarily transitive, so really the quotient is by its
transitive closure. We take [s0; a0] to represent the equivalence class of hs0; a0i; as before,
this denotes the computation ‘create the new names s0 and return value a0’.

The remaining details of the monad are specified exactly as for the SetI model. The
only addition is that if R : s1 $ s2 in I then the relation TAR : TAs1 $ TAs2 is given
by(e1; e2) 2 TAR () 9R0 : s01 $ s02; a01 2 A(s1 + s01); a02 2 A(s2 + s02) :e1 = [s01; a01] & e2 = [s02; a02] & (a01; a02) 2 A(R +R0)
where e1 2 TAs1 and e2 2 TAs2. It is significant that the definition of TAR makes
implicit use of the quotient by ‘�’: to see if e1 and e2 are related, it is necessary to check
all possible representatives [s01; a01] and [s02; a02]. The resulting strong monad T is both
affine and commutative.

The object of names N is the parametric inclusion functor I ,! Set , and the testeq : N �N ! 1 + 1 is equality at all stages. Fresh names are produced bynew s = [1; inr s;1] 2 TNs
which satisfies the necessary equations.

In certain cases, the action of the monad T is quite simple. If A : I ! Set is a
constant parametric functor that takes all relations to the identity, then TA = A. This

5. PROPERTIES OF THE MODEL IN P 83

applies to the interpretation of any nu-calculus type that does not use �; so for exampleT [[o]]s = [[o]]s = 1 + 1 and T [[o]]R = id1+1. For computations of type � itself:T [[�]]s = TNs = s+ 1
and T [[�]]R = TNR = R+ id1 : s1 + 1$ s2 + 1:

The interpretation of Chapter 3, Section 4 takes expressions of the nu-calculus to
morphisms in P: [[M 0]]�;6=s : (6=s)� [[�]]! T [[�]] M 0 2 Exp�(s;�)jC 0j�;6=s : (6=s)� [[�]]! [[�]] C 0 2 Can�(s;�)[[M]] 6=s : (6=s)! T [[�]] M 2 Exp�(s)jCj 6=s : (6=s)! [[�]] C 2 Can�(s):
As with SetI , the object (6=s) is isomorphic to I(s;�), and we obtain elements[[M]] 6=s 2 T [[�]]s jCj 6=s 2 [[�]]s[[M 0]]�;6=s 2 (T [[�]])[[�]]s jC 0j�;6=s 2 [[�]][[�]]s
using a version of the Yoneda Lemma adapted for categories with relations. By Propo-
sition 3.11 this model in P is adequate, and equality in the category implies contextual
equivalence in the nu-calculus.

5 Properties of the Model in P
Although many of the details above are given precisely as for the model in SetI , the
underlying relational structure makes an important difference. Function spaces are smaller,
and more computations are identified in TAs, with the consequence that more contextual
equivalences of the nu-calculus are validated.

The main result of this section is that the model in P is fully abstract at first-order
types. This arises from a close connection with operational logical relations, and the fact
that relations in the category can be used to show contextual relations between expressions
of the nu-calculus.

First though, we fix when expressions of the nu-calculus are related by the model in P:

Definition 4.17 Given some span R : s1
 s2, two expressions M1 2 Exp�(s1; �) andM2 2 Exp�(s2;�) are P-R-related if([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 (T [[�]])[[�]]R:
Usually the choice of R is clear, and we say that the expressions are P-related.

We now need to establish how P-relations compare to the other relations described
earlier in this chapter. A few technical lemmas lay the foundations:

Lemma 4.18 Logical relations and P-relations coincide at ground types. For any spanR : s1
 s2 and closed expressions M1 2 Exp� (s1), M2 2 Exp� (s2) of type � 2 fo; �g:([[M1]]6=s1 ; [[M2]]6=s2) 2 T [[�]]R () M1 R� M2:

84 CHAPTER 4. LOGICAL RELATIONS

Proof Follows directly from the description of T [[o]] = 1 + 1 and T [[�]] = N + 1 given
earlier, and the straightforward nature of logical relations at ground types.

Lemma 4.19 Syntactically related expressions are related in P:� `M1 Rsyn� M2 =) ([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 T [[�]][[�]]R� ` C1 Rsyn� C2 =) (jC1j�;6=s1 ; jC2j�;6=s2) 2 [[�]][[�]]R:
Proof By induction on the structure of the expressions.

Lemma 4.20 Syntactically related substitutions preserve P-relations. Suppose([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 T [[�]][[�]]R
and that � can be instantiated by C1j (R�R0)syn�j C2j where j = 1; : : : ; n, then([[M1[~C1=~x]]] 6=s1�s01 ; [[M2[~C2=~x]]]6=s2�s02) 2 T [[�]](R +R0):
Proof For each of i = 1; 2 we have[[Mi]]�;6=si 2 T [[�]][[�]]si = P(I(si;�)� [[�]]; T [[�]])
and, looking back to Lemma 3.4 on substitution,[[Mi[~Ci=~x]]] 6=si�s0i = [[Mi]]�;6=si(si + s0i) hinl si;s0i; hjCi1j6=si�s0i ; : : : ; jCinj6=si�s0iii
By Lemma 4.19(jC1j j6=s1�s01 ; jC2j j6=s2�s02) 2 [[�j]](R+R0) j = 1; : : : ; n;
and thus(hjC11j6=si�s0i ; : : : ; jC1nj6=si�s0ii; hjC21j6=si�s0i ; : : : ; jC2nj6=si�s0ii) 2 [[�]](R+R0):
So from the definition of relations at exponentials in P ,([[M1[~C1=~x]]] 6=s1�s01 ; [[M2[~C2=~x]]]6=s2�s02) 2 T [[�]](R +R0)
as required.

Lemma 4.21 Syntactically related lambda abstractions, applied to P-related expressions,
give P-related results:(�x:�:M1) Rsyn�!�0 (�x:�:M2) & ([[M 01]] 6=s1 ; [[M 02]]6=s2) 2 T [[�]]R=) ([[(�x:�:M1)M 01]] 6=s1 ; [[(�x:�:M2)M 02]] 6=s2) 2 T [[�0]]R:
Proof Choose representatives [[M 01]] 6=s1 = [s01; a01] and [[M 02]]6=s2 = [s2; a02] so that there isR0 : s01
 s02 with (a01; a02) 2 [[�]](R +R0). Then for i = 1; 2,[[(�x:�:Mi)M 0i]] 6=si = letm([[M 0i]]6=si in (j�x:�:Mij6=sim)= [s0i + s00i ; b00i]

5. PROPERTIES OF THE MODEL IN P 85

where [s00i ; b00i] = j�x:�:Mij6=si s0i hinl si;s0i ; a0ii b00i 2 [[�0]](si + s0i + s00i):
From Lemma 4.19, (j�x:�:M1j6=s1 ; j�x:�:M2j6=s2) 2 [[� ! �0]]R, so there must be someR00 : s001
 s002 such that (b001; b002) 2 [[�0]](R+R0 +R00). Then([[(�x:�:M1)M 01]]6=s1 ; [[(�x:�:M2)M 02]]6=s2) = ([s01 + s001; b001]; [s02 + s002; b002])2 T [[�0]]R
as required.

We can now put these together to show an adequacy result, that P-relations imply
contextual relations. This enhances the previous result of Proposition 3.11, that equality
in a categorical model implies contextual equivalence.

Proposition 4.22 (Relational Adequacy) Expressions related in P are contextually re-
lated: ([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 (T [[�]])[[�]]R =) � `M1 Rcxt� M2(jC1j�;6=s1 ; jC2j�;6=s2) 2 [[�]][[�]]R =) � ` C1 Rcxt� C2:
Proof The result for closed expressions follows from Lemmas 4.21 and 4.18 above, with
Lemma 4.20 extending this to open expressions.

Moving to a different set of relations, there is clearly a close connection between
the clauses of Definition 4.2 for operational logical relations, and the construction of the
category P . In fact the categorical model came first, and the form of the relations BAR
and TAR motivated the definition of logical relations at Rcan�!�0 and Rexp� respectively.
We make the link precise by showing when P-relations imply logical relations, and vice
versa.

Theorem 4.23 Suppose that � is a nu-calculus type of ground or first order, that � is a
set of variables of ground type, and R : s1
 s2 is some span. Then P-related expressions
over these are logically related:([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 (T [[�]])[[�]]R =) � `M1 R� M2(jC1j�;6=s1 ; jC2j�;6=s2) 2 [[�]][[�]]R =) � ` C1 R� C2:
Proof Combine relational adequacy of P (Proposition 4.22) with the completeness of
logical relations at first-order types (Theorem 4.15).

Lemma 4.24 (Definability) Suppose that � is a ground or first order type of the nu-
calculus, and s is some set of names. If a2 [[�]]s and e2 T [[�]]s, then there are expressionsC 2 Can�(s) and M 2 Exp�(s) such that a = jCj 6=s and e = [[M]] 6=s.
Proof Exactly as in Lemma 3.15 for the category SetI .

86 CHAPTER 4. LOGICAL RELATIONS

Theorem 4.25 Suppose that � is a nu-calculus type of ground, first or second order, that� is a set of variables of ground or first order, and that R : s1
 s2 is some span. Then
logically related expressions over these are P-related:� `M1 R� M2 =) ([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 (T [[�]])[[�]]R� ` C1 R� C2 =) (jC1j�;6=s1 ; jC2j�;6=s2) 2 [[�]][[�]]R:
Proof We show first that the result holds for closed expressions, by induction on the
structure of the type �. Lemma 4.18 deals with expressions of ground type, so we
consider (� ! �0) where � is a ground or first-order type. Suppose we have two lambda
abstractions (�x:�:M1) Rcan�!�0 (�x:�:M2)
and wish to show that (f1; f2) 2 [[� ! �0]]R;
where fi = j�x:�:Mij6=si 2 [[� ! �0]]si i = 1; 2:
Take any (a1; a2) 2 [[�]](R + R0), for some R0 : s01
 s02. Lemma 4.24 gives someCi 2 Can�(si � s0i) with ai 2 jCij6=si�s0i for i = 1; 2, and by Theorem 4.23 these are
logically related C1 (R �R0)can� C2. Now for each of i = 1; 2:fi (si + s0i) hinl si;s0i; aii = j�x:�:Mij6=si (si + s0i) hinl si;s0i ; jCij6=si�s0ii= j(�x:�:Mi)Cij6=si�s0i ;
while (�x:�:M1)C1 (R�R0)exp�0 (�x:�:M2)C2 from the definition of Rcan�!�0 . Applying
the induction hypothesis gives(f1(s1 + s01)hinl s1;s01 ; a1i; f2(s2 + s02)hinl s2;s02 ; a2i) 2 [[�0]](R+R0)
and so (f1; f2) 2 [[� ! �0]]R as desired.

For general expressions, suppose that M1 Rexp� M2, with si `Mi +� (s0i)Ci for i= 1;2
and R0 : s01
 s02 such that C1 (R �R0)can� C2. Then[[Mi]] 6=si = [s0i; jCij6=si�s0i];
and by hypothesis (jC1j6=s1�s01 ; jC2j6=s2�s02) 2 [[�]](R+R0), so([[M1]]6=s1 ; [[M2]]6=s2) 2 T [[�]]R
as required.

5. PROPERTIES OF THE MODEL IN P 87

This completes the proof for closed expressions; we now extend to open expressions.
Given � `M1 R� M2, we wish to show that([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 T [[�]][[�]]R:
Take any (g1; g2) 2 [[�]](R+R0), for some R0 : s01
 s02; thengi = hai1; : : : ; aini aij 2 [[�j]]si i = 1; 2 j = 1; : : : ; n
with each (a1j ; a2j) 2 [[�j]](R+R0), and by Lemma 4.24 there are Cij 2 Can�j (si � s0i)
such that aij = jCijj 6=si�s0i . From Theorem 4.23, these are relatedC1j (R�R0)can�j C2j j = 1; : : : ; n;
and so M1[~C1=~x] (R �R0)exp� M2[~C2=~x]. Now for each of i = 1; 2:[[Mi]]�;6=si(si + s0i)hinl si;s0i; gii= [[Mi]]�;6=s (si + s0i) hinl si;s0i ; hjC11j6=si�s0i ; : : : ; jC1nj6=si�s0iii= [[Mi[~Ci=~x]]] 6=si�s0i
and by the result for closed expressions([[M1[~C1=~x]]] 6=s1�s01 ; [[M2[~C2=~x]]] 6=s2�s02) 2 T [[�]]R:
From the definition of the relation T [[�]][[�]]R then,([[M1]]�;6=s1 ; [[M2]]�;6=s2) 2 T [[�]][[�]]R
as required. A similar proof gives the result for open expressions in canonical form.

In Section 2 we showed that operational logical relations were complete for proving
contextual equivalence in the nu-calculus, up to types of first order. We can now carry
this result over to P-relations:

Corollary 4.26 (Full Abstraction) The model of the nu-calculus in the category P is
fully abstract for expressions of ground and first-order type.

Proof Combine Theorem 4.25 with Theorem 4.15 on the completeness of logical relations
at first-order types.

So the interpretation of the nu-calculus in P proves as many equivalences as operational
logical relations, up to second-order function types. This includes the examples (2)–(9),
(12) and (17) of Chapter 2. As with operational logical relations, the equivalence (13)
between two second-order functions is not validated, for the reasons outlined at the end
of Section 1.

At higher types the operational and denotational methods differ, because the category P
contains some elements that are not definable in the nu-calculus. This is similar to
the comparison between applicative equivalence and the model in SetI , as discussed in
Section 6 of Chapter 3. However in contrast to Theorem 3.16 there, with logical relations
neither approach is strictly more powerful: this can be shown at fourth and fifth order
types, using examples built from the equivalence (13).

88 CHAPTER 4. LOGICAL RELATIONS

6 Predicated Logical Relations

Section 5 of Chapter 2 presented a number of contextual equivalences and inequivalences,
almost all of which have now been validated. The only exception is the equivalence

13. �n:�n0:�f :�!o:(fn = fn0) �(�!o)!o �f :�!o:true;
and we now extend the method of operational logical relations to prove this particular
example. The technique we use is tailored to fit certain symmetries of equivalence (13),
and there is no obvious completeness result. However there are possible generalisations,
which may prove more powerful; we shall also look at some rather open connections to
other current work on logical relations.

Informally, the two functions in (13) are contextually equivalent because they agree
on all arguments that can be defined using them. As pointed out at the end of Section 1,
ordinary logical relations fail to show this because they admit too many arguments,
including (�x:�:(x = n)) and (�x:�:false) on which the functions differ.

Similarly, the heart of the completeness proof of Section 2 lies in the proof of
Lemma 4.14, which shows that spans can capture this ‘definability of arguments’ at ground
types. With arguments of first-order type though, the problem is more difficult (see the
inequivalences (14) and (15) on page 25 for example), and spans are not enough.

Definition 4.27 (Augmented Spans) For sets of names s1 and s2, an augmented spanbR : s1
 s2 comprises three ordinary spans R1 : s1
 s1, R : s1
 s2 and R2 : s2
 s2.
If we wish to make these explicit, we write bR : s1
 s2 as (R1; R;R2) : s1
 s2.

If bR0 : s01
 s02 is another augmented span, with s01 and s02 disjoint from s1 and s2
respectively, then there is a disjoint union of augmented spans:bR� bR0 = (R1 �R01; R�R0; R2 �R02) : s1 � s01
 s2 � s02:
There is also the identity augmented span:bids = (id s; id s; id s) : s
 s:

The intuition for enhancing the span R with R1 and R2 is that they should capture
additional symmetries in how expressions use their own private names. The motivating
example is �n:�n0:�f :�!o:(fn = fn0);
where the rôles of n and n0 are entirely interchangeable. We can now define an extended
form of logical relation:

Definition 4.28 (Predicated Logical Relations) If bR : s1
 s2 is an augmented span then
the relations bRcan� � Can�(s1)� Can�(s2)bRexp� � Exp�(s1)� Exp�(s2)

6. PREDICATED LOGICAL RELATIONS 89

are defined by induction over the structure of the type �, according to:b1 bRcano b2 () b1 = b2n1 bRcan� n2 () n1 R1 n1 & n1 R n2 & n2 R2 n2(�x:�:M1) bRcan�!�0 (�x:�:M2) ()(�x:�:M1) (R1)can�!�0 (�x:�:M1) & (�x:�:M2) (R2)can�!�0 (�x:�:M2)& 8 bR0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :C1 (bR� bR0)can� C2 =) M1[C1=x] (bR� bR0)exp�0 M2[C2=x]M1 bRexp� M2 ()9 bR0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :s1 `M1 +� (s01)C1 & s2 `M2 +� (s02)C2 & C1 (bR � bR0)can� C2:
Notice that we use ordinary logical relations R1 and R2 in the clause for function types.
The relations bRcan� and bRexp� coincide on canonical forms, and we may write them as bR�
indiscriminately. We can extend the relations to open expressions: if M1 2 Exp�(s1;�)
and M2 2 Exp�(s2;�) where � = fx1 : �1; : : : ; xn : �ng then define� `M1 bR� M2 () � `M1 (R1)� M1 & � `M2 (R2)� M2& 8 bR0 : s01
 s02;Cij 2 Can�j (si � s0i) i = 1; 2 j = 1; : : : ; n :(&nj=1 : C1j (bR� bR0)can�j C2j)=) M1[~C1=~x] (bR� bR0)exp� M2[~C2=~x]:
Lemma 4.29 If bR : s1
 s2 and M1 2 Exp�(s1;�);M2 2 Exp�(s2;�) then� `M1 bR� M2 () �� �0 `M1 (bR � bR0)� M2
for any �0 and bR0 : s01
 s02.

Proof Exactly as for ordinary logical relations in Lemma 4.3.

The strength of predicated logical relations lies in the way they combine the ‘logical’
clauses of Definition 4.2, using the structure of the type �, with additional predicates on
either side of the relation. In this particular case, the predicates are the diagonals of the
ordinary logical relations (R1)� and (R2)� . So for example the result� `M1 bR� M2 =) � `M1 (R1)� M1 & � `M2 (R2)� M2
follows directly from the definition of bR� .

The ‘logical’ part of the definition means that we can proceed as in Section 1, and
show that predicated logical relations lie between syntactic and contextual ones:

Lemma 4.30 For any span R : s1
 s2 and type � 2 fo; �g,(id s1 ; R; id s2)� = R� :

90 CHAPTER 4. LOGICAL RELATIONS

Proof Straightforward, given the simple form of R� for ground � .

Proposition 4.31 If � `M1 Rsyn� M2 then � `M1 (id s1 ; R; id s2)� M2. In particular the
predicated relation (bid s)� is reflexive: � `M (bid s)� M for any M 2 Exp�(s;�).
Proof By induction on the structure of the expressions.

Proposition 4.32 If � ` M1 (id s1 ; R; id s2)� M2 then � ` M1 Rcxt� M2. In particular,(bid s)-related expressions are contextually equivalent:� `M1 (bid s)� M2 =) s;� `M1 �� M2:
Proof Combine the definition of contextual and predicated logical relations with Propo-
sition 4.31 and Lemma 4.30.

So predicated logical relations can be used to prove contextual equivalence. It happens
that they validate all the examples from Section 5 of Chapter 2, but we shall concentrate
on the most elusive:

13. �n:�n0:�f :�!o:(fn = fn0) �(�!o)!o �f :�!o:true :
Consider the augmented span bR : fn; n0g
 fg whereR1 = f(n; n0); (n0; n)g and R = R2 = fg:
That is, R and R2 are both the empty span, while R1 : fn;n0g
 fn;n0g is the twist map.
Now the only arguments at which the function (�f :�!o:(fn = fn0)) gives the resultfalse , are expressions of type (� ! o) that distinguish n from n0. But such an expression
cannot be R1-related to itself, and soC1 (bR� bR0)can�!o C2 =) s1 � s01 ` (�f :�!o:(fn = fn0))C1 +o (s001)true:
This is enough to show that(�f :�!o:(fn = fn0)) bRcan(�!o)!o (�f :�!o:true)
and hence (�n:�n0:�f :�!o:(fn = fn0)) (bid;)exp(�!o)!o (�f :�!o:true)
from which the equivalence (13) follows by Proposition 4.32.

We could now give a denotational development of predicated logical relations. This
would begin with a three-object category something likev e t-�	 �0I �1 � �1	 �0I �2 �0 �� = �1 �� = idv�0 � �0 = �1 � �0 = �0 � �1�0 � �2 = �1 � �2 = �1 � �1
and go on to mimic the work of Sections 3, 4 and 5 by defining ‘categories with predicated
relations’ and further extending the SetI model. However, this is now so far from any

6. PREDICATED LOGICAL RELATIONS 91

standard categorical constructions, and so specific to example (13), that there is little insight
to be gained.

Predicated logical relations are a little like the layered predicates studied by the
Nielsons in [73]. Their Definition 3.3 describes a way to combine two (Kripke-indexed)
relations P and Q into a relation P&Q. Again this is a technique for fine-tuning logical
relations, while keeping induction on the structure of types.

In defining predicated logical relations, we could make other choices for the predi-
cates. For example, taking the everywhere-true predicate gives ordinary logical relations.
Increasing complexity, we could use the diagonals of predicated logical relations them-
selves, or try different forms of predicate on either side of the relation. Another approach
would be to carry out the same ideas for relations of other arities. With no completeness
results though, this just adds unwarranted sophistication, and the resulting systems are far
too complex for any practical use.

These generalisations lead towards the work of Jung and Tiuryn on logical relations
of varying arity [36], which Riecke and O’Hearn have used to give a fully abstract
denotational semantics for PCF [80]. In this setting, our predicated logical relations are
similar to Kripke logical relations of varying arity over the categoryp q t u r sAAAU ����f g fp = fq = tgr = gs = u
of three objects, each a two-element set. However, it is not yet clear how to make this
correspondence exact, and whether or not this leads to a fully abstract model for the nu-
calculus.

Chapter 5

A Language with Store

Despite its curious and interesting behaviour, the nu-calculus cannot claim to provide
much useful computational power. However, many significant and useful features of
programming languages include the generativity that it captures; this chapter shows by
example how the techniques developed for the nu-calculus can still be applied. Note that
we intend only to sketch an outline of the method, so we do not seek the same level of
detail as in previous chapters.

A full programming language like Standard ML contains several features with gener-
ative aspects: Core ML has exceptions, references and datatypes, all dynamically created,
as are the signatures and structures of the module system. We concentrate on references,
storage cells created on a run-time heap and removed by a garbage collector. These are
an imperative part of ML and various implementations use them as the basis for arrays
that can be updated in place.

To study references we use Reduced ML, a language that combines higher-order
functions with integer references. Sections 1 and 2 describe its syntax, type structure
and operational semantics. Whereas the nu-calculus merely resembles a small fragment
of ML, Reduced ML is a selected subset of the full language.

Section 3 defines contextual equivalence for Reduced ML: this is the relation that
holds between two expressions of the language if they are entirely interchangeable. For
example, it could show what program manipulations a compiler can safely carry out, or
it might demonstrate that an algorithm matches its specification. More immediately, the
examples of Section 4 use contextual equivalence to illustrate how references and higher-
order functions behave together.

As with the nu-calculus, contextual equivalence in Reduced ML is expressive but
difficult to work with. This is where the work of the preceding chapters pays off. All
the methods for proving contextual equivalence in the nu-calculus extend smoothly to
Reduced ML; the passage from dynamically generated names to dynamically generated
store is truly incremental. What is more, because we restrict storage to integers alone the
step turns out to be a fairly small one.

The rest of the chapter is then a recapitulation of all that we did with the nu-calculus.
Section 5 looks at operational methods for reasoning about contextual equivalence: ap-
plicative equivalence and operational logical relations. For a denotational approach, we
use the familiar two stage technique:

Reduced ML �! computational metalanguage �! category with strong monad.

92

1. SYNTAX OF REDUCED ML 93

Each stage builds on the matching construction for the nu-calculus.
Section 6 describes a computational metalanguage suitable for reasoning about store.

Conveniently, this is simply the metalanguage of Chapter 3 with additional types, terms and
rules. Under this extension, any equality proved in the metalanguage for names also holds
in the metalanguage for store. The interpretation of Reduced ML is given in Section 7,
which shows that the computational metalanguage can be used to reason about contextual
equivalence.

Section 8 sets out the properties that a category must have to model Reduced ML,
and how they are used. Section 9 gives examples of this in practice. Remarkably, all the
categories used to model the nu-calculus can also model Reduced ML. This emphasises
how dynamically created names really do capture the ‘difficult’ part of ML references;
actual value storage is not so hard.

This analysis of Reduced ML does not go into the same detail as we did for the nu-
calculus, nor are reasoning methods necessarily pushed to their limits. Also, integer refer-
ences alone are less versatile than full ML, where cells can hold functions, or references
to other cells. Nevertheless, this chapter does illustrate how a thorough understanding
of dynamically generated names can make a significant contribution to reasoning about
references in Standard ML.

A closely related line of research is that initiated by Reynolds into ‘Algol-like’
languages. These are command-based imperative languages, strongly typed, with a stack
discipline for local variables and a call-by-name semantics for procedure calls. There is
a clear separation between commands and expressions: only commands can change the
state, and only expressions can return values. An analogue to higher-order functions in
ML is that procedures can be declared locally and may have parameters of procedure type.
However direct comparison with Standard ML is impossible, as the programming styles
appropriate to the two languages are so different: exact translation takes simple Algol-like
code to convoluted ML, and vice versa. In particular there is no correspondence between
the notions of ‘first-order’ and ‘second-order’ in each language, as types often go up a
couple of orders under translation.

Despite this, local variables and higher-order procedures do raise many of the same
problems as ML references, and this chapter contains references to the corresponding work
on Algol-like languages. Reynolds’ original [107] has been followed up by Oles [87, 88],
O’Hearn and Tennent [81, 82, 83, 84, 125, 126, 127], and Lent [46]. Meyer [57] and
Sieber [116, 117] also describe models of Algol-like languages, and approaches connected
with linear logic have been suggested by Reddy [101, 102] and O’Hearn [77, 78].

1 Syntax of Reduced ML

The types of Reduced ML are built up from various ground types by the formation of
function types: � ::= unit j bool j int j int ref j � ! �:
Here unit and bool are types with one and two elements respectively, and int is the type of
integers. The type int ref denotes integer references, or locations: each of these provides
storage for a single integer value. The order of a type is defined exactly as for the nu-
calculus. We again use variants of � to range over types.

Reduced ML expressions take the forms listed in Figure 5.1. General expressions

94 CHAPTER 5. A LANGUAGE WITH STORE

M ::= x variablej l locationj () unit valuej i integer constants i = : : : ;�1; 0; 1; 2; : : :j true j false truth valuesj if M thenMelseM conditionaljjj M+M j M�M j M �M operations on integersM < M j M > M j M = M tests on integersM <= M j M >=M j M <> Mj ref M create a new reference cellj !M fetch stored valuej M := M alter stored valuej M = M compare locationsj fn x:�)M function abstractionj MM function application

Figure 5.1: Expressions of Reduced ML

1. SYNTAX OF REDUCED ML 95

are usually denoted by M, with B, N, R, F suggesting boolean, integer, reference and
function expressions respectively. There is an infinite supply of typed variables, generally
chosen from x; y; z and variants. Function abstraction (fn x:�)M) binds the variable x of
type �; we identify expressions up to �-conversion of bound variables, and substitution
of expressions for free variables is capture avoiding.

Locations, written as variants of l, are always free, taken from some infinite supply.
Properly speaking, this is an extension to the syntax: a true program in Reduced ML would
have no explicit locations at all. However we also need to consider program fragments,
which may have free locations; explicit locations also appear during the evaluation of
expressions. Finite sets of locations are represented by variants of u, for universe.

A variety of binary operations and tests on integers are assumed; we shall generally
take N+ N0 and N < N0 to stand for all of these.

There are four sorts of expression that act on store. The expression ref N picks a fresh
location, stores the integer value of N there, and returns the location as an int ref. The
stored value can be retrieved with !R and changed with R := N0. Expressions denoting
locations can be compared using R = R0, not to be confused with the equality test for
integers.

With no polymorphism or recursion in Reduced ML, we can define let-expressions as
syntactic sugar for function application:let val x = MinM0 end = (fn x:�)M0)Mlet fun f x = MinM0 end = let val f = (fn x:�)M) inM0 end
where f is not free in M. This extends to multiple let-expressions:let val x1 = M1val x2 = M2

...val xn = Mnin M0end
= (fn x1:�1)fn x2:�2)

...fn xn:�n) M0)M1M2 : : :Mn
and also infix semicolon for sequencing:M;M0 = let val x = MinM0 end
where x is chosen not free in M0.

Type judgements of Reduced ML take the formu;� ` M : �
where u is some finite set of locations, and � a finite set of typed variables. This says
that the expression M, with locations in u and free variables in �, is well typed with
type �. Figure 5.2 gives the rules for forming valid type judgements; some of these use
the abbreviation u;� `M1; : : : ;Mn : � to indicate that all of u;� `M1 : �; : : : ;u;� `Mn : �
hold.

This type assignment is suitably well behaved:

96 CHAPTER 5. A LANGUAGE WITH STORE

u;� ` x : � (x : � 2 �) u;� ` () : unitu;� ` b : bool (b = true; false) u;� ` i : int (i 2 Z)u;� ` B : bool u;� ` M;M0 : �u;� ` if B thenMelseM0 : �u;� ` N;N0 : intu;� ` N+ N0 : int (also �, �)u;� ` N;N0 : intu;� ` N < N0 : bool (also >, =, <=,>= and <>)u;� ` l : int ref (l 2 u) u;� ` R;R0 : int refu;� ` R = R0 : boolu;� ` N : intu;� ` ref N : int ref u;� ` R : int refu;� ` !R : intu;� ` R : int ref u;� ` N : intu;� ` R := N : unitu;�� fx : �g ` M : �0u;� ` fn x:�)M : � ! �0u;� ` F : � ! �0 u;� ` M : �u;� ` FM : �0
Figure 5.2: Rules for assigning types to expressions of Reduced ML

2. OPERATIONAL SEMANTICS 97

Lemma 5.1 If u;� ` M : � then the type � is unique. Further, if the expression M has
locations in u and free variables in �, thenu;� `M : � () u� u0;�� �0 ` M : �
for any u0 and �0.
Proof By induction on the structure of M.

From now on we consider only well-typed expressions.
An expression is in canonical form if it is either a variable, a location, the unit value (),

one of the boolean constants true or false, an integer constant or a function abstraction.
These are the values of Reduced ML at each type. We define the setsExp�(u;�) = fM j u;� ` M : � gCan�(u;�) = fC j C 2 Exp�(u;�), C canonical gExp�(u) = Exp�(u; ;)Can�(u) = Can�(u; ;)
of expressions and canonical expressions at any type � and for any finite sets u, � of
locations and typed variables.

2 Operational Semantics

With the nu-calculus, evaluation of expressions involves a state s, which is the set of
names created so far. Reduced ML expressions also manipulate a state, which consists of
locations and the values stored in them. Over any universe u, the possible states are:State(u) = fs j s : u! Zg:
If s 2 State(u), then sfl 7! ig 2 State(u) is the same state, but with the value i stored at
location l 2 u. Similarly s� fl0 7! i0g 2 State(u� fl0g) extends s with an extra locationl0 =2 u, holding the value i0.

We can combine states defined over disjoint sets of locations:s 2 State(u) & s0 2 State(u0) =) s� s0 2 State(u� u0)
by taking the disjoint union of their graphs as functions.

Evaluation judgements of Reduced ML have the formhu; siM +� hu0; s0iC
where u � u0 are finite sets of locations, s 2 State(u), s0 2 State(u0), M 2 Exp�(u) andC 2 Can�(u0). This means that in state s, over universe u, the expression M evaluates to
canonical form C, in state s0, over the extended universe u0. This evaluation relation is
inductively defined by the rules in Figure 5.3. As most of these do not explicitly involve
the state, we adopt a state convention from the definition of Standard ML. This says that
a rule presented as M1 +�1 C1 M2 +�2 C2 : : : Mn +�n CnM +� C

98 CHAPTER 5. A LANGUAGE WITH STORE

(CAN) C +� C C canonical

(COND1)
B +bool true M +� Cif B thenMelseM0 +� C

(COND2)
B +bool false M0 +� Cif B thenMelseM0 +� C

(INT+)
N +int i N0 +int i0N+ N0 +int i00 (i00 = i+ i0)

(INT<)
N +int i N0 +int i0N < N0 +bool true (i < i0)

(INT�)
N +int i N0 +int i0N < N0 +bool false (i � i0)

(EQ1)
R +int ref l R0 +int ref lR = R0 +bool true

(EQ2)
R +int ref l R0 +int ref l0R = R0 +bool false l,l0 distinct

(CREATE)
hu; siN +int hu0; s0i ihu; si ref N +int ref hu0 � flg; s0 � fl 7! igi l (l =2 u0)

(FETCH)
hu; siR +int ref hu0; s0i lhu; si !R +int hu0; s0i i (s0(l) = i)

(ALTER)
hu; siR +int ref hu0; s0i l hu0; s0iN +int hu00; s00i ihu; siR := N +unit hu00; s00fl 7! igi ()

(APP)
F +�!�0 fn x:�)M0 M +� C M0[C=x] +�0 C0FM +�0 C0

Figure 5.3: Rules for evaluating expressions of Reduced ML

2. OPERATIONAL SEMANTICS 99

is actually an abbreviation forhu; siM1 +�1 hu1; s1iC1 hu1; s1iM2 +�2 hu2; s2iC2: : : hun�1; sn�1iMn +�n hun; sniCnhu; siM +� hun; sniC ;
where the state is simply handed from one subexpression to the next. Note that this means
the ordering of the hypotheses in such rules is significant. Regarding integer arithmetic,
the rules (INT+), (INT<) and (INT�) also stand for all the other operations and tests
available.

The evaluation relation for Reduced ML is taken from Standard ML, with left-to-
right evaluation and call-by-value function application. However the presentation of the
rules, in particular (APP), does differ slightly from the Definition [62]. There, function
application is carried out by evaluating a function body in an environment; this helps with
ML’s sophisticated pattern matching (and also happens to correspond more closely to most
implementation methods). Reduced ML, on the other hand, directly substitutes arguments
for variables. As the only possible function abstraction is the simple form (fn x:�)M),
the two approaches have identical effect.

A similar comment applies to the rules (COND1) and (COND2) for the conditional:
these are built into Reduced ML, but in Standard ML they are syntactic sugar for a certain
application.

The correspondence between these two styles of presentation is investigated by Ritter
and Pitts in [113]: they use applicative bisimulation to show that these alternatives are
equivalent over a much larger subset of Standard ML, including full pattern matching.

Evaluation in Reduced ML ignores any unreachable store:

Lemma 5.2 For any M 2 Exp�(u) and s 2 State(u),hu; siM +� hu0; s0iC () hu� u00; s� s00iM +� hu0 � u00; s0 � s00iC
whenever u00 is disjoint from u0, and s00 2 State(u00).
Proof By induction on the structure of the derivation of the evaluation judgement.

Evaluation always terminates, and is deterministic up to choice of fresh locations. The
proof is a simple extension of that for the nu-calculus on pages 16–17. Define the two
predicates P�(u) � Can�(u) and P �(u) � Exp�(u)
according toPunit(u) = f()g Pint(u) = ZPbool(u) = ftrue; falseg Pint ref(u) = uP�!�0(u) = f fn x:�)M j 8u0 � u; C 2 P�(u0) : M[C=x] 2 P �0(u0) g
and M 2 P �(u) () For all s 2 State(u) there are u0 � u, C 2 P�(u0) ands0 2 State(u0) such that hu; siM +� hu0; s0i C, and

these are unique up to renaming the locations (u0 n u)
and �-conversion of C.

100 CHAPTER 5. A LANGUAGE WITH STORE

These form a unary logical relation over the expressions of Reduced ML. As before, the
idea is to show that P and P are both total, and then use the fact that P implies termination.

Lemma 5.3 If u; � ` M : �, where � = fx1 : �1; : : : ; xn : �ng, and Ci 2 P�i(u0) fori = 1; : : : ; n for some u0 � u, then M[~C=~x] 2 P �(u0).
Proof By structural induction on the derivation of u;� ` M : �. The details are almost
exactly the same as for Lemma 2.3. For the case of (!R), it is significant that the values
stored are integers, for these are all, by definition, in Pint(u).
Theorem 5.4 (Termination) If M 2 Exp�(u) and s 2 State(u), then there are u0 � u,C 2 Can�(u0) and s0 2 State(u0), such that hu; siM +� hu0; s0i C. Moreover, these are
unique up to choice of the locations (u0 n u) and �-conversion of C.

Proof By Lemma 5.3, M 2 P �(u) and the result follows from the definition of P �(u).
As noted, for this result it is essential that only values of ground type, such as int, can be
kept in reference cells. If functions can be stored, then it is possible to encode recursion
and so write non-terminating expressions, such as:let val r = ref(fn x:unit)())fun f x = (!r)xin r := f; f()end:
3 Contextual Equivalence

As with the nu-calculus, it is of particular interest to determine when one Reduced ML
expression can be used to replace another. Section 4 of Chapter 2 develops this into
the notion of contextual equivalence for the nu-calculus, and we now adapt this for
Reduced ML. The general idea is that two, possibly open, expressions are equivalent if
they cannot be distinguished by placing them in a complete program. We make this into
a formal definition, and in the next section give a number of examples.

Define a program in Reduced ML to be a closed boolean expression. All that can be
observed of a program is whether, in some initial state, it evaluates to true or false. The
creation of new locations, and changes in the values stored, are not directly observable;
though obviously the outcome of the program itself may depend on those parts of the store
to which it has access.

A program context Phh�ii is a program with zero or more occurrences of a hole hh�ii
with a certain arity �1; : : : ; �n ! �. The hole may be filled Phh(~x)Mii by some expres-
sion M, with free variables in (~x) of types matching the hole’s arity. The details are exactly
as on pages 22–23 for the nu-calculus; in particular, we recall that the purpose of holes
with arity is to formalise the possible capture of free variables.

Definition 5.5 (Contextual Equivalence) Suppose that M1;M2 2 Exp�(u;�) are two
expressions of Reduced ML. They are contextually equivalentu;� ` M1 �� M2

4. EXAMPLES 101

if for all suitably typed program contexts Phh�ii defined over u, states s 2 State(u) and
boolean values b 2 ftrue; falseg,(9u1 � u; s1 2 State(u1) : hu; siPhh(~x)M1ii +bool hu1; s1i b)()(9u2 � u; s2 2 State(u2) : hu; siPhh(~x)M2ii +bool hu2; s2i b):
That is, Phh�ii always evaluates to the same boolean value, whether the hole is filled byM1 or M2. When both u and � are empty, we write simply M1 �� M2.

Section 6 of Chapter 2 uses a detailed analysis of the evaluation process to show
that, in order to establish equivalence, it is only necessary to use certain kinds of pro-
gram context. Specifically, those that are just a function abstraction applied to a hole�s0:((�x:�:B)hh�ii(~C)); and if the expressions to be compared are closed, the fresh
names s0 and the instantiation (~C) can be omitted.

There seems no obvious reason why the same analysis could not be made for Re-
duced ML:

Conjecture 5.6 (Context Lemma) Two expressions are contextually equivalent u; � `M1 �� M2 if and only if for all u0 � u, s0 2 State(u0), test functions (fn x:�)B) 2Can�!bool(u0), instantiations [~C=~x] defined over u0, and each b 2 ftrue; falseg, it is the
case that:(9u1 � u0; s1 2 State(u1) : hu0; s0i (fn x:�)B)M1[~C=~x] +bool hu1; s1i b)()(9u2 � u0; s2 2 State(u2) : hu0; s0i (fn x:�)B)M2[~C=~x] +bool hu2; s2i b):
Further, two closed expressions are contextually equivalent u ` M1 �� M2 if and only
if for all states s 2 State(u), test functions (fn x:�)B) 2 Can�!bool(u) and each b 2ftrue; falseg, it is the case that:(9u1 � u; s1 2 State(u1) : hu; si (fn x:�)B)M1 +bool hu1; s1i b)()(9u2 � u; s2 2 State(u2) : hu; si (fn x:�)B)M2 +bool hu2; s2i b):
A proof of this requires a suitable reduction semantics for Reduced ML, a notion of
reduction context, and counterparts to Lemmas 2.10, 2.11 and 2.12, breaking down the
possible structure of expressions and contexts. All of these are concerned with evaluation
strategy, rather than the presence of state, so they should work much as for the nu-calculus.
Indeed, the (ciu) theorem described by Talcott and Mason is essentially this context lemma,
but for an untyped language based on destructive LISP [30, x2.3.2].

4 Examples

We now consider a series of example contextual equivalences. These are important not
only because they indicate safe program transformations, but also because they give a
good idea of how private, public and shared store can be used in Reduced ML. A couple

102 CHAPTER 5. A LANGUAGE WITH STORE

of inequivalences also show how, as with the nu-calculus, higher-order functions add
significant power, but must be handled with care.

As Reduced ML builds on the nu-calculus, many of the contextual equivalences listed
on pages 23–26 have analogues in the presence of store. There are also other equivalences,
which rely on properties of storage and retrieval of values; often though, these too are really
about the visibility of locations, private and public.

Meyer and Sieber, to illustrate their model of store in Algol-like languages, give in [57]
a list of example equivalences that have become something of a benchmark in this area;
these are reproduced in Appendix A as MS1–MS7. As explained in the introduction, direct
comparison with Reduced ML is impossible because the programming styles appropriate
to the two languages are so different. Nevertheless, there are some similarities, particularly
when higher-order procedures are introduced, and most of the points raised by Meyer and
Sieber appear somewhere in these examples.

It is basic from the definition that contextual equivalence is a congruence:

1. u;� `M1 �� M2 =) u� u0;�� �0 ` M0[M1=x] �� M0[M2=x]
where M0 2 Exp�0(u� u0;�� �0 � [x : �]).

As with names in the nu-calculus, unused locations are ignored:

2. u;� ` let val r = ref i inM end �� M i 2 Z; r =2 fv(M)
and it does not matter in what order fresh cells are allocated:

3. u;� ` let val r = ref ival r0 = ref i0in Mend �� let val r0 = ref i0val r = ref iin Mend i; i0 2 Z:
These are similar to the Algol-like examples MS1 and MS3.

The intermediate states of a computation are not visible:

4. r : int ref ` (r := !r + 1; r := !r � 1) �unit ():
In addition, there is no way to detect whether or not a particular computation is carried
out using store:

5. fn (x : int))let val r = ref x in (!r + !r) end �int!int fn (x : int)) (x+ x):
Equivalences (6)–(8) of the nu-calculus concern the rearrangement of expressions around
reduction contexts; given a suitable corresponding notion for Reduced ML, it seems likely
that these equivalences would still hold. Even without reduction contexts, we can formulate�v-equivalence: if M 2 Exp�0(u;�� [x : �]) and C 2 Can�(u;�) then

6. u;� ` (fn x:�)M)C ��0 M[C=x]:

4. EXAMPLES 103

Example (12) from the nu-calculus has a direct analogue, that a dynamically generated
location is private:

7. let val r = ref 0in fn (x : int ref)) (x = r)end �int ref!bool fn (x : int ref)) false:
The expression on the left evaluates to a function that compares its argument to the
location r. However this function is used, r remains private, and the result of the test is
always false. With functions that may have side-effects, there seems no obvious counterpart
to the second-order example (13).

The value stored in a private location cannot be altered by external code:

8. let val r = ref iin fn (x : unit)) !rend �unit!int fn (x : unit)) i:
Once the value i 2 Z has been stored in the cell r, if the location is not revealed, and the
function itself leaves the contents alone, then it will not change. This is the same principle
as in the Algol-like examples MS2 and MS4.

It is possible to release partial access to a storage cell:

9. fn (f : (unit! unit)! unit))let val r = ref 1fun inc x = (r := !r + 1)in f(inc); !r > 0end
�((unit!unit)!unit)!boolfn (f : (unit! unit)! unit))let fun skip x = ()in f(skip); trueend:

On the left hand side, the function f is given the facility to increase the value stored in r,
but not to decrease it. Consequently, this value remains positive, and the test (!r > 0) can
only return true. Algol-like example MS5 captures a similar idea of partial access; MS6
does too, combined with the privacy of example (7) above.

If a storage cell is private, then it does not matter exactly how it is used:

10. let val r = ref 0in fn (x : int)) (r := !r+ x; !r)end �int!int let val r = ref 0in fn (x : int)) (r := !r� x;�!r)end:
Both of these expressions give a function that maintains a running total of the integers it
is applied to. The second one, perversely, represents this total internally by its negative;
externally, the two appear identical. O’Hearn and Tennent give an Algol-like version of
this in the introduction to [82]; this ‘counter’ object is their basic running example.

104 CHAPTER 5. A LANGUAGE WITH STORE

A practical application of privacy is the silent attachment of profiling code:pro�le = fn (f : � ! �0))let val r = ref 0fun f 0 x = (r := !r + 1; f x)in f 0end:
This expression takes a function f, of type (� ! �0), and returns an instrumented version f 0
that increments a counter in r each time it is called. Within the language, f 0 appears exactly
the same as the original f, and so

11. f : � ! �0 ` pro�le f ��!�0 f:
The difference is that an instrumented version of a function might be useful to a profiler
or debugger, quite external to the language itself, that could track down r, and examine
the counter within. Contextual equivalence guarantees that the attachment of this counter
cannot affect the outcome of the program. Algol-like example MS7 embodies a restricted
instance of this idea, attaching a private counter to a skip command.

Notice that, thanks to higher-order functions, we can use a single piece of code that
will instrument any function f, and show once and for all that its effect is not visible within
the language. This is undoubtedly preferable to attaching code to the functions themselves,
and checking that this is safe in each case.

An extension of this idea is the production of memoized functions, that keep a record
of previous calls so as to avoid recomputation where possible. To simplify things, we only
consider modifying functions of type (int! int) to record their most recent argument and
result. Again, a higher-order function is the most general approach:memo = fn (f : int! int))let val q = ref 0val a = ref (f 0)in fn (x : int))if x = !q then () else (q := x; a := f x);!aend:
However, this is rather too general for an imperative language:

12. memo 6�(int!int)!(int!int) fn (f : int! int)) f:
For example, consider memo applied to the accumulator of example (10): there it is vital
that the code keeping the running total really is executed each time the function is called.

In some particular cases all is well, and it is safe to memoize functions whose results
are repeatable.

13. memo (fn (x : int)) (x+ x)) �int!int fn (x : int)) (x+ x):

4. EXAMPLES 105

This does not mean that a function to be memoized cannot use store. For example, both
the doubling functions of example (5) can be safely memoized; as they are contextually
equivalent, memo affects them equally.

A final, rather complicated, example shows the perhaps surprising ways in which
supposedly private store can interact with higher-order functions. Consider the following
function: F1 = let val r = ref 0val a = ref 0in fn (f : int! int))(r := !r + 1; a := f(!r); r := !r � 1; !a)end:
In a roundabout way, F1 evaluates to a function that takes an argument f, of type(int! int), and seems to apply it to the value 1. To do this, it keeps the value 0 in
a private cell r, and increments it to 1 temporarily for the function application. As with
example (8), this 0 will be preserved in r between calls to F1.

Taking then the rather simpler functionF2 = fn (f : int! int)) f(1);
it may come as a surprise that

14. F1 6�(int!int)!int F2:
They are distinguished by the test functionG = fn (F : (int! int)! int))F(fn (x : int)) F(fn (y : int)) y))
as GF1 evaluates to 2 and GF2 evaluates to 1. The details are as follows:� For GF1, executing the outer F1 increments r and binds 1 to x; the inner F1 then

increments r again and binds 2 to y. The contents of r is reset to 0 on the way out,
but the final result is 2, as bound to y.� For GF2, the outer and inner occurrences of F2 bind 1 to x and y respectively; the
final result is the 1 from y.

Sceptics may care to try this example in a real implementation of Standard ML. As with
the nu-calculus example (14) on page 25, the heart of G lies in the fact that when building
a (function) argument to be passed to Fi, we can make use of Fi itself.

Together these examples show that a language such as Reduced ML can provide
private, local storage, persisting if desired between function invocations. Expressions can
give surrounding code partial access to this; or the use of local store need not be externally
visible at all. The combination with higher-order functions can be useful, as in the profiling
and memoizing functions, but needs to be treated with care, as shown by the inequivalences
(12) and (14) above.

106 CHAPTER 5. A LANGUAGE WITH STORE

5 Proof Methods

All of the techniques developed for the nu-calculus are also suitable for proving contextual
equivalences of Reduced ML. In later sections we look at denotational methods, through
a computational metalanguage; for now, we outline some operational methods. The most
powerful of these, operational logical relations based on store, is sufficient to prove all the
equivalences of the previous section.

Section 7 of Chapter 2 describes applicative equivalence for the nu-calculus, and shows
that it implies contextual equivalence. This can be adapted to Reduced ML in two stages.
The first is a relation, strong applicative equivalence, written ‘�=’, that requires expressions
to allocate exactly the same private locations. Closely following Definition 2.13, we have
a mutual induction between the relation on canonical forms:u ` () �=canunit () u ` b1 �=canbool b2 () b1 = b2u ` i1 �=canint i2 () i1 = i2 u ` l1 �=canint ref l2 () l1 = l2u ` (fn x:�)M1) �=can�!�0 (fn x:�)M2) () 8u0 � u; C 2 Can�(u0) :u0 `M1[C=x] �=exp�0 M2[C=x]
and on general expressions:u ` M1 �=exp� M2 () 8u0 � u; s0 2 State(u0) :9u00 � u0; s00 2 State(u00); C1;C2 2 Can�(u00) :u00 ` C1 �=can� C2& hu0; s0iM1 +� hu00; s00iC1& hu0; s0iM2 +� hu00; s00iC2:
Notice that M1 and M2 must evaluate to the same final state hu00; s00i. This then extends
to a relation on open expressions:u;� ` M1 �=� M2 () 8u0 � u; Ci 2 Can�i(u0) i = 1; : : : ; n :u0 ` M1[~C=~x] �=exp� M2[~C=~x]:
It remains to show that ‘�=’ is a congruence, and so implies contextual equivalence.
Because Reduced ML has no recursively defined types, and only stores integers, we can
proceed exactly as for the nu-calculus, by defining a relation of strong logical equivalence
and proving that the two are the same. Alternatively, we could adapt the more general
Howe’s method, as used in [31, 25].

Strong applicative equivalence is more or less the same as Ritter and Pitts’ applicative
bisimulation, from [113]. It is able to prove only equivalences (3), (4) and (6) from
Section 4, because it demands a very close correspondence on the use of private locations.

A more liberal relation, applicative equivalence, written ‘�’, relaxes this constraint.
The definition is the same, except for expressions:u ` M1 �exp� M2 () 8u0 � u; s0 2 State(u0) :9u1; u2 � u0; s1 2 State(u1); s2 2 State(u2);C1 2 Can�(u1); C2 2 Can�(u2) :u1 [u2 ` C1 �can� C2& hu1; s1i � hu2; s2i& hu0; s0iM1 +� hu1; s1iC1& hu0; s0iM2 +� hu2; s2iC2

5. PROOF METHODS 107

and a relation between states:hu1; s1i � hu2; s2i () 8l 2 u1 \ u2 : u1 \ u2 ` s1(l) �canint s2(l)() 8l 2 u1 \ u2 : s1(l) = s2(l):
It is now only necessary that expressions should agree up to the production of garbage.
Mason’s notion of strong isomorphism for an untyped lambda-calculus with store, as
described in [54, x3.2] and [55, x2.4], is roughly this relation restricted to ground types.

Applicative equivalence verifies examples (2)–(6), and any others where dynamically
generated store is used only for temporary variables. Consider the case of equivalence (5):

5. fn (x : int))let val r = ref x in (!r + !r) end �int!int fn (x : int)) (x+ x):
We have that for any universe u and integer i,u ` let val r = ref i in (!r + !r) end �expint (i+ i):
This is because for every u0 � u and s0 2 State(u0) there are evaluation judgementshu0; s0i let val r = ref i in (!r + !r) end +int hu0 � flg; s0 � fl 7! igi 2i
and hu0; s0i (i+ i) +int hu0; s0i 2i
with hu0 � flg; s0 � fl 7! igi � hu0; s0i
as the two states agree at their common locations. From this and the definition of
applicative equivalence at function types, we deduce that` fn (x : int))let val r = ref x in (!r + !r) end �int!int fn (x : int)) (x+ x)
and the contextual equivalence follows. The same relation, extended to a rather larger
subset of Standard ML, is studied by Pitts, Stark and de Paiva in [93].

As with the nu-calculus, for stronger proof methods we can turn to some form of
logical relation. Extending the work in Section 1 of Chapter 4 gives operational logical
relations based on spans R : u1
 u2 across sets of locations. These subsume applicative
equivalence, and also prove equivalences like example (7), that a dynamically generated
location is private. This covers the pro�le function of example (11) too: incrementing a
private counter does not affect a function’s behaviour.

Such relations successfully capture the fact that an expression can only read certain
locations. However they say little about limiting write access to store: for example,
logical relations based on locations would allow an expression that reset all store to 0
indiscriminately. This affects all the remaining equivalences of Section 4, each of which
relies on some preservation of private store.

The solution is to move the relations from locations to states: replace R : u1
 u2 byR � State(u1)� State(u2) and build a logical relation R� over this. At public locations,
the relation R has to be the identity, but on private locations there is great flexibility to
represent the different ways expressions may use store.

108 CHAPTER 5. A LANGUAGE WITH STORE

Rather than go into construction details, we consider here which relations between
states capture particular aspects of privacy. For example, suppose that the private cell r is
at location l. Then in example (8), we want a relation R that keeps the fixed value i at
this location: R = fhs� fl 7! ig; si j s 2 State(u); fixed ig:
In example (9), we claim that the value at l is always positive, represented by the relation:R = fhs� fl 7! ig; si j s 2 State(u); i > 0g:
We can then use the fact that inc preserves this property. Such an invariant also arises in
example (10) where two functions keep the same value in a private cell, but with a change
of sign: R = fhs� fl 7! ig; s� fl 7! �igi j s 2 State(u); i 2 Zg:
When the memo function can safely be applied, as in example (13), the invariant is that two
locations lq and la hold a valid pair of argument and result for the memoized function f :R = fhs� flq 7! i; la 7! jg; si j s 2 State(u); j = fi; fixed f : Z! Zg:

Logical relations based on store genuinely extend the simpler relations based on
locations: given a span Rl : u1
 u2 we can define a relation Rs on stateshs1; s2i 2 Rs () 8hl1; l2i 2 Rl : s1(l1) = s2(l2)
with similar effect. Thus all the equivalences of Section 4 can be handled by a system of
operational logical relations based on state.

O’Hearn and Tennent, in [82], and Sieber, in [117], also use relations between states,
in denotational methods for reasoning about Algol-like languages. While the languages
are not directly comparable, the range of store manipulations that this method can tackle
seems much the same in both settings.

6 A Computational Metalanguage for Store

We now move on to denotational methods for reasoning about Reduced ML, beginning
with an interpretation in a computational metalanguage. To deal with store, we enlarge
the metalanguage of Chapter 3 with additional types, terms and rules.

The extra types are Unit and Int , with terms () and f: : : ; �1; 0; 1; 2; : : :g, and
operations like plus(i; i0) and less(i; i0). These behave in an entirely straightforward way,
and make no use of computation types.

More interesting are two extra term-forming operations get(�) and set(�;�), with
typing rules � ` n : Name� ` get(n) : T Int and

� ` n : Name � ` i : Int� ` set(n; i) : TUnit :
The intuition is that set(n; i) associates the integer i to the name n, while get(n)
retrieves it; both are computations. There is no explicit store; rather, we add rules to
the metalanguage that simulate the visible behaviour of a store. This allows us to use

6. A COMPUTATIONAL METALANGUAGE FOR STORE 109� ` 3 : Int � ` () : Unit� ` i; i0 : Int� ` plus(i; i0) : Bool � ` i; i0 : Int� ` less(i; i0) : Bool� ` n : Name� ` get(n) : T Int � ` n : Name � ` i : Int� ` set(n; i) : TUnit :
Figure 5.4: Some additional typing rules for the metalanguage

static, equational reasoning in the metalanguage, while the computation types correctly
handle the dynamic aspects.

Figure 5.4 gives the additional type rules for the metalanguage. To avoid an explosion
of uninteresting rules about integers, in all these rules plus , less and occasionally equal ,
should be taken as exemplarary. Similarly, where numeric constants are involved, we give
only a single case, as illustration.

With the introduction of side-effects, a useful abbreviation is(e; e0) = let x(e in e0 x =2 fv(e0)
for sequential evaluation, with iterated form:(e1; e2; : : : ; en) = (e1; (e2; : : : ; en)):
This is associative, and has various other properties:� ` (e; (e0; e00)) = ((e; e0); e00)� ` (e; let x0(e0 in e00) = let x0((e; e0) in e00� ` (let x(e in e0; e00) = let x(e in (e0; e00):
All these are easily derived from the standard computation rules.

A number of rules for store extend the equational reasoning of the metalanguage.
Figure 5.5 gives congruence rules for all the extra term-forming operations, and standard
properties of types Unit and Int ; Figure 5.6 gives some rules for reasoning about get(�)
and set(�;�). All these are in addition to the rules presented in Figures 3.2 and 3.3, on
pages 40 and 41.

The rules of Figure 5.6 are chosen for entirely pragmatic reasons: they appear to be the
least necessary to prove Propositions 5.9 and 5.10, that the interpretation of Reduced ML
in the metalanguage is both correct and adequate. We can explain them as follows:� The (MONO+) rule subsumes the standard (MONO) rule of Figure 3.3, and states

that side-effects cannot divert simple value computations. In the metalanguage of
Chapter 3, it can be derived from the strong (DROP+) rule of page 42; however,
that is not valid in the presence of store. The full generality of the (MONO+) rule
is not strictly necessary: for example, if exceptions were added then restrictions on
the computations e and e0 would be in order.

110 CHAPTER 5. A LANGUAGE WITH STORE

Congruence: � ` () = () � ` 3 = 3� ` i1; i01; i2; i02 : Int�; i1 = i01; i2 = i02 ` plus(i1; i2) = plus(i01; i02)� ` i1; i01; i2; i02 : Int�; i1 = i01; i2 = i02 ` less(i1; i2) = less(i01; i02)� ` n; n0 : Name�;n = n0 ` get(n) = get(n0)� ` n; n0 : Name � ` i; i0 : Int�;n = n0; i = i0 ` set(n; i) = set(n0; i0)
Unit: � ` u : Unit� ` u = ()
Integers: � ` plus(1; 1) = 2 � ` less(�1; 1) = tt� ` i : Int� ` equal(i; i) = tt � ` i : Int� ` less(i; i) = �� ` i; i0 : Int�; equal(i; i0) = tt ` i = i0

Figure 5.5: Some extra rules for equational reasoning in the metalanguage (I)

6. A COMPUTATIONAL METALANGUAGE FOR STORE 111

Computations:

(MONO+)
� ` a; a0 : A � ` e; e0 : TB�; let x(e in [a] = let x(e0 in [a0] ` a = a0 (x =2 fv(a; a0))

Storage:

(READ)
� ` n : Name � ` i : Int� ` (set(n; i); get(n)) = (set(n; i); [i])

(WRITE)
� ` n : Name � ` i; i0 : Int� ` (set(n; i); set(n; i0)) = set(n; i0)

(SWAP0) � ` n : Name � ` i : Int �; n0 : Name ` e : TA� ` (set(n; i); let n0(new in e) = let n0(new in (set(n; i); e)
(SWAP00) � ` n; n0 : Name � ` i; i0 : Int�; eq(n; n0) = � ` (set(n; i); set(n0; i0)) = (set(n0; i0); set(n; i))

Figure 5.6: Some extra rules for equational reasoning in the metalanguage (II)

112 CHAPTER 5. A LANGUAGE WITH STORE� The (READ) and (WRITE) rules assert that get(n) does indeed fetch the value
associated to the name n, and that set(n; i) overwrites any previous association
on n.� The (SWAP0) and (SWAP00) rules are restricted forms of the (SWAP+) rule of
page 42, and state that the ordering of certain computations does not matter. Specif-
ically, set(�;�) and new may be interchanged, as can two set(�;�) commands,
if they refer to different names. These augment the existing (SWAP) rule, that fresh
names may be generated in any order.

While these are all plausible statements about storage, and indeed there are categorical
models that confirm them, it is unfortunate that there is no more systematic method behind
this choice of rules.

This enhanced metalanguage provides a general setting for reasoning about computa-
tion with dynamically generated storage. In the next section we see how this applies to
Reduced ML in particular.

7 Interpretation of Reduced ML

The translation from nu-calculus to computational metalanguage, described in Section 2 of
Chapter 3, extends smoothly to Reduced ML. This gives an interpretation that is correct
with respect to the operational semantics, and adequate for reasoning about contextual
equivalence.

Types are interpreted without complication:[[unit]] = Unit [[int]] = Int[[bool]] = Bool [[int ref]] = Name[[� ! �0]] = [[�]]! T [[�0]]:
Figure 5.7 describes the translation of Reduced ML expressions, with j�j for canonical
forms, [[�]] for expressions, and [[�]] for location and variable contexts. This is a straight-
forward extension of Figure 3.4 on page 44, which does the same for the nu-calculus.

In deference to the use of locations in Reduced ML, variants on l are used in the
metalanguage as variables of type Name . In particular, an explicit location is interpreted
by itself, regarded as such a variable. We made a similar conflation earlier, with a name n
of the nu-calculus being interpreted by the variable n : Name in the metalanguage.

The interpretation respects types and substitution of values:

Lemma 5.7 For any well typed Reduced ML expression M, or expression C in canonical
form: u;� ` M : � () [[u;�]] ` [[M]] : T [[�]]u;� ` C : � () [[u;�]] ` jCj : [[�]]:
Proof By induction over the structure of the type judgement in Reduced ML, using
uniqueness of types in the metalanguage.

7. INTERPRETATION OF REDUCED ML 113

Canonical forms: jxj = x j()j = ()jtruej = tt j3j = 3jfalsej = � jlj = ljfn x:�)Mj = �x:[[�]]:[[M]]
Expressions: [[C]] = [jCj][[if B thenMelseM0]] = let b([[B]] in cond(b; [[M]]; [[M0]])[[N+N0]] = let i([[N]] in let i0([[N0]] in [plus(i; i0)][[N < N0]] = let i([[N]] in let i0([[N0]] in [less(i; i0)][[ref N]] = let i([[N]] in let l(new in (set(l; i); [l])[[!R]] = let l([[R]] in get(l)[[R := N]] = let l([[R]] in let i([[N]] in set(l; i)[[R = R0]] = let l([[R]] in let l0([[R0]] in [eq(l; l0)][[FM]] = let f([[F]] in letm([[M]] in fm
Contexts: [[u;�]] = l1; : : : ; lk : Name; x1 : [[�1]]; : : : ; xn : [[�n]]

where u = fl1; : : : ; lkg� = fx1 : �1; : : : ; xn : �ng
Figure 5.7: Interpretation of Reduced ML in the computational metalanguage

114 CHAPTER 5. A LANGUAGE WITH STORE

Lemma 5.8 If M 2 Exp�(u;�� fx : �g) and C 2 Can�(u;�) then[[u;�]] ` [[M[C=x]]] = [[M]][jCj=x]
in the metalanguage.

Proof By induction on the structure of M, using only the fact that equality in the
metalanguage is a congruence.

Certain definitions are required before we can formulate a notion of correctness for
this translation. Recall the abbreviations from page 46:(6=u) = feq(li; lj) = � j 1 � i < j � kglet (u0 n u)(�!new in e = let l01(new in : : : let l0k0(new in e
where u= fl1; : : : ; lkg and (u0 n u) = fl01; : : : ; l0k0g. Here (6=u) asserts that all the locations

in u are distinct, and let (u0 n u)(�!new in e extends the available locations from u to u0
before computing e. To these we now add:assign hu; si in e = (set(l1; i1); : : : ; set(lk; ik); e)alter hu; si to hu0; s0i in e = let (u0 n u)(�!new in assign hu0; s0i in e
where s= fl1 7! i1; : : : ; lk 7! ikg 2 State(u) and s0 2 State(u0) for some u0� u. Thanks to
the various (SWAP) rules in the metalanguage, the ordering of these sets is not important,
up to provable equality.

We can now state:

Proposition 5.9 (Correctness of Translation) If hu; siM +� hu0; s0i C is an evaluation
judgement of Reduced ML then[[u]]; (6=u) ` assign hu; si in [[M]] = alter hu; si to hu0; s0i in [[C]]
can be proved in the metalanguage.

Proof By structural induction on the derivation of the evaluation judgement. Each of the
rules in Figure 5.3 translates to a derivation provable in the metalanguage; this is all much
the same as Proposition 3.6 for the nu-calculus, and the details are omitted.

Most of the work is done by the rules[[u0]]; (6=u0) ` assign hu0; s0i in e = alter hu0; s0i to hu00; s00i in e0[[u]]; (6=u) ` alter hu; si to hu0; s0i in e = alter hu; si to hu00; s00i in e0 (u � u0)
and [[u]] ` assign hu; si in e = alter hu; si to hu0; s0i in e0[[u]] ` assign hu; si in let x(e in e00 = alter hu; si to hu0; s0i in let x(e0 in e00
both of which follow easily from the definitions of assign and alter . The (FETCH) and
(ALTER) rules accessing the store also use the derived equalities:[[u]] ` assign hu; si in e = alter hu; si to hu; si in e[[u]]; (6=u) ` assign hu; si in get(l) = assign hu; si in [i] s(l) = i[[u]]; (6=u) ` assign hu; si in set(l; i) = assign hu; sfl 7! igi in [()]:
The first of these is trivial, and the other two follow from (READ), (WRITE) and the
various (SWAP) rules of the metalanguage.

7. INTERPRETATION OF REDUCED ML 115

If we assume that the metalanguage is consistent, then the interpretation is adequate
with respect to contextual equivalence in Reduced ML. As with the nu-calculus, this
assumption is justified by the existence of non-trivial categorical models, to be presented
later.

Proposition 5.10 (Adequacy of Translation) If M1;M2 2 Exp�(u;�) are two expres-
sions of Reduced ML, with [[u;�]]; (6=u) ` [[M1]] = [[M2]]
provable in the metalanguage, then they are contextually equivalent u;� ` M1 �� M2.

Proof Suppose that Phh�ii is some program context defined over u. By the composition-
ality of the translation [[�]], and Lemma 5.8 on the substitution of values,[[u]]; (6=u) ` [[Phh(~x)M1ii]] = [[Phh(~x)M2ii]]:
If now s 2 State(u), then there are evaluation judgementshu; siPhh(~x)Miii +bool hui; sii bi
for i = 1; 2 and some b1; b2 2 ftrue; falseg. The correctness result above gives[[u]]; (6=u) ` assign hu; si in [[Phh(~x)Miii]] = alter hu; si to hui; sii in [jbij]
for i = 1; 2, and so[[u]]; (6=u) ` alter hu; si to hu1; s1i in [jb1j] = alter hu; si to hu2; s2i in [jb2j]:
We can apply the (MONO+) rule to obtain[[u]]; (6=u) ` jb1j = jb2j
from which b1 = b2, and so u;� ` M1 �� M2 as required.

The only significant difference between this and the proof of Proposition 3.7 for the
nu-calculus is that instead of (DROP) and (MONO) we needed the stronger (MONO+)
rule for the final step.

Thus we can use the metalanguage to reason about the contextual equivalence of
Reduced ML expressions. This has power similar to the strong applicative equivalence of
Section 5: it has some uses, but is intolerant of garbage. This is improved by the addition
of the rule

(DROP0) � ` i : Int � ` e : TA� ` let n(new in (set(n; i); e) = e
as a replacement for the ordinary (DROP) rule. With (DROP0), reasoning in the meta-
language is like applicative equivalence: it is successful in most cases where dynamically
generated store is used only for temporary variables. Unfortunately, the simpler categorical
models do not satisfy this extra rule.

As with the nu-calculus, directly reasoning in the metalanguage cannot cope with more
subtle interactions of privacy and higher-order functions, represented by example (7) on-
wards. These require particular concrete models, for example using relational techniques,
or perhaps some relational enhancement to the metalanguage. The first of these we discuss
below, the second is work for the future.

116 CHAPTER 5. A LANGUAGE WITH STORE

8 Categorical Models

In Chapter 3 we saw that if a category satisfies certain requirements then it provides a
model for the nu-calculus. Specifically, its internal language will include the computa-
tional metalanguage with names; correctness and adequacy results then carry over from
metalanguage to category. Careful choice of category can prove a range of contextual
equivalences: as with the parametric functor category P from Chapter 4, which uses cat-
egories with relations and is fully abstract at ground and first-order types.

The same method applies in the presence of store: given certain additional conditions,
which correspond to the extra features of the metalanguage for store, a category can be
used to model Reduced ML. Further, it happens that all the categories given earlier, as
models for names, are also suitable to model store, by a general construction.

Recall from Section 4 of Chapter 3 that a category C is suitable to model the meta-
language with names if the following hold:� It is cartesian closed.� It has a strong monad T with units �A : A! TA all monomorphisms.� It has a disjoint coproduct 1 + 1.� There is a distinguished decidable object N .� There is a distinguished morphism new : 1! TN satisfying certain equations.

To model store too, the following requirements are sufficient:� The monad T satisfies the strong mono requirement, that all the strength mapstA;B : A�TB! T (A�B) are monomorphisms. In fact, it is enough to show that
all the tA;1 : A� T1! T (A� 1) are monic. This is equivalent to the (MONO+)
rule for computations, from Figure 5.6.

This property of the monad T does not occur elsewhere in the literature; it would
certainly be interesting to know whether it arises in any other context. Roughly
speaking, it asserts that elements of T -types may have side-effects, but cannot en-
tirely divert the course of computations. Monads for exceptions, or non-termination,
would not satisfy the strong mono requirement.

This condition implies the ordinary mono requirement, that all the unit maps �A :A! TA are monic. Conversely, if C is affine and satisfies the mono requirement,
then it satisfies the strong mono requirement. This corresponds to the metalanguage
derivation of (MONO+) from the (DROP+) and (MONO) rules.� There is a distinguished object I , used to interpret the type of integers. This requires
an accompanying collection of morphisms, including for exampleless : I � I ! 1 + 1; plus : I � I ! I; and 3 : 1! I;
which must satisfy various arithmetic equalities. Equivalently, I must be a ‘natural
numbers object’, a categorical generalisation of N; see [52, p. 269].

8. CATEGORICAL MODELS 117� There are distinguished morphisms get : N ! TI and set : N � I ! T1 such that
the following assertions in the internal language of C are satisfied:n : N; i : I ` let x(set(n; i) in get(n) = let x(set(n; i) in [i]n : N; i; i0 : I ` let x(set(n; i) in set(n; i0) = set(n; i0)n; n0 : N; i; i0 : I ` (eq(n; n0) = �) =)let x(set(n; i) in set(n0; i0)= let x(set(n0; i0) in set(n; i)a : A; n : N; i : I ` let x(set(n; i) in (let n0(new in f(a; n0))= let n0(new in (let x(set(n; i) in f(a; n0)):
In this last equation, f is any morphism A�N ! TB. These are clearly just the
storage rules of Figure 5.6; we could express them by commutative diagrams in C,
but their meaning then disappears in an excess of variable manipulation.

Given such a category C, the embedding of the computational metalanguage as its internal
language proceeds exactly as before. The additional types Unit and Int are interpreted by
the objects 1 and I respectively, and the extra term-forming operations give morphisms
as in Figure 5.8. All the other details are as described earlier, on page 54 and in Fig-
ure 3.5. Any equation provable in the metalanguage for store will hold in the category C;
consequently, any non-degenerate C demonstrates that the metalanguage is consistent.

The translation of the previous section now gives an interpretation of Reduced ML in
the category C. For each expression M 2 Exp�(u;�) there is a morphism[[M]] : N juj � [[�]]! T [[�]] where [[�]] = Yxi:�i2�[[�i]]:
For an expression C in canonical form this morphism factors through � : [[�]]! T [[�]] and
there is jCj : N juj � [[�]]! [[�]] with [[C]] = �[[�]] � jCj:
Here N juj is the object of juj-tuples of names. As with the nu-calculus, we take the
subobject (6=u)� N juj of distinct juj-tuples and define the composite morphisms:[[M]]�;6=u = �(6=u)� [[�]]� N juj � [[�]] [[M]]�! T [[�]]� M 2 Exp�(u;�)jCj�;6=u = �(6=u)� [[�]]� N juj � [[�]] jCj�! [[�]]� C 2 Can�(u;�)[[M]] 6=u = �(6=u)� N juj [[M]]�! T [[�]]� M 2 Exp�(u)jCj 6=u = �(6=u)� N juj jCj�! [[�]]� C 2 Can�(u)

Correctness and adequacy results carry over to the categorical model. To express them
properly, we use the derived morphism constructorse : (6=u)� [[�]]! TAassign hu; si in e : (6=u)� [[�]]! TA (s 2 State(u))

118 CHAPTER 5. A LANGUAGE WITH STORE

� ` () : Unit 7�! ! : �! 1� ` 3 : Int 7�! � !�! 1 3�! I� ` i; i0 : Int� ` plus(i; i0) : Int 7�! i : �! I i0 : �! I� hi;i0i�! I � I plus�! I� ` i; i0 : Int� ` less(i; i0) : Bool 7�! i : �! I i0 : �! I� hi;i0i�! I � I less�! 1 + 1� ` n : Name� ` get(n) : T Int 7�! n : �! N� n�! N get�! TI� ` n : Name � ` i : Int� ` set(n; i) : TUnit 7�! n : �! N i : �! I� hn;ii�! N � I set�! T1
Figure 5.8: Additional morphisms to interpret terms of the metalanguage

9. EXAMPLE CATEGORIES 119

and e0 : (6=u0)� [[�]]! TAalter hu; si to hu0; s0i in e0 : (6=u)� [[�]]! TA (u � u0; s0 2 State(u0)):
These represent exactly the same abbreviations as in the metalanguage: they give compu-
tations that initialise the store before doing their work.

Proposition 5.11 (Correctness) If hu; siM +� hu0; s0i C is an evaluation judgement of
Reduced ML thenassign hu; si in [[M]] 6=u = alter hu; si to hu0; s0i in [[C]] 6=u
as morphisms in category C.

Proof Follows from Proposition 5.9.

Proposition 5.12 (Adequacy) Suppose that C is non-degenerate, in that 0 6�= 1. Then for
all M1;M2 2 Exp�(u;�):[[M1]]�;6=u = [[M2]]�;6=u =) u;� ` M1 �� M2:
Proof Exactly as for Proposition 5.10.

So a non-degenerate category that satisfies certain conditions can be used to model
Reduced ML. It validates reasoning in the metalanguage, and may be used itself to prove
contextual equivalences. Any categorical model will confirm basic examples such as (3),
(4) and (6); more abstract models prove additional equivalences.

9 Example Categories

In the same way that the metalanguage for store is an extension of that for names, all
the categories given earlier as models for the nu-calculus are also suitable to model
Reduced ML. We need simply apply a general side-effects construction outlined by Moggi
in [67, x4.1.2]. Essentially, consideration of the nu-calculus has isolated the problematic
parts of ML references; actual storage of values is straightforward, if a little tedious in
detail.

Suppose that we have a category C with strong monad (T; �; �; t), object of names N
and morphism new suitable to model the nu-calculus. We first require an object I to
interpret the integers. In the category SetI for example, the constant functor to the set Z
will do; or in BG, the set Z with trivial G-action. Based on this, define the state object
to be: S = IN :
For example in SetI , at stage u 2 I we have that Su �= fs j s : (u+ 1)! Zg. The extra1 in the domain of s describes its behaviour at all later stages; this gives a default value
for new cells.

We can now construct another strong monad (T 0; �0; �0; t0) which allows for change
of state. For any object A of C, T 0A = (T (A� S))S

120 CHAPTER 5. A LANGUAGE WITH STORE

and if f : A! B then T 0f = (T (f � S))S : T 0A! T 0B:
This satisfies the strong mono requirement if T does; which is automatic, as all the monads
for names given earlier are both affine and satisfy the ordinary mono requirement.

For example, in SetI an element of T 0Au specifies, for every later stage u0 and states 2 Su0, a result a and final state s0, perhaps at some further stage u00. Functorality adds
a degree of uniformity to this behaviour, as does the quotient from the definition of T .

Using the internal language of the original monad, the morphisms to accompany T
are defined by:a : A ` �0Aa = �s:S:[ha; si] : T 0Ae : T 0(T 0A) ` �0Ae = �s:S:(let he0; s0i(es in e0s0) : T 0Aa : A; e : T 0B ` t0A;Bha; bi = �s:S:let hb; s0i(es in [hha; bi; s0i] : T 0(A�B):
The same object of names N will do, with a different mapnew 0 = �s:S:let n(new in [hn; si] : T 0N:
Notice that this makes no mention of initialisation. In fact in a category such as SetI , every
element of the state object S will have some default value for new cells. However, this
plays no part in the interpretation of Reduced ML, because the expression (ref i) always
provides an initial value.

Manipulation of store is effected by the following maps:n : N ` get(n) = �s:S:[hsn; si] : TIn : N; i : I ` set(n; i) = �s:S:[h(); �n0:N:cond (eq(n0; n); i; sn0)i] : T1:
Here get simply looks up the value associated with the name n in state s, while set creates
a modified state, which differs from s only at the name n. The various equalities that new 0,get and set must satisfy follow directly from their definitions and the given properties ofnew . Thus in C we have a model of Reduced ML, with store managed in a simple way
and the original monad T dealing with dynamic creation of cells.

This applies to all the the categories that Chapter 3 introduces: SetI , the atomic
topos A, and continuous G-sets BG. As it happens, these do not give particularly abstract
models; they validate all reasoning in the metalanguage but go no further. They even fail
to confirm the equivalence

2. u;� ` let val r = ref i inM end �� M i 2 Z; r =2 fv(M):
Although the name creation monad T in these models will factor out all unused names,
the cell r is touched once, when it is initialised with the value i.

Working over categories with relations, the parametric functor category P , from
Section 4 of Chapter 4, is rather better. The model of Reduced ML in P confirms
equivalences (2)–(7), (11) and any others where dynamically generated store is used only
for temporary variables. The relations that do this are exactly as for the nu-calculus: spans
that identify common visible locations, and ignore private locations.

9. EXAMPLE CATEGORIES 121

To make this model still more abstract, we have to adjust the detailed construction
of T 0 from T . The simplest approach here would be to replace S = IN with some
more sophisticated state object, perhaps with extra relational structure. This mirrors the
development of operational logical relations based on state, as described in Section 5. It
seems that this should be enough to construct a model that validates all the equivalences
of Section 4, with no need to go outside the 2-categorical structure of categories with
relations.

Sieber, in [117], has an impressive full abstraction result for certain models of store
in Algol-like languages, up to second-order types. This uses a sophisticated relational
structure over stores, and has similarities to the functor categories described above. It is not
yet known whether this result can be carried over to models for references in Reduced ML,
nor how powerful it might be there.

Chapter 6

Conclusion

In this final chapter we outline possibilities for further research, describe other published
work in the same area, and summarise the results of the dissertation.

1 Directions for Future Research

There are several lines of inquiry that follow on from the work in this dissertation, some
that strengthen existing results and others that suggest new ones. We first look at ideas for
the nu-calculus and names in general, and then discuss extensions to the work of Chapter 5
on ML-style references.

1.1 The Nu-Calculus

The methods we have developed here are sufficient to prove all the contextual equivalences
presented in Section 5 of Chapter 2; yet none are complete, or can express the equivalence��!�0 simply in terms of �� and ��0 . We do not know whether the metalanguage can be
made complete for reasoning about contextual equivalence, and we have no fully abstract
categorical model. A solution to any of these problems would neatly round off the theory
of the nu-calculus.

One possibility is to adapt O’Hearn and Riecke’s recent fully abstract model of PCF,
which is based on Jung and Tiuryn’s logical relations of varying arity [80, 36]. Another
approach is to construct a category from the types and expressions of the nu-calculus itself,
in the style of Milner’s term model for the simply-typed lambda-calculus [59]. Here full
abstraction is immediate as contextual equivalence is built in from the start; however there
are complications, in particular the need for equalizers in the category.

The requirements given in Chapter 3 for a categorical model of the nu-calculus are
sufficient but perhaps a little arbitrary, and this might be improved. For example, it may
be that if a category C has a strong monad T , then the object of names N and morphismnew are characterised by some universal property, as with a natural numbers object [42].
The first example of a model was in SetI , and it could be significant that this category is
symmetric monoidal closed, with a multiplication ‘
’ and exponential ‘(’ derived from
the operation ‘+’ on I . Such structure captures notions of support and non-interference
between terms, but it remains to be seen whether this can be generalised.

The success of logical relations suggests that it might be good to add them to the meta-
language, following Plotkin and Abadi’s logic for relational parametricity in System F [97].

122

1. DIRECTIONS FOR FUTURE RESEARCH 123

The idea is that this would match the ease of equational reasoning with the power of logical
relations.

A logic of properties for the nu-calculus would characterise expressions by the prop-
erties that they satisfy, so for example(fng ! ftrueg) ^ (fn0g ! ffalseg)
might specify how a function of type (� ! o) treats the names n and n0. This is based on
the process logics of concurrency theory, with a duality between axiomatic and denotational
views of properties [27, 3]. The treatment of new names is problematic; one possibility
is to define quantifiers8n:� ‘for all (fresh) names n, � holds’9n:� ‘for some (private) name n, � holds’

but it is not clear how best to formalise these.
The definition of the monad T for the parametric functor category P of Chapter 4 is

strikingly similar to Plotkin and Abadi’s proof rule for existential types in System F [97].
There is in fact a common origin in Reynolds’ notion of ‘relational parametricity’, but there
may also be a closer connection in the form of a direct translation of the nu-calculus into
System F. This would use an existential type, or possibly a bounded existential, to conceal
the generation of new names [65, 14]. O’Hearn and Riecke have used polymorphism, in
a different way, to interpret Algol-like state [79]; Launchbury and Peyton-Jones have also
suggested existentials to manage state in Haskell [45].

Quite separate from the refinements of nu-calculus reasoning are the applications to
other areas. We have already looked at references in ML, but exceptions, datatypes and
structures are dynamically generated too. The same methods may help with models of
names in the pi-calculus, or the ‘of course’ modality from linear logic [61, 6].

A final possibility is that the metalanguage for names of Chapter 3 could be reused
to interpret a lazy nu-calculus, with [[� ! �0]] = T [[�]]! T [[�0]] for call-by-name function
types. The (DROP) and (SWAP) rules then express precisely how abstract names transcend
the vagaries of evaluation order in a lazy language.

1.2 Reduced ML

Chapter 5 outlines a number of methods for reasoning about references in Reduced ML;
the most promising are operational logical relations based on state and models that use
categories with relations. An immediate task is to investigate these further, to establish
their strengths and identify their limitations.

In traditional imperative languages almost all uses of assignment are mundane and
predictable, even trivial. One of the triumphs of functional programming is that these are
eliminated; as a consequence, only the interesting uses of store remain. Reference types
in Standard ML can for example be used:� as local ‘own’ variables, persisting over several invocations of a function;� as variables shared between functions in a package;� to encapsulate state within an object of user defined type;

124 CHAPTER 6. CONCLUSION� as pointers within a graph or similar data structure.

The examples of Chapter 5 only begin to illustrate these possibilities, and the development
of reasoning systems must go hand in hand with work on using the full power of references.
The interaction with higher-order functions is particularly important: the memo and pro�le
examples are just a start in the right direction.

The step from Reduced ML to the full language has several effects on references,
including:� storage of values of function type;� recursively defined functions that use store;� recursively defined (user declared) datatypes that incorporate store.

In combination these create considerable difficulties for reasoning and the construction of
models. Nevertheless the work on Reduced ML — in particular the identification of some
categorical requirements for a model of store — should provide a good foundation for
future efforts.

2 Related Work

There is a considerable body of work on the subject of functional programming and state;
much of it concerned with store, and a little with the issue of names. This section surveys
just a sample of the approaches taken, and most of the items cited contain further useful
references.

Odersky has developed a theory �� that adds local names to the lambda-calculus, and
preserves all existing contextual equivalences [74, 75]. Syntactically this language is very
like the nu-calculus; differences are that �� is untyped and has a call-by-name reduction
strategy, with the possibility of ‘stuck’ terms. So, taking example (10) of Chapter 2, in ��
the expression (�x:x == x)(�n:n) reduces first to �n:n == �n:n and is then stuck; the
equivalent nu-calculus expression evaluates to true . Odersky works around the limited
scope of names by using a continuation-passing style of programming; he also shows how
monadic ‘state transformers’ can be combined with names to code extensible store.

Odersky, Rabin and Hudak earlier proposed a language �var which adds variables and
assignment to the lambda-calculus [76]. As with ��, this has the strong property that every
contextual equivalence of the lambda-calculus also holds in the extended system.

Augustsson, Rittri and Synek describe a method for distributing a supply of names
around a functional program using a binary tree [9]. This is a convenient structure, but
still requires an imperative gensym for a practical implementation.

Demers and Donahue have given an equational theory for the Russell language [16],
and Boehm has described an axiomatic method for reasoning about side-effects there [12,
13]. However, although Russell has both higher-order functions and storage cells, their
interaction is sharply constrained by the ‘import rule’.

Mason and Talcott have developed operational methods for reasoning about LISP
programs in [54, 55] and, with Honsell and Smith, in [30]. They consider an untyped
language with call-by-value semantics and dynamically generated mutable cells. There
are substantial example proofs of program equivalences in Mason’s thesis [53], though the

2. RELATED WORK 125

techniques described are restricted to the language without lambda abstraction or higher-
order functions. Mason’s notion of ‘strong isomorphism’ compares with our applicative
equivalence for Reduced ML, as applied to ground types.

Felleisen and others have added variable assignment and control operators to the call-
by-value lambda-calculus [21, 20]. They present a syntactic, equational theory for the
lambda-calculus, and show that it can be extended with certain axioms for reasoning about
state.

The Imperative Lambda Calculus of Swarup, Reddy and Ireland [123, 124] is a typed
lambda-calculus with references and state. The type system has three distinct layers:
applicative, mutable and observer types. This makes a clear distinction between imperative
and applicative programming styles.

Riecke has proposed the use of an ‘effects delimiter’ to manage imperative additions
to a functional language [111]; this ensures that particular pieces of code can be treated as
if they were purely functional. Gifford and Lucassen’s ‘effect system’ is a more detailed
technique that annotates types to record and control possible side-effects [49].

The introduction to Chapter 5 has already described Reynolds’ ‘Algol-like’ languages,
and how they compare with Reduced ML. Work on semantics for local variables in this
setting has included functor categories [87, 88, 81, 127], categories with relations [82, 83],
logical relations [116, 117] and parametric polymorphism [79]. The Algol type system
makes a clear distinction between commands, which alter the state, and expressions, which
return values. This separation has motivated attempts to formally constrain the use of
state, as in Reynolds’ ‘specification logic’ [106, 108, 126, 84] and ‘syntactic control of
interference’ [105, 110, 125, 78].

Various methods have been proposed for carrying out stateful programming in the
purely functional language Haskell. Wadler suggests the use of monads to structure func-
tional programs in ways that simulate features such as global state or exception han-
dlers [133, 134, 135]. Hudak’s ‘mutable abstract datatypes’ [32] encode state-like objects
using various techniques, including monadic and continuation-passing styles. Given a set
of axioms with a certain linearity property, they can then be implemented efficiently using
in-place update.

Most recently Launchbury and Peyton Jones have proposed an ingenious use of
polymorphic types that wraps up ‘state transformers’ and presents them as pure func-
tions [89, 43, 44, 45]. This allows efficient implementation without compromising full
use of higher-order functions and lazy evaluation. It is even possible to wrap up calls to
C code so that they appear functional and are executed lazily.

This work on state in Haskell is impressive, but somewhat orthogonal to the results
of this dissertation; it seeks to hide state rather than understand it. As Launchbury and
Peyton Jones point out [45, x10], some of the most interesting uses of state, including a
distributed name supply, cannot be entirely concealed. Their approach is to use the unsafeinterleaveST combinator; our results on names are the kind of reasoning that shows when
this is acceptable.

Many people have paid particular attention to the issue of update-in-place and asso-
ciated efficiences of implementation. Examples include the ‘unique’ types of Clean [11],
Guzman and Hudak’s single-threaded lambda-calculus [26], and numerous applications of
linear logic [5, 29, 41, 136, 137]. This work gives useful insights into the way functional
languages make use of the store available to them; it is however quite distinct from the aim
of this dissertation, which is to look at names and references as convenient and powerful

126 CHAPTER 6. CONCLUSION

programming constructs in their own right, independent of implementation details.

3 Summary of Results

In this dissertation we have used the nu-calculus, a small experimental language, to ex-
plore the interaction between higher-order functions and dynamically generated names.
Contextual equivalence between expressions of the nu-calculus has provided our bench-
mark measure of their behaviour; we have described a collection of examples, and have
put forward a number of techniques for proving them.

Interesting properties of names in the nu-calculus include their generativity and scop-
ing, together with the issues of privacy and visibility. Contextual equivalence can capture
all of these, but it is a difficult relation to demonstrate directly. To remedy this, the major
part of this dissertation has comprised the development of some practical proof methods.� A context lemma that reduces the range of settings in which expressions must be

tested for equivalence.� Applicative equivalence, an operational relation that is easy to demonstrate and
proves a range of basic contextual equivalences.� A translation from the nu-calculus to a computational metalanguage for names. This
allows equational reasoning with similar power to applicative equivalence.� A general scheme for categorical models using a strong monad, with two particular
examples: the functor category SetI and the category BG of continuous G-sets.� Operational logical relations, a more sophisticated technique that distinguishes be-
tween private and public uses of names. This is complete for proving contextual
equivalence up to first-order types.� A model P based on categories with relations. This has close links to operational
logical relations, and is fully abstract at ground and first-order types.� Predicated logical relations, an operational method that uses a finer analysis of how
names are used, to prove even more contextual equivalences than logical relations
alone.

For each of these methods we have described a proof of correctness, and have investigated
the range of contextual equivalences validated.

We have also demonstrated how the same techniques can be applied to generative
features within a larger programming language, specifically integer references in a subset
of Standard ML. Both operational and denotational methods can be smoothly extended to
handle store; we have given various uses of logical relations and have described in outline
some examples of categorical models.

In summary, this work has shown that dynamically generated names can be added
to a functional language in a safe and well-behaved way. Their combination with higher-
order functions exhibits subtle and interesting behaviour, and we have developed powerful
methods for reasoning about this. We have also outlined how the same approach may work
for the extensible, mutable store of Standard ML.

3. SUMMARY OF RESULTS 127

Names and ML-style references have generally been regarded as ‘impure’ language
features. In the light of this dissertation, and other similar work, there is every prospect
that they can be brought within the fold as powerful and intuitive programming constructs,
suitable for clear and safe use in any functional language.

Appendix A

The Meyer-Sieber Examples

Meyer and Sieber, in [57], give a series of examples that illustrate the behaviour of local
store in an Algol-like language. For convenience these are reproduced here as MS1–
MS7. Further details can be found in the original paper, which also presents an ‘invariant-
preserving’ model that validates all but the final example.

Corresponding to contextual equivalence, some of the examples use a notion of
‘observational congruence’ between expressions. Others assert that a particular block
of code always diverges; equivalently, that it is observationally congruent to a diverge
command.

MS1 The block below can be replaced by the call to P .beginnew x;P % P is declared elsewhereend
MS2 The block below always diverges.beginnew x;x := 0;P ;if contents(x) = 0 then diverge �end
In both these examples, the local variable x is invisible to the procedure P .

MS3 The blocks begin new x; new y; x := 0; Q(x; y) end
and begin new x; new y; x := 0; Q(y; x) end
are observationally congruent. Here Q cannot distinguish the local variables x and y, and
must treat them uniformly.

128

129

MS4 The block below always diverges.beginnew x; new y;procedureTwice; begin y := 2 � contents(y) end;x := 0; y := 0;Q(Twice); % Q is declared elsewhereif contents(x) = 0 then diverge �end
In this example Q is only able to access the variable y, and not x. Rather confusingly,
it happens that the procedure Q cannot in fact change the value of y from zero anyhow,
due to the unfortunate choice of initial value; starting with y := 1 would perhaps make
the example clearer.

MS5 The block below always diverges.beginnew x;procedureAdd 2 ; % Add 2 is the ability to add 2 to xbegin x := contents(x) + 2 end;x := 0;Q(Add 2); % Q is declared elsewhereif contents(x) mod 2 = 0 then diverge �end
Here the external procedure Q is given the power to change x, but only in increments of
two. Thus the contents of x remains even.

MS6 The block below always diverges.beginnew x;procedureAlmostAdd 2 (z);begin if z = x then x := 1 else x := contents(x) + 2 � end;x := 0;P (AlmostAdd 2);if contents(x) mod 2 = 0 then diverge �end
The test z = x here compares locations, rather than their contents. As P does not know
of x, the conditional in AlmostAdd 2 always takes the else branch.

130 APPENDIX A. THE MEYER-SIEBER EXAMPLES

MS7 The blockbeginnew x;procedureAdd 1 ; begin x := contents(x) + 1 end;P (Add 1)end
and the block beginnew x;procedureAdd 2 ; begin x := contents(x) + 2 end;P (Add 2)end
are observationally congruent. The procedure calls P (Add 1) and P (Add 2) differ only
in their effect on x; for while they can alter the variable, they cannot read it. As x is then
immediately deallocated, the two blocks are equivalent.

Bibliography

[1] Applications of Categories in Computer Science: Proceedings of the LMS Sym-
posium, Durham 1991. London Mathematical Society Lecture Note Series 177.
Cambridge University Press, 1992. (pp. 136, 138)

[2] M. Abadi and G. Plotkin. Arities in relational parametricity. Unpublished preprint,
November 1993. (p. 70)

[3] S. Abramsky. Domain Theory and the Logic of Observable Properties. PhD thesis,
Queen Mary College, University of London, October 1987. (pp. 33, 123)

[4] S. Abramsky. The lazy lambda calculus. In Research Topics in Functional
Programming, pages 65–117. Addison Wesley, 1990. (pp. 2, 8, 32)

[5] S. Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993. (p. 125)

[6] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. Technical Report 92/24, Department of Computing, Imperial College,
September 1992. (p. 123)

[7] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
(p. 5)

[8] L. Augustsson. A compiler for Lazy ML. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, pages 218–227. ACM Press,
1984. (p. 3)

[9] L. Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal of
Functional Programming, 4:117–123, January 1994. (p. 124)

[10] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics 103. North Holland, 1984. (p. 2)

[11] E. Barendsen and J. E. W. Smetsers. Conventional and uniqueness typing in graph
rewriting. In Proceedings of the 13th Conference on the Foundations of Software
Technology and Theoretical Computer Science, Lecture Notes in Computer Science
761. Springer-Verlag, 1993. (p. 125)

[12] H.-J. Boehm. A Logic for the Russell Programming Language. PhD thesis, Cornell
University, Ithaca, New York, February 1984. Also published as Technical Report
84-593, Department of Computer Science, Cornell University. (p. 124)

131

132 BIBLIOGRAPHY

[13] H.-J. Boehm. Side effects and aliasing can have simple axiomatic descriptions. ACM
Transactions on Programming Languages and Systems, 7(4):637–655, October
1985. (p. 124)

[14] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4), December 1985. (p. 123)

[15] J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall,
1980. (p. 6)

[16] A. J. Demers and J. E. Donahue. Making variables abstract: An equational theory
for Russell. In Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages, pages 59–72. ACM Press, January 1983.
Also published as Technical Report 82-534, Department of Computer Science,
Cornell University. (p. 124)

[17] J. Fairbairn. Ponder and its type system. Technical Report 31, University of
Cambridge Computer Laboratory, November 1982. (p. 5)

[18] J. Fairbairn. Design and Implementation of a Simple Typed Language based on the
Lambda-Calculus. PhD thesis, University of Cambridge, May 1984. Also published
as Technical Report 75, University of Cambridge Computer Laboratory. (p. 5)

[19] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine and the�-calculus. In Formal Description of Programming Concepts III, pages 193–217.
North Holland, 1986. (p. 19)

[20] M. Felleisen and D. P. Friedman. A syntactic theory of sequential state. Theoretical
Computer Science, 69:243–287, 1989. (p. 125)

[21] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequen-
tial control and state. Theoretical Computer Science, 103:235–271, 1992. Also
published as Technical Report 100-89, Rice University. (p. 125)

[22] Functional Programming Languages and Computer Architecture: Proceedings of
the 5th ACM Conference, Cambridge, MA, USA, August 26–30, 1991, Lecture Notes
in Computer Science 523. Springer-Verlag, 1991. (pp. 139, 140)

[23] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arith-
métique d’ordre supérieur. Thése de doctorat d’état, Université Paris VII, 1972.
(p. 5)

[24] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7. Cambridge University Press, 1989. (p. 5)

[25] A. D. Gordon. Functional Programming and Input/Output. Cambridge University
Press, September 1994. (pp. 1, 27, 32, 33, 106)

[26] J. C. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 333–345. IEEE Computer Society Press, 1990. (p. 125)

BIBLIOGRAPHY 133

[27] M. Hennessey. Algebraic Theory of Processes. MIT Press, 1989. (p. 123)

[28] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, October 1969. (p. 6)

[29] S. Holmström. A linear functional language. In Proceedings of the Aspenæs Work-
shop on Implementation of Lazy Functional Languages, Report 53, Programming
Methodology Group, University of Göteborg and Chalmers University of Technol-
ogy, pages 13–52, 1988. (p. 125)

[30] F. Honsell, I. A. Mason, S. Smith, and C. Talcott. A variable typed logic of effects,
1993. To appear in Information and Computation. (pp. 27, 101, 124)

[31] D. Howe. Equality in lazy computation systems. In LICS ’89 [47], pages 198–201.
(pp. 32, 33, 106)

[32] P. Hudak. Mutable abstract datatypes. Research Report YALEU/DCS/RR-914, Yale
University Department of Computer Science, 1992. (p. 125)

[33] P. Hudak, S. Peyton Jones, P. Wadler, et al. Report on the programming language
Haskell – a non-strict, purely functional language (version 1.2). ACM SIGPLAN
Notices, 27(5), May 1992. (p. 2)

[34] G. Hutton. Higher-order functions for parsing. Journal of Functional Programming,
2(3):323–343, July 1992. (p. 5)

[35] M. P. Jones. An introduction to Gofer. Included as part of the distribution for Gofer
version 2.30a, June 1994. (p. 2)

[36] A. Jung and J. Tiuryn. A new characterization of lambda definability. In TLCA ’93
[129], pages 245–257. (pp. 91, 122)

[37] G. M. Kelly and R. H. Street. Review of the elements of 2-categories. In
Proceedings of the Sydney Category Theory Seminar, Lecture Notes in Mathematics
420, pages 75–103. Springer-Verlag, 1974. (p. 78)

[38] D. J. King and J. Launchbury. Functional graph algorithms with depth-first search.
In Proceedings of the 1993 Glasgow Workshop on Functional Programming, pages
145–155. Springer-Verlag, July 1993. (p. 2)

[39] A. Kock. Monads on symmetric monoidal closed categories. Archiv der Mathe-
matik, XXI:1–10, 1970. (p. 53)

[40] A. Kock. Bilinearity and cartesian closed monads. Mathematica Scandinavica,
29:161–174, 1971. (p. 53)

[41] Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180,
1988. (p. 125)

[42] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge Studies in Advanced Mathematics 7. Cambridge University Press, 1986.
(pp. 7, 51, 122)

134 BIBLIOGRAPHY

[43] J. Launchbury. Lazy imperative programming. In SIPL ’93 [118], pages 46–56.
(p. 125)

[44] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. In Proceedings
of the 1994 ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, 1994. (p. 125)

[45] J. Launchbury and S. L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 1995. To appear. (pp. 123, 125)

[46] A. F. Lent. The category of functors from state shapes to bottomless CPOs is
adequate for block structure. In SIPL ’93 [118], pages 101–119. (p. 93)

[47] Proceedings of the Fourth Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1989. (pp. 133, 135)

[48] C. H. Lindsay and S. G. van der Meulen. Informal Introduction to Algol 68. North
Holland, Amsterdam, 1980. (p. 5)

[49] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL ’88 [99],
pages 47–57. (p. 125)

[50] Q. Ma and J. C. Reynolds. Types, abstraction, and parametric polymorphism, part 2.
In Mathematical Foundations of Programming Semantics: Proceedings of the 7th
International Conference, Lecture Notes in Computer Science 598, pages 1–40.
Springer-Verlag, 1992. (p. 8)

[51] S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics 5. Springer-Verlag, 1971. (p. 7)

[52] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Springer-Verlag, 1992. (pp. 7, 59, 63, 116)

[53] I. A. Mason. The Semantics of Destructive Lisp. PhD thesis, Stanford University,
1986. Also published as CSLI Lecture Notes Number 5, Center for the Study of
Language and Information, Stanford University. (p. 124)

[54] I. A. Mason and C. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1(3):297–327, July 1991. (pp. 107, 124)

[55] I. A. Mason and C. Talcott. Inferring the equivalence of functional programs that
mutate data. Theoretical Computer Science, 105:167–215, 1992. (pp. 107, 124)

[56] D. C. J. Matthews. Programming Language Design with Polymorphism. PhD thesis,
University of Cambridge, 1983. Also published as Technical Report 49, University
of Cambridge Computer Laboratory. (p. 5)

[57] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables:
Preliminary report. In POPL ’88 [99], pages 191–203. (pp. 93, 102, 128)

[58] Mathematical Foundations of Computer Science: Proceedings of the 18th Inter-
national Symposium MFCS ’93, Gdańsk, Poland, August 30–September 3, 1993,
Lecture Notes in Computer Science 711. Springer-Verlag, 1993. (pp. 137, 140)

BIBLIOGRAPHY 135

[59] R. Milner. Fully abstract models of typed �-calculi. Theoretical Computer Science,
4:1–22, 1977. (pp. 6, 7, 26, 122)

[60] R. Milner. Elements of interaction. Communications of the ACM, 36(1):78–89,
January 1993. Turing Award lecture. (p. 4)

[61] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II.
Information and Computation, 100:1–77, 1992. (pp. 4, 123)

[62] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990. (pp. 3, 11, 99)

[63] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. In
Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science,
pages 303–314. IEEE Computer Society Press, 1987. (p. 57)

[64] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Annals
of Pure and Applied Logic, 51:99–124, 1991. (p. 57)

[65] J. C. Mitchell and G. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470–502, July 1988.
(p. 123)

[66] E. Moggi. Computational lambda-calculus and monads. In LICS ’89 [47], pages
14–23. (pp. 8, 37)

[67] E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Laboratory for Foundations of Computer Science, University of
Edinburgh, April 1990. (pp. 8, 37, 57, 119)

[68] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, July 1991. (pp. 8, 37, 43, 51, 52, 79)

[69] E. Moggi. A semantics for evaluation logic, 1993. To appear in Fundamenta
Informaticae. (p. 59)

[70] J. H. Morris. Lambda Calculus Models of Programming Languages. PhD thesis,
Massachusets Institute of Technology, 1968. (p. 6)

[71] P. Naur et al. Revised report on the algorithmic language Algol 60. Communications
of the ACM, 6(1):1–17, January 1963. (p. 4)

[72] G. Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.
(p. 5)

[73] F. Nielson and H. R. Nielson. Layered predicates. In Proceedings of the 1992
Workshop on Semantics: Foundations and Applications, Lecture Notes in Com-
puter Science 666, pages 425–456. Springer-Verlag, 1992. Also published as Tech-
nical Report DAIMI PB-423, Computer Science Department, Aarhus University.
(p. 91)

[74] M. Odersky. A syntactic theory of local names. Research Report YALEU/DCS/RR-
965, Yale University Department of Computer Science, May 1993. (p. 124)

136 BIBLIOGRAPHY

[75] M. Odersky. A functional theory of local names. In Conference Record of
POPL ’94: 21st ACM Symposium on Principles of Programming Languages, pages
48–59. ACM Press, 1994. (p. 124)

[76] M. Odersky, D. Rabin, and P. Hudak. Call-by-name, assignment, and the lambda
calculus. In POPL ’93 [100], pages 43–56. (p. 124)

[77] P. W. O’Hearn. Linear logic and interference control (preliminary report). In
Category Theory and Computer Science 1991, Lecture Notes in Computer Science
530, pages 74–93. Springer-Verlag, 1991. (p. 93)

[78] P. W. O’Hearn. A model for syntactic control of interference. Mathematical
Structures in Computer Science, 3:435–465, 1993. (pp. 93, 125)

[79] P. W. O’Hearn and J. G. Riecke. Fully abstract translations and parametric poly-
morphism. In Programming Languages and Systems — ESOP ’94, Lecture Notes
in Computer Science 788, pages 454–468. Springer-Verlag, 1994. (pp. 123, 125)

[80] P. W. O’Hearn and J. G. Riecke. Kripke logical relations and PCF, June 1994.
Submitted to Information and Computation. (pp. 91, 122)

[81] P. W. O’Hearn and R. D. Tennent. Semantics of local variables. In Applications of
Categories in Computer Science 1991 [1], pages 217–238. (pp. 57, 93, 125)

[82] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. Technical
Report SU-CIS-93-30, School of Computer and Information Science, Syracuse
University, October 1993. (pp. 8, 78, 93, 103, 108, 125)

[83] P. W. O’Hearn and R. D. Tennent. Relational parametricity and local variables
(preliminary report). In POPL ’93 [100], pages 171–184. (pp. 8, 93, 125)

[84] P. W. O’Hearn and R. D. Tennent. Semantical analysis of specification logic, part 2.
Information and Computation, 107(1):25–57, November 1993. (pp. 93, 125)

[85] A. Ohori. Representing object identity in a pure functional language. In ICDT ’90:
Proceedings of the Third International Conference on Database Theory, Lecture
Notes in Computer Science 470. Springer-Verlag, 1990. (p. 4)

[86] C. Okasaki. Simple and efficient purely functional queues and deques. Journal of
Functional Programming, 1994. To appear. (p. 2)

[87] F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming
Languages. PhD thesis, Syracuse University, 1982. (pp. 93, 125)

[88] F. J. Oles. Type algebras, functor categories and block structure. In M. Nivat and
J. Reynolds, editors, Algebraic Methods in Semantics, pages 543–573. Cambridge
University Press, 1985. (pp. 57, 93, 125)

[89] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In POPL ’93
[100], pages 71–84. (p. 125)

BIBLIOGRAPHY 137

[90] A. M. Pitts. Evaluation logic. In IVth Higher Order Workshop, Banff 1990,
pages 162–189. Springer-Verlag, 1991. Also published as Technical Report 198,
University of Cambridge Computer Laboratory. (pp. 8, 37, 39)

[91] A. M. Pitts and I. Stark. Observable properties of higher order functions that
dynamically create local names, or: What’s new? In MFCS ’93 [58], pages 122–
141. (pp. -5, 33)

[92] A. M. Pitts and I. Stark. On the observable properties of higher order functions
that dynamically create local names (preliminary report). In SIPL ’93 [118], pages
31–45. (pp. -5, 33)

[93] A. M. Pitts, I. Stark, and V. de Paiva. State and monadic ML. In preparation, 1995.
(p. 107)

[94] G. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Computer
Science, 1:125–159, 1975. (pp. 6, 19, 20, 24)

[95] G. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977. (pp. 6, 7)

[96] G. Plotkin. Lambda-definability in the full type heirarchy. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 363–373. Academic Press, 1980. (pp. 8, 33)

[97] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In TLCA ’93 [129],
pages 361–375. (pp. 5, 70, 122, 123)

[98] C. G. Ponder, P. McGeer, and A. P. Ng. Are applicative languages inefficient? ACM
SIGPLAN Notices, 23(6):135–139, June 1988. (p. 2)

[99] Conference Record of the Fifteenth Annual ACM Symposium on Principles of
Programming Languages, San Diego, January 1988. ACM Press, 1988. (p. 134)

[100] Conference Record of the Twentieth Annual ACM Symposium on Principles of
Programming Languages, Charleston, South Carolina, January 1993. ACM Press,
1993. (p. 136)

[101] U. S. Reddy. Global state considered unnecessary. In SIPL ’93 [118], pages 120–
135. (p. 93)

[102] U. S. Reddy. Passivity and independence. In Proceedings of the Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 342–352. IEEE Computer Society
Press, 1994. (p. 93)

[103] J. C. Reynolds. GEDANKEN — A simple typeless language based on the prin-
ciple of completeness and the reference concept. Communications of the ACM,
13(5):308–319, May 1970. (p. 5)

[104] J. C. Reynolds. Towards a theory of type structure. In Paris Colloquium on
Programming, Lecture Notes in Computer Science 19, pages 408–425. Springer-
Verlag, April 1974. (p. 5)

138 BIBLIOGRAPHY

[105] J. C. Reynolds. Syntactic control of interference. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, pages 39–46.
ACM Press, 1978. (p. 125)

[106] J. C. Reynolds. The Craft of Programming. Prentice Hall, 1981. (p. 125)

[107] J. C. Reynolds. The essence of Algol. In Proceedings of the 1981 International Sym-
posium on Algorithmic Languages, pages 345–372. North Holland, 1981. (pp. 4,
5, 57, 93)

[108] J. C. Reynolds. Idealized Algol and its specification logic. In D. Néel, editor,
Tools and Notions for Program Construction, pages 121–161. Cambridge University
Press, 1982. (p. 125)

[109] J. C. Reynolds. Types, abstraction and parametric polymorphism. In Information
Processing ’83, pages 513–523. North Holland, 1983. (p. 8)

[110] J. C. Reynolds. Syntactic control of interference, part II. In Proceedings of
ICALP ’89, Lecture Notes in Computer Science 372, pages 704–722. Springer-
Verlag, 1989. (p. 125)

[111] J. G. Riecke. Delimiting the scope of effects. In FPCA ’93: Conference on
Functional Programming Languages and Computer Architecture, pages 146–155.
ACM Press, 1993. (p. 125)

[112] J. G. Riecke. Fully abstract translations between functional languages. Mathemat-
ical Structures in Computer Science, 1995. To appear. (p. 2)

[113] E. Ritter and A. M. Pitts. A fully abstract translation between a �-calculus with
reference types and Standard ML. In Typed Lambda Calculi and Applications:
TLCA ’95. Springer-Verlag Lecture Notes in Computer Science, 1995. To appear.
(pp. 99, 106)

[114] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style.
Lisp and Symbolic Computation, 6(3/4):287–358, 1993. (p. 24)

[115] K. Sieber. Reasoning about sequential functions via logical relations. In Applica-
tions of Categories in Computer Science 1991 [1], pages 258–269. (p. 8)

[116] K. Sieber. New steps towards full abstraction for local variables. In SIPL ’93 [118],
pages 88–100. (pp. 93, 125)

[117] K. Sieber. Full abstraction for the second order subset of an Algol-like lan-
guage (preliminary report). Technical Report A 01/94, Universität des Saarlandes,
Saarbrücken, January 1994. (pp. 93, 108, 121, 125)

[118] Proceedings of the ACM SIGPLAN Workshop on State in Programming Languages,
Copenhagen, Denmark, June 12, 1993, Yale University Department of Computer
Science Research Report YALEU/DCS/RR-968, 1993. (pp. 134, 137, 138)

[119] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing, 11(4):761–783, November 1982. (p. 7)

BIBLIOGRAPHY 139

[120] I. Stark. Categorical models for local names. Lisp and Symbolic Computation,
1995. To appear. (p. -5)

[121] R. Statman. Completeness, invariance and �-definability. Journal of Symbolic
Logic, 47:17–26, 1982. (p. 8)

[122] J. E. Stoy. Denotational Semantics: the Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1977. (p. 7)

[123] V. Swarup and U. S. Reddy. A logical view of assignments. In Constructivity in
Computer Science 1991, Lecture Notes in Computer Science 613. Springer-Verlag,
1991. (p. 125)

[124] V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative languages. In
FPCA ’91 [22], pages 192–214. (p. 125)

[125] R. D. Tennent. Semantics of interference control. Theoretical Computer Science,
27:297–310, 1983. (pp. 93, 125)

[126] R. D. Tennent. Semantical analysis of specification logic. Information and Com-
putation, 85(2):135–162, 1990. (pp. 93, 125)

[127] R. D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.
(pp. 93, 125)

[128] M. Tillotson. Introduction to the functional programming language “Ponder”.
Technical Report 65, University of Cambridge Computer Laboratory, May 1985.
(p. 2)

[129] Typed Lambda Calculi and Applications: Proceedings of TLCA ’93, March 16–18,
1993, Utrecht, the Netherlands, Lecture Notes in Computer Science 664. Springer-
Verlag, 1993. (pp. 133, 137)

[130] D. A. Turner. Miranda: a non-strict functional language with polymorphic types� .
In Functional Programming Languages and Computer Architecture 1985, Lecture
Notes in Computer Science 201, pages 1–16. Springer-Verlag, 1985. (p. 2)

[131] R. van der Linden. The ANSA naming model. Architecture Report APM.1003.01,
Architecture Projects Management Ltd., Cambridge, UK, July 1993. (p. 4)

[132] A. van Wijngaarden et al. Revised Report On the Algorithmic Language Algol 68.
Springer, 1976. (p. 5)

[133] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science,
2:461–493, 1992. (pp. 3, 125)

[134] P. Wadler. The essence of functional programming. In Conference Record of the
Nineteenth Annual ACM Symposium on Principles of Programming Languages,
pages 1–14. ACM Press, 1992. (pp. 3, 125)�Miranda is a trademark of Research Software Limited

140 BIBLIOGRAPHY

[135] P. Wadler. Monads and functional programming. In Proceedings of the 1992
Marktoberdorf Summer School on Program Design Calculi, NATO ASI Series F:
Computer and System Sciences 118. Springer-Verlag, 1993. (p. 125)

[136] P. Wadler. A taste of linear logic. In MFCS ’93 [58]. (p. 125)

[137] D. Wakeling and C. Runciman. Linearity and laziness. In FPCA ’91 [22], pages
215–240. (p. 125)

[138] M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer and its
Operating System. North Holland, 1979. (p. 4)

[139] G. C. Wraith. A note on categorical datatypes. In Category Theory and Computer
Science 1989, Lecture Notes in Computer Science 389. Springer-Verlag, 1989.
(p. 5)

